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To modulate transcription, a variety of input signals must be
sensed by genetic regulatory proteins. In these proteins, flexibil-
ity and disorder are emerging as common themes. Prokaryotic
regulators generally have short, flexible segments, whereas
eukaryotic regulators have extended regions that lack predicted
secondary structure (intrinsic disorder). Two examples illus-
trate the impact of flexibility and disorder on gene regulation:
the prokaryotic Lacl/GalR family, with detailed information
from studies on Lacl, and the eukaryotic family of Hox proteins,
with specific insights from investigations of Ultrabithorax
(Ubx). The widespread importance of structural disorder in
gene regulatory proteins may derive from the need for flexibility
in signal response and, particularly in eukaryotes, in protein
partner selection.

Over the past two decades, molecular flexibility has emerged
as critical to protein function. Although not readily apparent in
crystal structures, a variety of computer simulations and solu-
tion experiments, including NMR, fluorescence, and small
angle x-ray scattering, demonstrate widespread flexibility in
protein molecules (1). This plasticity ranges across side chain
fluctuations, domain motions, and folding transitions to the
extreme pliability of intrinsically disordered regions (2).

Although universal, flexibility and disorder are present to
different extents in prokaryotic and eukaryotic organisms
(3-5). These differences are well illustrated by genetic regula-
tory proteins; in prokaryotic regulators, flexibility primarily
occurs in short regions around specific functional sites. Exam-
ples that have been studied in some detail include the biotin
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repressor BirA (6), lambda repressor (7), tetracycline repressor
family (8), MerR family (9), and the Lacl/GalR? family (10). In
contrast, extended regions of disorder are found in genetic reg-
ulatory proteins ranging from yeast to humans (e.g. GCN4, p53,
BRCA1, and Hox proteins) and are especially evident in the
activation domains of eukaryotic transcription regulators (5,
11). As paradigms for these two categories—localized flexibility
and intrinsic disorder—we review these roles in two families of
transcription regulators that have been extensively studied:
LacI/GalR (prokaryotic) and Hox (eukaryotic).

Overview of Structures and Functions
Lacl/GalR Proteins

The Lacl/GalR family of transcription regulators comprises
>4000 homologs; all members of this family are found exclu-
sively in bacteria (10, 12, 13). The common structure of this
family is a homodimer that contains one DNA-binding site and
two binding sites for small-molecule, allosteric ligands (10).
Some members form tetramers by a variety of mechanisms,
whereas other homologs bind heteroproteins as part of the reg-
ulatory cycle (10). Fig. 1 (A-C) shows the tetrameric structure
for the paradigmatic lactose repressor protein (Lacl), which we
use here to provide an overview of the flexible regions required
for transcription regulation by Lacl/GalR homologs.

First, a flexible linker connects the DNA- and ligand-binding
domains (Fig. 1, A-C) (14, 15). In ~60% of Lacl/GalR homologs
(13), this linker includes a conserved motif that forms a “hinge
helix” in known structures. The side chains of the hinge helices
interact with the minor groove at the center of the two DNA
half-sites, bending the operator by ~45° (Fig. 1B) (14—-17). In
this complex, various linker side chains form specific, hydro-
phobic interactions with operator DNA; thus, the linker-DNA
interactions appear to be critical for recognizing specific Lacl/
GalR operator sequences (14—17). For Lacl, the hinge helices
remain compact (and presumably folded) even when the Lacl-
operator complex is bound to its allosteric ligand, inducer IPTG
(18). However, when bound to nonspecific DNA, the NMR
structure of Lacl DNA-binding domains/linkers shows that the
hinge helix is unfolded (16). In the absence of any DNA, both
NMR and small angle x-ray scattering of full-length Lacl show
high mobility for the N-terminal DNA-binding domain that
accompanies unfolding of the hinge helix (18, 19).

The second flexible region in the Lacl/GalR proteins is a
three-stranded “pivot” between the N- and C-subdomains of
the regulatory domains (20, 21). Changes at this pivot occur
when small, allosteric ligands bind the regulatory domain.
Binding therefore alters the juxtaposition of the N-subdomains,
which “pulls” the hinge helices and provides a key mechanism
for altering their orientation and contacts to DNA (14, 21-23).

