

Use of Domain-Swapping to Identify Candidate Amino Acids Involved in Differential Interactions between Two Allelic Variants of Type-1 S-Locus F-Box Protein and S₃-RNase in *Petunia inflata*

Lihua Wu¹, Justin S. Williams^{2,3}, Ning Wang^{1,4}, Wasi A. Khatri², Daniele San Román^{2,5} and Teh-hui Kao^{1,2,*}

¹Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA

²Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA

³Present address: St. Jude Children's Research Hospital, Department of Computational Biology, MS 1135, Room I6104, 262 Danny Thomas Place, Memphis, TN 38105, USA

⁴Present address: BioVision Inc., 155 S. Milpitas Blvd., Milpitas, CA 95035, USA

⁵Present address: Washington and Lee University School of Law, 1 Denny Circle, Lexington, VA 24450, USA

*Corresponding author: E-mail, txk3@psu.edu; Fax, +1-814-863-7024

(Received October 2, 2017; Accepted November 11, 2017)

Petunia inflata possesses a self-incompatibility (SI) mechanism, which involves S-RNase and multiple S-locus F-box (SLF) genes at the polymorphic S-locus. For a given S-haplotype, each SLF is thought to interact with some of its non-self S-RNases, but not with its self S-RNase. In this work, we studied an allelic pair of SLF1, S₂-SLF1 and S₃-SLF1, which differ in 44 amino acids and show differential interactions with S₃-RNase. We first used an in vivo transgenic assay to determine whether four chimeric proteins of S₂-SLF1 and S₃-SLF1, each with one of the three functional domains swapped, interact with S₃-RNase. The results narrowed the candidate amino acids for specific interaction of S2-SLF1 with S₃-RNase to the 16 in domain FD3. We then examined seven additional chimeric proteins by dividing FD3 into two subdomains and four mini-domains (A, B, C and D). The results further narrowed the candidate amino acids to four in mini-domain A and four in mini-domain D. Molecular modeling of interactions between S₃-RNase and S₂-SLF1 revealed that three of these eight are at the interaction surface, and all three are conserved in S₁-SLF1 and S_{6a}-SLF1, both of which interact with S₃-RNase based on the in vivo transgenic assay. Three of the chimeric proteins were used for the in vivo transgenic assay to determine whether FD3 alone contains the amino acids required for S₂-SLF1 to interact with S7-RNase and S13-RNase. The results revealed the diversity and complexity of interactions between SLF proteins and S-RNases.

Keywords: Chimeric S-locus F-box proteins • Petunia inflata
Pollen specificity determinant • Self-incompatibility • Self/non-self recognition • S-RNases.

Abbreviations: Co-IP, co-immunoprecipitation; FD, functional domain; GFP, green fluorescent protein; SCF complex, Skp1–Cullin1–F-box protein complex; SI, self-incompatibility; SLF, S-locus F-box.

Introduction

Flowering plants producing bisexual flowers have adopted various strategies to counteract the tendency to self-fertilize, as consequent inbreeding invariably leads to impaired fitness in the progeny and reduced genetic diversity in the species. Self-incompatibility (SI) is one such strategy that allows the pistil to reject self-pollen from the same plant or genetically related plants, and to accept non-self pollen from genetically unrelated plants (De Nettancourt 2001). In Solanaceae, self/non-self recognition between pollen and pistil is regulated by the highly polymorphic S-locus. When the S-haplotype of pollen matches either haplotype of the pistil, the pollen is recognized as self-pollen and their tube growth in the pistil is inhibited. Pollen carrying an S-haplotype different from both S-haplotypes of the pistil is recognized as non-self pollen, and their tubes are allowed to grow down the pistil to effect fertilization. In Petunia, the S-locus houses the S-RNase gene, which encodes the pistil determinant, and multiple S-locus F-box (SLF) genes, which collectively specify the pollen determinant (Lee et al. 1994, Sijacic et al. 2004, Kubo et al. 2010, Williams et al. 2014a, Williams et al. 2014b, Kubo et al. 2015). For example, the same 17 polymorphic SLF genes, SLF1 (or Type-1 SLF) to SLF17 (or Type-17 SLF), have been identified in both the S₂-haplotype and S₃-haplotype of P. inflata (Sijacic et al. 2004, Williams et al. 2014a).

S-RNases are produced in the transmitting tissue and secreted into the transmitting tract of the pistil, where they are taken up by pollen tubes in a non-S-haplotype-specific manner (Luu et al. 2000, Goldraij et al. 2006). As the RNase activity of S-RNases (allelic variants of S-RNase) is essential for their function in SI (Huang et al. 1994), S-RNases are thought to exert their function by degrading pollen tube RNAs. A model, named collaborative non-self recognition, was proposed to explain why an allelic variant of S-RNase is cytotoxic to its self-pollen tubes, but not to its non-self pollen tubes (Kubo et al. 2010). According to this model, each SLF protein is a component of

Plant Cell Physiol. 0(0): 1–14 doi:10.1093/pcp/pcx176, Advance Access publication on 15 November 2017, available online at www.pcp.oxfordjournals.org © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com

an SCF complex, a multi-subunit E3 ubiquitin ligase, which also contains Skp1, Cullin1 and Rbx1 (Bai et al. 1996, Stone and Callis 2007). The SCF complex, together with E1 (ubiquitin-activating enzyme) and E2 (ubiquitin-conjugating enzyme), catalyzes the transfer of polyubiquitin chains to the S-RNase(s) with which the particular SLF protein interacts. This model predicts that SLF proteins produced by pollen of a given S-haplotype collect-ively interact with all their non-self S-RNases, but do not interact with their self S-RNase. As a result, non-self S-RNases are ubiquitinated and degraded by the 26S proteasome, and only self S-RNase is able to exert its cytotoxicity.

Results supporting the collaborative non-self recognition model have been obtained. First, each of the 17 SLF proteins of the S₂-haplotype of Petunia inflata, as well as each of their allelic variants in the S₃-haplotype, was found to be the F-box protein component of an SCF (Skp1-Cullin1-F-box) complex that contains a pollen-specific Cullin1 (named PiCUL1-P), a pollen-specific Skp1 protein (named PiSSK1) and a conventional Rbx1 (named PiRBX1) (Li et al. 2014, Li et al. 2016). Secondly, in Petunia, interaction relationships between a number of SLF proteins and S-RNases have been established genetically by an in vivo transgenic assay, and all the results obtained so far are consistent with the prediction by the model. This assay examines whether expression of an SLF protein of a particular S-haplotype in pollen of the same or different S-haplotypes causes breakdown of SI in transgenic pollen. For example, expression of S2-SLF1 of P. inflata in S3 pollen caused breakdown of SI in S₃ transgenic pollen (Sijacic et al. 2004), suggesting that S₂-SLF1 interacts with and detoxifies S₃-RNase in the S₃ transgenic pollen tube to allow the S₃ transgenic pollen to be compatible with pistils carrying the S₃-haplotype. In a few cases where the interaction between a pair of SLF and S-RNase, established from this transgenic assay, has subsequently been examined by co-immunoprecipitation (Co-IP), all the genetic interactions have been verified (Kubo et al. 2010, Sun and Kao 2013). Based on this assay, none of the SLF proteins of a particular S-haplotype caused breakdown of SI in pollen of the same S-haplotype (i.e. self S-haplotype), suggesting that they do not interact with their respective self S-RNases. For example, expression of S₂-SLF1 did not cause breakdown of SI in S₂ pollen (Sijacic et al. 2004). Moreover, each SLF of a particular S-haplotype only caused breakdown of SI in pollen of some of the nonself S-haplotypes examined, suggesting that an SLF interacts with a subset of its non-self S-RNases (Sijacic et al. 2004, Kubo et al. 2010, Williams et al. 2014b, Kubo et al. 2015). For example, expression of S2-SLF1 did not cause breakdown of SI in S₅ or S₁₁ pollen, suggesting that S₂-SLF1 does not interact with S₅-RNase or S₁₁-RNase (Williams et al. 2014b).

To address the biochemical basis for differential interactions between SLF proteins and S-RNases, we have chosen to study an allelic pair of SLF1, S₂-SLF1 and S₃-SLF1, as expression of S₂-SLF1, but not S₃-SLF1, caused breakdown of SI in S₃, S₇ and S₁₃ pollen, suggesting that S₂-SLF1, but not S₃-SLF1, interacts with S₃-, S₇and S₁₃-RNases (Hua et al. 2007, Kubo et al. 2010, Williams et al. 2014b). In the case of S₃-RNase, the interaction with S₂-SLF1 has been verified by Co-IP (Sun and Kao 2013). Interestingly, expression of S₂-SLF1 or S₃-SLF1 in S₁₂ pollen caused breakdown of SI, suggesting that both interact with S_{12} -RNase (Sun and Kao 2013). The deduced amino acid sequences of S_2 -SLF1 (389 amino acids) and S_3 -SLF1 (388 amino acids) are 88.7% identical, differing in 44 of their aligned amino acid positions.

