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Abstract

Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient
contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically
disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into
question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins
identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox
transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are
enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the
proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and a-a superhelices, the regions of
the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in
Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing
a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability
of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying
extents, creating the potential for competition between partners and cooperative binding by partners. The ability of
partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to
modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular
functions in response to tissue-specific cues.
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proteins lack stable globular structures and rapidly interconvert
among a large ensemble of conformations. Disordered protein
monomers can sample structure present in the bound complex or
be extremely dynamic with little detectable canonical structure
[25-27]. The disordered region may fold to similar structures
present in all interactions, or a single disordered region may adopt
many different structures to bind protein partners with different
topologies [28-33].

In contrast to the complementary interface formed by two
folded proteins, a subset of disordered regions remain highly
dynamic even when bound, either initially through an induced-fit
binding mechanism [30,34] or as part of a heterogeneous final
complex [35-39]. This structural heterogeneity in the complex has

Introduction

Most biological processes are implemented and regulated by
macromolecular complexes, in which proteins are major compo-
nents. The function of an individual protein, therefore, is often
determined by the identity and range of the proteins to which it
binds [1-3]. Consequently, proteins must specifically and reliably
bind the correct partners i vivo [4-7]. Interactions between
structured proteins require complementary topologies that gener-
ate sufficient interfacial surface area [8-11] and complementary
surface chemical groups capable of creating stable interprotein
bonds [11-13]. Residues forming an interface between two
structured proteins are often less dynamic relative to non-

mnterfacial surface residues, even when the proteins are in the
unbound state [8].

Intrinsically disordered proteins and protein regions are present
in more than one third of protein complexes and are enriched in
proteins with multiple partners [14-24]. As monomers, these
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been proposed to be an essential component of fine-tuning the
function of the complex [35] as well as maintaining the sensitivity
of the complex to evolving cellular signals [40]. The extreme
malleability of intrinsically disordered regions, even in the bound
state, raises questions regarding the role of the structure and
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surface topology of the partner protein in these interactions.
Indeed, disordered proteins bind more types of protein structures
(folds) than do structured proteins [41].

In this paper, we explore the importance of partner topology in
protein interactions mediated by Ultrabithorax (Ubx), a Drosoph-
ila melanogaster Hox transcription factor. Ubx is composed of
both structured and disordered regions (Figure 1) [6,42,43].
Amino acids 1-102 of Ubx, herein termed Region 1, include a
mixture of short structured elements interspersed with disordered
sequences. Region 2 is a large disordered region, spanning amino
acids 103 to 216 and including a portion of the transcription
activation domain [43]. A putative a-helix required for transcrip-
tion activation is located in Region 3 [43]. Amino acids 250-303,
termed Region 4, encompass intrinsically disordered, alternatively
spliced microexons and the disordered N-terminal arm of the
homeodomain. Finally, the C-terminal Region 5 includes the
structured portion of the homeodomain. Based on native state
proteolysis rates, the disordered regions of Ubx are significantly
more exposed than the disordered regions of proteins that fold
upon ligand or co-factor binding [6]. Moreover, Region 2 is
extremely glycine rich (27%, including 13 contiguous glycines).
Polyglycine peptides are compact, yet very dynamic, and lack
stable intraprotein contacts [44,45]. Because the extent of
monomer disorder correlates with the degree of disorder present
in the bound state [34,46,47], the extremely dynamic disordered
regions in Ubx are unlikely to fold into a stable structure upon
partner protein binding.

Ubx is a “one-to-many” protein, in that it physically interacts
with 39 known partner proteins with a wide variety of molecular
functions [42,48-54]|. This large number of partner proteins
provides a sufficiently diverse sample to identify common traits
that enable binding to Ubx. Several of these interactions have
been validated in vivo [48-50]. Proteins that genetically interact
with Ubx, unsupported by physical interaction data, were not
included in this study since genetic interactions can arise from
processes other than physical interaction between proteins. We
found that specific folds are significantly enriched in Ubx-
interacting proteins. Single domains of the partner protein that
exhibit the selected fold are sufficient to bind Ubx. Interestingly,
the intrinsically disordered regions of Ubx are necessary for these
protein interactions. Although partners bind all three disordered
regions cooperatively, individual partner proteins rely on specific
disordered regions to varying extents, creating opportunities for
competition and collaboration in forming higher order complexes.
Regions 1 and 2 are multiply phosphorylated, providing another
mechanism to regulate partner binding i vivo. Partner binding
also varies among Ubx isoforms arising from ubx mRNA splicing,
providing a third regulatory mechanism. Interestingly, the
preference of protein partners for specific Ubx isoforms correlates
well with the topology of the partner protein. Thus, phosphory-
lation and alternative splicing, both tissue-specific processes, have
the potential to regulate protein interactions. The regions of Ubx
mvolved in partner binding also regulate DNA binding and
include a portion of the transcription activation domain [6,7,43].
Linking different Ubx functions via intrinsically disordered regions
has the potential to provide the specificity and reliability required
for Hox activity in vivo.

Materials and Methods

Definition of Intrinsically Disordered Regions of Ubx
Ubx disordered regions were defined by a combination of

prediction algorithms and experimental assays. Disordered and

structured regions were predicted using the average score from
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three programs, VLXT-PONDR, IUPRed, and DisEMBL (loops/
coils) [6]. Predicted amino acid residues with an average
prediction score =0.6 are designated disordered. A residue with
an averaged prediction score between 0.4 and 0.6 was considered
as uncertain and thus was not defined in this study. A residue with
an average prediction score =0.4 was considered structured.
Native state proteolysis data [6] were used to refine the predicted
boundaries of disordered and structured regions. Since successful
proteolysis requires a minimum of five disordered amino acids on
both sides of the severed bond, the regions designated as
disordered were expanded at a few positions to include these
sequences. The designations of structure and disorder agree with
previous data on the locations of structure in the Ubx homeodo-
main, the partially structured nature of the HoxB1 FPWM motif
in the absence of Pbx] binding (analogous to the Ubx YPWM
motif which was designated as “uncertain’ by our analysis), and
the location of a putative o-helix involved in transcription
activation by Ubx [42,43,55]. Protein interface and molecular
recognition features were predicted by the Anchor and MoRFpred
algorithms, respectively [52-54].

Classification of the Drosophila Interactome by Fold

The Drosophila melanogaster large-scale yeast two-hybrid
dataset [50] was used for this global analysis. The structural
assignments, definitions, and evolutionary relationships listed in
Flybase [56] and the Structural Classification of Proteins (SCOP)
database version 1.65 release 3 [57] were used to group the
proteins by folds. SCOP merges computer algorithms and human
curation to classify protein domains based on structural and
evolutionary similarities. Interaction maps were generated and
modified using Osprey 1.20 (http://biodata.mshri.on.ca/osprey/
servlet/Index).

