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Data Age Error Compensation for
Nonconstant Velocity Metrology

Chen Wang, Graduate Student Member, IEEE, and Jonathan D. Ellis, Member, IEEE

Abstract—Positioning calibration under dynamic conditions is
becoming increasingly of interest for high precision fields, such as
semiconductor lithography and additive manufacturing. Because
heterodyne interferometry has high dynamic range and direct
traceability to the meter, it is widely used in stage position
calibration. When processing measurement and reference signals
of heterodyne interferometry, the signal processing algorithm
and optical receiver introduce time delay and phase shift to the
measurement data, which leads the measurement data cannot
precisely represent the current position of the stage. That error
is called data age error and depends on the velocity of the
stage, which will become significant when stage’s velocity is
nonconstant in dynamic calibrations. This paper presents a
comprehensive data age error model and a compensation method
by tracking the derivatives of the phase and solving for the data
age error in a field programmable gate array (FPGA) in real
time. The FPGA hardware-in-the-loop simulation shows that this
method can significantly decrease the displacement error from
+600 to +£0.8 nm (fixed delay time) in dynamic cases, and it will
still keep subnanometer resolution for quasi-static calibrations.

Index Terms—Data age, displacement measurement, error
compensation, field programmable gate arrays (FPGAs),
interferometry, phase measurement.

I. INTRODUCTION

ISPLACEMENT measuring interferometry is an optical

dimensional metrology technique, which has high
bandwidth, high dynamic range, and direct traceability to
meter [1]. It is widely used displacement metrology, position
control, position sensor calibration, and stage calibration.
A typical stage calibration usually occurs when the stage
is held statically, and then measures a series of discrete
positions, or the stage moves slowly in a quasi-static
configuration. This calibration processing only measures the
static performance and the position accuracy of the stage,
but independently of the dynamic performance of the stage.
However, the quasi-static motion profiles often do not reflect
the ultimate intended use of the stage.
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In practice, the intended use of many stages is traveling
repetitively along a preprogrammed path with rapidly changed
velocity. Hence, its dynamic performance and position accu-
racy must be well known. However, existing machine tool stan-
dards [2]-[4] only define explicit procedures for quasi-static
calibrations. Recently, there is an initiative to establish a stan-
dard for performing dynamic stage calibrations to complement
existing standards for quasi-static calibrations [5], [6]. In this
paper, we investigate how the signal processing for heterodyne
interferometry systems is affected by the nonconstant velocity
profiles found when dynamically measuring the position of a
stage.

Interferometer architectures can vary depending on the
desired target geometry and intended application [7]. In this
paper, our study is based on the heterodyne interferometer,
whose metrology principle is: the target position changes
are recorded as a Doppler frequency shift in the optical
frequency, which manifests as a measured phase change.
The target displacement is determined by the measured
phase change

A
X = 4
2 Nn

where x is the displacement of the target, ¢ is the phase
difference between the reference and measurement signals,
N is the interferometer fold factor (two for the interferometer
used in this paper), n is the refractive index along the optical
path difference, and A is the nominal wavelength of the
laser light.

The timeliness of the measurement data is important for
some measurement, calibration, and control applications. The
measurement data are expected to be available right after
the measurement occurs; thus, the data can precisely rep-
resent the current position and motion status of the target.
Since the displacement information measured by heterodyne
interferometry is encoded in the phase difference between
two laser beams (1), to extract the displacement information,
an electrical phase measurement instrument is used, which
is also called phasemeter (see Fig. 1) [8], [9]. However,
the analog and digital devices, and the signal processing
algorithm introduce inevitable phase shift and time delay to
the measurement data. The phase shift and time delay impact
the timeliness of the measurement data.

The data age error is the measurement error due to the time
difference between the occurrence of a measurement and the
time when the measured data are available to the user [10].
Fig. 2 shows the comparison between actual displacement and
measured displacement. In terms of time, it is a time delay

ey

0018-9456 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2602

O 1a H uer
®—| TiAx4 f={HPFx4
Meas.
Analog processing
Fig. 1.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 65, NO. 11, NOVEMBER 2016

1 Error , 1
ACompensation!
r

=>¢

|1 Error . 1
1Compensationl

Digital processing

Schematic of the heterodyne interferometry phase measurement system. It consists of two parts, an analog processing part and a digital processing

part. The analog processing system employs photodiodes, amplifiers, and filter, to process the analog signal, and improve the quality of the signal. The digital
processing system used an SBDFT technique to demodulate phase difference and was implemented in an FPGA in this design [8], [9].

