




a failure, DyMo converges instantly (i.e., in a single reporting

interval) to the optimal SNR Threshold. Thus, DyMo is able

to infer the maximum MCS while preserving QoS constraints.

Our Main Contributions: To summarize, the main contribu-

tions of this paper are three-fold:

(i) We present the concept of Stochastic Group Instructions

for efficient realization of importance sampling in wireless

networks.

(ii) We present the system architecture of DyMo and efficient

algorithms for SNR Threshold estimation.

(iii) We show via analysis and extensive simulations that DyMo

performs well in diverse scenarios.

The principal benefit of DyMo is its ability to infer the

system performance based on a low number of QoS reports.

It converges very fast to the optimal eMBMS configuration

and it reacts very fast to changes in the environment. Hence,

it eliminates the need for service planning and extensive field

trials. Further, DyMo is compatible with existing LTE-eMBMS

deployments and does not need any knowledge of the UE

population. We note that, due to space constraints, the proofs

and some simulation results are omitted and appear in [12].

II. RELATED WORK

Wireless multicast control schemes received considerable

attention in recent years (see survey in [6] and references

therein). Below we briefly review the most relevant papers.

LTE-eMBMS: Most previous work on eMBMS (e.g., [13]–

[16]) assumes individual feedback from all the UEs and pro-

poses various MCS selection or resource allocation techniques.

Yet, extensive QoS reports impose significant overhead on

LTE networks, which are already highly congested in crowded

venues [1]. An efficient feedback scheme was proposed in [10]

but it relies on knowledge of path loss (or block error) of the

entire UE population to form the set of feedback nodes.

Recently, [17] proposed a multicast-based anonymous query

scheme for inferring the maximum MCS that satisfies all

UEs without sending individual queries. However, the scheme

cannot be implemented in current LTE networks, since it

will require UEs to transmit simultaneous beacon messages

in response to broadcast queries.

WiFi Multicast: Most of the wireless multicast schemes

are designed for WiFi networks. Some rely on individual

feedback from all nodes for each packet [8], [9]. Leader-

Based Schemes [18]–[20] collect feedback from a few se-

lected nodes with the weakest channel quality. Cluster-Based

Feedback Schemes in [7], [21] balance accurate reporting with

minimization of control overhead by selecting nodes with the

weakest channel condition in each cluster as feedback nodes.

However, WiFi multicast solutions cannot easily be applied

to LTE-eMBMS systems. First, in WiFi, each node is associ-

ated with an Access Point, and therefore, the Access Point is

aware of every node and can specify the feedback nodes. In

LTE, eMBMS UEs could be in the idle state and the network

may not be aware of the number of active UEs. Second,

eMBMS is based on simultaneous transmission from various

BSs. Thus, unlike in WiFi where MCS adaptation is done at

each Access Point independently, a common MCS adaptation

should be done at all BSs.

III. MODEL AND OBJECTIVE

A. Network Model

We consider an LTE-Advanced network with multiple BSs

providing eMBMS service to a very large group of m UEs in

a given large venue (e.g., sports arena, transportation hub).5

Such venues can accommodate tens of thousands of users. The

eMBMS service is managed by a single DyMo server as shown

in Fig. 1 and all the BSs transmit identical multicast signals

in a time synchronized manner. The multicast flows contain

FEC code that allows the UEs to tolerate some level of losses

` (e.g., up to 5% packet losses).

All UEs can detect and report the eMBMS QoS they expe-

rience. More specifically, time is divided into short reporting

intervals, a few seconds each. We assume that the eMBMS

SNR distribution of the UEs does not change during each

reporting interval.6 We define the individual SNR value hv(t),
such that at least a given percentage 1 − ` (e.g., 95%) of

the eMBMS packets received by an UE v during a reporting

interval t have an SNR above hv(t). For a given SNR value,

hv(t), there is a one-to-one mapping to an eMBMS MCS such

that a UE can decode all the packets whose SNR is above

hv(t) [15], [16]. The remaining packets ` can be recovered by

appropriate level of FEC assuming ` is not too large.

B. Objective

We aim to design a scalable efficient eMBMS monitoring

and control system for which the objective is outlined below

and that satisfies the following constraints:

(i) QoS Constraint – Given a QoS Threshold p � 1, at most

a fraction p of the UEs may suffer from packet loss of

more than `. This implies that, with FEC, a fraction 1−p
of the UEs should receive all of the transmitted data. We

refer to the set UEs that suffer from packet loss after FEC

as outliers and the rest are termed normal UEs.

(ii) Overhead Constraint – The average number of UE reports

during a reporting interval should be below a given

Overhead Threshold r.

Objective: Accurately identify at any given time t the maxi-

mum SNR Threshold, s(t) that satisfies the QoS and Overhead

Constraints.