Databases built using Microsoft Access were used to construct
the figures and tables in the Supporting Data, which can be
accessed from http://rice.allgeek.net. Algorithms to analyze the
raw protein interaction data were written using Windows Visual
Basic 6.0. The genome database was compiled from a list of all
Drosophila  genes downloaded from Flybase. If the Flybase
reference for the corresponding protein had one or more assigned
folds as defined by SCOP, then all potential fold-fold pairs were
included in the database. Any structure assignments that were
fragments of other folds, “not a true fold”, or duplicates of other
entries were eliminated. By this analysis, roughly one quarter of
Drosophila proteins have an assigned fold. Each fold in multifold
proteins was included in the genome database, accounting for 23%
of the proteins, and was listed as an interacting fold for all
interactions in which the multifold protein participates, yielding
63% of the total interactions examined.

The interactome database contains previously defined interac-
tions and includes the confidence score assigned to that interaction
by Giot et al. [51]. Data fitting for the scale-free graph was
completed using Igor Pro Version 4.02A (WaveMetrics).

Classification of Ubx protein interactions by fold

Proteins with assigned folds that physically interact with Ubx
included data from Giot et al. [51], our laboratory [48,49], and
other laboratories [50]. Proteins encoded by genes that only
genetically interact with ubx were not included, because molecular
events other than protein interactions can yield a genetic
interaction. Folds within this protein list were identified as
described above.
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Figure 1. Location of structured and disordered regions in Ubxlb, and design of Ubx variants. (A) A grey bar, representing the domain
organization of the Ubxlb transcription factor shows the position of its transcription activation domain (blue), YPWM Exd interaction motif (yellow),
DNA-binding homeodomain (black), a partial transcription repression domain (orange), and protein regions encoded by three alternatively spliced
microexons: the b element (pink), ml (purple), and mll (brown). (B) The location of predicted protein-interaction motifs in Ubx as predicted by
ANCHOR (yellow stripes) and MoRFpred (blue stippled stripes). Regions predicted by both algorithms to be involved in protein interactions are
marked with both yellow and blue. (C) A bar schematic depicting the positions of structured and intrinsically disordered regions in Ubxlb. The
boundaries were determined by a combination of computational and experimental approaches. The scores from three disorder prediction algorithms
were averaged to identify structured (green) and disordered (red) regions. Native state proteolysis, in which only disordered segments can be cleaved
by trypsin, was used to verify these assignments, and, where appropriate, slightly expanded the boundaries of the predicted disordered regions [6].
Sites cut by trypsin (black triangles), sites not cut by trypsin (open triangles), and sites that could not be definitively assigned (grey triangles) are
indicated. (D) Bar schematic for predicted protein interfaces and molecular recognition features (MoRFs) on Ubx peptide. The schematic bars show
Anchor algorithm predicted Ubx- partner protein interfaces (orange bars) and MoRF algorithm predicted Ubx-partner protein interface (blue bars
with pattern fill). (D) Bar schematics of Ubx truncation mutants and internal deletion mutants used in yeast two-hybrid assays to identify partner
binding interfaces. UbxIb, Ubxla, and UbxIVa are isoforms created by alternative splicing in vivo. To prevent auto-activation, the activation domain
was de-activated either by removal of amino acids 102 to 216 or by the Pro4 mutation, in which Ala and Glu are mutated to Pro at amino acids 226
and 233 (indicated by a red-green stipple), respectively, which should prevent formation of a predicted a-helix required for transcription activation
[43]. In two variants, the structured C-terminus of the protein was replaced by mCherry, represented by a pink/white striped bar.
doi:10.1371/journal.pone.0108217.g001
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Yeast two-hybrid assays

Ubx deletion and truncation mutants were created using the
QuikChange site-directed mutagenesis kit following manufacturer
instructions (Agilent). Ubx variants were cloned into the pLexA
plasmid (Clontech) between the EcoRI and BamHI restriction
enzyme sites. Ubx binding partners had previously been cloned
into the pB42 vector [48,49]. DNA encoding the individual
domains of Al (residues 81 to 142) and Arm (residues 155 to 273)
were synthesized by Blue Heron Biotechnology Inc., USA.

Ubx variants and partner plasmids were co-transformed into
EGY48 Saccharomyces cerevisiae already carrying the p8op-LacZ
reporter plasmid (Clontech). In this process, 500 ul of an overnight
liquid culture of yeast (ODggpp nm=1.5) was centrifuged, and the
pellet was washed with 2 mM lithium acetate (Acros) and 100 mM
dithiothreitol (D'T'T, Fisher Scientific). Cell pellets, resuspended in
100 pl of transformation reaction mix, containing 2 mM lithium
acetate, 50% polyethylene glycol (Sigma, MW3350), 10 pg/ml
salmon sperm DNA (Sigma), and 100 mM DT'T, were mixed with
Ubx-pLexA plasmid and Ubx binding partner pLexA fusion
(500 ng per plasmid). The resulting mixture was incubated at
46°C. for one hour and subsequently centrifuged. The pellet was
re-suspended in sterile water and spread on a designated synthetic
amino acids drop-out yeast medium agar (2%) plate containing
80 ug/ml X-gal (Research Products International) following
incubation for 56 days at 30°C.

The blue or white color of the colonies provided an initial
qualitative measure of binding. The results of this qualitative assay
matched subsequent quantitative results using the Miller -
galactosidase reporter assay [58,59]. In this assay, an individual
yeast colony was used to inoculate 5 ml of the designated synthetic
amino acid drop-out yeast medium, then grown overnight at 30°C
with 250 rpm shaking to an ODgg nm=1.5. B-Galactosidase
liquid assays generally followed the Clontech Yeast Protocols
Handbook (Clontech). In brief, 2 ml of the overnight yeast culture
were used to inoculate 8 ml of the trp /his” /ura  drop-out yeast
medium containing 10% galactose (Sigma) to activate the B42-
partner chimera and 5% raffinose (Sigma) to provide a carbon
source and incubated at 30°C for 3-5 hr with 250 rpm shaking
until the cells reached mid-log phase with ODggp ,,m=0.8. To
harvest the yeast culture, 1.5 ml was removed and centrifuged
10,000xg for 30 seconds. Supernatant was discarded and the
pellet was mixed thoroughly with 1.5 ml of Z Buffer (70 mM
Na,HPO,, 40 mM NaH,PO,s H,O, 10 mM KCIl, 1.3 mM
MgSO,). After re-centrifugation and decanting the supernatant,
the pellet was resuspended in 300 pl of Z Buffer, divided into three
100 ul aliquots, frozen in liquid nitrogen for 1 minute, and
incubated at 37°C for 45 seconds. This freeze and thaw process
was repeated two more times. To the cell lysate, 4 mg/ml of ortho-
nitrophenyl-B-galactoside (ONPG, Sigma) in Z Buffer and 700 ul
of 27% B-mercaptoethanol in Z buffer were added, followed by
30°Cl incubation with mixing by inversion every 10 minutes. B-
Galactosidase expression levels were assessed by enzymatic assays
that spectroscopically measure generation of the B-galactosidase
enzymatic product, o-nitrophenol (ONP), at 420 nm. When yellow
color was visible, reactions were quenched by addition of 400 pl of
1 M NayCO;. The elapsed time from the beginning of the
reaction (ONPG addition) to the end of reaction (NayCOg
addition) was recorded. The reaction mixture was centrifuged at
10,000 xg for 10 minutes. Supernatant was collected and A490 nm
was recorded. The results were reported in Miller units, the
amount of B-galactosidase that hydrolyzes 1 umol of ONPG to
ONP per min per cell [58,59]. Miller units were calculated using
the following formula:
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( 1 OOO) (A420nm)

Activity = (V) ODgooum)

(Eqtnl)
in which ¢ is the elapsed time (in min) of incubation, V'is 0.1 mlx
dilution factor (5 for this protocol), ODgpg np is the optical density
of 1 ml induction culture before harvest measured at a wavelength
of 600 nm, and A 59 ,, is absorbance of 1 ml ONPG reaction
product measured at 420 nm.