A

Fig. 2. Comparison between the actual displacement (blue curve) and
the measured displacement (red curve) of a sinusoidal motion. Due to the
transmission and processing, there is a time delay between the measured
displacement and the actual displacement, which will be a measurement error
(green curve).

between two signals, but in terms of phase (displacement),
it is a measurement error. It should be noted that this error
is not limited to interferometry as linescales would exhibit
a similar behavior as a function of velocity for their phase
measurements as well.

There has been limited reporting of the data age error in
the literature for displacement (phase) measurement. Some
literature has discussed the inaccuracies of the phase mea-
surement [11], [12], and presented a similar concept to data
age error, but none provide methods for compensating this
error. Djokic and So [13] also found that the phase shift
(one source of data age error) introduced by filters will
influence the phase measurement, but they state that it does
not cause appreciable change. However, in dynamic, precise,
and high-frequency measurements, more applications find that
the timeliness of the measurement determines the accuracy,
such as in satellite navigation systems [14] and displacement
measuring interferometry [1], [9], [15], [16]. For displacement
measuring interferometry, this error and potential compen-
sation methods have only been discussed in the context of
constant velocity [1], [16]-[20].

In this paper, we investigate the sources of data age error,
model the effects of this error, and propose methods for
compensating it for heterodyne interferometry applications,
especially for nonconstant velocity motion measurements.
We present compensation methods for both fixed and
variable delay, and discuss the limitation of each method and
perform simulations to validate the proposed methods.

II. HETERODYNE INTERFEROMETRY SIGNAL PROCESSING

The displacement of the target can be determined by mea-
suring the phase difference between two optical signals, one,
a nominally fixed optical reference signal, and two, an optical
signal with the displacement encoded as continuous changes
in phase from a Doppler shifting target. For heterodyne
systems, these signals essentially amount to an instantaneous
frequency modulation between the reference and measurement
signals. To obtain the phase difference, the two optical signals
are detected and converted to voltage level representations
of interference amplitude, typically called the measurement
signal and reference signal

U () = Up cosQr fst + ¢m) + Udc + tnoise (2)
and
ur(t) = Uy cos 2r fst + ¢r) + tdc + Unoise (3)

where Uy, and U, are the amplitudes of the measurement and
reference signals, f; is the nominal heterodyne frequency of
the laser source, ¢, and ¢, are the phases of the two signals,
and ugc and upoise are the dc offset and noise, which may differ
in the two signals. The photodiodes and transimpedance ampli-
fiers (see Fig. 1) are for the detection and conversion work,
and then high-pass filter, inverting amplifier, and low-pass
filter (LPF) attenuate the high-frequency noise u#poise, scale the
amplitudes u,,, u,, and remove dc offsets uqc, respectively.
After performing the analog processing, analog-to-digital
converters convert the treated measurement and reference
signals to digital representations for further digital process-
ing. The general phase measurement techniques are a phase-
locked loop, time interval analysis, and single-bin discrete
Fourier transform (SBDFT) [7], [8], [21]. In this paper, the
SBDFT algorithm is used, whose schematic is shown as the
digital processing part of Fig. 1. Voltage controlled oscilla-
tors (VCOs) are used to generate a pair of in-phase u, ; and
quadrature u, 4 signals nominally at a frequency of fs

Uy,i(t) = cosx fst + ¢y) 4

and

Uy (1) = SInQ7 fil + ). (5)
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Then, the in-phase and quadrature signals are multiplied by
the digital measurement signal (2) and reference signal (3)
(without the dc offset and noise), respectively. Based on the
trigonometric product-to-sum identity, the products equal to a
sum of one high-frequency (4z f;) component and one low-
frequency or quasi-dc (¢, — ¢») component.

The following LPFs block the high-frequency terms. Thus,
the products for the measurement signal can be simplified as

$v) (6)

1
Umi = 7 cos(¢m —

and

$v). (N

An arctangent operation is then used to determine the phase
difference between the measurement signal and the VCO
signals ¢, — ¢,. A similar process also computes ¢, — ¢, for
reference signal.

In the end, a subtraction operation is applied to extract the
difference between two output phases. The common phases
from the VCO signals are canceled, resulting in the desired
phase difference ¢, — ¢, between the measurement and
reference signals.