In this work, we used the domain-swapping approach to narrow down the candidate amino acids of S2-SLF1 that are required for the interaction with S₃-RNase. We previously divided S₂-SLF1 into three functional domains (FDs), FD1, FD2 and FD3, based on the results of in vitro binding between S-RNases and various truncated forms of S2-SLF1 (Hua et al. 2007). Here, we made chimeric genes of S_2 -SLF1 and S_3 -SLF1 by first swapping the coding sequences for one of these three domains to determine which domain(s) contain(s) amino acids required for the interaction with S₃-RNase. If a chimeric protein behaves as S₂-SLF1, its expression in S₃ pollen of S₂S₃ transgenic plants should allow S3 transgenic pollen to detoxify S₃-RNase and render the transgenic plants self-compatible. This result would suggest that the amino acids that are different between S2-SLF1 and S3-SLF1 in the swapped out domain of S₂-SLF1 are not required for the interaction with S₃-RNase. If expression of a chimeric protein in S₃ pollen does not alter the SI behavior of the S₂S₃ transgenic plants, this result would suggest that the domain of S₂-SLF1 swapped out contains amino acids required for the interaction with S₃-RNase. We found that the third domain (FD3), but not the first two domains (FD1 and FD2), of S₂-SLF1, is required for the interaction with S₃-RNase, suggesting that one or more of the 16 amino acids different between S₂-SLF1 and S₃-SLF1 in FD3 is (are) involved. We then made additional chimeric genes for fine dissection of FD3, first dividing this domain into two subdomains (each containing eight of the 16 amino acids different between S2-SLF1 and S_3 -SLF1), and then further dividing this domain into two mini-domains (each containing four of the eight amino acids different between S₂-SLF1 and S₃-SLF1). Analysis of the SI behavior of the S₂S₃ transgenic plants expressing each of these chimeric proteins revealed that the first mini-domain and the fourth mini-domain of FD3 contain the amino acids required for interactions with S₃-RNase. We also used some of the chimeric proteins to examine whether FD3 alone contains the amino acids required for S₂-SLF1 to cause breakdown of SI in S₇ and S₁₃ pollen. The results reveal the diversity and complexity of the interactions between SLF proteins and S-RNases. Finally, we used modeling and molecular docking to predict the interaction surface between S_2 -SLF1 and S_3 -RNase. The results showed that the first mini-domain and the last mini-domain are at the interface of these two proteins, and further identified the amino acids of S₂-SLF1 most likely to be involved in the specific interaction with S₃-RNase.

Results

A single domain, FD3, spanning the C-terminal one-third of S₂-SLF1 contains amino acids required for the interaction with S₃-RNase in vivo

To determine which of the 44 amino acids different between S_2 -SLF1 and S_3 -SLF1 are required for the specific interaction

Fig. 1 Four chimeric proteins of S_2 -SLF1 and S_3 -SLF1, their transgene constructs and the presence of the transgene in each transgenic line. (A) Schematics of S_2 -SLF1 (389 amino acids) and S_3 -SLF1 (388 amino acids), with the three functional domains, FD1, FD2 and FD3, demarcated. The first and last amino acid residues of the region covered by each domain of S_2 -SLF1 are indicated. The number of amino acids different between S_2 -SLF1 and S_3 -SLF1 in each domain is indicated by a double-headed vertical arrow. (B) Schematics of four chimeric proteins, F322, F232, F233 and F332, of S_2 -SLF1 and S_3 -SLF1, each with one of the three domains swapped. Each chimeric protein is denoted by 'F' (for SLF) followed by three digits (e.g. 322), each representing one domain (FD1, FD2 or FD3). Each digit indicates whether S_2 -SLF1 (2) or S_3 -SLF1 (3) contributes the domain. (C) Schematics of transgene constructs of chimeric genes *F322*, *F232*, *F233* and *F332*, in the Ti plasmid pB1101. Abbreviations: *pLAT52*, the promoter of *LAT52* of tomato; *GFP*, the coding sequence for the green fluorescent protein; *NOS-ter*, transcription termination signal of the nopaline synthase gene. (D) PCR analysis of genomic DNA isolated from T_0 plants of each transgenic line to assess the presence of the respective transgene. The primers used are specific to the *GFP* sequence included in each transgene; the DNA band detected is of the size expected for the amplified DNA fragment. Plant number is indicated above each gel lane.

between S2-SLF1 and S3-RNase, we first constructed four chimeric genes by swapping the coding sequences for one of the three FDs, FD1, FD2 and FD3, between S2-SLF1 and S3-SLF1. FD1 (amino acids 1-110) contains the N-terminal F-box domain, and FD2 (amino acids 111-260) and FD3 (amino acids 261-389) constitute the remainder of SLF1 (Fig. 1A). These four chimeric proteins were designated F322, F232, F233 and F332 (Fig. 1B), with 'F' denoting SLF, and each digit indicating whether the particular domain is contributed by S_2 -SLF1 (2) or S_3 -SLF1 (3). For example, F322 denotes a chimeric protein that contains FD1 of S₃-SLF1 and FD2 and FD3 of S₂-SLF1. The four transgene constructs (Fig. 1C) were separately introduced into P. inflata plants of the S_2S_3 genotype via Agrobacteriummediated transformation. PCRs, using a primer pair designed based on the GFP (green fluorescent protein) sequence (Supplementary Table S1), were performed on genomic DNA isolated from at least three of the transgenic plants obtained for each construct. A DNA fragment of the expected size (0.5 kb)

was observed for multiple plants in each transgenic line (the results of representative plants shown in **Fig. 1D**). For each transgenic line, at least one transgenic plant was observed to express GFP in in vitro germinated pollen tubes. The dark field and bright field images of a representative plant from all except the *F322* transgenic line are shown in Supplementary Fig. S1.

We first used pollen from each T_0 transgenic plant (S_2S_3) to pollinate a wild-type S_2S_3 plant (self-cross) to see whether expression of a particular chimeric gene caused breakdown of SI in S_3 pollen, but not in S_2 pollen, produced by the T_0 plant. A previously generated S_2 -*SLF1:GFP/S*₂ S_3 transgenic plant (Hua et al. 2007) was used as a control for self-compatible pollination. For each transgenic line, the SI behavior of all the T_0 plants that expressed the transgene was examined, and at least three pollinations were performed for each plant. As the results from different T_0 plants were identical, only the results of one representative plant are shown in **Table 1**. Pollination of the wildtype S_2S_3 plant by pollen from *F233:GFP/S*₂S₃ did not set any

Table 1	Effect of expressing each of	11 chimeric genes of S ₂ -S	SLF1 and S ₃ -SLF1 on	n the self-incompatibility	behavior of S ₂ S ₃	3 transgenic plants
---------	------------------------------	--	----------------------------------	----------------------------	---	---------------------

Transgene	Set fruit when pollinate S ₂ S ₃ pistil (Yes/No)	SI behavior of T ₀ plant	T ₁ progeny genotype (S ₂ S ₃ : S ₃ S ₃)	Expected ratio	χ ² (1 : 1)	P-value (1 : 1)	χ^2 (1 : 2 : 1) (S ₂ S ₂ : S ₂ S ₃ : S ₃ S ₃)	P-value (1 : 2 : 1)
F322:GFP	Yes	SC	24 : 23	1:1	0.02	0.88	22.532	< 0.001
F232:GFP	Yes	SC	17 : 14	1:1	0.29	0.60	12.935	0.002
F233:GFP	No	SI						
F332:GFP	Yes	SC	8 : 10	1:1	0.22	0.64	11.333	0.003
F23(23):GFP	No	SI						
F23(32):GFP	No	SI						
F33(3222):GFP	No	SI						
F33(2322):GFP	Yes	SC	10 : 22	1:1	4.50	0.03	34.75	< 0.001
F33(2232):GFP	Yes	SC	15 : 17	1:1	0.13	0.72	18.188	< 0.001
F33(2223):GFP	No	SI						
F33(2332):GFP	Yes	SC	14 : 17	1:1	0.29	0.60	18.935	< 0.001

Pollen from each transgenic plant was used to pollinate wild-type S_2S_3 plants, and for each self-compatible (SC) cross, the presence/absence of the transgene and the S-genotypes of the progeny were determined. All the plants in each T_1 progeny inherited the transgene.

A χ^2 analysis was used to test the null hypothesis of a 1 : 1 ratio of S_2S_3 : S_3S_3 , in comparison with a 1 : 2 : 1 ratio (S_2S_2 : S_2S_3 : S_3S_3).

fruit, suggesting that expression of F233 did not cause breakdown of SI in either S₂ or S₃ pollen. In contrast, pollination of the wild-type S_2S_3 plant by pollen from F232:GFP/ S_2S_3 , F322:GFP/S₂S₃ and F332:GFP/S₂S₃ led to all setting large fruits with seed numbers comparable with those obtained from pollination of the wild-type S₂S₃ plant by pollen from S₂-SLF1:GFP/ S_2S_3 , suggesting that expression of these three chimeric genes also causes breakdown of SI in S₃ pollen. To confirm this interpretation, T_1 plants were raised from each self-crossed progeny, and their S-genotypes and presence/absence of the transgene were determined by PCR, using S2-RNase-, S3-RNase- and GFPspecific primers (Supplementary Table S1). For F232:GFP/S2S3, all 47 T_1 plants inherited the transgene; the S₃-RNase-specific fragment was detected in all of them, and the S2-RNase-specific fragment was detected in 24 of them, indicating that 24 T₁ plants were S_2S_3 and the other 23 were S_3S_3 (results for 11 representative plants shown in Fig. 2A). The P-value of a χ^2 analysis of a 1:1 ratio null hypothesis of $S_2S_3:S_3S_3$ was 0.88, whereas the P-value for a 1:2:1 null hypothesis of $S_2S_2:S_2S_3:S_3S_3$ was <0.001, thus supporting the absence of the S_2S_2 genotype in the progeny (**Table 1**). Based on a similar analysis, all 31 T₁ plants of F322:GFP/S₂S₃ inherited the transgene: 17 were S₂S₃ and 14 were S₃S₃ (results for 12 representative plants shown in Fig. 2B); all 18 T_1 plants of F332:GFP/S₂S₃ inherited the transgene: eight were S_2S_3 and 10 were S_3S_3 (results for 10 representative plants shown in Fig. 2C). The χ^2 analysis also supported the absence of S₂S₂ genotype in both progeny (Table 1).

