

1 **A Novel Photobiological Process for Reverse Osmosis Concentrate**
2 **Treatment Using Brackish Water Diatoms**

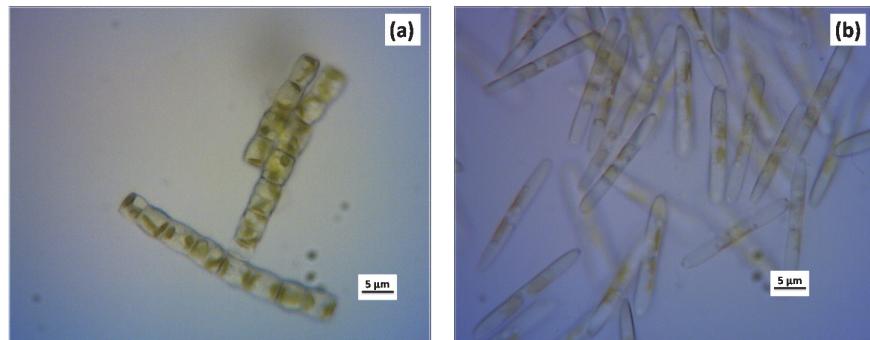
5 **Keisuke Ikehata*, Yuanyuan Zhao*, Jingshu Ma*, Andrew T. Komor*, Nima Maleky*,**
6 **Michael A. Anderson****

8 * Pacific Advanced Civil Engineering, Inc. 17520 Newhope St. Suite 200, Fountain Valley, CA 92708,
9 kikehata@pacewater.com

10 ** Department of Environmental Science, University of California, Riverside, CA 92521

13 **Abstract:** A unique aqueous silica removal process using naturally occurring diatoms for water reuse and desalination is
14 described. Several strains of brackish water diatoms have been isolated and tested. Among them *Pseudostaurosira* and
15 *Navicula* species showed promise. Reverse osmosis (RO) concentrate samples from two full-scale advanced water
16 purification facilities and one brackish groundwater RO plant in Southern California have been successfully treated by this
17 process. This new photobiological process could remove aqueous silica, as well as phosphate, ammonia, nitrate, calcium,
18 iron and manganese very effectively. Under non-optimized conditions, 95% of 78 mg·L⁻¹ reactive silica in an RO
19 concentrate sample could be removed within 72 hours. In most cases, addition of nutrients was not necessary because the
20 RO concentrate typically contains sufficient concentrations of macronutrients derived from the source water (i.e., treated
21 wastewater and brackish groundwater). Preliminary characterization of organics indicated that there was no major
22 generation of dissolved organics, which could potentially foul membranes in the subsequent RO process. This new algal
23 process has a strong potential for its application in desalination and water reuse in the United States and around the world.

25 **Keywords:** Advanced water purification, bacillariophyta (diatoms), concentrate management, potable reuse, reverse
26 osmosis


29 **Introduction**

30 The drought in California is an unprecedented crisis and has made the state's water supply
31 more vulnerable than it has ever been. Not only in California, but other arid and semi-arid states
32 and countries are facing an urgent need for alternative water resources as well. In recent years,
33 more and more water utilities in the southwestern United States and around the world have
34 begun exploring water from unconventional water resources, such as reclaimed water and
35 brackish groundwater, using reverse osmosis (RO) (Greenlee *et al.*, 2009; Pérez-González, *et*
36 *al.*, 2012). Brine (concentrate) management and minimization has become a critical issue in
37 RO-based water reuse and desalination projects, especially in inland areas where the means of
38 brine disposal are limited. In order to minimize the volume of RO concentrate further, many
39 advanced water treatment facilities are considering adding an additional stage of RO process
40 to recover another 10 to 15% of usable water, although serious scaling due to the presence of
41 inorganic scalants, including silica, calcium, and phosphate is a major obstacle (Asano *et al.*,
42 2007). In order to solve this challenge, a unique photobiological process utilizing selectively
43 cultured diatoms has been developed to efficiently remove these inorganic scalants from RO
44 concentrate so that additional RO can be employed to recover more fresh water (Ikehata *et al.*,
45 2017). This approach will help reduce the environmental impacts of water reuse and brackish
46 water desalination by harnessing the natural power of microalgae that has been known for
47 decades, but largely overlooked in water and wastewater treatment.