Namely, the calculated s(t) needs to ensure that a fraction

1− p of the UEs have individual SNR values hv(t) ≥ s(t).
The network performance can be maximized by using s(t)

to calculate the maximum eMBMS MCS that meets the QoS

constraint [15], [16]. This allows reducing the resource blocks

allocated to eMBMS. Alternatively for a service such as video,

the video quality can be enhanced without increasing the

bandwidth allocated to the video flow.

5In this paper, we consider only the UEs subscribing to eMBMS services.
6The SNR of each individual eMBMS packet is a random variable selected

from the UE SNR distribution. We assume that this distribution does not
change significantly during the reporting interval.



TABLE I
EXAMPLE OF THE DyMo FEEDBACK REPORT OVERHEAD.

Group

No.

of UEs

Report

Prob.

Avg. reports

per interval

Avg.

per sec

Rate

per min

H 250 20% 50 5 ≈ 100%

L 2250 2% 45 ≈ 5 ≈ 12%

IV. THE DyMo SYSTEM

We now briefly present the DyMo system architecture,

shown in Fig. 1. The details can be found in [12].

Feedback Collection: This module operates in the DyMo

server and in a DyMo Mobile-Application on each UE. At the

beginning of each reporting interval, the Feedback Collection

module broadcasts Stochastic Group Instructions to all the

UEs. These instructions specify the QoS report probability as a

function of the observed QoS (i.e., eMBMS SNR). In response,

each UE independently determines whether it should send a

QoS report at the current reporting interval.

QoS Evaluation: The UE feedback is used to estimate the

eMBMS SNR distribution, as shown in Fig. 2. Since the

system needs to determine the SNR Threshold, s(t), the

estimation of the low SNR range of the distribution has to

be more accurate. To achieve this goal, the QoS Evaluation

module partitions the UEs into two or more groups, according

to their QoS values. This allows DyMo to accurately infer

the optimal value of s(t), by obtaining more reports from

UEs with low SNR. We elaborate on the algorithms for s(t)
estimation in Section V.

MCS Control: The initial eMBMS MCS is determined from

unicast SNR values reported by the UEs during unicast

connections. Then, after each reporting interval, the QoS

Evaluation module infers the SNR Threshold, s(t), and the

MCS Control module determines the desired eMBMS settings,

mainly the eMBMS MCS and FEC, according to commonly

used one-to-one mappings [15], [16]. This iterative process is

demonstrated in the following example.

Example: Consider an eMBMS system that serves 2, 500 UEs

with the QoS Constraint that at most p = 1% = 25 UEs may

suffer from poor service. Assume a reporting interval of 10
seconds. To infer the SNR Threshold, s(t), that satisfies the

constraint, the UEs are divided into two groups:

• High-Reporting-Rate (H): 10% (250) of UEs that experi-

ence poor or moderate service quality report with probability

of 20%, i.e., an expected number of 50 reports per interval.

• Low-Reporting-Rate (L): 90% (2250) of the UEs that expe-

rience good or excellent service quality report with probability

of 2%, implying about 45 reports per interval.

Table I presents the reporting probability of each UE and the

number of QoS reports per reporting interval by each group.

It also shows the number of QoS reports per second and the

reporting rate per minute (i.e., the expected fraction of UEs

that send QoS reports in a minute). Since the QoS Constraint

implies that only 25 UEs may suffer from poor service, these

UEs must belong to group H. Although only 10 QoS reports

are received at each second, all the UEs in group H send QoS

reports at least once a minute. Thus, the SNR Threshold can

be accurately detected within one minute.

V. ALGORITHMS FOR SNR THRESHOLD ESTIMATION

This section describes the algorithms utilized by DyMo

for estimating the SNR Threshold, s(t), for a given QoS

Constraint, p and Overhead Constraint r. In particular, it

addresses the challenges of partitioning the UEs into groups

according to their SNR distribution as well as determining

the group boundaries and the reporting rate from the UEs in

each group, such that the overall estimation error of s(t) is

minimized. We first consider a static setting where the SNR

values of UEs are fixed and then extend to the case of dynamic

environments and UE mobility. The proofs are omitted due to

space constraints and can be found in [12].

A. Order Statistics

We first briefly review a known statistical method in quan-

tile estimation, referred to as Order-Statistics estimation. It

provides a baseline for estimating s(t) and is also used by

DyMo for determining the initial SNR distribution in its first

iteration assuming a single group. Let F (x) be a Cumulative

Distribution Function (CDF) for a random variable X , the

quantile function F−1(p) is given by, inf{x | F (x) ≥ p}.

Let X1, X2, . . . , Xr be a sample from the distribution F ,

and Fr its empirical distribution function. It is well known

that the empirical quantile F−1

r (p) converges to the population

quantile F−1(p) at all points p where F−1 is continuous [22].