Absence of S_2S_2 plants in the progeny obtained from selfcrosses of $F232:GFP/S_2S_3$, $F322:GFP/S_2S_3$ and F332:GFP suggests that both wild-type S_2 pollen and S_2 pollen carrying F232:GFP, F322:GFP or F332:GFP are rejected by the wild-type S_2S_3 pistil. Moreover, the finding that all progeny plants carried the respective transgene suggests that S_3 pollen carrying each transgene, but not wild-type S_3 pollen, is compatible with the wildtype S_2S_3 pistil. Thus, expression of F232:GFP, F322:GFP and F332:GFP caused breakdown of SI in S_3 pollen, suggesting that these three chimeric proteins interact with S₃-RNase. That is, replacing FD1 of S₂-SLF1 with FD1 of S₃-SLF1 in F322, replacing FD2 of S₂-SLF1 with FD2 of S₃-SLF1 in F322 and replacing both FD1 and FD2 of S₂-SLF1 with FD1 and FD2 of S₃-SLF1 in F332 did not affect the ability of S₂-SLF1 to interact with S₃-RNase. Thus, none of the 15 amino acids different between S₂-SLF1 and S₃-SLF1 in FD1, and none of the 13 amino acids different between S₂-SLF1 and S₃-SLF1 in FD2, are required for the interaction of S₂-SLF1 with S₃-RNase. We conclude that FD3 alone is responsible for allele specificity of S₂-SLF1 with respect to its interaction with S₃-RNase.

Fine dissection of FD3 reveals two regions that contain amino acids required for the interaction of S₂-SLF1 with S₃-RNase in vivo

FD3 spans approximately the C-terminal one-third of S₂-SLF1 (Fig. 1A), and contains 16 of the 44 amino acids that are different between S2-SLF1 and S3-SLF1. To narrow further the amino acids that are required for the interaction with S₃-RNase, we first divided FD3 into two subdomains, amino acids 261-325 and 326-389, with each subdomain containing eight of the 16 different amino acids (Fig. 3A), to determine whether all the amino acids required are located in one of the subdomains. We made two chimeric genes, designated F23(23):GFP and F23(32):GFP, with each digit in parentheses denoting the allele of SLF1 (2 for S_2 -SLF1 and 3 for S_3 -SLF1) that contributes the sequence for a particular subdomain (Fig. 3B). Both transgene constructs were separately introduced into S₂S₃ plants. Analysis of each line of transgenic plants by PCR to identify those that carried the transgene was carried out as described for the four chimeric genes shown in Fig. 1B; the results of representative plants are shown in Fig. 3C. The SI behavior of all the T_0 plants that expressed the transgene was analyzed similarly to as described above. None of the pollinations resulted in fruit sets (Table 1), suggesting that neither chimeric protein interacts with and

Plant Cell Physiol. 0(0): 1-14 (2017) doi:10.1093/pcp/pcx176

Fig. 2 PCR analysis of progeny plants obtained from self-crosses of T_0 plants from six transgenic lines for the presence of the transgene and for their S-genotypes. Each progeny was obtained from pollination of a wild-type S_2S_3 plant by pollen of a T_0 plant from the transgenic line denoted above the gel image in each panel. In (A), plant #1 of the T_0 plants was used; in (B), plant #1 was used; in (C), plant #1 was used; in (D), plant #7 was used; in (E), plant #4 was used; in (F), plant #1 was used. These T_0 plants are shown in **Fig. 1D** or **Fig. 3C**. Genomic DNA isolated from T_1 progeny plants was amplified by *GFP* primers (top panel), S_2 -*RNase* (middle panel) and S_3 -*RNase* (bottom panel).

detoxifies S_3 -RNase to allow the S_3 transgenic pollen to be compatible with the S_2S_3 pistil. Thus, one or more amino acid residues in both subdomains are required for S_2 -SLF1 to interact with S_3 -RNase.

We next divided FD3 into four mini-domains, A (amino acids 261-275), B (amino acids 276-310), C (amino acids 311-360) and D (amino acids 361-389), with each mini-domain containing four of the 16 different amino acids between S₂-SLF1 and S₃-SLF1. We made five chimeric constructs, all having FD1 and FD2 of S₃-SLF1, and FD3 of S₂-SLF1 except for the replacement of one or two of these four mini-domains with the corresponding mini-domain(s) of S₃-SLF1. These chimeric genes were designated F33(3222), F33(2322), F33(2232), F33(2223) and F33(2332), and they are schematically shown in Fig. 3A. Each digit in parentheses denotes the allele of SLF1 (2 for S_2 -SLF1 and 3 for S_3 -SLF1) that contributes the sequence for a particular mini-domain. The transgene constructs for these five chimeric genes (Fig. 3B) were made similarly to as described above, and separately introduced into P. inflata plants of the S_2S_3 genotype. Analysis of each line of transgenic plants by PCR to identify those that carried the transgene, and subsequent analysis of GFP fluorescence to determine whether the transgenes were expressed, were carried out as described above. The results showed that most of the plants in each transgenic line carried the transgene (Fig. 3C), and the transgenes were expressed in pollen of most of these plants; the dark field and bright field images of a representative plant from each transgenic line are shown in Supplementary Fig. S1. For each transgenic line, the SI behavior of all the T_0 plants that expressed the transgene was examined, and at least three pollinations were performed for each plant. As the results from different T₀ plants were identical, only the results of one representative plant are shown in Table 1. F33(2322):GFP/

 S_2S_3 , $F33(2232):GFP/S_2S_3$ and $F33(2332):GFP/S_2S_3$, but not $F33(3222):GFP/S_2S_3$ or $F33(2223):GFP/S_2S_3$, set large fruits with seed number comparable with those obtained from pollination of the wild-type S_2S_3 plant with pollen from S_2 -SLF1:GFP/S_2S_3.

To confirm that the breakdown of SI in three of the five transgenic lines was due to expression of F33(2322):GFP, F33(2232):GFP and F33(2332):GFP in S_3 pollen, T_1 plants were raised from each self-crossed progeny to determine their Sgenotypes and inheritance of the transgene by PCR, using the S₂-RNase-, S₃-RNase- and GFP-specific primers (Supplementary Table S1). The results are shown in Table 1. For F33(2322):GFP/ S_2S_3 plant #7 (Fig. 3C), all 32 T_1 plants inherited the transgene; the S₃-RNase-specific fragment was detected in all of them and the S2-RNase-specific fragment was detected in 10 of them, indicating that 10 T_1 plants were S_2S_3 and the other 22 plants were S_3S_3 (representative genotyping results shown in Fig. 2D and Table 1). Although the P-value for the null hypothesis of a 1: 1 ratio of $S_2S_3:S_3S_3$ (0.03) was less than the minimum measure of significance (0.05), it is important to note the absence of S_2S_2 in the progeny and the presence of the transgene in all progeny (see below). Using similar PCR analyses to those described above, for F33(2232):GFP/S₂S₃ plant #4 (Fig. 3C), all 32 T_1 plants inherited the transgene: 15 were S_2S_3 and 17 were S_3S_3 (representative genotyping results shown in Fig. 2E and Table 1); for F33(2332):GFP plant #1 (Fig. 3C), all 31 T₁ plants inherited the transgene: 14 were S₂S₃ and 17 were S₃S₃ (representative genotyping results shown in Fig. 2F; Table 1). The null hypothesis for a 1:1 ratio of S₂S₃:S₃S₃ in the progeny analysis of S₂S₃×F33(2232):GFP and S₂S₃×F33(2332):GFP was supported, while the null hypothesis for a 1:2:1 ratio of S_2S_2 : $S_2S_3:S_3S_3$ was rejected (Table 1).

L. Wu et al. | Specificity of S-locus F-box proteins of Petunia

Fig. 3 Seven chimeric proteins of S_2 -SLF1 and S_3 -SLF1, their transgene constructs and the presence of the transgene in each transgenic line. (A) Schematics of chimeric proteins F23(23), F23(32), F33(2322), F33(2322), F33(2223) and F33(2332) of S_2 -SLF1 and S_3 -SLF1. The 'F' in the name of each chimeric protein denotes 'SLF', and the first two digits (e.g. 23) represent FD1 and FD2, with each digit indicating whether S_2 -SLF1 (2) or S_3 -SLF1 (3) contributes the domain. The subsequent digits in parentheses indicate the chimeric nature of FD3. The chimeric protein with the first half (subdomain) of FD3 contributed by S_2 -SLF1 and second half (subdomain) contributed by S_3 -SLF1 is designated '23', and the chimeric protein with the first half of FD3 contributed by S_3 -SLF1 and second half contributed by S_2 -SLF1 is designated '23'. For the chimeric proteins that contain one or two of the four mini-domains swapped between S_2 -SLF1 and S_3 -SLF1, the four digits indicate whether S_2 -SLF1 (2) or S_3 -SLF1 (2) or S_3 -SLF1 (2) or S_3 -SLF1 and last amino acid residues in each subdomain of FD3 and in each mini-domain of FD3 are indicated. (B) Schematics of transgene constructs of chimeric genes *F23*(23), *F23*(222), *F33*(2222), *F33*(2223), *F33*(2223) and *F33*(2322) in the Ti plasmid pBI101. Abbreviations are the same as defined in **Fig. 1C**. (C) PCR analysis of genomic DNA isolated from T_0 plants of each transgenic line to assess the presence of the respective transgene. The primers used are specific to the *GFP* sequence included in each transgene; the DNA band detected is of the size expected for the amplified DNA fragment. Plant number is indicated above each gel lane.