48 Previously, rapid removal of reactive silica and orthophosphate was observed in a silica-
49 rich brackish agricultural drainage water and an RO concentrate sample from the Groundwater
50 Replenishment System (GWRs), Orange County Water District (OCWD) using a mixed
51 diatom culture obtained from an evaporation pond in the Central Valley of California (Ikehata
52 *et al.*, 2017). Silica was likely utilized by the diatoms in the silicification process (Lewin,
53 1954; Martin-Jezequel *et al.*, 2000). One strain of diatom, *Pseudostaurosira trainorii*
54 PEWL001, was isolated from the mixed culture, and additional three strains, including

55 *Nitzschia communis* PEWL002, *Anomoeoneis sphaerophora* PEWL003, and *Halamphora*
56 *sydowii* PEWL004, were isolated from another water-sediment sample from the evaporation
57 pond. In this study, these isolated strains, in particular *P. trainorii* PEWL001 and *N. communis*
58 PEWL002 (Figure 1), were used to treat RO concentrate samples from different full-scale RO
59 facilities in Southern California. The impacts of this algal treatment on dissolved organic
60 matter (DOM) in the selected ROC were also studied.

61

62

63 **Figure 1** Photomicrograph of (a) *P. trainorii* PEWL001, and (b) *N. communis* PEWL002

64

65 **Material and Methods**

66 A brackish water diatom *P. trainorii* E. Morales PEWL001 was isolated from agricultural
67 drainage water collected in the Central Valley of California, USA during the summer of 2010
68 as described earlier (Ikehata et al., 2017). First, the drainage water sample was incubated at
69 room temperature (~ 25°C) under continuous illumination over a period of time (~10 days)
70 until visible algal colonies became visible. Strains were then isolated from the colonies by a
71 combination of serial dilution, agar plate, and micropipette techniques (Andersen and
72 Kawachi 2005). Another brackish water diatom *N. communis* Rabenhorst PEWL002 was
73 isolated from a drainage water sample collected from the same area in November 2015. The
74 diatom seed cultures were maintained in 15-mL or 50-mL VWR clear polypropylene
75 centrifuge tubes containing 0.2-μm filtered diluted synthetic seawater containing Guillard's
76 F/2 medium (Guillard, 1975) or 0.2-μm filtered RO concentrate sample from the GWRS (see
77 below). The concentration of total dissolved solids (TDS) in the F/2 medium was 7 g·L⁻¹,
78 which is similar to that of the RO concentrate samples treated in this study.

79 RO concentrate samples were obtained from three full-scale RO facilities, including the
80 GWRS of the OCWD in Fountain Valley, CA, USA, the Leo J. Vander Lans Advanced Water
81 Treatment Facility (LVL AWTF) of the Water Replenishment District of Southern California
82 (WRD) in Long Beach, CA, USA, and the Chino I Desalter of Chino Basin Desalter
83 Authority/Inland Empire Utilities Agency (IEUA) on April 22nd, 2016, November 21st, 2013,
84 and August 25th, 2016, respectively. The collected RO concentrate samples were
85 characterized for basic water quality (Table 1) and kept refrigerated until use. The analytical
86 methods used are also listed in Table 1.

87 A HACH DR-2800 spectrophotometer and a HACH 2100N turbidimeter (Loveland, CO,
88 USA) were used for the colorimetric and turbidity analyses, respectively. A HACH
89 ISENA38101 combined with an HQ40d portable meter was used for sodium analysis. Boron
90 analysis was performed by TestAmerica (Irvine, CA, USA). An Oakton pHTestr2 and a
91 TDSTestr2 (Vernon Hills, IL, USA) were used for the pH, TDS, and temperature
92 measurement. UV-Vis and fluorescence analyses were conducted with a Varian Cary 100 Bio

93 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) and a Horiba
 94 FluoroMax-4 spectrofluorometer (Horiba Scientific, Edison, NJ, USA) in the Urban Water
 95 Research Center at the University of California, Irvine, CA, USA.

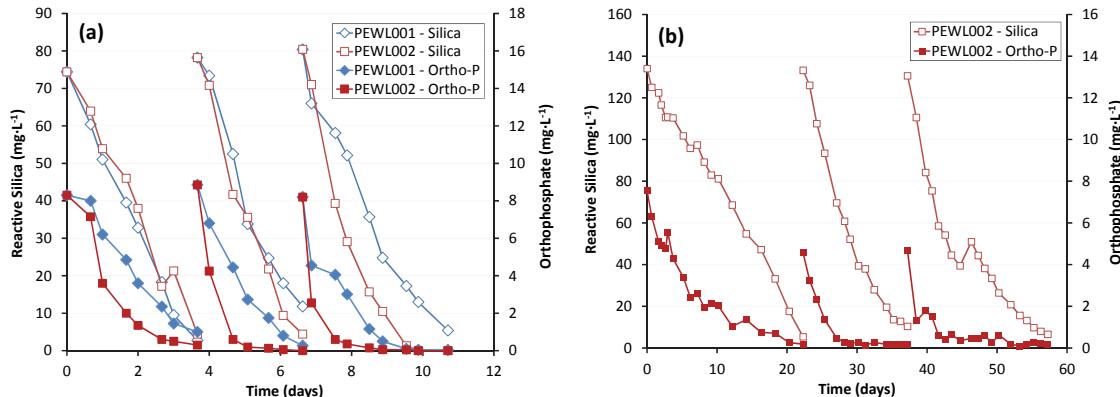
96 **Table 1** Basic water quality of RO concentrate samples collected from three full-scale RO
 97 facilities in Southern California