The third flexible region is unique to Escherichia coli Lacl.
This protein has an additional C-terminal sequence that com-

3 The abbreviations used are: Lacl, lactose repressor protein; GalR, galactose
repressor protein; HD, homeodomain; IPTG, isopropyl-3,D-thiogalacto-
side; Ubx, Ultrabithorax; aa, amino acids.
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FIGURE 1.Lacl/GalR protein structure and DNA targets. A, graphic of a Lacl/GalR homodimer. D indicates DNA-binding domains (gold/cyan ovals); L indicates
linkers that contain the hinge helix (dark gold/dark cyan bars); and R indicates regulatory domains (large, stippled shapes). B, structure of Lacl tetramer. Each
monomer is a different color. The arrows labeled H point to the linker hinge helices. Inducer-binding sites are labeled with black stars; DNA is shown at the top
of the figure as a twisted ladder. The tetramerization domain (T) is a four-helix bundle at the bottom of the figure; note the flexible linkers connecting this
domain to each regulatory domain. C, overlay of monomers from DNA-bound (Protein Data Bank (PDB) 1LBG, gold) and inducer (IPTG)-bound (PDB 1LBH, black)
Lacl structures (14). Note that the hinge helix and N-terminal DNA-binding domain are not resolved in the presence of inducer, presumably due to flexibility
that arises from hinge helix unfolding; the DNA-binding domain may also become less structured. D and E, linker sequence variation and DNA sites for subsets
of Lacl/GalR homologs that contain (top) and lack (bottom) the YPAL motif (13). In YPAL homologs, structures show that amino acids in positions P+1 through
L+2fold into an a helix (14, 15, 17). YPAL homologs recognize operators with contiguous DNA half-sites (panel E, top). Homologs that lack the YPAL motif (e.g.
E. coli CytR) bind DNA with half-sites that are more widely spaced (panel E, bottom) (13, 27). When examined individually, the sequences of non-YPAL linkers

resemble those of intrinsically disordered proteins (13). Logos were created with WebLogo (95).

prises the highly stable tetramerization domain (Fig. 1, B and
C). Flexible linkers join the tetramerization domain to the reg-
ulatory domain, allowing the angle between the two dimers to
vary (18, 24, 25). For this region, freedom of motion is essential
for DNA looping and is discussed further below.

The sequences and roles of these flexible regions vary signif-
icantly among Lacl/GalR homologs to generate functional
diversity (reviewed in Ref. 10). For example, differences in the
pivot and N-subdomain interface can lead to alternative regu-
latory outcomes. Lacl is inducible—the consequence of binding
its natural allosteric effector is to reduce DNA affinity and
hence relieve repression of downstream genes (Fig. 1C). In con-
trast, PurR is repressible—the consequence of binding its allos-
teric ligand is to enhance DNA binding and repression (15). In
addition, for ~40% of homologs, the ~18-amino acid linker
that connects the core domain to the DNA-binding domain
appears to be completely disordered, lacking a hinge helix (13).
Similar to eukaryotic intrinsically disordered proteins (26), the
linker sequence in these proteins has a high density of charge
and/or prolines, although the specific positions vary (Fig. 1D).
In these homologs, disorder in the linker appears to have arisen
to facilitate binding DNA operators with varied spacing
between half-sites (Fig. 1E) (13, 27).

Of the homologs with disordered linkers, E. coli CytR is the
best studied. For high affinity DNA binding, CytR requires
cooperative binding of flanking catabolite repressor proteins
(CRPs) (10, 28). The unfolded linkers in CytR allow its two
N-terminal DNA-binding domains to bind operators with var-
ied half-site spacing (Fig. 1E) (28). Notably, the disordered link-
ers do not propagate allosteric information to the DNA-bind-
ing domains as found for Lacl. Instead, the conformational
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change precludes simultaneous binding to catabolite repressor
protein and target DNA (29).