Absence of plants of the S_2S_2 genotype in the progeny obtained from self-crosses involving F33(2322):GFP/S2S3, F33(2232):GFP/S2S3 and F33(2332):GFP/S₂S₃ suggests that both wild-type S₂ pollen and S₂ pollen carrying F33(2322):GFP, F33(2232):GFP or F33(2332):GFP are rejected by S₂S₃ pistils. Moreover, the finding that all the progeny plants carried the respective transgenes suggests that S₃ pollen carrying one of these transgenes is compatible with wildtype S₂S₃ pistils. Thus, expression of F33(2322):GFP, F33(2232):GFP and F33(2332):GFP caused breakdown of SI in S_3 pollen, but not in S_2 pollen, suggesting that these three chimeric proteins interact with S₃-RNase. That is, replacing mini-domain B, mini-domain C or both mini-domains B and C of S₂-SLF1 with the corresponding mini-domain(s) of S₃-SLF1 did not affect the ability of S₂-SLF1 to interact with S3-RNase. Thus, the four amino acids that are different between S2-SLF1 and S3-SLF1 in each of these two minidomains are not required for the interaction with S₃-RNase. In

contrast, replacing mini-domain A or mini-domain D of S₂-SLF1 with the corresponding mini-domain of S₃-SLF1 resulted in the inability of F33(3222):GFP and F33(2223):GFP to cause breakdown of S₃ pollen (**Table 1**), suggesting that both mini-domains are required for the breakdown of SI in S₃ pollen. Thus, at least one of the four amino acids different between S₂-SLF1 and S₃-SLF1 in each of these two mini-domains are required for S₂-SLF1 to interact with S₃-RNase.

FD2 and FD1 + FD2 of S_2 -SLF1 contain amino acids required for the breakdown of SI in S_7 and S_{13} pollen, respectively

We previously found that (i) expression of S_2 -SLF1 caused breakdown of SI in S_7 , S_{12} and S_{13} pollen, suggesting that S_2 -SLF1 interacts with S_7 -, S_{12} - and S_{13} -RNases, whereas expression of

S₃-SLF1 only caused breakdown of SI in S₁₂ pollen, suggesting that S₃-SLF1 interacts with S₁₂-RNase, but not with S₇-RNase or S₁₃-RNase; (ii) expression of neither S₂-SLF1 nor S₃-SLF1 caused breakdown of SI in S₅, S_{6a}, S₁₁ or S₁₆ pollen, suggesting that S₂-SLF1 and S₃-SLF1 do not interact with S₅-, S_{6a}-, S₁₁- or S₁₆-RNase (Hua et al. 2007, Kubo et al. 2010, Sun and Kao 2013, Williams et al. 2014b).

To determine whether FD3 alone also contains the amino acids of S₂-SLF1 required for the breakdown of SI in S₇ and S₁₃ pollen, we first used pollen from T₀ plants F232:GFP/S₂S₃ and F322:GFP/S₂S₃ to pollinate wild-type plants of S₇S₁₃ and S₇S₁₆ genotypes, and used pollen from the T₀ plant F332:GFP/S₂S₃ to pollinate wild-type plants of S₇S₇ and S₁₃S₁₃ genotypes (**Table 2**). As controls, we also used wild-type plants of S₅S₁₁, S_{6a}S_{6a} and S₁₂S₁₂ genotypes as females in pollination involving F232:GFP/S₂S₃ and F322:GFP/S₂S₃, and wild-type plants of S₅S₅, S_{6a}S_{6a}, S₁₁S₁₁, S₁₂S₁₂ and S₁₆S₁₆ genotypes as females in pollination involving F332:GFP/S₂S₃ (**Table 2**). As expected, all these crosses were compatible, setting large size fruits. For plants in each progeny, analysis of the presence/absence of the transgene and determination of the S-genotypes were carried out as described for the self-crosses between these T_0 plants and wild-type S_2S_3 plants. Representative genotyping results are shown in **Supplementary Fig. S2A–C**. We chose the T_1 transgenic plants that contained the S_2 -haplotype and one of the following S-haplotypes, S_5 , S_{6ar} , S_7 , S_{11} , S_{12} , S_{13} or S_{16} , to examine whether expression of F232:GFP, F322:GFP or F332:GFP caused breakdown of SI in S_5 , S_{6ar} , S_7 , S_{11} , S_{12} , S_{13} and S_{16} pollen. Pollen from at least two T_1 transgenic plants of each S-genotype was used in self-crosses with wild-type plants of their respective S-genotypes, and, as the results were identical, **Table 2** only lists the result of one of the plants for all these self-crosses.

For example, when pollen from $F232:GFP/S_2S_5 T_1$ plants was self-crossed with a wild-type plant of the S_2S_5 genotype, no fruits were set, and thus these T_1 plants were self-incompatible. As expression of F232:GFP did not cause breakdown of SI in S_2 pollen (**Table 1**), this finding suggests that F232:GFP, like S_2 - SLF1, does not cause breakdown of SI in S_5 pollen and thus does not interact with S_5 -RNase. $F322:GFP/S_2S_5$ and $F332:GFP/S_2S_5$ were also found to be self-incompatible, suggesting that F322 and F332 behave like S_2 -SLF1 and S_3 -SLF1 in terms of their lack of interactions with S_5 -RNase. Our findings that $F232:GFP/S_2S_{6ar}$, $F322:GFP/S_2S_{6ar}$

Table 2 Self-incompatibility phenotype of T_1 plants carrying chimeric genes F232, F322, F332 or F33(2332) in various S-genotype backgrounds

Transgene	Cross involving T ₀ plant	T ₁ plant background	SI phenotype of T_1 plant
F232:GFP	S ₅ S ₁₁ ×F232:GFP /S ₂ S ₃	\$ ₂ \$ ₅	SI
F232:GFP	S ₅ S ₁₁ ×F232:GFP /S ₂ S ₃	S ₂ S ₁₁	SI
F232:GFP	$S_{6a}S_{6a} \times F232:GFP / S_2S_3$	\$ ₂ \$ _{6a}	SI
F232:GFP	$S_{12}S_{12} \times F232:GFP / S_2S_3$	\$ ₂ \$ ₁₂	SC
F232:GFP	S ₇ S ₁₃ ×F232:GFP /S ₂ S ₃	\$ ₂ \$ ₇	SI
F232:GFP	S ₇ S ₁₃ ×F232:GFP /S ₂ S ₃	S ₂ S ₁₃	SI
F232:GFP	S ₇ S ₁₆ ×F232:GFP /S ₂ S ₃	S ₂ S ₁₆	SI
F322:GFP	S ₇ S ₁₃ ×F322:GFP/S ₂ S ₃	\$ ₂ \$ ₇	SC
F322:GFP	S ₇ S ₁₃ ×F322:GFP/S ₂ S ₃	S ₂ S ₁₃	SI
F322:GFP	S ₁₂ S ₁₂ ×F322:GFP/S ₂ S ₃	\$ ₂ \$ ₁₂	SC
F322:GFP	S ₅ S ₁₁ ×F322:GFP/S ₂ S ₃	\$ ₂ \$ ₅	SI
F322:GFP	S ₅ S ₁₁ ×F322:GFP/S ₂ S ₃	S ₂ S ₁₁	SI
F322:GFP	S ₇ S ₁₆ ×F322:GFP/S ₂ S ₃	S ₂ S ₁₆	SI
F322:GFP	$S_{6a}S_{6a} \times F322:GFP/S_2S_3$	\$ ₂ \$ _{6a}	SI
F332:GFP	$S_5S_5 \times F332:GFP / S_2S_3$	\$ ₂ \$ ₅	SI
F332:GFP	$S_{6a}S_{6a} \times F332:GFP / S_2S_3$	S_2S_{6a}	SI
F332:GFP	$S_7S_7 \times F332:GFP / S_2S_3$	\$ ₂ \$ ₇	SI
F332:GFP	S ₁₁ S ₁₁ ×F332:GFP /S ₂ S ₃	S ₂ S ₁₁	SI
F332:GFP	S ₁₂ S ₁₂ ×F332:GFP /S ₂ S ₃	\$ ₂ \$ ₁₂	SC
F332:GFP	S ₁₃ S ₁₃ ×F332:GFP /S ₂ S ₃	S ₂ S ₁₃	SI
F332:GFP	S ₁₆ S ₁₆ ×F332:GFP /S ₂ S ₃	S ₂ S ₁₆	SI
F33(2332):GFP	S ₅ S ₅ ×F33(2332):GFP /S ₂ S ₃	\$ ₂ \$ ₅	SI
F33(2332):GFP	S ₁₁ S ₁₁ ×F33(2332):GFP /S ₂ S ₃	S ₂ S ₁₁	SI
F33(2332):GFP	S ₇ S ₁₃ ×F33(2332):GFP /S ₂ S ₃	\$ ₂ \$ ₇	SI
F33(2332):GFP	S ₇ S ₁₃ ×F33(2332):GFP /S ₂ S ₃	S ₂ S ₁₃	SI
F33(2332):GFP	S _{6a} S ₁₂ ×F33(2332):GFP /S ₂ S ₃	S_2S_{6a}	SI
F33(2332):GFP	S _{6a} S ₁₂ ×F33(2332):GFP /S ₂ S ₃	S ₂ S ₁₂	SC
F33(2332):GFP	S ₁₆ S ₁₆ ×F33(2332):GFP /S ₂ S ₃	S ₂ S ₁₆	SI