Parameter	Analytical Method	OCWD GWRS	WRD LVL AWTF [†]	Chino I Desalter
Sodium (mg·L ⁻¹)	HACH ISENA38101	1,167	667	337
Potassium (mg·L ⁻¹)	HACH 8049	171	71	11
Calcium (mg·L ⁻¹)	HACH 8204	456	416	1,264
Magnesium (mg·L ⁻¹)	Calculated	139	99	118
Iron (mg·L ⁻¹)	HACH 8008	<0.02	0.24	0.03
Copper (μg·L ⁻¹)	HACH 8143	<1	4	5
Manganese (mg·L ⁻¹)	HACH 8149	0.396	0.358	0.375
Ammonia-N (mg·L ⁻¹)	HACH 10023/10031	5.2	4.1	<0.02
Boron (mg·L ⁻¹)	EPA 200.7 Rev 4.4	0.9	Not tested	Not tested
Chloride (mg·L ⁻¹)	HACH 8207	1,900	810	760
Sulfate (mg·L ⁻¹)	HACH 8051	980	800	570
Bicarbonate (mg·L ⁻¹)	HACH 8203	1,077	1,318	1,732
Nitrate-N (mg·L ⁻¹)	HACH 10206	25	23	248
Reactive silica (mg·L ⁻¹)	HACH 8185	133	78	146
Orthophosphate (mg·L ⁻¹)	HACH 8048	5.6	8.5	1.04
Total dissolved solids (mg·L ⁻¹)	Oakton TDSTestr2	6,690	3,880	4,260
Turbidity (NTU)	EPA 180.1	1.16	2.07	0.623
Total hardness (mg·L ⁻¹ as CaCO ₃)	HACH 8213	1,720	1,453	3,650
Alkalinity (mg·L ⁻¹ as CaCO ₃)	HACH 8203	883	1,080	1,420
Total chemical oxygen demand (mg·L ⁻¹)	HACH 8000	245	154	129
Dissolved chemical oxygen demand (mg·L ⁻¹) [*]	HACH 8000	217	104	53
Temperature (°C)	Oakton TDSTestr2	20.2	Not tested	30.6
pH	Oakton pHTestr 2	7.98	8.2	7.3
Color at 455 nm (PtCo unit)	HACH 8025	271	96	7

98 **Note:** *Filtered through 0.2 μm membrane filter, [†]This sample was collected before the recent facility expansion, which
 99 involved the addition of third stage RO and completed in 2014.

100

101 A series of RO concentrate treatment experiments were conducted in a bench-scale semi-
 102 batch mode using 500-mL polyethylene terephthalate (PETE) bottles (Φ = 65 mm) and VWR
 103 SuperClear 50-mL polypropylene centrifuge tubes with screw caps (Φ = 29 mm, VWR
 104 International, USA). These containers were placed in an illuminating reflective incubator with
 105 9-W light-emitting diode (LED) bulbs (light temperature 5000 K, 800 lm each; Cree, Inc.,
 106 Durham, NC, USA). The LED bulbs emitted visible light radiation ranging from 400 to 750
 107 nm with a sharp peak at 450 nm and a broader peak at 550 nm. The relative radiant power
 108 was two times higher at the former peak than at the latter one. The photosynthetically active
 109 radiation was measured as 1.6 μE·s⁻¹·m⁻² using an International Light Technologies ILT 1400
 110 Portable radiometer with an attenuated PAR sensor (Peabody, MA, USA). The incubation
 111 temperature was at 25±2 °C. Prior to the diatom inoculation, RO concentrate samples were
 112 filtered through 0.2-μm membrane filters. No chloramine residual was detected in the RO
 113 concentrate samples at the time of the treatment experiment. Pre-cultured diatom suspension
 114 (500 μL or 5 mL, respectively) was added to the 50- or 500-mL containers to initiate the
 115 photobiological treatment. The seed culture was pre-grown in the GWRS ROC or Guillard's
 116 F/2 medium as described above. The initial biomass concentration in each container was
 117 about 0.15 g dry weight L⁻¹. Aliquots of samples were withdrawn periodically from the
 118 containers to measure color, reactive silica and orthophosphate concentrations during the
 119 treatment. Once reactive silica concentration was reduced below 1 mg·L⁻¹, supernatant was
 120 removed from the containers by decantation while a majority of algal biomass was kept in the