Moreover, the true quantile, Sp = F (F−1

r (p)), of the empirical

quantile estimate F−1

r (p) is asymptotically normal [22] with

mean p and variance

V ar[Sp] = p(1− p)/r. (1)

For SNR Threshold estimation, F is the SNR distribution

of all UEs. A direct way to estimate the SNR Threshold s(t)
is to collect QoS reports from r randomly selected UEs, and

calculate the empirical quantile F−1

r (p) as an estimate.7

B. The Two-Step Estimation Algorithm

We now present the Two-step estimation algorithm that uses

two groups for estimating the SNR Threshold, s(t), in a static

setting. We assume a fixed number of UEs, m, and a bound r
on the number of expected reports. By leveraging Stochastic

Group Instructions, DyMo is not restricted to collecting reports

uniformly from all UEs and can use these instructions to

improve the accuracy of s(t). One way to realize this idea is

to perform a two-step estimation that approximates the shape

of the SNR distribution before focusing on the low quantile

tail. The Two-step estimation algorithm works as follows:

Algorithm 1: Two-Step Estimation for the Static Case

1) Select p1 and p2 such that p1p2 = p. Use p1 as the

percentile boundary for defining the two groups.

2) Select number of reports r1 and r2 for each step such

that r1 + r2 = r.

7Note that F can have at most m points of discontinuity. Therefore, we
assume p is a point of continuity for F−1 to enable normal approximation.
If the assumption does not hold, we can always perturb p by an infinitesimal
amount to make it a point of continuity for F−1.



3) Instruct all UEs to send QoS reports with probability

r1/m and use these reports to estimate the p1 quantile

x̂1 = F−1

r1 (p1).
4) Instruct UEs with SNR value below x̂1 to send reports

with probability r2/(p1 ·m) and calculate the p2 quantile

x̂2=G−1

r2 (p2) as an estimation for s(t) (G is the CDF

of the subpopulation with SNR below x̂1).

Upper Bound Analysis of the Two-Step Algorithm: To

simplify the notation, we use r1 and r2 to denote the expected

number of reports at each step. From (1) we know that

p̂1 = F−1(x̂1) and p̂2 = G−1(x̂2) are unbiased estimators

of p1 and p2 with variance p1(1− p1)/r1 and p2(1− p2)/r2.

Our estimate x̂2 has true quantile p̂1p̂2. Assume p̂1 is less than

p1 + ε1 and p̂2 is less than p2 + ε2 with high probability (for

example, we can take ε1 and ε2 to be 3 times the standard

deviation for > 99.8% probability). Then, the over-estimation

error is bounded by (p1 + ε1)(p2 + ε2) − p ≈ ε1p2 + ε2p1,

after ignoring the small higher order term ε1ε2.

The case for under-estimation is similar. By using symmetry

arguments, we show in [12] that the error is minimized by

taking p1 = p2 =
√
p, and r1 = r2 = r/2 so that ε1 = ε2 =

3
√√

p(1−√
p)/(r/2). This leads to proposition 1.

Proposition 1. The distance between p and the quantile of

the Two-Step estimator x̂2, p̂ = F−1(x2), is bounded by

6
√
2

√

p
√
p(1−√

p)

r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, where Φ
is the normal CDF.

We now compare this result against the bound of 3 standard

deviations in the Order Statistics case, which is 3
√

p(1− p)/r.

With some simple calculations, it can be easily shown that

if p ≤ 1/49 ≈ 2%, the Two-step estimation has smaller

error than the Order-Statistics estimation method. Essentially

the Order-Statistics estimation method has an error of order√
p/

√
r, while the Two-step estimation has an error of order

p3/4/
√
r. Since p � 1, the difference can be significant.

Example: We validated the error estimation of the Two-

step estimation algorithm and the Order-Statistics estimation

method by numerical analysis. We considered the cases of

p = 1% and p = 0.1% of uniform distribution on [0, 1] using

r = 400 samples over population size of 106. The Two-step

estimation algorithm has smaller standard error compared to

the Order-Statistics estimation, as shown in Fig. 3. Its accuracy

is significantly better for very small p.

The Two-step estimation algorithm can be generalized to 3

or more telescoping group sizes, but p will need to be much

smaller for these sampling schemes in order to reduce the

number of samples.

C. The Iterative Estimation Algorithm

We now turn to the dynamic case in which DyMo uses the

SNR Threshold estimation s(t−1) from the previous reporting
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Fig. 3. Estimates of (a) p = 1% and (b) p = 0.1% quantiles for 500 runs for
the Order-Statistics estimation (1-step) method and the Two-step estimation

algorithm.

interval to estimate s(t) at the end of reporting interval t.
Assume that the total number of UEs m is known initially.

Suppose that DyMo has a current estimate x̂ of the SNR

threshold, s(t), and s(t) changes over time. We assume that

the change in SNR of each UE is bounded over a time period.