F332:GFP/S₂S_{6a}, F232:GFP/S₂S₁₁, F322:GFP/S₂S₁₁, F332:GFP/S₂S₁₇, F332:GFP/S₂S₁₆, F322:GFP/S₂S₁₆ and F332:GFP/S₂S₁₆ were all self-incompatible suggest that F232, F322 and F332 also behave like S₂-SLF1 and S₃-SLF1 in terms of their lack of interactions with S_{6a}, S₁₁- and S₁₆-RNase.

When pollen from T₁ plants $F232:GFP/S_2S_{12}$, $F322:GFP/S_2S_{12}$ and $F332:GFP/S_2S_{12}$ was used to pollinate a wild-type plant of the S_2S_{12} genotype, large fruits were observed. As expression of these three chimeric SLF genes did not cause breakdown of SI in S_2 pollen (**Table 1**), these results suggest that F232, F322 and F332 all interact with and detoxify S_{12} -RNase to allow S_{12} transgenic pollen to be compatible with S_2S_{12} pistils. The finding that these chimeric proteins, with one or two of the domains of S_2 -SLF1 swapped with the corresponding domain(s) of S_3 -SLF1, still interact with S_{12} -RNase is consistent with the previous finding that both S_2 -SLF1 and S_3 -SLF1 interact with S_{12} -RNase (Sun and Kao 2013).

Pollination of a wild-type S_2S_7 plant by pollen from T_1 plants $F322:GFP/S_2S_7$ set large size fruits, but pollination of this wild-type S_2S_7 plant by pollen from T_1 plants $F232:GFP/S_2S_7$ and $F332:GFP/S_2S_7$ did not set fruits. These results suggest that, unlike interaction with S_3 -RNase, FD2 of S_2 -SLF1 contains the amino acids that are required for the breakdown of SI in S_7 pollen. When pollen from T_1 plants $F232:GFP/S_2S_{13}$, $F322:GFP/S_2S_{13}$, and $F332:GFP/S_2S_{13}$ was used to pollinate a wild-type plant S_2S_{13} , no fruit set was observed, suggesting that both FD1 and FD2 of S_2 -SLF1 contain the amino acids required for the breakdown of SI in S_{13} pollen.

As chimeric protein F33(2332) was found to interact with S_3 -RNase (Table 1), we used T_0 plants F33(2332):GFP/ S_2S_3 to examine further the findings described above that FD2 and FD1 + FD2 contain the amino acids required for S₂-SLF1 to cause breakdown of SI in S7 pollen and S13 pollen, respectively. Pollen from these T₀ plants was used to pollinate wild-type plants of S_5S_5 , $S_{6a}S_{12}$, S_7S_{13} , $S_{11}S_{11}$ and $S_{16}S_{16}$ genotypes. T_1 plants containing the transgene F33(2332):GFP and of the S_2S_5 , S_2S_{6a} , S_2S_7 , S_2S_{11} , S_2S_{12} , S_2S_{13} or S_2S_{16} genotype were identified by PCR as described before. Representative results are shown in Supplementary Fig. S2D. We then used pollen from these T_1 transgenic plants to pollinate wild-type plants of their respective S-genotypes. No fruit set was observed from these selfcrosses, except for the self-cross with a wild-type S_2S_{12} plant (Table 2). These results are consistent with the findings that amino acids contained in FD2 and FD1 + FD2 are required for S_2 -SLF1 to cause breakdown of SI in S_7 pollen and S_{13} pollen, respectively.

Computational modeling of interaction between S_2 -SLF1 and S_3 -RNase reveals the involvement of amino acids in mini-domain A and mini-domain D at the interaction surface

We further used computational modeling to examine the possible role of the 16 amino acids that are different between S_2 -SLF1 and S_3 -SLF1 in FD3 in the specific interaction of S_2 -SLF1 with S_3 -RNase. We first used the I-TASSER server (Zhang 2008, Yang et al. 2015) to predict the tertiary structure of S_2 -SLF1.

After iterative simulations, the top five models were generated. Their C-scores and QMEAN norm scores were examined (Supplementary Table S2), and the final refined best S₂-SLF1 structure model was obtained, which contained several α -helices in its N-terminal region (the first 60 amino acid residues representing the F-box domain) and many β -sheets in its Cterminal region (representing FD2 and FD3) (Fig. 4A). We then used VADAR (http://vadar.wishartlab.com/; Willard et al. 2003) and ProSa-web server (https://prosa.services.came.sbg.ac.at/ prosa.php; Wiederstein and Sippl 2007) to validate the quality and reliability of the modeled structure. We found that the distribution of the ψ/ϕ angles of 90% of the amino acid residues was in the core or allowed regions of the Ramachandran plot, and the overall model quality, Z-score (-4.2, 389 amino acids), was within the range of X-ray or nuclear magnetic resonance (NMR)-solved structures of proteins with a similar size (Supplementary Fig. S3). We further carried out a structural comparison using the Dali server (http://ekhidna.biocenter.helsinki.fi/dali server/; Holm and Rosenström 2010), and found that S₂-SLF1 is most similar to human F-box/WD repeat-containing protein-7 (Fbxw7, 2ovp-B) and yeast Cdc4/Skp1 (3mks-B), suggesting that its structure is very similar to the WD40-repeat β -propeller domain (**Supplementary Fig. S4**).

Fig. 5 shows an alignment of the amino acid sequences in FD3 of S₂-SLF1 and S₃-SLF1, along with those of S_{6a}-SLF1 and S₁-SLF1, both of which interact with S₃-RNase based on the in vivo transgenic assay (Sijacic et al. 2004, Kubo et al. 2010, Shu Li and Teh-hui Kao, unpublished results). The four mini-domains are demarcated, and the four amino acids different between S2-SLF1 and S3-SLF1 in each mini-domain are indicated with asterisks above the alignment. Interestingly, of the 16 amino acids that are different between S2-SLF1 and S3-SLF1, 10 are conserved among all three SLFs (S2-SLF1, S6a-SLF1 and S_1 -SLF1) that interact with S_3 -RNase: three each in minidomain A, mini-domain B and mini-domain D, and one in mini-domain C. To examine further the role of these conserved amino acids in the interaction with S₃-RNase, we first predicted the tertiary structure of S₃-RNase using the same method as used for S₂-SLF1 (Supplementary Figs. S5, S6), and then used the web-based molecular docking server, ClusPro 2.0 (https:// cluspro.org; Comeau et al. 2004, Kozakov et al. 2017), to predict the interaction between S2-SLF1 and S3-RNase, as no crystal structure of this protein complex is yet available. The tertiary structure of S₃-RNase (the ligand) was docked onto that of S₂-SLF1 (the receptor) without the first 95 amino acids containing the F-box domain. Using the scoring scheme for the balanced mode, which takes electrostatic attractions, surface hydrophobicity and van der Waals interactions into consideration, a docked structure with the largest cluster size of 62 is obtained, with the center lowest energy as -882.7 (Fig. 4B). This docked structure was visualized by PyMOL (The PyMOL Molecular Graphics System, Version 1.8.6.0 Schrödinger, LLC.), revealing that FD3 of S2-SLF1 and the N-terminal part of S₃-RNase were at the interaction surface (Fig. 4B), and that both mini-domain A and mini-domain D were in contact with the surface of S_3 -RNase (Fig. 4C). These findings are consistent with the results from the domain-swapping experiments

Downloaded from https://academic.oup.com/pcp/advance-article-abstract/doi/10.1093/pcp/pcx176/4632919 by Pennsylvania State University user on 14 December 2017

Fig. 4 Computational modeling of S₂-SLF1 and molecular docking of S₃-RNase onto S₂-SLF1, as visualized in PyMOL. (A) Predicted tertiary structure of S₂-SLF1 shown as a ribbon diagram. FD1, FD2 and FD3 are shown in beige, gray and purple colors, respectively. The four minidomains of FD3 are enlarged in the boxes. In each mini-domain, the four amino acids that are different between S₂-SLF1 and S₃-SLF1 are labeled and shown in stick mode. (B) Predicted docked structure of S₂-SLF1 (receptor) and S₃-RNase (ligand) through the ClusPro molecular docking web server using a balanced-mode scoring scheme. The structure is shown in surface mode. FD2 and FD3 are shown in beige and gray, respectively. The four amino acids different between S₂-SLF1 and S₃-SLF1 in mini-domain A are shown in blue; the four amino acids different between S₂-SLF1 and S₃-SLF1 in mini-domain D are shown in cyan. S₃-RNase is shown in surface mode, with the four amino acids different between S₂-SLF1 and S₃-SLF1 in the docked structure shown in surface mode, with the four amino acids different between S₂-SLF1 and S₃-SLF1 in mini-domain A is a ribbon diagram. (D) S₂-SLF1 in the docked structure shown in surface mode, with the four amino acids different between S₂-SLF1 and S₃-SLF1 in mini-domain D highlighted in cyan. S₃-RNase is shown as a ribbon diagram.

showing that mini-domain A and mini-domain D are required for interactions with S_3 -RNase. Of the eight amino acids different between S_2 -SLF1 and S_3 -SLF1 in these two mini-domains, Glu265 and Leu266 are predicted to be in contact with S_3 -RNase (**Fig. 4C**), and Lys378 is predicted to be very close to the surface of S₃-RNase (**Fig. 4D**). Interestingly, these three amino acids are among the 10 amino acids that are conserved among S₂-SLF1, S₁-SLF1 and S_{6a}-SLF1 that interact with S₃-RNase, supporting their possible involvement in the specific interaction between S₂-SLF1 and S₃-RNase.