Western Blotting

Extraction of yeast protein samples and their preparation for
western blotting followed the Yeast Protocols Handbook (Clon-
tech). Cells were lysed as described for yeast two-hybrid assays,
and whole cell lysate was subsequently centrifuged at 10,000 xg for
10 minutes to remove cell debris and any insoluble Ubx. Proteins
were separated by SDS-PAGE prior to western blotting with a
1:200 dilution of LexA murine monoclonal primary antibody
(Santa Cruz Biotechnology) followed by a 1:5000 dilution of
IRDye 800CW Goat anti-Mouse IgG (H+L) secondary antibody
(Li-Cor). Protein expression was visualized and quantified using an
Odyssey infrared imaging system and software (Li-Cor).

Results

Ubx selects protein interactions based on partner
topology

The Drosophila Hox protein Ubx is 44% intrinsically
disordered, and binds many partner proteins [48-50,60]. Howev-
er, the location and chemical nature of most of these protein
interfaces is unknown. To determine which physicochemical
properties of partner proteins are important for mediating these
interactions, we first examined the characteristics of Ubx-binding
proteins (Figure 1). Although some of the Ubx partner proteins
form true interactions that alter Ubx function in vive [47-49],
other interactions have not been examined in flies. In addition, a
few interactions are unlikely to be biologically relevant because the
partner has a different sub-cellular localization and/or is involved
in unrelated biological processes [49]. However, binding by all
partners results in similar reporter intensities in yeast two-hybrid
assays, reflecting similar protein interaction affinities. Ubx is
presumably able to bind the unlikely partners in vitro because
these proteins share features recognized by Ubx when it binds the
true partners. Therefore, including these unlikely partners in the
analysis increases the occurrence of traits selected by Ubx while
simultaneously decreasing the occurrence of traits commonly
found in transcription factors but not specifically required for Ubx
binding.

Of the 39 known Ubx binding proteins [42,48-54], 34 have
domains with assigned folds. We searched for properties common
to these 34 Ubx partners. Ubx has a predicted net charge of +7.3
at pH = 7.4. This strong positive charge is largely due to the DNA-
binding homeodomain (+11 at pH =7.4), the only large structured
region within Ubx. Any proteins directly binding the homeodo-
main would be expected to have a compensating negative charge.
Ubx partners have a surprisingly large range of predicted net
charges at pH =7.4, spanning +36 to —54 (Figure 2). Thus, net
charge does not correlate with the ability to bind Ubx, suggesting
that all partners are unlikely to exclusively bind the positively
charged homeodomain.

Topology is a key factor affecting interactions between
structured proteins, and sorting protein interactions based on the
folds of the interacting partners can yield useful information about
the nature of the interactions [41]. Using the terminology of the
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Figure 2. Ubx binds both positively and negatively charged proteins. The chart shows the predicted net charge at pH=7.4 of Ubx and the
subset of its partner proteins with known folds [48-50]. Abbreviations: Al, Aristaless; Aly, Always early; Apt, Apontic; Arm, Armadillo; CycK, Cyclin K;
CBP80, Cap-binding protein 1; Dsh, Dishevelled; DIP1, Disconnected-interacting protein 1; Ef2b, Elongation factor 2b; EF1 v, Elongation factor 1vy; Exd,
Extradenticle; Fzo, Fuzzy onions; mRpL44, Mitochondrial ribosomal protein L44; HSC70-4, Heat shock protein cognate 4; Nmo, Nemo; Noc, No ocelli;
Nrt, Neurotactin; p120ctn, Adherens junction protein p120; Otu, ovarian tumor; PK17E, Protein kinase-like 17E; RpL22, Ribosomal protein L22; Rpné6,
Protease p44.5 subunit; Rps 13, Ribosomal protein S13; Smox, Smad on X; Term, terminus; Trn, Transportin; TFIIEB, Transcription factor IIEf; Ubx,

Ultrabithorax; Zf30C, Zinc finger protein 30; Zn72D, Zinc-finger protein at 72D.

doi:10.1371/journal.pone.0108217.g002

Structural Classification of Proteins (SCOP) hierarchical classifi-
cation database [57,61], analysis of Ubx partners at the level of
protein folds reveals that 23 of the 34 Ubx binding partners
contain one of just 7 different folds, out of the 1195 folds identified
by SCOP (Table 1, Table S1). All of the selected folds in Ubx-
interacting proteins are enriched relative to the frequency with
which these folds occur in the Drosophila proteome (Table 2).
However, this level of enrichment may not be specific to Ubx:
some folds are more prevalent in the Drosophila interactome. To
determine whether these folds are more likely to bind Ubx than a
random protein, we compared the extent of fold enrichment
among Ubx partners with data derived from a high-throughput
yeast two-hybrid experiment on Drosophila proteins [51] (Figure
S1). Grouping the high-throughput data by fold did not change
the scale-free nature of the network (Figure S2). The DNA/RNA
binding 3-helical bundle fold, the a-ot superhelix fold, and the
dsRNA binding motif fold occur more frequently among Ubx-
interacting proteins than in the Drosophila interactome, indicating
that the enrichment of these folds among Ubx partners is not an
artifact of their increased propensities to bind proteins in general
(Table 2). For Ubx and each protein in the Drosophila inter-
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actome, we also calculated the number of folds each protein binds
(F) divided by the number of proteins each binds (I) (Figure S3).
Proteins with an F/I ratio approaching 1 do not select partners by
topology, whereas proteins with a low F/I ratio are highly
selective. Whereas Ubx has an F/I ratio of 0.61, approximately
90% of the proteins analyzed have a higher F/I ratio, indicating
they are less selective than Ubx. Despite the fact that large regions
within Ubx are disordered and presumably extremely dynamic,
these results suggest that topology is an important criterion by
which Ubx selects protein partners.