The range of functional differences among Lacl/GalR family
members illustrates how sequence changes in flexible protein
regions can introduce functional variation without affecting the
overall fold.

Hox Proteins

Within multi-cellular organisms, the family of Hox tran-
scription regulators specifies the identities of many tissues (30,
31). Each Hox homolog regulates a different set of target genes
during development to specify cellular position within the orga-
nism (e.g. various head or cardiac substructures) and to deter-
mine cellular function (30). All Hox proteins contain (i) a con-
served DNA-binding domain (“homeodomain”) (32-35) and
(ii) a hexapeptide motif that mediates interactions with the
Exd/Pbx class of Hox co-factors (Fig. 24) (31). Hox proteins
also contain transcription activation and repression domains
that influence functional specificity (e.g. Ref. 36). Large regions
of the Hox proteins are intrinsically disordered, as reflected by
sequence analyses, striking protease sensitivity, and challenges
in protein purification (32) (Fig. 2B). Unlike the LacI/GalR ho-
mologs, both domain organization and the locations of regula-
tory sites (e.g. phosphorylation and splicing sites) vary consid-
erably among Hox family proteins (Fig. 24) (33, 37-40).

In all Hox proteins, the 60-amino acid DNA-binding home-
odomain accounts for only a small fraction of the total sequence
(Fig. 2A). Homeodomains contain three helices, the third of
which binds the DNA major groove and is stabilized by the
other two helices (34). At its N terminus, the homeodomain
contains a dynamic, disordered “N-terminal arm” of 9 amino
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FIGURE 2. Hox protein structure and DNA targets. A, bar schematics depict-
ing the functional domains of representative Hox proteins; note that domain
organization differs for each protein. Black regions represent the homeodo-
main (HD); light gray regions indicate the activation domain(s); dark gray
regions show the conserved hexapeptide motif. Ubx (389 aa) and Abd-A (330
aa) are derived from D. melanogaster; HoxB7 (431 aa), and HoxB3 (217 aa) are
from Homo sapiens (96) (adapted from Ref. 37). B, bar schematics depicting
structural and functional domains in Ubx. Yellow bars (top) indicate disor-
dered regions of Ubx (32). Orange bars (bottom) represent a region of Ubx that
is 35% glycine, including 13 consecutive glycines (dark orange) (32). The HD is
shown as a black bar, and the hexapeptide motif is shown as a dark gray bar.
Various domains are depicted as structures below. From left to right: (i) model
of N terminus (91); (ii) molecular models, based on molecular dynamics sim-
ulations of 13 glycines in a free peptide, for the conserved Ubx polyglycine
sequence that demonstrates the range of possible conformations (Justin
Drake and B. Montgomery Pettitt, UTMB-Galveston, personal communica-
tion); (i) conserved FYPWMA hexapeptide motif (from PDB file 1B8lI) (34); and
(iv) Ubx homeodomain (from PDB file 1B8I) (34). C, examples of Ubx DNA-
binding sites. DIl is a composite site bound by a single Ubx protein with part-
ner proteins Homothorax (Hth) and Exd to regulate the distalless gene (44).
Sequences recognized by Ubx are in bold, and sequences recognized by Hth
(left underline) and Exd (right underline) are indicated. The UA-binding region
contains four Ubx-binding sites (bold) and is part of the ubx gene; a linear
schematic of a portion of the ubx gene is shown beneath, showing a second
cluster of binding sites designated as UB (66). When multiple Ubx proteins
bind to UA and UB sequences in the ubx gene, they interact to create a DNA
loop. A loop schematic is shown on the lower left, and an electron micrograph
of a loop is shown at the lower right (reprinted with permission from Ref. 66).