Fig. 5 Alignment of deduced amino acid sequences in FD3 of three allelic variants of SLF1 that interacts with S_3 -RNase and one allelic variant that does not, based on genetic or biochemical evidence. The four mini-domains are demarcated and labeled, A, B, C and D. The first and last amino acid residues of each mini-domain are indicated. The 16 amino acids that are different between S_2 -SLF1 and S_3 -SLF1 are marked in a white background. Each mini-domain contains four of these 16 amino acids. Ten of these 16 amino acids are conserved in two other allelic variants of SLF1, S_1 -SLF1 and S_{6a} -SLF1, both of which interact with S_3 -RNase, based on in vivo transgenic assay. These 10 amino acid residues are indicated with asterisks.

Discussion

The complex interaction relationships between multiple SLF proteins produced by pollen of a given S-haplotype (e.g. 17 produced by both the S₂-haplotype and S₃-haplotype of P. inflata; Williams et al. 2014b) and S-RNases produced by pistils of a large number of S-haplotypes (e.g. 32 have been reported for Petunia; Sims and Robbins 2009) provide a good opportunity for studying biochemical and structural bases of proteinprotein interactions. Results of the in vivo transgenic assay suggest that differential interactions exist between different SLF proteins of a given S-haplotype and S-RNases, and between allelic variants of each SLF and S-RNases (Sijacic et al. 2004, Kubo et al. 2010, Sun and Kao 2013, Williams et al. 2014b). S_2 -SLF1 and S_3 -SLF1 (S_2 and S_3 allelic variants of SLF1) is an interesting pair of SLF proteins to study, as, on the one hand, they show differential interactions with several S-RNases, but on the other hand, they also share the same interaction relationships with a number of other S-RNases. Specifically, our previous results suggest that (i) S₂-SLF1, but not S₃-SLF1, interacts with S1-, S3-, S7- and S13-RNases; (ii) both S2-SLF1 and S3-SLF1 interact with S12-RNase; and (iii) neither S2-SLF1 nor S3-SLF1 interacts with S2-, S5-, S6a-, S11- or S16-RNase (Williams et al. 2014b). Moreover, we subsequently used Co-IP to show that S₂-SLF1 interacted with S₃-RNase (Sun and Kao 2013), thus confirming the genetic interaction suggested from the in vivo

transgenic assay. The differential interactions of S_2 -SLF1 and S_3 -SLF1 with the S-RNases examined perhaps are not surprising given that S_2 -SLF1 and S_3 -SLF1 are 88.7% identical in their amino acid sequences. The question is then, among the S-RNases we have examined, which of the 44 amino acids that are different between S_2 -SLF1 and S_3 -SLF1 are required for S_2 -SLF1 to interact with the four additional S-RNases? In this work, we have adopted the domain-swapping approach to begin to address this question, with the goal of narrowing the candidate amino acids involved in the specific interaction of S_2 -SLF1 with S_3 -RNase.

We previously divided S_2 -SLF1 into three functional domains, FD1, FD2 and FD3, with each domain containing approximately equal numbers of amino acids that are different between S_2 -SLF1 and S_3 -SLF1 (Hua et al. 2007). It is thus convenient to use the demarcation of these three domains (**Fig. 1A**) to construct chimeric *SLF* genes, by swapping coding sequences for one of these three domains, to see which one(s) contain(s) the amino acids required for the interaction between S_2 -SLF1 and S_3 -RNase. We have constructed a total of 11 chimeric genes of S_2 -SLF1 and S_3 -SLF1, and generated S_2S_3 transgenic lines for all of them. The results from the first series, involving F322, F232 and F233, suggest that (i) F322 and F232, but not F233, interact with and detoxify S_3 -RNase in S_3 pollen to allow S_3 transgenic pollen to be compatible with the S_2S_3 pistil; and (ii) FD3 of S_2 -SLF1 is required for its interaction

with S₃-RNase (**Table 1**). However, the involvement of FD1, or FD2, in conjunction with FD3, could not be ruled out. That is, the interaction of F322 with S₃-RNase might also require FD2 of S₂-SLF1, and the interaction of F232 with S₃-RNase might also require FD1 of S₂-SLF1. To examine these possibilities, we tested F332 and found that it could still break down SI in S₃ pollen (**Table 1**), suggesting that F332, containing FD1 and FD2 of S₃-SLF1, can still interact with S₃-RNase. Thus, studying this series of four chimeric genes, F322, F232, F233 and F332, has allowed us to narrow down the candidate amino acids required for the interaction between S₂-SLF1 and S₃-RNase from 44 down to the 16 in FD3.

In the second series, we wished to narrow down further the candidate amino acids required for the interaction of S₂-SLF1 with S₃-RNase. As F232 could interact with S₃-RNase, we used it as the backbone and divided FD3 into two subdomains, each containing eight of the 16 different amino acids. We found that the resulting chimeric genes, F23(23) and F23(32), could not break down SI in S₃ pollen (Table 1). Thus, both subdomains of FD3 contain the amino acids required for the interaction between S2-SLF1 and S3-RNase. In the third series, we used F332 as the backbone and divided FD3 into four mini-domains, A, B, C and D (each containing four of the 16 different amino acids), to make four chimeric genes, F33(3222), F33(2322), F33(2232) and F33(2223). F33(2322) and F33(2232), but not F33(3222) or F33(2223), caused breakdown of SI in S₃ pollen (Table 1), suggesting that one or more of the four amino acids different between S2-SLF1 and S3-SLF1 in mini-domain A and in mini-domain D are required for S₂-SLF1 to interact with S₃-RNase, and that none of the four different amino acids in either mini-domain B or mini-domain C is required. To confirm this interpretation, we made an additional chimeric gene, F33(2332), and found that it caused breakdown of SI in S_3 pollen (Table 1). This series of studies has allowed us to conclude that both mini-domain A and mini-domain D contain amino acids that are required for S₂-SLF1 to interact with S₃-RNase.

In the final series, we asked the question of which domain(s) of S_2 -SLF1 is (are) required for the breakdown of SI in S_7 pollen and S₁₃ pollen. We examined three chimeric genes, F322, F232 and F332, all of which caused breakdown of SI in S₃ pollen. We included S₁₂ pollen as a positive control, because we would expect that expression of any chimeric protein of S2-SLF1 and S₃-SLF1 should cause breakdown of SI in S₁₂ pollen. We included S₅, S_{6a}, S₁₁ and S₁₆ pollen as negative controls, because we would expect that expression of chimeric proteins of S2-SLF1 and S3-SLF1 should not cause breakdown of SI in pollen of these S-haplotypes. All the results obtained were as expected, suggesting that these chimeric proteins of S2-SLF1 and S3-SLF1 behave as S2-SLF1 and S₃-SLF1 in their ability, or inability, to cause breakdown of SI in pollen of the S-haplotypes tested. That is, the overall structure of the chimeric proteins remains unaltered. F322, but not F232 or F332, caused breakdown of SI in S7 pollen, suggesting that FD2, but not FD1, of S₂-SLF1 is required for the interaction with S₇-RNase. However, whether the interaction also requires FD3, in conjunction with FD2, would have to be addressed by examining an additional chimeric protein, F323, to see whether it could cause breakdown of SI in S7 pollen. If it did, then this would rule

out the involvement of the 16 amino acids that are different between S_2 -SLF1 and S_3 -SLF1 in FD3. None of the chimeric proteins, F322, F232 and F332, caused breakdown of SI in S_{13} pollen, suggesting that both FD1 and FD2 domains are required for interaction with S_{13} -RNase. Similarly, the role of FD3, if any, would have to be addressed by examining another additional chimeric protein, F223, to see whether it can cause breakdown of SI in S_{13} pollen. We further examined F33(2332) in this series, as we showed in the previous series that F33(2332) interacted with S_3 -RNase (**Table 1**). Consistent with the results of F332, F33(2332) could only cause breakdown of SI in S_{12} pollen.