Formally, |hv(t1)−hv(t2)| ≤ L|t1−t2|, where L is a Lipschitz

constant for SNR changes. For example, we can assume that

the UEs’ SNR cannot change by more than 5dB during a

reporting interval. 8 This implies that within the interval, only

UEs with SNR below x̂ + 5dB affect the estimation of the p
quantile (subject to small estimation error in x̂).

DyMo only needs to monitor UEs with SNR below xL =
x̂ + L. Denote the true quantile of xL, defined by F−1(xL),
as pL. To apply a process similar to the second step of the

Two-step estimation algorithm by focusing on UEs with SNR

below xL, first an estimate of pL is required. DyMo uses the

previous SNR distribution to estimate pL and instructs the

UEs to send reports at a rate q = r/(pL · m). Let Y be the

number of reports received during the last reporting interval,

then Y/m ·q can be used as an updated estimator for pL. This

estimator is unbiased and has variance pL

m
1−q
q . As a result, the

Iterative Estimation algorithm works as follows:

Algorithm 2: Iterative Estimation for the Dynamic Case

1) Instruct UEs with SNR below x̂+L to send reports at a

rate q. Construct an estimator p̂L of pL from the number

of received reports Y .

2) Set p′ = p/p̂L. Find the p′ quantile x′ = G−1

Y (p′) and

report it as the p quantile of the whole population (G is

the CDF of the subpopulation with SNR below x̂+L).

Upper Bound Analysis of the Iterative Algorithm: Suppose

the estimation error of pL is bounded by ε1, and the estimation

error of p′ = p/p̂L is bounded by ε2 with high probability.

Then, the estimation error is

(
p

p̂L
± ε2)pL − p = (

p

pL ± ε1
± ε2)pL − p.

The over-estimation error is bounded by

p

pL − ε1
ε1 + pLε2. (2)

If we assume pL − ε1 ≥ p (we know pL ≥ p by the Lipschitz

assumption), then the bound can be simplified to ε1 + pLε2.

The same bound also works for the under-estimation error.

8In our simulations, each reporting interval has a duration of 12s.



If r denotes also the expected number of samples collected,

r = pL ·m · q. The standard deviation of p̂L can be written as:

√

pL
m

1− q

q
=

√

p2L
r
(1− r

pLm
) ≤ pL√

r
.

If we assume ε1 = 3pL/
√
r, the error of p̂L is less than ε1

with probability at least Φ(3). Since we assume pL−ε1 ≥ p
above, this implies (1−3/√r)pL≥p. If r≥100, then p<0.7pL
will satisfy our requirement.

The standard deviation of estimating the p′ = p/p̂L quantile

is
√

1

Y

p

p̂L
(1− p

p̂L
) ≤ 1

2
√
Y
, (3)

by using the fact that x(1 − x) ≤ 1/4 for x ∈ [0, 1] and Y
is the number of reports received (a random variable). If the

expected number of reports r is reasonably large (≥ 100, say),

then Y can be well approximated by a normal and Y ≥ 0.7r
with high probability Φ(3) = 99.8%. Then, (3) is bounded

by 2/(3
√
r) ≥ 1/(2

√
0.7r) with high probability (Φ(3) =

99.8%), and we can set ε2 = 2/
√
r. Substituting these back

into (2), gives us the following proposition.

Proposition 2. The distance between p and the quantile of

the estimator x, p̂ = F−1(x), is approximately bounded by

5
pL√
r

with probability at least 1 − 2(1 − Φ(3)) > 99.6%, if the

expected sample size r ≥ 100 and p ≤ 0.7pL.

This shows that the error is of order pL/
√
r. We can see

that the estimation error can be smaller compared to the error

of order p3/4/
√
r in the static Two-step estimation if pL is

small (i.e., the SNR of individual users does not change much

during a reporting interval).

Exponential Smoothing: DyMo applies exponential smooth-

ing by weighing past and current reports to smooth the esti-

mates of the SNR Threshold, s(t), and take older reports into

account. It estimates the SNR Threshold as s(t) = αx̂(t) +
(1 − α)s(t − 1), where x̂(t) is the new raw SNR Threshold

estimate using the Iterative estimation above and s(t − 1) is

the SNR Threshold from the previous reporting interval. We

set α = 0.5 to allow some re-use of past reports without

letting them have too strong an effect on the estimates (e.g.,

samples older than 7 reporting intervals have less than 1%

weight). DyMo also uses the exponential smoothing method

for estimating the SNR distribution while taking into account

QoS reports from previous reporting intervals.

Unknown Number of UEs: If the total number of UEs, m,

is unknown or changes dynamically, DyMo can estimate m
by requiring UEs above the threshold x̂ + L to send reports.