Importantly, proteins unlikely to naturally bind Ubx can have
the same fold as true Ubx partners. For example, DIP1 alters
transcription regulation by Ubx in cell culture assays and inhibits
Ubx function in vivo [48]. DIP1 has the same fold as mRplL.44, a
mitochondrial ribosomal protein that should not co-localize with
Ubx in vivo. Therefore, even if some Ubx-protein interactions lack
a biological role, they can still yield information regarding the
physicochemical properties of partner proteins bound by Ubx in
vivo. This phenomenon underscores the importance of partner
topology in the selection of protein partners by Ubx.
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The enrichment of particular folds among Ubx partners may be
caused by Ubx preferring to bind the surface topologies created by
these folds. Alternately, the types of proteins Ubx binds in vivo,
transcription factors and cell signaling proteins, may be enriched
in these folds (e.g., a DNA/RNA binding 3-helical bundle fold).
Consequently, the “selected folds” may be enriched among Ubx
partners due to their cellular function rather than presentation of a
binding interface on the surface of the selected fold. In order to
determine whether the selected folds are sufficient to mediate Ubx
interactions, we used yeast two-hybrid assays to probe whether
Ubx interacts with the regions of partner proteins that correspond
to the selected topology. We utilized the yeast-two hybrid method
because (i) these assays do not interfere with Ubx binding to these
partners, (ii) these assays do not rely on other Ubx functions, such
as DNA binding or transcriptional regulation, iii) yeast two-hybrid

Table 1. Specific folds are enriched in Ubx-binding proteins.
Fold Partner Fold Partner
DNA/RNA binding 3-helical bundle RpL22 P-loop containing NTP hydrolases EF2b

Apt Mi-2

Al Fzo

Dsh

Ubx dsRBD-like DIP1

Exd mRpL44
a-o superhelix Arm Ferridoxin-like EF2b

Rpn6 Aly

P120ctn

CBP80 Protein kinase-like Nmo

14-3-3¢ Pk17E
Zinc-Finger C2H2 and C2HC Noc

Zf30C

Zn72D

Term
Exd is a well-established Ubx binding protein [50], and Ubx cooperatively binds DNA [77]. All other Ubx binding partners were identified by yeast two-hybrid assays. Ubx
binding partners were classified by the fold/shape according to SCOP. Folds with more than one partner were defined as “selected”. The interactions with Term, Fzo,
mRpL44, and Pk17E were reported by Giot et al. [51]. The remaining interactions were reported by Bondos et al. [48,49]. Ubx binding proteins with non-selected folds
are listed in Table S1.
doi:10.1371/journal.pone.0108217.t001

assays allow quantitative comparison of the strength of binding,
and (iv) many partners identified by yeast two-hybrid assays also
alter Ubx function i vivo [48-50,62], demonstrating this method
likely reflects native protein interactions involving Ubx. We
created two constructs: a single o-o superhelix domain from
Arm (amino acids 155-273) and a DNA/RNA binding 3-helical
bundle domain from Al (amino acids 81-142). We hypothesized
that the individual domain in a Ubx partner is sufficient to interact
with full-length Ubx without surrounding sequences. To prevent
reporter gene activation by Ubx in the absence of partner binding,
a full-length Ubx mutant (UbxIb Pro4) was used that is incapable
of transcription activation [43]. Individual yeast two-hybrid
experiments between these two isolated domains and UbxIb
Pro4 [43], exhibit similar levels of reporter gene expression as for
experiments in which UbxIb Pro4 binds the corresponding full-

Table 2. A comparison of the occurrence of folds in the Drosophila proteome and interactome.

Frequency in Frequency in

Frequency in Ubx

P-value of enriched fold P-value of enriched fold
relative to Drosophila relative to Drosophila

Fold Drosophila proteome  Drosophila interactome partner list proteome interactome
DNA/RNA binding 3-  2.7% 8.4% 17.6% P<0.05 0.05<P<0.1
helical bundle

a-o. superhelix 3.4% 7.2% 14.7% P<0.05 0.05<P<0.1
Zinc Finger C2H2 and  3.7% 11.7% 11.8% P<0.05 0.05<P
C2HC

dsRBD-like 0.2% 0.9% 5.9% P<0.05 P<0.05
Protein kinase-like 2.8% 5.6% 5.9% 0.05<P 0.05<P
p-loop containing NTP  5.6% 8.4% 8.8% 0.05<P 0.05<P
hydrolases

Ferridoxin-like 2.8% 8.1% 5.9% 0.05<P 0.05<P

doi:10.1371/journal.pone.0108217.t002
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p-value of enriched fold relative to Drosophila proteome/interactome was generated using Chi-Squared test.
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Figure 3. An individual partner domain is sufficient for Ubx
binding. Full length Al and Arm have similar interaction strength as
individual domains derived from Al (residues 81-142) and Arm (residues
155-273) with Ubxlb Pro4. The intensity of the B-galactosidase reporter
gene, reported as Miller Units, signal for each partner is similar to its
respective single-domain variant.
doi:10.1371/journal.pone.0108217.g003

length partners (Figure 3). This result indicates that the o-o
superhelix x and DNA/RNA binding 3-helical bundle folds in
these proteins are sufficient for Ubx interaction.

More than one region of Ubx is required for protein

interactions

Ubx contains both structured and intrinsically disordered
domains, either of which could mediate protein interactions and
potentially select partners based on topology. One important
function of intrinsically disordered regions is to mediate protein
interactions [14-24], suggesting the disordered regions in Ubx
may serve as or contribute to protein interaction domains.
Conversely, fold selection is a known property of interactions
between structured proteins [12,13] and has not been previously
observed for intrinsically disordered proteins, suggesting Ubx
partners may bind the structured regions of Ubx. We tested
whether the structured or disordered regions of Ubx mediate
binding using yeast two-hybrid assays. We focused our studies on
the folds that include the greatest number of Ubx-interacting
proteins: the a-o superhelix fold (5 proteins) and the DNA/RNA
binding 3-helical bundle fold (6 proteins). This selection of
multiple partners optimizes the possibility of identifying charac-
teristics important for Ubx binding.

Our general approach is to remove either intrinsically
disordered or structured sequences within Ubx (Figure 1) to assess
whether these regions impact binding to protein partners. All of
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the Ubx mutants were carefully designed to minimize the impact
on regions of Ubx structure that are well-folded. In the N216 and
N103 Ubx truncation mutants, amino acids 2-215 (Regions 1 and
2) or 2-102 (Region 1) are removed, respectively (Figure 1). These
variants have been successfully used for both in vitro DNA binding
assays and yeast one- and two-hybrid experiments [6,43]. Indeed,
both truncation mutants are soluble, active monomers capable of
binding DNA with an affinity comparable to full-length Ubx [6].
Similarly, we made Ubx variants with an internal deletion (A103-
216) which removes Region 2. Other Ubx mutants with internal
deletions in this region are also soluble and capable of binding
DNA [6]. Furthermore, the length of this region is significantly
reduced in natural Ubx orthologues (Figure S4) [63], consistent
with observations that this internal deletion in Drosophila Ubx
does not significantly disrupt the remaining Ubx structure [6]. The
C-terminal disordered region (Region 4) spans an alternatively
spliced region of Ubx. The natural Ubx spliceoform UbxIVa
removes nearly all (90%) of the intrinsic disorder in this region,
and was used to assess the contribution of Region 4 to protein
interactions.