ubx

acids. In DNA-bound homeodomains, the N-terminal arm
interacts with both bases and backbone phosphates in the DNA
minor groove (34, 35). Although the N-terminal arm never
adopts a regular secondary structure in this complex, DNA
interactions restrict its motion (35). The disordered N-terminal
arm facilitates DNA sequence recognition by detecting small,
sequence-specific variations in the phosphate positions (35,
41). Finally, the N-terminal arm can also influence contacts
between Helix 3 and the major groove (42). Both theoretical
and experimental results reveal that binding affinity is highly
influenced by the disordered N-terminal arm (e.g. Ref. 43).
One of the best-studied Hox proteins is Ultrabithorax (Ubx)
from Drosophila melanogaster (Fig. 2B). The Ubx transcription
activation domain is glycine-rich (33% versus 7% natural abun-
dance generally in proteins), including 13 glycine residues in a
row; not surprisingly, this region is extremely disordered (32,
37). Genetic studies have identified numerous DNA sequences
that are bound by Ubx in vivo. Biochemical studies of Ubx, one
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of the few full-length Hox proteins that have been purified, have
provided a structure of its DNA-bound homeodomain and
identified regions of Ubx that regulate DNA binding (30, 32, 34,
44).

Most Hox proteins, including Ubx, have DNA target
sequences that contain a 5'-TAAT-3’ sequence (5'-ATTA-3’
on the complementary strand) (Fig. 2C) (46, 47). Despite the
short length of this sequence, Ubx binds specific sites with high
affinity (32, 47). Disordered regions outside the homeodomain
can profoundly impact DNA binding and sequence selection,
providing an effective mechanism to diversify binding (32, 44).
As a consequence, full-length Ubx in vivo binds alternative
DNA sequences with a much wider array of affinities than does
the isolated Ubx homeodomain (44).

Flexibility Enables the Search for DNA-binding Sites

All transcription regulators must recognize their specific
cognate DNA sequence among myriad nonspecific sites (48).
The strategies used for this process are similar for prokaryotes
and eukaryotes, although the latter environment is further
complicated by the presence and packing of nucleosomes (49).
Nevertheless, all regulatory proteins carry out this task more
rapidly than predicted for diffusional search (50). For both pro-
karyotes and eukaryotes, combinations of sliding, hopping,
intersegment transfer (brachiation), and looping yield the most
efficient search process (51, 52). As discussed further below,
protein flexibility is key to several of these processes. Discern-
ing the modes of transfer can be complex, giving rise to diver-
gent views on search mechanisms (e.g. Ref. 52).

Sliding

Once a protein associates with nonspecific DNA, sliding
reduces the dimensionality of the search and thereby enhances
association rates for specific sites (Fig. 34) (48, 50, 53). As a
specific example from prokaryotes, in vivo experiments with
Lacl indicate that (i) sliding distances are ~45 bp before disso-
ciation from DNA, consistent with theoretical analysis (52), and
(ii) obstruction by other DNA-bound proteins occurs (54). The
flexibility of the Lacl hinge helices appears to be critical to the
sliding process because these domains are unfolded when com-
plexed with nonspecific DNA but folded in the operator-bound
form in NMR studies (16).

Despite the presence of chromatin structure, sliding is also
effective in eukaryotes. For Hox homeodomains, the disordered
N-terminal arms play key roles in sliding, with the length and
charge of this region driving sliding dynamics (55). Electrostatic
interactions dominate binding in the nonspecific complex (51,
53), although the orientation and mode of homeodomain-non-
specific DNA interaction are otherwise similar to the specific
complex (unlike other transcription factor families; e.g. Ref. 56).

Hopping

In this mode of transfer, proteins bind to DNA, dissociate,
and then rebind DNA at another site (Fig. 3B) (53). The length
of the “hop” may be quite short or can cover long distances (49).
For both prokaryotic and eukaryotic transcription factors, hop-
ping appears to increase the speed of the search process (51, 53).
In addition, hopping provides a mechanism for some eukary-
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FIGURE 3. Schematics for different search modes of DNA binding. The Lacl structure (dimer or tetramer) is used for most of these examples, with requisite
flexible regions highlighted with gold ovals. A, proteins can slide along the DNA backbone in search of specific binding sites. B, proteins can dissociate from DNA
and reassociate with the same or a different DNA in a “hopping” process. C, intersegment transfer and brachiation allow proteins with multiple binding sites to
move from one DNA segment to another via transient contacts to both DNA strands. This type of movement can be accomplished by an oligomeric protein
with two DNA-binding sites (e.g. Lacl tetramer, left) or by a monomer with two separate DNA-binding regions within a single domain (e.g. Ubx homeodomain,
right, green with flexible N-terminal arm in gold oval). D, stable loops can be formed when two DNA-binding domains simultaneously form specific complexes
at DNA target sites. The two sites can be separated by stretches of DNA that vary widely in length. Prokaryotic looping (left) generally involves single proteins
(e.g. Lacl tetramer) or a protein assisted by a nearby DNA bending protein (e.g. two GalR dimers and the bending protein HU) (60, 65). In contrast, multi-protein
complexes at eukaryotic promoters (right) can be highly complex and comprise multiple loops of varying stability that can encompass up to ~10° bp (as in for