L.
Um,q = ) sin(¢m —

III. DATA AGE ERROR

Typically, there are two sources that can lead data age error.
One is the time delay, which is introduced by signal processing
time, path length [1], and usually is fixed. Another is the
phase shift introduced by analog and digital devices. They
add an extra phase to the passing signal, depending on the
instantaneous frequency of the signal [9].

A. Time Delay

1) Signal Processing Time: To extract the phase differ-
ence between measurement and reference signals, a series of
operations must be performed [8], [9], e.g., multiplication,
arctangent, and unwrap. Executing these operations costs time,
so the result cannot be available immediately. It leads a time
delay between input data and corresponding output data [18].

For instance, if using a digital signal processor to process
the input signals, the filters are usually implemented as loops,
which may take tens or hundreds of clock cycles to execute.
If using a field programmable gate array (FPGA), it has good
parallelism and dedicated hardware for each operation, but still
needs several clock cycles to execute complex operations. In
our design, the atan2 operation needs six clock cycles and the
unwrap operation needs two clock cycles to generate output.

Once the signal processing algorithm is determined, the
number of clock cycles is usually fixed. The signal process-
ing time cannot be eliminated, but there are some ways to
shorten it. For example, by increasing the clock frequency,
the entire execution time could decrease, or using a more
compact design to reduce the number of clock cycles. One can
even shift the data back by off-line processing, if the data are
headed for recording purposes. However, for online, real-time
processing, the processing time delay cannot be eliminated
completely.
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2) Path Lengths: Parallel signals should be processed simul-
taneously, or experience the same time delay. For instance,
the spatial angle measurement can be a further processing of
multiaxis displacement measurements. To achieve high angle
measurement accuracy, the different data age errors among
multiaxis measurements should be equalizd [1]. Similarly,
in differential wavefront sensing [22]-[25], the four signals
from quadrant photodiode are also required to have the same
delay.

Due to the design and configuration, the signals may not
pass the same length path, such as different electrical cables,
the path on printed circuit board [15], and even fiber optic
cable length [26], which leads the signals to experience dif-
ferent delays [17]. The unequal delays introduce errors when
a value is produced by those signals together.

3) Time Delay Model: Assuming the time delay between
the input signal and the corresponding output signal is z, the
relationship between actual phase ¢ and measured phase ¢4
with delay is

Pa(t) = Pp(t — 7). ®)

B. Phase Shift

The electrical devices, such as filters, amplifiers, and pho-
todiodes, treat (attenuate, amplify, or convert) the signal with
respect to their frequency. Besides manipulating the amplitude
of the signals, it also adds a phase shift to the passing signal.
The relationship between the phase of the output and input
signals is the phase response, which is usually varied with
changing frequency.

1) Digital Filters: Digital filters are used to remove high-
frequency components for demodulating phase difference
between measurement and reference signals [8]. When the
desired signal passes through the filters, the filters add a phase
shift to the output signal with respect to their phase response.
This phase shift causes the phase measurement inaccuracy in
dynamic conditions [9].

Two types of digital filters are commonly used in the
phase demodulation, finite impulse response (FIR), and infinite
impulse response (IIR) filters. FIR has a linear phase response,
but a nonflat passband, and costs more hardware resources for
FPGAs. TIR has a nonlinear phase response, but a flat pass-
band, and is straightforward for design. The phase responses
of an FIR and IIR filter are shown in Fig. 3.

The phase shift can be regarded as a type of time delay.
The linear phase response leads constant or fixed time delay,
and the nonlinear phase response leads nonconstant or variable
time delay. They need different compensation strategies, which
will be illustrated in Section IV.

To eliminate the phase shift, a zero-phase response is
expected, which means the phase of the signal does not change
when passing the device. However, the zero-phase filter is a
noncausal system, whose current output depends on the future
input. It is impossible for it to process the streaming data in
real time.

2) Optical Receiver: The optical receiver is the analog part
of the phasemeter, which consists of photodiodes, amplifiers,
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Fig. 3. Phase responses of (a) FIR and (b) IIR. The cutoff frequency of

both the filters is 5 MHz. The FIR filter is 17 tap, and IIR filter is the fourth
order. The phase response of FIR is linear in the passband, while that of IIR
is nonlinear. However, FIR introduces more phase shift than IIR at the same
frequency.
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Fig. 4. Phase response of an optical receiver. The optical receiver is designed
as a part of our phasemeter system (Fig. 1). It uses a quadrant photodiode,
so it has four parallel channels. The phase responses of these four parallel
channels look identical and linear globally, and however, they still have a
small difference and nonlinearity in their working band.

and filters (see Fig. 1) [8], [19]. It converts the optical signal
to an electrical signal via analog signal processing.