These UEs can send reports at a lower rate, since m is not

expected to change rapidly. Similar to the Two-step estimation

algorithm, DyMo allocates r1 = r2 = r/2 reports to each

group. The errors in estimating the total number of UEs m
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Fig. 4. (a) The heatmap of UE SNR distribution in a stadium area of
1000 × 1000m2 and (b) the evolution of the number of active UEs over
time compared to the number estimated by DyMo for a stadium environment.
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Fig. 5. The heatmap of the SNR distribution of UEs (a) before a failure and
(b) after a failure.

will contribute to the error ε1 in the estimation of pL in (2).

The error analysis in this case is largely similar.

VI. PERFORMANCE EVALUATION

A. Methodology

We perform extensive simulations to evaluate the perfor-

mance of DyMo with various values of QoS Constraint, p,

Overhead Constraint, r, and number of UEs, m. Our evaluation

considers dynamic environments with UE mobility and a

changing number of active UEs, dynamically selected from

the given set of m UEs. In this paper, we present a few sets of

simulation results in which the SNR Threshold, s(t), changes

significantly over time. Additional results can be found in [12].

We consider a variant of DyMo where the number of active

UEs is unknown and is estimated from its measurements. We

compare the performance of DyMo to four other schemes.

To demonstrate the advantages of DyMo, we augment each

scheme with additional information, which is hard to obtain

in practice. The evaluated benchmarks are the following:

• Optimal – Full knowledge of SNR values of the UEs at

any time and consequently accurate information of the SNR

distribution. This is the best possible benchmark although

impractical, due to its high overhead.

• Uniform – Full knowledge of the SNR characteristics

at any location while assuming uniform UE distribution and

static eMBMS settings. In practice, this knowledge cannot be

obtained even with rigorous field trial measurements.

• Order-Statistics – It is based estimation of the SNR

Threshold using random sampling. The active UEs send

reports with a fixed probability of r/E[m(t)] per second,

assuming that the expected number of active UEs, E[m(t)],
is known. We assume that the UEs are configured with this

reporting rate during initialization. In practice, E[m(t)] is not

available. We also ignore initial configuration overhead in



our evaluation. Order-Statistics is the best possible approach

when not using broadcast messages for UE configuration. We

consider two variants of Order-Statistics. The first is Order-

Statistics w.o. History which ignores SNR measurements from

earlier reporting intervals. The second variant Order-Statistics

w. History considers the history of reports.

Both DyMo and Order-Statistics w. History perform the

same exponential smoothing process for assigning weights

to the measurements from previous reporting intervals with

a smoothing factor of α = 0.5. We use the following metrics

to evaluate the performance of the schemes:

(i) Accuracy – The accuracy of the SNR Threshold esti-

mation, s(t). After calculating s(t) at each reporting

interval, we check the actual SNR Threshold Percentile

in the accurate SNR distribution. This metric provides

the percentile of active UEs with individual SNR values

below s(t).
(ii) QoS Constraint violation – The number of outliers above

the QoS Constraint p.

(iii) Overhead Constraint violation – The number of reports

above the Overhead Threshold r.

The total simulation time for each instance is 30mins with

5 reporting intervals per minute (each is 12s). During each

reporting interval, an active UE may send its SNR value at

most once. The accuracy of each SNR report is 0.1dB.

B. Simulated Environments

We simulated a variety of environments with different

SNR distributions and UE mobility patterns. Although the

simulated environments are artificial, their SNR distributions

mimic those of real eMBMS networks obtained through field

trial measurements. To capture the SNR characteristics of an

environment, we divide its geographical area into rectangles

of 10m × 10m. For each reporting interval, each UE draws

its individual SNR value, hv(t), from a Gaussian-like dis-

tribution which is a characteristic of the rectangle in which

its located. The rectangles have different mean SNR, but

the same standard deviation of roughly 5dB (as observed in

real measurements). Thus, the SNR characteristics of each

environment are determined by the mean SNR values of the

rectangles at any reporting interval.

In some environments, typically where the SNR variations

are small, the SNR Threshold, s(t), barely changes over time.

For such scenarios, the Uniform scheme, based on rigorous

field trial measurements, is an appropriate solution. In such a

situation, DyMo can efficiently infer the SNR Threshold and

reduce the need for expansive field trails. The results for these

simulations are in [12]. In this paper, we discuss two types of

environments in which s(t) changes significantly over time.

• Stadiums: In a stadium, the eMBMS service quality is

typically significantly better inside the stadium than in the

surrounding vicinity (e.g., the parking lots). To capture this,

we simulate several stadium-like environments, in which the

stadium, in the center of the venue, has high eMBMS SNR

with mean values in the range of 15−25dB. On the other hand,

the vicinity has significantly lower SNR with means values of

5− 10dB. An example of a stadium is shown in Fig. 4(a).

We assume a mobility pattern in which, the UEs move from

the edges to the inside of the stadium in 12mins, stay there for

3mins, and then go back to the edges.9 As shown in Fig. 4(b),

as the UEs move toward the center, the number of active UEs

gradually increases from 10% of the UEs to 100%, and then

declines again as they move away.