example Ref. 97).

otic transcription factors to bypass nucleosomes when sliding
along DNA (49).

Intersegment Transfer/Brachiation

Intersegment transfer, also called “brachiation” (using
appendages to swing from object to object), allows movement
from one DNA segment to the next (Fig. 3C) (55). This mech-
anism is distinct from hopping and is more prominent at high
concentrations of DNA, as found in vivo (53). Intersegment
transfer facilitates searches over long stretches of DNA because
regions that are far in sequence space can be close in cellular
space (as occurs via extensive packing in many eukaryotic sys-
tems) (57). This mechanism requires that two segments of
DNA be simultaneously bound by protein. Hence, at least two
DNA-binding interfaces are needed on the protein, and suffi-
cient protein flexibility is required (58). The two interfaces can
be provided by multimeric assembly, by multiple DNA-binding
domains within a monomer, or by monomers with a single,
bipartite DNA-binding domain.

For tetrameric Lacl, the two dimers provide the requisite two
binding interfaces, and flexibility in the segments that link the
regulatory domains to the C-terminal tetramerization domain
allows variation in dimer orientation (18, 24, 25). For the home-
odomain, the intrinsically disordered N-terminal arm, which
binds the minor groove, and the third helix, which binds the
major groove, provide the two protein-DNA interfaces (55).
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This type of interaction accelerated the rate of target recogni-
tion by the HoxD9 homeodomain by more than 3 orders of
magnitude (59). Thus, the flexibility of the N-terminal arm plus
the flexible “joint” between the N-terminal arm and the helical
portion of the homeodomain play a critical role in enhancing
the rate of searching.

Looping

DNA looping occurs when regulatory proteins or their com-
plexes simultaneously bind two DNA sites (Fig. 3D). Transient
looping may occur during brachiation/intersegment transfer,
but stable loops persist and impact transcription (60, 61). For
example, Lacl looped complexes are significantly more stable
than Lacl bound at a single site (62). In eukaryotes, looping can
place enhancers and promoters in direct physical contact (61).
Loop formation is influenced by DNA sequence and/or the
presence of ancillary proteins (61, 63).

For E. coli tetrameric Lacl, distances between target opera-
tor-binding sites can vary from hundreds to more than a thou-
sand base pairs (62, 64). The natural lac operon has a spacing of
~400 bp between operators O1 and O2 and ~100 bp between
O1 and O3 (64). The distances between binding sites, as well as
their relative rotation around the DNA helix, can greatly alter
transcription (64). In addition, protein flexibility is critical to
forming looped structures (24). For tetrameric Lacl binding to
two operators, the two dimers adopt an “open” conformation
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activity of reporter enzyme in the absence of repressor. C, regions within Ubx important for modulating its DNA binding. The upper red bracket indicates the Ubx
region that contains phosphorylation sites (38). Blue brackets below indicate sequences that interact with Ubx partner proteins (69). Yellow regions are
intrinsically disordered (32). The gold and brown striped region is both spliced and disordered (32, 38). The conserved hexapeptide motif important for Exd
interaction is dark gray, and the HD is black. D, example structures for three families of proteins that interact with Ubx. For the six partners of the DNA/RNA-
binding three-helical bundle family, the engrailed homeodomain is shown (PDB file 1TENH) (98); for the five partners of the a-a superhelix family, B-catenin is
shown (PDB file 1QZ7) (99); and for the six partners of the zinc finger C2H2/C2H2 family, Zif268 is shown (PDB file 1A11) (100). Intrinsic disorder of Ubx regions

may be key for recognizing this wide range of partners (69).