121 container. Fresh RO concentrate was added to the container for another semi-batch cycle.
 122 The supernatant was further analyzed for water quality. At the end of the last cycle of semi-
 123 batch experiment, the dry weight of biomass was determined using the method described
 124 earlier (Ikehata *et al.*, 2017). In the case of brackish groundwater RO concentrate treatment,
 125 sodium phosphate monobasic (ACS reagent; Sigma-Aldrich, St. Louis, MO) or F/2 medium
 126 concentrate (no silica, F/2 Algae Food; Fritz Aquatics, Mesquite, TX) was added to adjust the
 127 initial orthophosphate concentration.

128

129 Results and Discussion

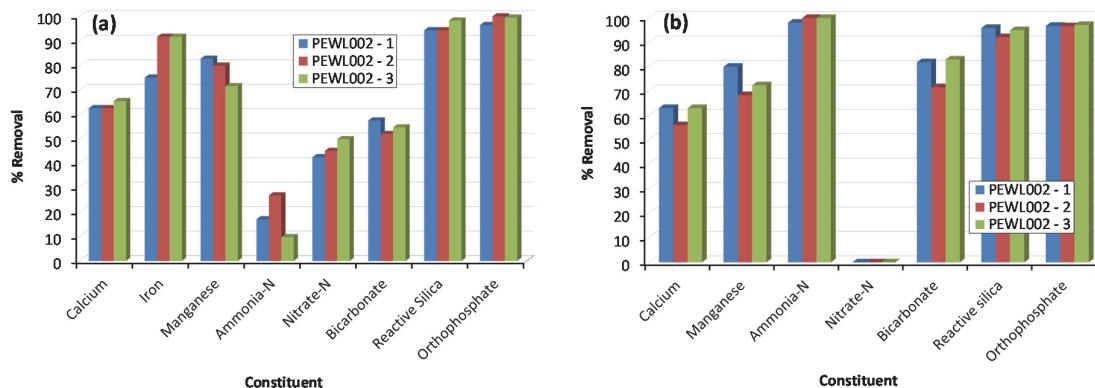
130 As shown in Figure 2 the photobiological treatment using isolated diatoms was very effective
 131 in removing reactive silica and orthophosphate from RO concentrate samples obtained from
 132 two full-scale advanced water purification facilities, namely LVL AWTF and GWRS. Three
 133 semi-batch cycles were successfully performed in both cases, although the silica removal was
 134 apparently faster in the former RO concentrate sample (up to $35 \text{ mg L}^{-1} \cdot \text{day}^{-1}$) than the latter
 135 (up to $8 \text{ mg L}^{-1} \cdot \text{day}^{-1}$). The diatom growth and silica uptake might be inhibited by certain
 136 dissolved inorganic constituents, such as ammonia (Natarajan, 1970; Azov and Goldman,
 137 1982) and copper (Florence and Stauber, 1986), as well as organics such as herbicides
 138 (Debenest *et al.*, 2009). In addition, the color of the latter RO concentrate sample was almost
 139 three times higher than the former sample (Table 1) and might have reduced the light available
 140 for photosynthesis. The rate of silica removal by the purified *N. communis* PEWL002 from
 141 GWRS RO concentrate was similar to that observed during the RO concentrate treatment using
 142 a mixed diatom culture (Ikehata *et al.*, 2017). The silica removal accelerated in the second and
 143 third cycles, which implies that the diatom biomass concentration is an important factor. At
 144 the end of the third cycle, the biomass concentration was $2.1 \text{ g dry weight L}^{-1}$.