The pair of SLF proteins, S₂-SLF1 and S₃-SLF1, chosen for this study is interesting in that even though they are allelic variants of the same type of SLF protein, they differ in >10% of their amino acid sequences. Many other allelic pairs of the same type of SLF protein share higher degrees of amino acid sequence identity, e.g. S2-SLF5 and S3-SLF5 differ in only eight of the 388 amino acids (but only S_2 -SLF5 interacts with S_{12} -RNase based on the in vivo transgenic assay), and S₂-SLF6 and S_3 -SLF6 differ in only four of the 390 amino acids (but only S₃-SLF6 interacts with S₂-RNase based on the in vivo transgenic assay) (Williams et al. 2014b). The approach of site-directed mutagenesis could be used to identify the amino acid(s) that differentiate(s) such an allelic pair in their interactions with S-RNases. Differential interactions with S-RNases also exist between different types of SLF proteins of a given S-haplotype, and, in this case, the amino acid sequences of paralogous SLF proteins differ over a wide range, e.g. 45-88% for the 17 SLF proteins of the S_2 -haplotype (Williams et al. 2014b). The series of domain-swapping experiments performed in this work demonstrates the feasibility of using this approach as a first step towards addressing the biochemical basis of differential interactions with S-RNases for a pair of SLF proteins that differ by a large number of amino acids.

In this work, we have narrowed down the candidate amino acids required for the specific interaction of S₂-SLF1 with S₃-RNase from 44 amino acids to eight, with four in mini-domain A and four in mini-domain D. We further examined the role of these eight candidate amino acids by using I-TASSER to predict possible tertiary structures of S₂-SLF1 and S₃-RNase, and using the molecular docking program ClusPro 2.0 to predict the interaction between S₂-SLF1 and S₃-RNase. The docking result indicated that FD3 of S₂-SLF1 and the N-terminal part of S₃-RNase are at the interaction interface. The docked structure also revealed that both mini-domains are in contact with S₃-RNase. More specifically, Glu265 and Leu266 in minidomain A are predicted to be in direct contact with S₃-RNase, and Lys378 in mini-domain D is predicted to be very close to S₃-RNase. One could examine additional allelic variants of SLF1 for their interaction relationships with S₃-RNase, and assess whether any of the eight amino acids different between S_2 -SLF1 and S_3 -SLF1 in mini-domain A and mini-domain D is conserved among all the allelic variants that interact with S₃-RNase, but divergent among all of those that do not. To date, 20 alleles of SLF1 of P. inflata have been identified and sequenced (including S₂-SLF1 and S₃-SLF1 studied in this work), and their deduced amino acid sequences are 85.8-99.7%

identical (Williams et al. 2014a). The in vivo transgenic assay used in this study could be used to determine whether expression of any of the as yet untested SLF1 alleles could cause specific breakdown of SI in S₃ pollen. As an example, we present in Fig. 5 an amino acid alignment of four of these SLF1 allelic variants for which we have obtained the interaction relationships with S₃-RNase based on the in vivo transgenic assay. S1-SLF1, S6a-SLF1 and S2-SLF1, but not S3-SLF1, interact with S₃-RNase (Sijacic et al. 2004, Kubo et al. 2010, Shu Li and Tehhui Kao, unpublished results). For the 16 amino acids in FD3 that are different between S2-SLF1 and S3-SLF1, 10 are conserved among S₁-SLF1, S₂-SLF1 and S_{6a}-SLF1, three are located in mini-domain A, including Glu265 and Leu266, and three are located in mini-domain D, including Lys378. Interestingly, three of the conserved amino acids are located in mini-domain B. As we have shown that the amino acid differences between S2-SLF1 and S3-SLF1 in mini-domain B are not required for the interaction of S2-SLF1 with S3-RNase, the conservation of these residues between S1-SLF1, S2-SLF1 and S6a-SLF1 may implicate their role in the interaction of these three allelic variants with the same S-RNase(s) other than S₃-RNase. Consistent with this possibility are our findings that FD2 of S₂-SLF1 is required for the breakdown of SI in S7 pollen, and both FD1 and FD2 of S_2 -SLF1 are required for the breakdown of SI in S_{13} pollen. This highlights the diversity and complexity of interactions between SLF proteins and S-RNases.

Previously, a similar domain-swapping approach was used by Li et al. (2017) to study an allelic pair of SLF1 proteins of P. hybrida, (Ph)S₃-SLF1 and (Ph)S₃₁-SLF1. These two SLF proteins (with 89.7% sequence identity) differ in 40 amino acids, and the results of the in vivo transgenic assay suggest that (Ph)S₃₁-SLF1, but not (Ph)S₃-SLF1, interacts with (Ph)S₃-RNase. It should be noted that, even though the allele number, 3, was also used to denote (Ph)S₃-RNase and (Ph)S₃-SLF1, (Ph)S₃-RNase is not the same protein as S₃-RNase of P. inflata, and neither (Ph)S₃-SLF1 nor (Ph)S_{3L}-SLF1 is the same protein as S₃-SLF1 (or S₂-SLF1) of P. inflata. (Ph)S₃-RNase and S₃-RNase share 78.7% amino acid identity. (Ph)S₃-SLF1 and (Ph)S_{3L}-SLF1 are 90.5% and 86.6% identical to S₃-SLF1, respectively, and (Ph)S₃-SLF1 and (Ph)S₃₁-SLF1 are 91.3% and 94.6% identical to S₂-SLF1, respectively. Li et al. (2017) also divided (Ph)S_{3L}-SLF1 and (Ph)S₃-SLF1 into the three domains (FD1, FD2 and FD3) defined in Hua et al. (2007), and used the in vivo transgenic assay to examine the ability of six chimeric proteins to interact with S₃-RNase. The results suggest that chimeric proteins 3-L-L, 3-3-L and L-3-L, but not L-3-3 or L-L-3, interact with S3-RNase. These results seemed to suggest that FD3 alone contains the amino acids required for (Ph)S₃₁-SLF1 to interact with S₃-RNase. However, inexplicably, Li et al. (2017) found that chimeric protein 3-L-3, not containing FD3 of $(Ph)S_{31}$ -SLF1, also caused breakdown of SI in S_3 pollen (and thus would interact with S₃-RNase). This internal inconsistency is puzzling. They further identified amino acid residue 293 that might determine the interaction specificity of (Ph)S_{3L}-SLF1. This residue is in mini-domain B based on our definition (Fig. 5), and it is glutamate in PhS_{3L}-SLF1 and histidine in (Ph)S₃-SLF1. Interestingly, when His293 in (Ph)S₃-SLF1

was changed to Glu293, the resulting SLF acquired the ability of (Ph)_{S3L}-SLF1 to cause the breakdown of SI in S₃ pollen. That a single amino acid might be involved in interaction specificity is consistent with our having narrowed down the amino acids required for the specific interaction of S₂-SLF1 with S₃-RNase from the 44 that are different between S₂-SLF1 and S₃-SLF1 down to three.

Materials and Methods

Plant materials

 S_2S_2 , S_3S_3 and S_2S_3 genotypes of *P. inflata* were described by Ai et al. (1990), and S_5S_{11} and S_7S_{13} genotypes were described by Wang et al. (2001). The S_{12} -haplotype was identified from a population of plants germinated from seeds obtained from the Ornamental Plant Germplasm Center of the United States Department of Agriculture. The S_{12} -carrying plants were bud-selfed to produce plants of the $S_{12}S_{12}$ genotype. The S_6S_6 genotype was described by Quattrocchio et al. (1999), and S_6 was designated S_{6a} to distinguish it from our previously reported and genetically distinct S_6 -haplotype (Wang et al. 2001). Plants of $S_{6a}S_{6a}$, $S_{12}S_{12}$, S_5S_{11} and S_7S_{13} genotypes were crossed with plants of the S_2S_3 genotype to obtain S_2S_5 , S_2S_{6a} , S_2S_7 and S_2S_{12} genotypes (Sun and Kao 2013). All S-genotypes are verified by PCR, as described in Sun and Kao (2013).

Generation of Ti plasmid constructs and plant transformation

A total of 11 Ti plasmid constructs were made in pBI101, and each contained the Late Anther Tomato 52 promoter (LAT52P) (Twell et al. 1990) driving the expression of a particular chimeric SLF gene fused at its last codon with the coding sequence of GFP. These 11 constructs (schematically represented in Figs. 1C and 3B) were pBI101-LAT52P:F33(3222):GFP, pBI101-LAT52P:F33(23 22):GFP, pBI101-LAT52P:F33(2232):GFP, pBI101-LAT52P:F33(2223):GFP, pBI101-LAT52P:F33(2332):GFP and pBI101-LAT52P:F332:GFP. They were made using the In-Fusion HD Cloning Kit (Clontech) as described below, and all the primers used in PCRs are listed in Supplementary Table S1. Each individual chimeric SLF gene was amplified by first performing a series of PCRs to generate DNA fragments for FD3 from S2-SLF1, FD1 and FD2 from S3-SLF1, and FD3-A, FD3-B, FD3-C and FD3-D from both S2-SLF1 and S3-SLF1. These 11 fragments contained overlapping regions, 14-16 bp in length, designed to allow hybridization between DNA fragments in the correct order. Appropriate fragments were used as a mixed template in overlapping PCRs to generate each of the following chimeric DNA fragments of approximately 1.2 kb in length: F33(3222), F33(2322), F33(2232), F33(2223) and F33(2332). Using F33(3222) as an example, the fragment containing FD1, FD2 and FD3-A from S3-SLF1, and the fragment containing FD3-B, FD3-C and FD3-D from S2-SLF1, were first generated by PCRs, and then pooled for use as template for overlapping PCR, using the LAT52 F332-ATGFW (In-Fusion) and F332-S2SLF1TAGREV (In-Fusion) primer pairs, to produce the chimeric DNA fragment F33(3222). The LAT52 promoter region was amplified using primers INFUSION PBI LAT52FOR/INFUSION LAT52REV, resulting in a 0.6 kb fragment. The GFP coding sequence and the Nos transcription terminator region were amplified using primers INFUSION GFP FOR/INFUSION PBI NOS REV, resulting in a 1.1 kb fragment. A four-way ligation was performed to join the 0.6 kb LAT52 promoter fragment, the 1.2 kb fragment containing a specific chimeric SLF gene, the 1.1 kb fragment containing GFP and Nos, and Sall-EcoRI-digested pBI101, in one reaction according to the In-Fusion HD cloning protocol and as described by Sun and Kao (2013). All the 11 Ti plasmid constructs were electroporated into competent cells of A. tumefaciens (LBA4404), and subsequently used in Agrobacterium-mediated transformation of leaf tissues of P. inflata as described by Lee et al. (1994).