Because Ubx is fused to the LexA DNA-binding domain in the
yeast two-hybrid assay, the transcription activation domain in Ubx
was deactivated in each mutant to prevent the LexA-Ubx fusion
from activating the reporter gene and generating false positive
signals. This deactivation was accomplished either by removing a
critical portion of the activation domain (amino acids 103-216) or
by including the mutations A226P/Q233P, abbreviated as
“Pro4”, to unfold a putative o-helix required for transcription
activation [43]. None of the Ubx variants in this study were able to
activate transcription on their own, or bind products of the empty
bait vector pB42 (Figure 4). Furthermore, the expression levels of
all Ubx variants in yeast were similar, except the two Ubx fusion
proteins in which the DNA-binding homeodomain was replaced
with mCherry, which were expressed at much higher levels (Figure
S5).

To clarify which portions of the Ubx sequence are included or
removed in each variant, the name of each Ubx variant in this text
1s introduced followed by a notation representing the Ubx
sequences present in parentheses. We have divided the Ubx
sequence into 5 regions (Figure 1). The number representing each
region will be preceded by an S if the region is structured, a D if
the region is disordered, and SD if that region contains both
structured and disordered elements. Thus the sequence of full-
length, wild-type Ubx would be depicted as (SD1, D2, S3, D4, S5).
Regions that are missing or mutated in a particular variant are
designated by 0. The UbxIb Pro4 mutant, in which the helix in
region S3 has been destabilized by mutation to prevent
transcription activation, would be notated as (SD1, D2,0, D4, S5).

We made a series of Ubx truncations or mutations to
sequentially test whether each portion of the Ubx sequence
contains a critical partner binding site (Figure 5). All data were
compared with UbxIb Pro4 (SD1, D2,0, D4, S5), a full-length
variant of Ubx which binds all partners but cannot activate the
reporter gene in the absence of partner interaction. UbxIb N103
Pro4 (0, D2,0, D4, S5), in which the structured and disordered
elements in Region 1 were removed, still bound the partner
proteins, indicating Region 1 is dispensable for partner binding.
UbxIb A103-216 (SD1,0, S3, D4, S5), which removes the
intrinsically disordered Region 2, also bound some partners. The
previously established ability of UbxIb with the Pro4 mutation
(SD1, D2,0, D4, S5) to bind partners indicates that the helix in
Region 3 cannot be responsible for partner binding [48,49].
Conversely, the Pro4 mutations are not required for partner

binding, because partners bind UbxIb A103—216 (SD1,0, S3, D4,
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Figure 4. Ubx variants did not interact with B42 protein activation in the absence of Ubx partners. Yeast two-hybrid results for wild type
full length Ubx or Ubx variants with truncation and/or Pro4 mutation showed no significant interaction with B42 protein activation domain from f3-

galactosidase reporter gene expression, listed as Miller Units.
doi:10.1371/journal.pone.0108217.g004

S5), which retains the wild-type helix sequence in Region 3.
UbxIVa Pro4 (SD1, D2,0,0, S5) binds partner proteins, even
though the disordered Region 4 has been removed. Finally we
created UbxIb A292-389 Pro4 mCherry (SD1, D2,0, D4,0), in
which the structured C-terminus (Region 5) has been removed and
replaced with the mCherry protein sequence. mCherry alone is
unable to bind any of the Ubx partners (data not shown).
However, UbxIb A292-389 Pro4 mCherry bound all partners,
indicating that Region 5, which includes the DNA-binding
homeodomain, is not necessary for partner binding. Collectively,
these data indicate that more than one region of Ubx is required
for protein interactions.

The intrinsically disordered regions in Ubx are necessary
for protein interactions

The next step was to identify some portion of the Ubx protein
that is necessary for partner binding. The MORF and ANCHOR
algorithms both identify many short motifs in the intrinsically
disordered regions of Ubx that have the potential to engage in
protein interactions (Figure 1B), suggesting the intrinsically
disordered regions may be collectively required for partner
binding. In order to test this hypothesis, we compared binding
by the structured versus disordered halves of the Ubx sequence.
UbxIVa N216 (0,0, S3,0, S5) lacks all of the intrinsically
disordered regions but retains two of the three regions containing
structure. This mutant is based on the natural UbxIVa mRNA
splicing isoform, which removes Region 3, and the N216
truncation, which removes Regions 1 and 2 (Figure 1D). The
remainder of this Ubx variant is almost entirely structured (>
90%). Conversely, UbxIb A292-389 Pro4 mCherry (SD1, D2,0,
D4,0) retains all of the disordered regions, but lacks the Region 3
helix and the structured homeodomain in Region 5. UbxIVa
N216 (0,0, S3,0, S5), which lacks intrinsically disordered
sequences, was unable to bind all partner proteins, whereas
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Ubxlb A292-389 Pro4 mCherry (SD1, D2,0, D4,0), which
contains all of the intrinsically disordered sequences, bound all
partners. In fact, this variant yielded an even more intense reporter
signal than Ubx alone. Much of this elevated signal can be
attributed to the increased expression level of UbxIb A292-389
Pro4 mCherry relative to the Ubx variants lacking mCherry
(Figure 6). Thus Regions 1, 2, and 4, which include all of the
intrinsically disordered regions in Ubx, are sufficient for partner
binding.

One concern is that the structured regions may contribute to
binding in the full-length protein, but are mis-positioned by the
absence of the disordered regions in the UbxIVaN216 (0,0, S3,0,
S5) mutant. To test the latter possibility, we examined whether the
Ubx partners could bind an orthologue of Ubx derived from the
velvet worm Akanthokara kaputensis (AkUbx), an onychorphoran
whose last common ancestor with Drosophila lived 540 million
years ago. Hox proteins in this ancient organism only have very
basic molecular functions, which are reflected in the relatively
simple and repetitive body plan of the animal [63,64]. When
expressed in Drosophila, AkUbx can replicate some, but not all, of
the functions of Drosophila Ubx. Alignment of the Ubx and
AkUbx sequences demonstrates that the disordered sequences in
Regions 1 and 3 are absent in this ancient Ubx orthologue, and
roughly half of the disordered sequences in Region 2 are missing
(Figure S4). In contrast, the homeodomain and much of the
structured portions of Region 1 are preserved. Therefore, by
testing whether AkUbx can bind Ubx partners, we can use a
native, folded Ubx orthologue to observe whether the loss of most
of the intrinsically disordered regions prevents partner interaction.
AkUbx showed little to no interaction with Ubx partners in the
yeast two-hybrid assay (Figure 6). These results confirm that the
disordered regions in Ubx are required for partner binding.
Because no individual disordered region is solely responsible for
partner interactions, we conclude that the intrinsically disordered
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sequentially mutated or deleted. Each of these variants retain some ability to bind Ubx relative to UbxIbN216 (0,0, S3, D4, S5). Partners are grouped

based on the fold they have in common.
doi:10.1371/journal.pone.0108217.g005

regions in Ubx must cooperate to bind partner proteins. The
requirement of multiple, non-contiguous disordered regions for
partner interactions has been observed previously for other
proteins [25,39,65].