145

146

147 **Figure 2** Removal of reactive silica and orthophosphate from (a) LVL AWTF and (b) GWRS
 148 RO concentrate samples by the photobiological treatment using *P. trainorii* PEWL001 and *N.*
 149 *communis* PEWL002

150

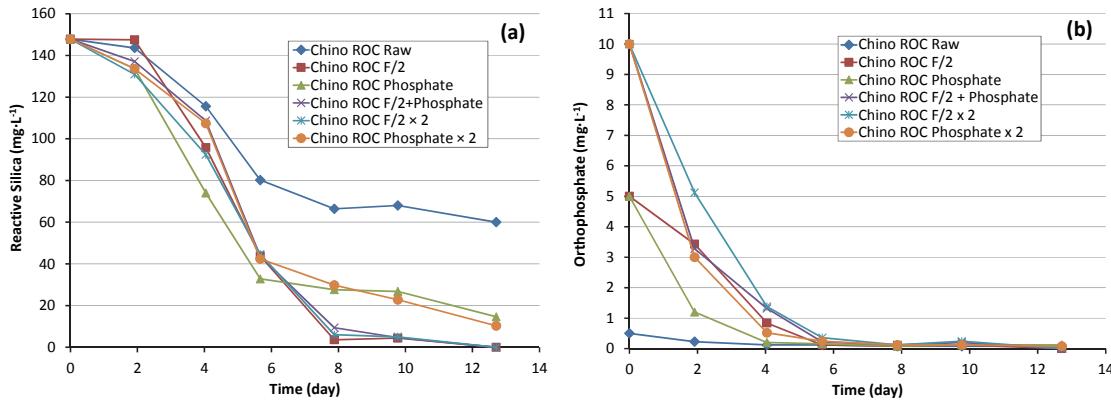

151 The rates of silica removal by two diatom species were almost identical in LVL AWTF RO
 152 concentrate in the first and second cycles. However, the silica removal by *P. trainorii*
 153 PEWL001 slowed down significantly in the third cycle, likely due to contamination by green
 154 algal cells (Ikehata *et al.*, 2017). No contamination was observed during the LVL AWTF RO
 155 concentrate treatment with *N. communis* PEWL002, whereas a very similar contamination
 156 issue occurred in the case of the GWRS RO concentrate treatment with *P. trainorii* PEWL001,

157 which implied that further purification of the latter diatom strain would be required. At the end
158 of the third cycle, the biomass concentrations of *P. trainorii* PEWL001 and *N. communis*
159 PEWL002 were 0.61 and 1.5 g dry weight L⁻¹, respectively.

160 Figure 3 shows the removal of nutrients and RO scaling constituents by the photobiological
161 treatment of LVL AWTF and GWRS RO concentrate samples using *N. communis* PEWL002.
162 A similar result was obtained with *P. trainorii* PEWL001 (data not shown). A majority (>70%)
163 of iron and manganese were removed by the photobiological treatment. In addition, two other
164 major RO scaling factors, calcium and bicarbonate, were removed by more than 60%. The
165 precipitation of calcium carbonate as calcite or aragonite was speculated (Borowitzka, 1987).

166 In those RO concentrates from the advanced water reclamation facilities, phosphorus was
167 apparently the limiting nutrient. While ammonia was the preferred nitrogen source and was
168 completely removed in the case of GWRS RO concentrate treatment (Figure 3b), both nitrate
169 and ammonia were consumed simultaneously in the case of LVL AWTF RO concentrate
170 treatment (Figure 3a). The reason for this difference is unclear because these RO concentrate
171 samples contained fairly similar levels of phosphorus and nitrogen compounds (Table 1).
172 Additional experiments are currently being conducted to explore this issue.

173

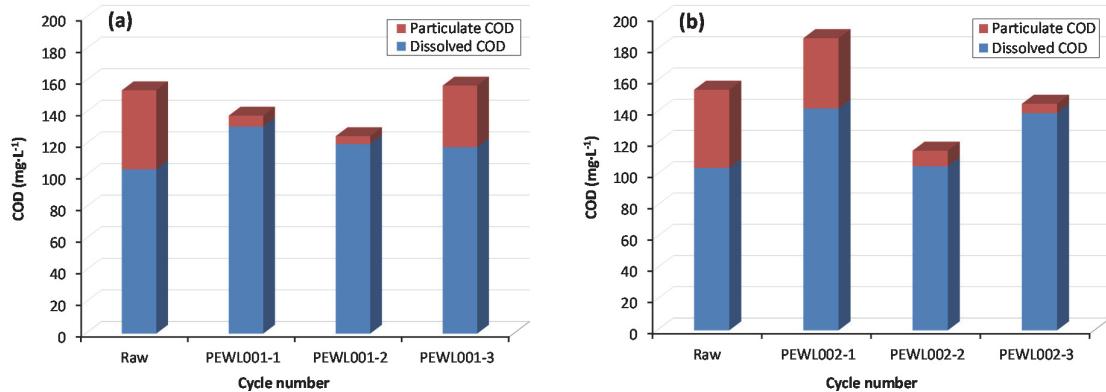

174

175 **Figure 3** Removal of nutrients and scaling constituents from (a) LVL AWTF and (b) GWRS
176 RO concentrate samples by the photobiological treatment using *N. communis* PEWL002