(i.e. the angle between the two dimers is increased relative to the
crystal structure (18)). Chemically cross-linking LacI N termini
across two dimers limits dimer-dimer mobility and precludes
looping (24). An alternative approach to effect looping is uti-
lized by the homolog GalR, which forms highly stable loops
with the assistance of protein HU to facilitate DNA bending
(65).

The substantial intrinsic disorder found in eukaryotic regu-
latory proteins greatly facilitates loop formation. Many eukary-
otic transcription regulators, including the Hox proteins, bind
to clusters of DNA sites (66). Both side-to-side cooperative Hox
binding to Hox-site clusters and back-to-back Hox-Hox inter-
actions between two clusters can enable looped structures (Fig.
2C) (66). Hox proteins can either form loops themselves or
recruit large protein complexes, such as the polycomb group
proteins, the cohesion complex, and the condensing complex,
to bridge distant DNA sequences (67) (Fig. 3D). In addition,
Ubx binds other transcription factors that have their own
DNA-binding sites near those of Ubx target DNA sequences
(45, 68). This arrangement provides opportunities for creating
combinatorial loops that are sensitive to cellular conditions and
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allow response to cell-signaling stimuli. Importantly, the intrin-
sically disordered regions of Ubx are required for these heter-
ologous protein interactions (69).

Regulatory Mechanisms Exploit Protein
Flexibility/Disorder

Transcription regulation often requires that regulatory pro-
teins alter their DNA binding in response to external signals.
Both the LacI/GalR and the Hox proteins utilize flexibility and
disorder to transmit this incoming information to the DNA-
binding domain.

Allosteric Communication in the Lacl/GalR Proteins

Effector binding to Lacl/GalR proteins impacts several flex-
ible regions. For E. coli Lacl, structures of free, DNA-bound,
and IPTG-bound protein (14, 70), along with molecular
dynamics simulations (23,71, 72), have been used to study these
adaptable regions. The largest changes are found in the linker
region and in the N-subdomain interface of Lacl (14, 23, 70).
Inducer binding alters the juxtaposition of the Lacl N-sub-
domains to bring them into closer contact (Fig. 44) (73). The
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required flexibility in this region has been explored via
mutagenesis (74). A key residue is Lys-84, which is buried
within the otherwise apolar interface between the N-sub-
domains and changes positions in the bound and unbound
structures (14). When Lys-84 was substituted with Leu or Ala,
the allosteric response was diminished to =10-fold (as com-
pared with >10*fold for wild type), the kinetics of inducer
binding were greatly slowed, and protein stability was signifi-
cantly enhanced (74, 75).

The motion at the N-subdomain also alters the linker/hinge
helix of Lacl. The point of closest approach between the two
linkers of a dimer is the side chain of Val-52. When this residue
was mutated to cysteine, a disulfide bond could be formed that
blocked allosteric response to inducer binding (76). Other sub-
stitutions at position 52 showed that extrinsic interactions,
such as interactions with operator DNA, had more influence on
Lacl function and allosteric response than did the intrinsic pro-
pensity of amino acids for folding the hinge helix (77). The
length of the linker region is also important. When 1-3 Glu
residues were inserted after the hinge helix, Lacl showed pro-
gressive decreases in DNA binding affinity and allosteric
response (78). Thus, this flexible linker region must be precisely
positioned (i) to allow communication between the DNA-bind-
ing and regulatory domains and (ii) to align the DNA-binding
domains within each dimer.

Nevertheless, linker flexibility facilitates tolerance to signifi-
cant sequence diversity (Fig. 4B). In fact, fully functional
hybrids were created by fusing the Lacl DNA-binding domain/
linker to regulatory domains from other homologs. Each chi-
mera has the DNA binding specificity of Lacl, ligand binding of
the parent regulatory domain, and allosteric response defined
by the regulatory domain (79). Thus, the interface between the
linker and regulatory domains is highly adaptable.