Either Region 1 or Region 4 is required as a scaffold to
position intrinsically disordered Ubx sequences

To try to identify a minimal region of Ubx required for protein
interactions, we began with UbxIb N103 Pro4 (0, D2,0, D4, S5), a
truncated variant which binds all partner proteins, and iteratively
removed each remaining structured or disordered region (Fig-
ure 7A). Ubxlb N216 (0,0, S3, D4, S5), which additionally
removes the disordered Region 2, cannot bind any of the Ubx
partners. Likewise, UbxIVa N103 Pro4 (0, D2,0,0, S5) which
removes the disordered Region 4, cannot bind any of the Ubx
partners. Finally, the structured C-terminus was removed in
UbxIb N103 A292-389 Pro4 mCherry (0, D2,0, D4,0), which also
cannot bind Ubx partners. Therefore Regions 2, 4, and 5 can be
considered a minimal partner interaction region.

These data apparently conflict with data from the UbxIb A292—
389 Pro4 mCherry (SD1, D2,0, D4,0) mutant, which also is able to
bind all partners but lacks the S5 region in the minimal partner
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interaction region described above. Instead, this variant includes
the SD1 region with mixed structure and disorder. Removal of the
SDI region to create UbxIb N103 A292-389 Pro4 mCherry (0,
D2,0, D4,0) prevents binding to Ubx partners (Figure 7B).
Therefore the UbxIb A292-389 Pro4 mCherry (SD1, D2,0,
D4,0) variant constitutes a second minimal partner interaction
region. The presence of two minimal partner interaction regions
that are compatible with many Ubx-binding proteins may provide
an opportunity for multiple partners to simultaneously bind Ubx.
Inclusion of multiple binding sites has been observed for other
disordered proteins [39]. The fact that both minimal partner
binding regions are mainly composed of intrinsically disordered
sequences highlights the important role that disorder plays in
interactions mediated by Ubx.

The intrinsically disordered regions in Ubx differentially
contribute to partner binding

Although the disordered regions are required for partner
binding, different Ubx partner proteins may best interact with a
subset of the Ubx disordered domains. If so, then identifying which
intrinsically disordered region within Ubx is preferred by partner
proteins could provide clues regarding the functional outcome of
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Figure 6. The intrinsically disordered regions in Ubx are necessary for protein interactions. Yeast two-hybrid indicates that Ubx variants,
either lacking all disordered regions (UbxIVa N216) or all structured regions (Ubxlb N103 A292-389 Pro4 mCherry), cannot bind partner proteins.
Likewise, AkUbx, a primitive Ubx orthologue derived from Acanthokara kaputensis, naturally lacks most of the disordered sequences and is also

unable to bind partner proteins.
doi:10.1371/journal.pone.0108217.g006

each partner interaction. For example, a partner that bound the
Ubx transcription activation domain might alter the balance
between transcription activation and repression by Ubx [42,47].
Although the experiments described above suggest that the
disordered regions are necessary for binding, they do not reveal
which of the disordered regions are bound by partners. The most
straightforward approach is to compare a Ubx variant with no
disordered regions (UbxIVa N216) with a variant which includes
just one of the disordered regions (Region 1, UbxIVa A103-216
(SD1,0, S3,0, S5); Region 2, UbxIVa N103 Pro4 (0, D2,0,0, S5);
Region 4, UbxIb N216 (0,0, S3, D4, S5)). However, little to no
partner binding was observed for all three of these variants,
indicating more than one disordered region must be present for
any partner to bind, consistent with the identification of the
minimal binding regions described above (Figure 8).

To test the strength of different cooperative units, we compared
variants missing each of the three disordered regions in turn
(Region 1 deleted, UbxIb N103 Pro4 (0, D2, S3, D4, S5); Region 2
deleted, UbxIb A103-216 (SD1,0, S3, D4, S5); Region 4 deleted,
UbxIVa Pro4 (SD1, D2, S3,0, S5). As already discussed, each of
these mutants is still able to bind Ubx partner proteins. However,
partner affinity is reduced to different extents (Figure 5). Binding
by 14-3-3¢, RpL22, Apt, and Dsh was equally affected by
removing Regions 1, 2, or 3. Since a large percentage (=59%) of
the signal was lost in each of these interactions, an interesting
interpretation is that these proteins may simultaneously bind all
three regions. For other partners, the magnitude of the reduction
In protein interaction varies for the three regions. Whereas
removing Regions 1 and 3 had a significant effect on binding all
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partners, for a subset of partners (¢.g., p120ctn, Al, and CBP80),
removing Region 2 had less impact. The ability of these three
variants to bind partner proteins does not appear to correlate with
the topology of the partner.

Partners differentially interact with alternatively spliced
isoforms of Ubx

Binding by all partners relies to some extent on contacts with
Region 4, which contains sequences included in or excluded from
Ubx by alternative mRNA splicing. Expression of Ubx splicing
1soforms is regulated in a stage- and tissue-specific manner during
Drosophila embryonic development [66]. Ubx spliceoforms are
generated through differential inclusion of three different micro-
exons in ubx mRNA, all of which code for protein sequences
within Region 3: the b element, microexon I, and microexon II
(Figure 1). Expression of these three splice variants elicits different
phenotypes in vivo [67-69]. To determine the impact of
alternative splicing on partner interactions, we compared the
ability of UbxIb Pro4 (containing all three microexons), Ubxla
Pro4 (containing the ml and mll microexons) and UbxIVa Pro4
(containing no microexons) to bind partner proteins.

Removal of all three microexons in the UbxIVa Pro4 variant
reduces the ability of Ubx to bind all partners relative to UbxIb
Pro4 (Figure 9A). This reduction ranges from 85% (CBP80) to
60% of binding lost (Arm). For some partners (RpL22, Apt, and
Dsh), removal of only the 9-amino acid b element altered binding
to the same extent as removing all three microexons, indicating
these interactions are critically dependent on the presence of the b
element. We cannot discern from these experiments whether the b
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Figure 7. Defining minimal partner interaction domains. Analysis of yeast two-hybrid data using Ubx variants identifies two overlapping
minimal partner interaction domains: Ubxlb N103 Pro4 (0, D2,0, D4, S5) (Panel A) and Ubxlb A292-389 Pro4 mCherry (SD1, D2,0, D4,0) (Panel B). Both
minimal partner binding domains include the disordered Regions 2 and 4.