Amino acid sequence alignment and analysis

Sequence alignments were performed using MEGA 6 (Tamura et al. 2013) and ClustalW (Thompson et al. 1994). Alignments of deduced amino acid sequences were produced using default settings.

12

Visualization of GFP fluorescence

As described by Meng et al. (2009), mature pollen was germinated in pollen germination medium (Lee et al. 1996) for a maximum period of 2 h. Pollen tubes were visualized using a Nikon Eclipse 90i epifluorescence microscope.

Genomic DNA isolation and genotyping by PCR

Isolation of genomic DNA was performed using Plant DNAzol[®] Reagent (Invitrogen) following the manufacturer's protocol as described in Meng et al. (2011). S-haplotype-specific primers for S-RNase or SLF1 were used to genotype all of the plants used in these experiments. The primer pairs used are shown in **Supplementary Table S1**.

Protein structure prediction and protein-protein docking analysis

 S_2 -SLF1 and S_3 -RNase protein structures were modeled using the I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) (Zhang 2008, Yang et al. 2015). Backbone and overall model quality were evaluated by the VADAR version 1.8 program (http://vadar.wishartlab.com/) (Willard et al. 2003) and the ProSa-web program (https://prosa.services.came.sbg.ac.at/ prosa.php). The refined protein model of S_2 -SLF1 and S_3 -RNase using SWISS-MODEL (https://swissmodel.expasy.org/qmean/) were used for protein–protein docking analysis by ClusPro (https://cluspro.bu.edu/login.php) (Comeau et al. 2004). The docked results were visualized and analyzed using PyMOL. All the structural images were produced by the PyMOL molecular visualization package (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.).

Supplementary data

Supplementary data are available at PCP online.

Funding

This work was supported by the U.S. National Science Foundation [IOS-1146182 and IOS-1645557 to T.-h.K.].

Acknowledgments

We thank C.A. Natale for help with some of the experiments, L.S. Burghard for greenhouse management, and H. Hao for general laboratory help.

Disclosures

The authors have no conflict of interests to declare.

References

- Ai, Y., Singh, A., Coleman, C.E., loerger, T.R., Kheyr-Pour, A. and Kao, T.-h. (1990) Self-incompatibility in *Petunia inflata*: isolation and characterization of cDNAs encoding three S-allele-associated proteins. *Sex. Plant Reprod.* 3: 130–138.
- Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., et al. (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. *Cell* 86: 263–274.
- Comeau, S.R., Gatchell, D.W., Vajda, S. and Camacho, C.J. (2004) ClusPro: a fully automated algorithm for protein-protein docking. *Nucleic Acids Res.* 32: 96–99.

- De Nettancourt, D. (2001) The genetics of self-incompatibility. *In* Incompatibility and Incongruity in Wild and Cultivated Plants. pp. 26–27. Spinger-Verlag, Berlin.
- Goldraij, A., Kondo, K., Lee, C.B., Hancock, C.N., Sivaguru, M., Vazquez-Santana, S., et al. (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible *Nicotiana*. *Nature* 439: 805–810.
- Holm L and Rosenström P. (2010) Dali server: conservation mapping in 3D. *Nucleic Acids Res.* 38: W545-W549.
- Hua, Z., Meng, X. and Kao, T.-h. (2007) Comparison of *Petunia inflata* Slocus F-box protein (Pi SLF) with Pi SLF-like proteins reveals its unique function in S-RNase-based self-incompatibility. *Plant Cell* 19: 3593– 3609.
- Huang, S., Lee, H.-S., Karunanandaa, B. and Kao, T.-h. (1994) Ribonuclease activity of *Petunia inflata* S proteins is essential for rejection of self pollen. *Plant Cell* 6: 1021–1028.
- Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., et al. (2017) The ClusPro web server for protein–protein docking. *Nature Protoc.* 12: 255–278.
- Kubo, K.I., Entani, T., Takara, A., Wang, N., Fields, A.M., Hua, Z., et al. (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. *Science* 330: 796–799.
- Kubo, K.I., Paape, T., Hatakeyama, M., Entani, T., Takara, A., Kajihara, K., et al. (2015) Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in *Petunia*. *Nat. Plants* 1: 14005.
- Lee, H.-S., Huang, S. and Kao, T.-h. (1994) S proteins control rejection of incompatible pollen in *Petunia inflata*. *Nature* 367: 560–563.
- Lee, H.-S., Karunanandaa, B., McCubbin, A., Gilroy, S. and Kao, T.-h. (1996) PRK1, a receptor-like kinase of *Petunia inflata*, is essential for postmeiotic development of pollen. *Plant J.* 9: 613–624.
- Li, J., Zhang, Y., Song, Y., Zhang, H., Fan, J., Li, Q., et al. (2017) Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in *Petunia hybrida*. *Plant J.* 89: 45–57.
- Li, S., Sun, P., Williams, J.S. and Kao, T.-h. (2014) Identification of the selfincompatibility locus F-box protein-containing complex in *Petunia inflata*. *Plant Reprod*. 27: 31–45.
- Li, S., Williams, J.S., Sun, P. and Kao, T.-h. (2016) All 17 types of S-locus Fbox proteins of S₂- and S₃-haplotypes of *Petunia inflata* are assembled into similar SCF complexes with specific function in self-incompatibility. *Plant J.* 87: 606–616.
- Luu, D.T., Qin, X., Morse, D. and Cappadocia, M. (2000) S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. *Nature* 407: 649–651.
- Meng, X., Hua, Z., Sun, P. and Kao, T.-h. (2011) The amino terminal F-box domain of *Petunia inflata* S-locus F-box protein is involved in the S-RNase-based self-incompatibility mechanism. AoB Plants 2011: plr016.
- Meng, X., Hua, Z., Wang, N., Fields, A.M., Dowd, P.E. and Kao, T.-h. (2009) Ectopic expression of S-RNase of *Petunia inflata* in pollen results in its sequestration and non-cytotoxic function. Sex. Plant Reprod. 22: 263–275.
- Quattrocchio F., Wing J., van der Woude K., Souer E., de Vetten N., Mol J., et al. (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. *Plant Cell* 11: 1433–1444.
- Sijacic, P., Wang, X., Skirpan, A.L., Wang, Y., Dowd, P.E., McCubbin, A.G., et al. (2004) Identification of the pollen determinant of S-RNasemediated self-incompatibility. *Nature* 429: 302–305.
- Sims, T.L. and Robbins, T.P. (2009) Gametophytic self-incompatibility in *Petunia. In* Petunia: Evolutionary, Developmental and Physiological Genetics. Edited by Gerats, T. and Strommer, J. pp. 85–106. Springer, New York.
- Stone, S.L. and Callis, J. (2007) Ubiquitin ligases mediate growth and development by promoting protein death. *Curr. Opin. Plant Biol.* 10: 624–632.
- Sun, P. and Kao, T.-h. (2013) Self-incompatibility in *Petunia inflata*: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. *Plant Cell* 25: 470–485.

- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30: 2725–2729.
- Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.
- Twell, D., Yamaguchi, J. and McCormick, S. (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. *Development* 109: 705–713.
- Wang, X., Hughes, A.L., Tsukamoto, T., Ando, T., and Kao, T.-h. (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in *Petunia inflata*. *Plant Physiol*. 125: 1012–1022.
- Wiederstein, M. and Sippl, M.J. (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. *Nucleic Acids Res.* 35: W407–W410.

- Willard L., Ranjan A., Zhang H.Y., Monzavi H., Boyko R.F., Sykes B.D., et al. (2003) VADAR: a web server for quantitative evaluation of protein structure quality. *Nucleic Acids Res.* 31: 3316-3319.
- Williams, J.S., Der, J.P. and Kao, T.-h. (2014a) Transcriptome analysis reveals the same 17 *S-locus F-box* genes in two haplotypes of the self-incompatibility locus of *Petunia inflata*. *Plant Cell* 26: 2873–2888.
- Williams, J.S., Natale, C.A., Wang, N., Li, S., Brubaker, T.R., Sun, P., et al. (2014b) Four previously identified *Petunia inflata S-locus F-box* genes are involved in pollen specificity in self-incompatibility. *Mol. Plant* 7: 567–569.
- Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015) The I-TASSER suite: protein structure and function prediction. *Nature Methods* 12: 7–8.
- Zhang, Y. (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40.