Each of those analog devices has its own working frequency
band, and in these bands, the phase responses usually are
nonlinear. The phase response of the optical receiver is the
superposition of those devices, which is nonlinear as well [19].
Fig. 4 shows the phase response of an optical receiver with a
quadrant photodiode.

3) Phase Shift Model: The phase response is the phase shift
with respect to the frequency of signal. When a signal passes
a filter, the output signal has a phase shift compared with the
input signal. This phase shift A¢(w) can cause time delay
(phase delay)

o= — A¢(w), ©)

w

where 4 is the phase delay at frequency e, which represents
the slope of the phase response at frequency w. So the
relationship between actual phase ¢ and measured phase ¢4
can be written as

$a(t) = (1) + Ap = 0t — w1y = Pt — 14)

which has the same expression as (8). However, the phase
delay 4 is not necessarily a constant value, depending on the
linearity of the phase response of devices [1]. The FIR filter
has a linear phase response, so the phase delay introduced by
FIR is a constant value. The IIR filter and analog devices have

(10)
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a nonlinear phase response, so the phase delay is nonconstant
and varied with the frequency.

IV. COMPENSATION ALGORITHM

Several previous studies have investigated the sources of the
data age error, and presented different ways to estimate data
age error from constant [18] and nonconstant [19] time delay.
Their methods assume that the measurement error caused by
time delay is linearly related to the velocity (Doppler fre-
quency, the first derivative of phase). By continuously tracking
the velocity of the target, the displacement measurement error
can be calculated by the multiplication of velocity and time
delay [1], [71, [10]

(1)

where 7 is the equivalent time delay and v is the velocity of
the target. For example, if the measurement system has 1 us
time delay, and the target is moving at 1 m/s, the displacement
measurement error is 1 xm.

To compensate the constant time delay, the time delay 7 is
obtained in advance by calibration or theoretical derivation.
A module tracks the Doppler frequency fp (equivalent to
velocity) by calculating the first derivative of the raw phase
measurement in real time, and then the actual phase ¢ can be
calculated by [1], [15], [18], [20]

¢@) = ¢a(t) — Ap = ¢a(r) + 27 fpr.

To compensate the nonconstant time delay, the time delay
at each Doppler frequency is measured in advance. Since
the time delay is varied with the frequency, the error cannot
be compensated as (12). Usually, it stores a finite number
of time delay z(fp) or phase error A¢(fp) values into
a lookup table (LUT), and uses the instantaneous Doppler
frequency fp as the address to access to corresponding time
delay or phase error [9], [18], [19]. Then, the actual phase can
be calculated by

¢(1) = ¢a(t) — AP(fD).

This method will introduce quantitative error, since LUT
cannot store a phase error for every potential frequency.
An alternative method is using polynomial curve fitting to find
the approximate expression of the phase error A¢(fp) [20],
and then calculate the phase error for instantaneous Doppler
frequency

épaA =TV

(12)

13)

n
$(0) = ga(t) = D pi - o' (14)
i=0
where p; is the coefficient of polynomial fitting. However,
the polynomial calculation uses significantly more hardware
resource.

Those previous studies all focuses on constant velocity
motion, and their methods to compensate the data age error
only work well for constant velocity motion. However, more
and more the nonconstant velocity motion scenarios appear
in measurement, calibration, and control applications. When
measuring a rapidly changed velocity motion, the above mod-
els cannot represent the data age error precisely. For example,
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Fig. 5. Measurement of a sinusoidal motion. (a) Comparison between actual
and measured displacement. The maximum velocity is 158 mm/s (Doppler
frequency 500 kHz), and the oscillating frequency is 1 kHz. There is a very
small time delay between the two signals. (b) Time delay leads a £600 nm
error (blue curve). Using the old method to compensate the error, there is still
+6 nm error left (red curve).

in Fig. 2, the velocity of the sinusoidal motion is nonconstant.
According to (11) and (12), the error should be zero when the
velocity is zero. However, top points (at zero velocity) of blue
and red curves are not overlapping, which means the actual
error is not zero. Fig. 5 gives another example, which shows
the old method cannot completely compensate the data age
error for nonconstant velocity motion.

Since the old method is not effective for nonconstant veloc-
ity motion, we present an upgraded model for the data age
error, and a method to compensate it for all possible motions.
From the simulations, we find that the data age error is related
to not only the velocity of the target, but also the acceleration
and even higher order derivatives of the displacement (phase).
Thus, our proposed method is to add more higher order terms
to represent the data age error.