doi:10.1371/journal.pone.0108217.g007

element contributes key chemical groups required for interaction ingly, disorder prediction algorithms yield very different scores for
or simply lengthens the intrinsically disordered region to generate different Ubx splicing isoforms (Figure 9B). These differences
a sufficiently large binding interface. Partner affinity has also been suggest that Ubx dynamics may influence Ubx-partner binding.

linked to the dynamics of the disordered region [3,70]. Intrigu-
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Partner topology generally correlates with partner affinity for
different Ubx splicing isoforms. All proteins with an a-o superhelix
fold bind UbxlIa better than UbxIVa, whereas all but one protein
(Al) with a DNA/RNA binding 3-helical bundle fold bind Ubxla
and UbxIVa equally well (Figure 9). This correlation reflects
similarities in binding by partners with the same fold. Interestingly,
the Eukaryotic Linear Motif (ELM) prediction algorithm revealed
a 14-3-3¢ binding motif in the mlI microexon sequence [71-74],
which may explain why 14-3-3¢ binds Ubxla Pro4, but not
UbxIVa Pro4, which is missing this motif. In general, the proteins
with a strong isoform effect (UbxIb>Ubxla>UbxIVa) were all
negatively charged (14-3-3e, Al, Arm, CBP80, p120ctn, and
Rpn6), perhaps due to the position of the alternatively spliced
microexons adjacent to the positively charged homeodomain. The
previously characterized Ubx partner, Exd, also has a net negative
charge and differentially binds Ubx isoforms [50]. Proteins that
bind Ubxla and UbxIVa equally well can be either positively or
negatively charged. Thus, although all partners bind disordered
regions, the topology and charge of the partner protein correlate
with their ability to bind different Ubx spliceoforms. Differences in
the affinity of partners for Ubx spliceoforms create the potential
for ubx mRNA splicing to regulate Ubx-partner interactions in
vivo.

Discussion

We have demonstrated that partner topology is a key aspect of
protein interactions formed by the intrinsically disordered regions
of the Drosophila Hox protein Ubx. Greater than 60% of Ubx-
binding proteins have a fold in common with at least one other
Ubx partner, and Ubx binds the selected fold within these
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proteins. Other laboratories have also identified disordered
proteins that bind multiple partner proteins with similar structures
[28,75]. These partners were related proteins from the same
protein family. In contrast, Ubx binds structurally similar, yet
widely diverse proteins with very different chemical natures and
molecular functions. Binding multiple partners with similar
structures may reduce frustration in the Ubx-partner interface
compared to interactions disordered proteins and an array of
partner topologies [76].

A model for the role of structure in Ubx-partner binding

Many proteins that interact with intrinsically disordered
proteins or regions bind a MORF, a short motif within a
disordered region of a protein that often folds upon partner
binding. In the case of Ubx, three large disordered regions all
simultaneously contribute to partner binding. The fact that the
topology of the partner protein is important suggests that the
disordered regions may need to be positioned in a specific manner
in order to maximize interactions with the partner protein. This
model fits with our data on the role of Regions 1 (partially
structured) and 5 (structured) in partner binding. Neither
structure-containing region is sufficient for partner binding, and
partner binding can occur in the absence of either region. The
mability of AkUbx, a natural Ubx orthologue which lacks most of
the disordered regions, to bind partners demonstrates that the lack
of binding is not an artifact induced by mis-positioning structured
regions in Ubx mutants. However, either Region 1 or Region 5
must be present for the disordered regions in Ubx to bind partner
proteins, suggesting either of these regions can correctly position
the disordered domains for partner binding. This positioning may
involve binding the disordered regions: the Ubx homeodomain,
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which is located in Region 5, has a DNA/RNA-binding 3-helix Implications for Ubx function

bundle fold, one of the two major folds selected by Ubx. The The identification of partner-binding regions within Ubx, and
intrinsically disordered regions of Ubx directly interact with the the overlap of these regions with each other and with known
homeodomain to alter its DNA binding affinity and specificity functions or regulatory mechanisms, has important implications
[6,7] and with each other to enable cooperative DNA binding in for regulating tissue-specific Ubx function i vivo. Whereas some
vivo and materials formation in vitro [77,78]. partners bind all three regions to an equal extent (14-3-3¢, RpL.22,

Apt, and Dsh), other partners depend more heavily on Regions 1
and 3 for binding to Ubx (Arm, p120ctn, CBP80, and Al). Ubx
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partners reliant on the same regions of Ubx for binding may
compete for binding to these regions.

For partners that bind equally well to all three intrinsically
disordered regions, the long length of these regions may enable
more than one partner to simultaneously bind Ubx. Indeed, other
proteins with long disordered regions can act as a scaffold to
simultaneously bind multiple partner proteins and create multi-
functional complexes [29,32,79,80]. In the context of transcription
regulation, using Ubx as a scaffold for constructing a multi-protein
transcription factor complex allows Ubx-mediated transcription
regulation to respond to input from multiple protein systems [2].
The correct, tissue-specific regulatory complex would be stabilized
by Ubx-DNA interaction, partner-DNA interactions, and partner-
Ubx interactions.

All Ubx partners rely, to some extent, on Region 2 for binding.
Since Region 2 includes critical sequences for transcription
activation by Ubx [43], partner binding may modulate the ability
of Ubx to activate transcription. Further, multiple phosphorylation
sites exist within Regions 1 and 2 [81], suggesting that
phosphorylation of this region in vivo has the potential to regulate
Ubx activity by removing bound proteins, stabilizing protein
interactions, and/or altering which proteins are bound to this
region.

Alternative splicing alters the ability of Ubx to bind partners, a
regulatory mechanism used to regulate the other protein
interactions [82.83]. Alternative splicing, combined with protein
partner availability may also impact how Ubx selects DNA
binding sites. Ubx binds three different categories of DNA
sequences, defined by the protein interactions in which Ubx
engages: 1) multiple, closely spaced Hox binding sites that permit
cooperative Ubx binding, ii) single or multiple Hox binding sites
interspersed with binding sites for other transcription factors, or iii)
Hox-Exd heterodimer binding sites (Figure 10). The partner
binding preferences of each Ubx isoform, combined with the
presence or absence of partners in the tissues in which that isoform
is expressed, could determine which subset of DNA sequences are
regulated by Ubx in each tissue. For example, the presence of the
b element enhances binding by the partners examined in this
study, but reduces binding by Exd, the general Hox cofactor in
Drosophila [50]. Thus, we would predict that Ubxla would
preferentially bind Exd, and hence Hox-Exd heterodimer DNA
binding sites, whereas UbxIb would preferentially interact with
other transcription factors to regulate DNA sequences in which
Ubx binding sites are interspersed with partner binding sites.
Because these isoforms are expressed in the same tissues but not at
the same levels [84], the relative concentrations of UbxIb and
Ubxla may partition the available Ubx protein between genes
regulated by Ubx-Exd heterodimers relative to genes regulated by
Ubx in conjunction with other partner proteins. Likewise, the
absence of partner proteins or the decreased affinity of partner
proteins for a particular Ubx isoform, may direct Ubx to
cooperatively bind DNA as homo-oligomers. Together, these
mechanisms may contribute to isoform-specific differences in
target gene recognition in vivo [67-69].