• Failures: In the case of a malfunctioning component, the

QoS in some parts of a venue can degrade significantly. To

simulate failures, we consider cases in which the eMBMS SNR

is high with a mean between 15−25dB. During the simulation,

(around the 10th minute), we mimic a failure by reducing the

mean SNR values of some of the rectangles by over 10dB to

the range of 5− 10dB. The mean SNR values are restored to

their original values after a few minutes. Figs. 5(a) and 5(b)

provide an example of the mean SNR values of such a venue

before and after a failure, respectively.

In such instances, we assume random mobility pattern, in

which each UE moves back and forth between two uniformly

selected points. During the simulation, 50% of the UEs are

always active, while the other 50% join and leave at some

random time.

C. Performance over time

We first illustrate the performance of the different schemes

over time for two given instances, a stadium and a failure

scenario, with m = 20, 000 UEs, QoS Constraint p = 0.1%,

and Overhead constraint r = 5 reports/sec, i.e., 60 messages

per reporting interval. The number of permitted outliers can

be at most 20 at any given time. These values correspond

to typical situations in dense eMBMS environments. The key

difference between the two instances is the rate at which the

SNR Threshold changes. In the case of the stadium, the SNR

Threshold gradually change as the UEs change their locations.

In the failure scenario, the SNR Threshold is roughly fixed but

it drops instantly by 10dBs for the duration of the failure.

The results of the stadium and failure case are shown in

Figs. 6 and 7, respectively. Figs. 6(a), 6(b), 7(a), and 7(b)

show the actual SNR Threshold percentile over time. From

Figs. 6(a) and 7(a), we observe that DyMo can accurately infer

the SNR Threshold with an estimation error of at most 0.1%.

Fig. 7(a) shows slightly higher error of 0.25% at the time of

the failure (at the 7th minute). The Order-Statistics variants

suffer from much higher estimation error to the order of a few

percentage points, as shown by Figs. 6(b) and 6(b).10 This

performance gap results in different estimation accuracy of

the SNR Threshold for DyMo and Order-Statistics schemes

as illustrated in Figs. 6(c) and 7(c), respectively. These fig-

ures show that the performance of DyMo and Optimal is

almost identical. Even in the event of a failure, DyMo reacts

9While significant effort has been dedicated to modeling mobility (e.g.,
[23], [24] and references therein), we use a simplistic mobility model since
our focus is on the multicast aspects rather than the specific mobility patterns.

10Notice that Figs. 6(a) and 6(b) as well as Figs. 7(a) and 7(b) use different
scales for the Y axes.
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Fig. 6. Simulation results from a single simulation instance lasting for 30mins in a stadium environment with 20, 000 UEs moving from the edges to the
center and back, with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b) the actual percentile of the
SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold estimation, and (d) the QoS report overhead.

0 5 10 15 20 25 30

Time (minutes)

0

0.1

0.2

0.3

0.4

0.5

S
N

R
 T

h
re

sh
o
ld

 P
er

ce
n
ti

le

Optimal

DyMo

(a)

0 5 10 15 20 25 30

Time (minutes)

0

2

4

6

8

10

S
N

R
 T

h
re

sh
o
ld

 P
er

ce
n
ti

le

Uniform

Optimal

Order Stat w.o Hist

Order Stat w. Hist

(b)

0 5 10 15 20 25 30

Time (minutes)

2

4

6

8

10

12

S
N

R
 T

h
re

sh
o
ld Uniform

Optimal

DyMo

Order Stat w.o Hist

Order Stat w. Hist

(c)

0 5 10 15 20 25 30

Time (minutes)

0

10

20

30

40

50

N
u
m

. 
o
f 

R
ep

o
rt

s/
S

ec

DyMo

Order Stat w.o Hist

(d)
Fig. 7. Simulation results from a single simulation instance lasting for 30mins in a component failure environment with 20, 000 UEs moving side to side
between two random points, with p = 0.1 and r = 5 messages/sec. (a) The actual percentile of the SNR Threshold estimated by DyMo, (b) the actual
percentile of the SNR Threshold estimated by Order-Statistics, (c) the SNR Threshold estimation, and (d) the QoS report overhead.
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Fig. 8. The Root Mean Square Error (RMSE) of different parameters averaged over 5 different simulation instances lasting for 30mins each in a stadium
environment with different SNR characteristics and UE mobility patterns. (a) SNR Threshold percentile RMSE vs. the total number of UEs in the system,
(b) SNR Threshold percentile RMSE vs. the QoS Constraint p, (c) SNR Threshold percentile RMSE vs. the number of permitted reports, and (c) Overhead
RMSE vs. the amount of permitted reports.

immediately and detects the SNR Threshold accurately. The

Order-Statistics variants react quickly to a failure but not as

accurately as DyMo. After the recovery, both DyMo and Order-

Statistics w. History gradually increase their SNR Threshold

estimates, due to the exponential smoothing process.