Hox Regulatory Mechanisms

Prokaryotic repressors are generally designed to respond to a
limited number of signals, often only one. In contrast, eukary-
otic Hox proteins integrate multiple input signals to generate
highly specific outcomes unique to the tissue and organism
(80). Further, these proteins must differentiate a plethora of
DNA sites with both cellular and tissue specificity (30). To that
end, many Hox proteins have several splice isoforms (e.g. Refs.
44 and 81), a variety of modification sites (e.g. phosphorylation)
(38, 82, 83), and a number of protein partners (Fig. 4C) (31, 45,
68). These regulatory mechanisms are frequently used to diver-
sify the functions of transcription factors (84). Although these
processes typically occur within intrinsically disordered
regions, their locations vary among Hox proteins.

In Ubx, all of the regulatory processes are associated with
intrinsically disordered regions that also regulate DNA binding
(32, 38, 44). To provide an example in each category: (i) when
Ubx interacts with partner protein DIP1 via these disordered
regions, Ubx transcription activation is precluded in vivo (68);
(ii) the conserved hexapeptide, which alters DNA binding spec-
ificity, and the homeodomain are connected by a disordered
linker that varies from 7 to 50 amino acids in length in alterna-
tively spliced isoforms, with the result that Ubx splicing iso-
forms regulate different genes and construct different tissues in
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vivo (39, 40, 85); and (iii) Ubx is phosphorylated within the
disordered region of the transcription activation domain in a
tissue-specific manner, suggesting a regulatory function (37,
38).

The disordered regions also mediate Ubx binding to a variety
of heteroprotein partners, a critical element in Hox protein
function (45, 68, 69, 86). Hox proteins bind to components of
the transcription machinery (45, 87), as well as to other specific
transcription factors, to facilitate Hox regulation of the correct
subset of genes in different tissues (Fig. 4D) (45, 88, 89). For Ubx
partners identified by yeast two-hybrid methods, two key ele-
ments have emerged: (i) binding to many of these partners
requires the disordered regions within Ubx and (ii) partners can
be classified into specific “folds” (69). Indeed, of the selected
topologies, three folds include at least five Ubx partners, jointly
representing more than half of known Ubx partner proteins
(Fig. 4D). Different structural families preferentially bind differ-
ent disordered segments and splice isoforms of Ubx (69).

These regulatory mechanisms can influence one another
(80). For example, alternative splicing impacts Hox binding to
other proteins (39, 69). Likewise, phosphorylation of Hox pro-
teins can impact protein interactions and cooperative DNA
binding (90). Thus, regions that exhibit intrinsic disorder have
the potential to integrate multiple sources of information to
regulate and coordinate Hox functions.

Interestingly, the various disordered regions of Ubx can be
distorted to allow formation of biomaterials (91). Deleting the
disordered regions precludes self-assembly (92, 93). Two con-
sequences of intrinsic disorder have the potential to make these
materials commercially useful: (i) Ubx fibers are remarkably
strong and extensible (91, 92) and (ii) the disordered regions
allow fiber formation to accommodate a wide range of other
proteins fused to the Ubx sequence (94).

Conclusion

Although prokaryotic and eukaryotic proteins exhibit many
unique features, flexibility has emerged as key to transcription
regulation in both kingdoms. This feature of proteins permits
regulatory proteins to adapt to varied spacing among DNA-
binding sites and to engage multiple mechanisms of searching
for and binding to DNA target sites. Flexibility allows the vari-
ety of protein interactions required to construct complex DNA
structures such as loops, either by direct binding or through
interactions with other proteins. Finally, flexibility, and indeed
in some cases, extensive disorder are required for regulation of
transcription factor function through allosteric ligand binding,
protein sequence alterations (splicing and/or posttranslational
modifications), and/or protein-protein interactions. The mul-
tiple modes by which flexibility enables transcription regula-
tion generate both diverse and highly effective mechanisms for
an organism to respond to a varied local cellular environment as
well as features essential for the development and function of
multicellular organisms.
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