Finally, whereas the o-o superhelix partners bound specific
disordered regions and Ubx isoforms better than others, the
DNA/RNA binding 3-helical bundle fold partners tended to bind
all three disordered regions equally well and bound Ubxla as well
as UbxIVa. The reduced sequence specificity of DNA/RNA
binding 3-helical proteins may reflect the fact that all of the
disordered regions in Ubx evolved to interact with the Ubx
homeodomain to regulate DNA binding [6,7]. Since the
homeodomain has a DNA/RNA binding 3-helical fold, the
homeodomain-interacting disordered regions can also bind other
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proteins with this same fold. This hypothesis predicts that protein
interactions may enhance DNA binding by removing the
inhibitory disordered regions from the surface of the Ubx
homeodomain. Conversely, DNA binding may facilitate Ubx-
partner interactions by making the disordered regions more
available for partner interactions. This scenario provides a
mechanism, consistent with its cellular role, for Ubx to functionally
integrate binding to a multiplicity of diverse protein partners and
to DNA.

Evolution of Hox function

The sequence of intrinsically disordered regions evolves more
rapidly than for structured regions [85,86], enabling incorporation
of novel functions or binding modes. Indeed, the evolution of
novel protein interaction motifs can change Hox function [63] or
even dramatically transform a Hox protein into to a different class
of transcription factor [88]. Based on our current knowledge, Ubx
appears unlikely to interact with a subset of the proteins identified
as binding partners for its natural i vivo function [49]. However,
the ability of Ubx to bind functionally different proteins with
similar structures may provide a mechanism to evolve novel Ubx
functions. A new protein may be able to bind the disordered
regions in Ubx based on its resemblance to an established Ubx
partner, creating new modes of Ubx (or partner) regulation in
vivo. As the Ubx sequence evolves, a specific motif for binding that
partner may emerge, and with time eventually become an
obligatory binding site. Examples of proteins at each of these
stages may be found among the Ubx partner proteins. Most of the
partners appear to recognize the disordered regions without any
clear sequence or motif preferences, representing a relatively early
stage in the evolution of partner binding. However, a 14-3-3¢
interaction motif [71-74] occurs in the mll element of Ubx.
Although the presence of this motif enhances 14-3-3¢ binding, this
protein still binds Ubx, albeit weakly, in the absence of this motif.
Furthermore, the motif is located in a region of the Ubx protein
for which inclusion depends on ubx mRNA splicing, allowing
tissue-specific control of Ubx’s affinity for 14-3-3¢. In our model,
the enhancement, but not obligatory reliance, of partner binding
by a recognition motif represents an intermediate stage of partner
evolution. Finally, Exd/Pbx is an ancient Hox protein partner
required for many basic Hox functions. Although the disordered
regions in Ubx influence Exd binding, Exd interactions are
primarily dependent on specific motifs in the Ubx sequence [87].
Exd binds different motifs in Ubx to elicit different functional
outcomes n vivo [87]. Thus Ubx-Exd interactions represent a
highly evolved partner interaction.

Conclusions

We have demonstrated that the intrinsically disordered regions
in Ubx select interacting partner proteins based, in part, on the
topology of the protein partner. Furthermore, partner topology
determines the affinity of binding to Ubx spliceoforms. The ability
of multiple disordered regions in Ubx to bind numerous partners
creates a variety of mechanisms for regulating partner binding,
including competition or cooperation, preferences of alternatively
spliced Ubx isoforms for specific protein — and thus DNA —
interactions, and synergistic partner and DNA binding. The
overlap of partner binding regions with functional or regulatory
domains may provide an additional mechanism for partners to
impact molecular functions such as transcription activation and
DNA binding. Alteration of the Ubx disordered regions via
phosphorylation and mRNA splicing provide opportunities for
tissue-specific regulation of Ubx-partner interactions.
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Figure 10. Ubx recognizes three categories of DNA binding sites. Ubx cooperatively binds multimers of Hox binding sites (TAAT/ATTA, red
text), including enhancers for the ubx and antp genes [76]. Other transcription factors are not known to influence Ubx binding to these sites. In the
second category, DNA binding sites for Ubx monomers are separated by DNA binding sites for other transcription factors (Medea, purple text, and
Mad, green text) [91]. Regulation of the sal gene is coordinated by both Ubx and BMP signaling, which controls the activity of Medea and Mad. In the
final category, Ubx binds DNA and regulates transcription in association with Exd (blue text) and Hth (orange text), general Hox co-factors [92,93]. The
positions of the DNA sequences are marked in bp relative to the start of transcription.

doi:10.1371/journal.pone.0108217.g010

Supporting Information

Figure S1 Maps of a large-scale Drosophila melanoga-
ster yeast two-hybrid data [51] parsed by fold, in which
dots represents specific folds, and lines between dots
depict interactions between the connected folds. (A) All
foldsfold interactions with a confidence score of at least 0.5 are
shown. Intrafold interactions are depicted as loops which connect
back to the originating node. (B) Mapping only foldesfold
interactions with a confidence score of at least 0.5 and containing
at least 3 proteineprotein interactions significantly simplifies the
depiction. The total number of protein interactions (for between 3
and 12 interactions) in one foldefold connection is reflected in the
weight of the lines. Connections with 12 or more interactions have
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the same line weight. Key folds discussed in the text are labeled on
both maps.
(TIF)

Figure S2 Probability distribution curves for Drosoph-
ila protein interactions from a large-scale yeast two-
hybrid experiment parsed by fold. Data were fit to a
truncated scale-free model. The scatter observed at high k is often
observed in scale-free systems [51,94,95]. The similarity of these
graphs to each other and with the protein data [51] indicates that
grouping data by structure do not alter network character. Graphs
depicting the number of superfamilies, proportional to P(k), that
have k interactions is shown as an inset. Deviations from a straight
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line in these graphs are indicative of biological restrictions on
highly interactive proteins within a scale-free network.

(TIF)

Figure 83 The distribution of the fold to interaction
ratio (F/I) for (A) all single domain proteins and (B) all
single domain proteins with more than one partner.
Proteins with a high ratio do not select protein partners by fold,
whereas interactions with proteins with a low ratio have strong fold
preferences. Ubx has an F/I ratio of 0.61, indicating a strong
ability to select partners by fold.

(TIF)

Figure S4 AkUbx, a Ubx orthologue with only one
intrinsically disordered region, cannot bind Drosophila
Ubx partners. Sequence alignment between Akanthokara
kaputensis Ubx (AkUbx) and Drosophila melanogaster Ubx
showing the locations of disordered residues (red boxes) and the

three disordered regions (blue labels).
(TTF)

Figure S5 Ubx variants expression level does not
correspond with partner interaction strength. (A) Quan-
titative Western blotting result for Ubx variants protein expression
in yeast (Strain:EGY48 transformed with p8op-LacZ reporter
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