The SNR Threshold estimation gap directly impacts the

number of outliers as well as the network utilization, i.e.,

the spectral efficiency. Figs. 6(d) and 7(d) indicate only mild

violation of the Overhead Constraint by both the DyMo and

Order-Statistics variants. The detailed results for the spectral

efficiency appear in [12]. We observe that accurate SNR

Threshold estimation allows DyMo to achieve near optimal

spectral efficiency with negligible violation of the QoS Con-

straint. The other schemes suffer from sub-optimal spectral

efficiency, excessive number of outliers, or both. Given that

the permitted number of outliers is at most 20, the Order-

Statistics w. History and Order-Statistics w.o. History schemes

exceed this value sometimes by a factor of 10 and 40,

respectively. Among these two alternatives, Order-Statistics w.

History leads to lower number of outliers. We observe that

in this stadium example, the Uniform scheme yields a very

conservative eMBMS MCS setting, which causes low network

utilization. In the failure scenario, the conservative eMBMS

MCS of Uniform is not sufficient to cope with the low SNR

Threshold and it leads to excessive number of outliers.

D. Impact of Various Parameters

We now turn to evaluate the quality of the SNR Threshold

estimation and the schemes ability to preserve the QoS and

Overhead Constraints under various settings. We use the same

configuration of m = 20, 000 UEs, p = 0.1% and r = 5
reports/sec and we evaluate the impact of changing the values

of one of the parameters. The results are shown in Fig. 8,

where each point in the figure is the average of 5 different

stadium simulation instances of 30mins each with different

SNR characteristics and UE mobility patterns. The error bars

are small and not shown. In these examples, we compare

DyMo only with Optimal and Order-Statistics w. History



which is the best performing alternative. The results for failure

scenarios are similar and can be found in [12].

Fig. 8(a) shows the Root Mean Square Error (RMSE) in

SNR Threshold percentile estimation vs. m. The non-zero

values of RMSE in Optimal are due to quantization of SNR

reports. The RMSE in the SNR Threshold estimation of DyMo

is close to that of Optimal regardless of the number of UEs.

Fig. 8(b) shows the RMSE in SNR Threshold estimation

as the QoS Constraint p changes. DyMo outperforms the

alternative schemes as p increases. As p increases, we observe

an increasing quantization error, which impacts the RMSE of

all the schemes including the Optimal.

Fig. 8(c) illustrates the SNR Threshold percentile RMSE

as the Overhead Constraint is relaxed. The SNR Threshold

percentile RMSE of DyMo is 0.05% even with Overhead

Constraint of 5 reports/sec while Optimal RMSE due to quan-

tization is 0.025%. DyMo error slightly reduces by relaxing the

Overhead Constraint (Optimal error stays 0.25%). Even with

10 times higher reporting rate, DyMo significantly outperforms

the Order-Statistics alternatives. The RMSE in SNR Threshold

percentile for Order-Statistics is in the order of the required

average value of 0.1 even with a permitted overhead of 50
reports/sec, i.e,. 3000 reports per reporting interval. This is

a very high overhead on the unicast traffic, since in LTE

networks each connection lasts several hundred msecs even for

sending a short update. Unlike the downlink, uplink resources

are not reserved for eMBMS systems and utilize the unicast

resources. The RMSE of number of outliers is qualitatively

similar to the SNR Threshold percentile results.

We also compute the overhead RMSE for different UE pop-

ulation sizes, m, QoS Constraint p, and Overhead Constraints

r. In each case, the overhead RMSE of DyMo is between 2−4.

We notice an interesting case when the permitted overhead is

allowed to increase as shown in Fig. 8(d). While the DyMo

RMSE is consistently small, the RMSE of Order-Statistics

scales almost linearly with the permitted overhead. This is due

to the static reporting rate of Order-Statistics despite changing

number of active UEs.

VII. CONCLUSION

This paper presents a Dynamic Monitoring (DyMo) system

for large scale monitoring of eMBMS services, based on the

concept of Stochastic Group Instructions. Our extensive sim-

ulations show that DyMo achieves accurate, close to optimal,

estimation of the SNR Threshold even when the number of

active UEs is unknown. It can improve the spectral efficiency

for eMBMS operation while adding a low reporting overhead.

VIII. ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-16-

50669 and CNS-14-23105.

REFERENCES

[1] J. Erman and K. K. Ramakrishnan, “Understanding the super-sized
traffic of the super bowl.” in Proc. ACM IMC’13, 2013.

[2] A. Kaya, D. Calin, and H. Viswanathan, “On the performance of stadium
high density carrier Wi-Fi enabled LTE small cell deployments,” in Proc.