177

178 In addition to the RO concentrate samples from the two advanced water reclamation
179 facilities, another sample from Chino I Desalter, which is a brackish groundwater desalination
180 facility, was treated by the photobiological treatment. It was found that phosphorus in the RO
181 concentrate sample was not enough (1.0 mg·L⁻¹ as orthophosphate) to complete the silica
182 removal (Figure 4; blue diamonds). Therefore, phosphate was added as sodium phosphate or
183 F/2 medium component. It was found that 5 mg·L⁻¹ of orthophosphate was enough to
184 completely remove 146 mg·L⁻¹ of silica. The silica removal rate was 18 mg·L⁻¹·day⁻¹, although
185 it accelerated in the second and third cycles (data not shown). Also, pure sodium phosphate
186 was less effective than F/2 medium to facilitate silica removal (Figure 4). Trace minerals
187 and/or vitamins in the F/2 medium (Guillard, 1975) might have enhanced the diatom growth
188 and silica uptake.

189

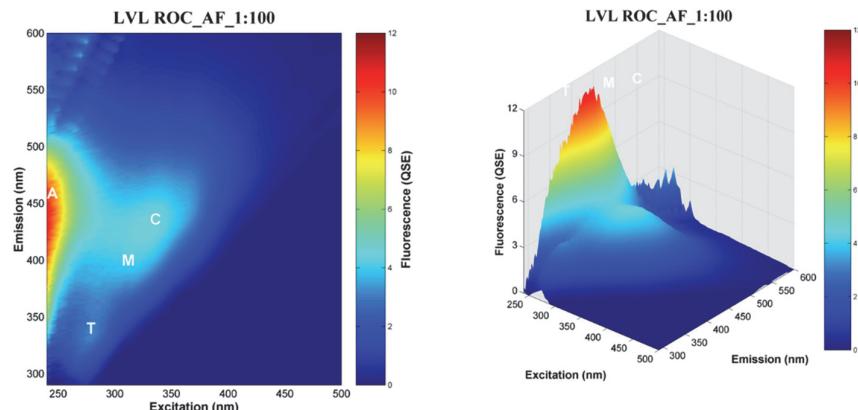

190
191 **Figure 4** Removal of reactive silica from Chino I Desalter RO concentrate sample by the
192 photobiological treatment using *P. trainorii* PEWL001: (a) reactive silica removal, and (b)
193 orthophosphate uptake

194

195 Since the goal of this photobiological RO concentrate treatment is to enable the secondary
196 RO without fouling and scaling, it is very important to characterize the organic matter after the
197 photobiological treatment. Besides, it is well known that phytoplankton, including diatoms,
198 excrete dissolved and particulate organic matter (Bjørnisen, 1988; Biddanda and Benner, 1997)
199 and that seawater RO desalination is often affected by harmful algal brooms and organic
200 particulate matter called transparent exopolymer particles associated with them (Caron *et al.*,
201 2010; Villacorte *et al.*, 2013). The preliminary analysis appeared to be very encouraging.

202 After the photobiological treatment of LVL AWTF RO concentrate sample using brackish
203 water diatoms *P. trainorii* PEWL001 and *N. communis* PEWL002, filtered color (not shown),
204 UV absorbance at 254 nm (not shown), and chemical oxidation demand (COD; Figure 5) were
205 not significantly increased. A similar result was obtained when GWRS RO concentrate was
206 treated in the same way.

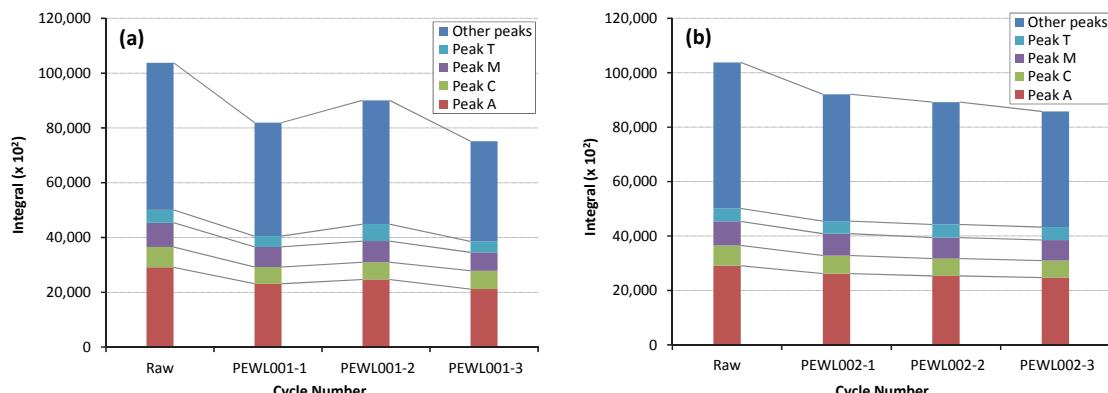
207


208
209 **Figure 5** Changes in dissolved and particulate chemical oxygen demand (COD) before and
210 after the photobiological treatment of LVL AWTF RO concentrate sample using (a) *P. trainorii*
211 PEWL001, and (b) *N. communis* PEWL002

212

213 Preliminary analysis of DOM was attempted using the fluorescence spectrometry. As
214 shown in Figure 6, the strong fluorescence peak due to UV humic-like component (A peak), as

215 well as weaker peaks due to visible humic-like component (C peak), marine humic-like
 216 component (M peak), and protein-like component (T peak), was present the excitation-
 217 emission matrix (EEM) of raw (untreated) LVL AWTF RO concentrate sample, which is
 218 similar to that of raw GWRS RO concentrate sample (not shown), as well as the reported EEM
 219 of RO concentrate from another RO facility (Bagastyo *et al.*, 2011). The appearance of EEM
 220 of photobiologically treated LVL AWTF RO concentrate was very similar to that of untreated
 221 ROC even after three semi-batch cycles (Figure 2a). The peak integrals and fluorescence were
 222 compared before and after the treatment as shown in Figure 7. Overall peak integral was
 223 decreased by the photobiological treatment using both *P. trainorii* PEWL001 and *N. communis*
 224 PEWL002. Peak A intensity decreased significantly (about 21%), especially with *P. trainorii*,
 225 indicating the humic-like component was degraded by the photobiological treatment. While
 226 the intensities of Peaks C and M were also slightly decreased (14% of Peak C, 18% of Peak M
 227 in the case of the treatment with *P. trainorii*), the intensity of Peak T did not change
 228 significantly in the RO concentrate samples after the photobiological treatment with the both
 229 diatom species. More detailed analysis of DOM with EEM and size exclusion chromatography
 230 is currently underway. The impact of the photobiological treatment on trace organic
 231 compounds, such as pharmaceuticals and personal care products, and disinfection byproducts,
 232 in the RO concentrate samples is also being investigated.


233

234

235 **Figure 6** Excitation-emission matrix (EEM) spectra of untreated LVL AWTF RO concentrate
 236 sample

237

238

239 **Figure 7** Impact of the photobiological treatment on the LVL AWTF RO concentrate EEM

240 peak integrals: (a) *P. trainorii* PEWL001, and (b) *N. communis* PEWL002

241

242 **Conclusions**

243 Three RO concentrate samples from three full-scale RO facilities in Southern California have
244 been successfully treated by the photobiological treatment using isolated brackish water
245 diatoms, *P. trainorii* PEWL001 and *N. communis* PEWL002, in laboratory-scale photo-
246 bioreactors. The photobiological treatment could be performed at least three cycles in a semi-
247 batch mode. The rate of silica removal varied in the different RO concentrate samples, which
248 indicated the presence of some inhibitory components in certain samples. Nutrient addition
249 was not needed when the RO concentrate samples from advanced water treatment facilities
250 (LVL AWTF and GWR) were treated. However, the brackish groundwater RO concentrate
251 tested in this study (Chino I Desalter) did not contain enough phosphorus to complete silica
252 removal and required its supplementation. In addition to silica, orthophosphate, calcium, iron,
253 manganese, bicarbonate, ammonia, and nitrate were effectively removed by the
254 photobiological treatment. Since many of them are responsible for RO scaling, there is a
255 potential to use this technology as a pretreatment of RO concentrate from the primary RO to
256 make the secondary RO more feasible, cost effective and environmentally friendly.
257 Preliminary analysis of DOM showed no significant increase in organic matter that could cause
258 RO membrane fouling.