IEEE WCNC’15, 2015.
[3] “3GPP TS 26.346 V13.1.0, 3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects; Multimedia
Broadcast/Multicast Service (MBMS); Protocols and codecs (Release
13),” June 2015. [Online]. Available: http://www.3gpp.org/DynaReport/
26346.htm

[4] D. Lecompte and F. Gabin, “Evolved multimedia broadcast/multicast
service (eMBMS) in LTE-advanced: overview and rel-11 enhance-
ments,” IEEE Comm. Mag., vol. 50, no. 11, pp. 68–74, 2012.

[5] “3GPP TS 37.320 V12.2.0 , 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network;
Universal Terrestrial Radio Access (UTRA) and Evolved Universal
Terrestrial Radio Access (E-UTRA); Radio measurement collection
for Minimization of Drive Tests (MDT); Overall description;
Stage 2 (Release 12),” Sept. 2014. [Online]. Available:
http://www.3gpp.org/DynaReport/37320.htm

[6] J. Vella and S. Zammit, “A survey of multicasting over wireless access
networks,” IEEE Commun. Surv. & Tut., vol. 15, no. 2, pp. 718–753,
2013.

[7] V. Gupta, Y. Bejerano, C. Gutterman, J. Ferragut, K. Guo,
T. Nandagopal, and G. Zussman, “Light-weight feedback mechanism
for WiFi multicast to very large groups - experimental evaluation,” IEEE

Trans. Netw., vol. 24, no. 6, pp. 3826–3840, 2016.
[8] X. Wang, L. Wang, and D. Wang, Y.and Gu, “Reliable multicast

mechanism in WLAN with extended implicit MAC acknowledgment,”
in Proc. IEEE VTC’08, 2008.

[9] Z. Feng, G. Wen, C. Yin, and H. Liu, “Video stream groupcast
optimization in WLAN,” in Proc. IEEE ITA’10, 2010.

[10] Y. Cai, S. Lu, L. Zhang, C. Wang, P. Skov, Z. He, and K. Niu, “Reduced
feedback schemes for LTE MBMS,” in Proc. IEEE VTC’09, 2009.

[11] A. B. Owen, Monte Carlo theory, methods and examples, 2013.
[12] Y. Bejerano, C. Raman, C.-N. Yu, V. Gupta, C. Gutterman, T. Young,

H. Infante, Y. Abdelmalek, and G. Zussman, “DyMo: Dynamic monitor-
ing of large scale LTE-multicast systems,” in arXiv:1701.02809 [cs.NI],
2017.

[13] J. Yoon, H. Zhang, S. Banerjee, and S. Rangarajan, “MuVi: a multi-
cast video delivery scheme for 4G cellular networks,” in Proc. ACM

MOBICOM’11, 2012.
[14] R. Sivaraj, A. Pande, and P. Mohapatra, “Spectrum-aware radio resource

management for scalable video multicast in LTE-advanced systems,” in
Proc. IFIP Networking’13, 2013.

[15] L. Militano, D. Niyato, M. Condoluci, G. Araniti, A. Iera, and G. M.
Bisci, “Radio resource management for group-oriented services in LTE-
A,” IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3725–3739, 2015.

[16] J. Chen, M. Chiang, J. Erman, G. Li, K. Ramakrishnan, and R. K. Sinha,
“Fair and optimal resource allocation for LTE multicast (eMBMS):
group partitioning and dynamics,” in Proc. IEEE INFOCOM’15, 2015.

[17] F. Wu, Y. Yang, O. Zhang, K. Srinivasan, and N. B. Shroff, “Anonymous-
query based rate control for wireless multicast: Approaching optimality
with constant feedback,” in Proc. ACM MOBIHOC ’16, 2016.

[18] J. Villalon, P. Cuenca, L. Orozco-Barbosa, Y. Seok, and T. Turletti,
“Cross-layer architecture for adaptive video multicast streaming over
multirate wireless LANs,” IEEE J. Sel. Areas Commun., vol. 25, no. 4,
pp. 699–711, 2007.

[19] R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye, R. Ramjee,
and L. Ravindranath, “DirCast: a practical and efficient Wi-Fi multicast
system,” in Proc. IEEE ICNP’09, 2009.

[20] S. Sen, N. K. Madabhushi, and S. Banerjee, “Scalable WiFi media
delivery through adaptive broadcasts,” in Proc. USENIX NSDI’10, 2010.

[21] V. Gupta, C. Gutterman, Y. Bejerano, and G. Zussman, “Dynamic
rate adaptation for WiFi multicast to very large groups design and
experimental evaluation,” in Proc. IEEE INFOCOM’16, 2016.

[22] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press,
2000.

[23] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the
levy-walk nature of human mobility,” IEEE Trans. Netw., vol. 19, no. 3,
pp. 630–643, 2011.

[24] S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, and M. Zafer, “Evaluating
temporal robustness of mobile networks,” IEEE Trans. Mobile Comput.,
vol. 12, no. 1, pp. 105–117, 2013.