259

260 **Acknowledgements**

261 The authors would like to thank Dr. Kenneth P. Ishida, Mr. Donald W. Phipps, Dr. Jana Safarik, and Dr.
262 Megan H. Plumlee from OCWD, Fountain Valley, CA, Dr. Cathy Chang, Dr. Paul Fu, and Mr. Howard
263 Salamanca from WRD, Lakewood, CA, and Dr. Jeff Noelte, Mr. Brian Noh, and Ms. Joanne Chan from
264 IEUA for providing RO concentrate samples and valuable information and suggestions. Assistance of Dr.
265 Eduardo Morales from Herbario Criptogámico, Universidad Católica Boliviana San Pablo, Cochabamba,
266 Bolivia with diatom identification is also gratefully acknowledged. The authors would also like to thank Dr.
267 Barbara A. Cottrell from the University of California, Irvine for her help on UV-Vis and EEM analysis.
268 Assistance of Ms. Yuan (Abby) Li, Dr. Harshad V. Kulkarni, and Ms. Susie Harris from Pacific Advanced
269 Civil Engineering, Inc., Fountain Valley, CA is also gratefully acknowledged. This work was financially
270 supported by the National Science Foundation under the Small Business Innovation Research Program
271 (Award #: 1648495, PI: KI).

272

273 **References**

- 274 Andersen, R. A. and Kawachi, M. (2005) Traditional microalgae isolation techniques. In *Algal Culturing*
275 *Techniques*, Elsevier Academic Press, Burlington, MA, pp. 83-100.
276 Asano T., Burton F. L., Leverenz H. L., Tsuchihashi R. and Tchobanoglous G. (2007) *Water Reuse: Issues,*
277 *Technologies, and Applications*, McGraw-Hill, NY, pp. 487-492.
278 Azov Y. and Goldman J. C. (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. *Applied*
279 *and Environmental Microbiology*, **43**(4), 735-739.
280 Bagastyo A. Y., Keller J., Poussade Y. and Batstone D. J. (2011) Characterisation and removal of recalcitrants in
281 reverse osmosis concentrates from water reclamation plants. *Water Research*, **45**(7), 2415-2427.
282 Biddanda B. and Benner R. (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate
283 and dissolved organic matter by marine phytoplankton. *Limnology and Oceanography*, **42**(3), 506-518.
284 Bjørnisen P. K. (1988) Phytoplankton exudation of organic matter: Why do healthy cells do it? *Limnology and*
285 *Oceanography*, **33**(1), 151-154.
286 Borowitzka M. A. (1987) Calcification in algae: Mechanisms and the role of metabolism. *CRC Critical Review*
287 *in Plant Science*, **6**(1), 1-45. doi:10.1080/07352688709382246
288 Caron D. A., Garneau M. E., Seubert E., Howard M. D. A., Darjany L., Schnetzer A., Cetinić I., Filteau G., Lauri
289 P., Jones B. and Trussell S. (2010) Harmful algae and their potential impacts on desalination operations off

- 290 southern California, *Water Research*, **44**(2), 385-416.
- 291 Debenest T., Pinelli E., Coste M., Silvestre J., Mazzella N., Madigou C. and Delmas F. (2009) Sensitivity of
292 freshwater periphytic diatoms to agricultural herbicides. *Aquatic Toxicology*, **93**(1), 11-17.
- 293 Florence T. M. and Stauber J. L. (1986) Toxicity of copper complexes to the marine diatom *Nitzschia closterium*.
294 *Aquatic Toxicology*, **8**(1), 11-26.
- 295 Greenlee L. F., Lawler D. F., Freeman B. D., Marrot B. and Moulin P. (2009) Reverse osmosis desalination:
296 Water sources, technology, and today's challenges. *Water Research*, **43**(9), 2317-2348.
- 297 Guillard R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: *Culture of Marine*
298 *Invertebrate Animals*, W. L. Smith and M. H. Chanley (eds.), Plenum Press, New York, USA, pp 26-60.
- 299 Ikehata K., Zhao Y., Maleky N., Komor A. T. and Anderson M. A. (2017). Aqueous silica removal from
300 agricultural drainage water and reverse osmosis concentrate by brackish water diatoms in semi-batch
301 photobioreactors. *Journal of Applied Phycology*, **29**(1), 223-233.
- 302 Natarajan K. V. (1970) Toxicity of ammonia to marine diatoms. *Journal Water Pollution Control Federation*,
303 **42**(5), R184-R190.
- 304 Pérez-González A., Urtiaga A. M., Ibáñez R. and Ortiz I. (2012) State of the art and review on the treatment
305 technologies of water reverse osmosis concentrates. *Water Research*, **46**(2), 267-283.
- 306 Villacorte L. O., Ekowati Y., Winters H., Amy G. L., Schippers J. C., and Kennedy M. D. (2013) Characterisation
307 of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective.
308 *Desalination and Water Treatment*, **51**(4-6), 1021-1033.