If we express actual phase in terms of the measured phase
and its Taylor expansion, the actual phase is given by

s (n)
) =4+ 0 =g+ > "D )

n=1

where n! denotes the factorial of n and ¢,™(¢) is the nth
derivative of measured phase ¢,4. The first derivative is
velocity; the second derivative is acceleration. Compared
with (15), we can find that (12) is a simplified version of (15).
Since (15) includes more terms related to the status of motion,
it is more comprehensive to represent data age error for any
motions.

In this paper, we present a comprehensive model for
compensating the data age error for nonconstant velocity
motion, and implement it and integrate it with our FPGA-based
phasemeter to achieve online and real-time compensation.
It can increase the measurement precision in the dynamic
conditions, and also keep the real-time performance without
adding extra computation time.

V. IMPLEMENTATION

Conceptually, the solution to compensate the data age error
is to subtract the each order of phase error from the measure-
ment result. The procedure of implementing the compensation
of the data age error includes the following steps.
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Fig. 6.  Schematic of the DAEC module. It consists of two parts, the
instantaneous phase derivatives tracking and the error computation part.
First, each order of derivative of the raw phase ¢q is extracted. Then, the

corresponding phase shift errors ¢§ln) (t) " /n! is solved by the instantaneous

derivatives ¢L(1n) (t) and predefined 7. Last, each order of error and the raw
phase sum up to get actual phase ¢ without data age error.

1) Determine the equivalent time delay z of the system
before the measurement.

2) Calculate the first-, second-, or even higher order deriv-
atives of raw phase in real time during measurement.

3) Compute the data age error using equivalent time delay
and phase derivatives in real time.

4) Subtract the error from the raw phase measurement.

The schematic of overall data age compensation
implementation is shown in Fig. 6, which includes an
instantaneous phase derivatives tracking part and an error
computation part. The difference between the current
and previous implementation is that the current one also
calculates the second- or higher order derivatives of the
phase (highlighted), which could represent the motion more
comprehensively. The module processes the raw phases ¢, (1),
and generates compensated phases ¢(f) in real time.

A. Time Delay Determination

1) Theoretical Derivation: The fixed time delay can be
derived through theory. Our signal processing module is imple-
mented in an FPGA. The time delay from signal processing
can be determined by counting the number of registers or
pipelines between input and output. The signal is going to
delay one clock cycle at each register on the signal path. Basic
operations, such as addition and multiplication, can finish
within a clock cycle. Complex operations need multiple clock
cycles to generate the result.

As mentioned before, FIR filters have linear phase response,
so the phase delay (time delay) it introduced is a constant
value. The phase delay can be determined by the equation

N —1
W=y b
where N is the taps or stages the FIR filter has and Fj is the
sampling rate of the system. In this design, we use a 31-tap
FIR filter, so it is going to introduce 15 clock cycles delay.

For some optical and electrical components and devices,
their manuals may provide the time delay through factory
calibration [18].

2) Measurement: In some cases, the time delay cannot be
obtained, or not known by a theoretical derivation. Thus, the
actual delay must be measured.

(16)
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Fig. 7. Experimental setup for measuring the analog system’s phase response.
The input laser is diffracted in the AOM that is amplitude modulated with a
swept sine over the desired frequency range. It assumes the 6-ns response time
of the AOM imparts little delay in the system. This is the setup to measure
the phase response of the optical receiver in Fig. 4.

TABLE I
ERROR CONTRIBUTION AS A FUNCTION OF THE DERIVATIVE ORDER

1% order | 2294 order | 3+ orders
max. [nm] 582.4 6.74 0.09
rms [nm] 411.8 4.76 0.05

For an analog system, the actual performance and phase
profile usually deviates from nominal parameters, which is
caused by variations in components’ tolerances and perfor-
mance, and the capacitive coupling in the board and near-
field. The phase response of the photodiode is not provided
explicitly by the datasheet. So the phase response must be
measured to determine the phase shift.

To measure the phase response of our analog system,
a function generator was used to drive an acousto-optic mod-
ulator (AOM) to modulate the output power of a laser source
and vary the light intensity at the drive frequency. Then, a
lock-in amplifier was used to compare the phase difference
between the input and output signals of the analog processing
system. The experimental setup is shown in Fig. 7 [9].

For a digital IIR filter, its phase response is nonlinear, which
leads a nonconstant time delay. Also, fixed-point coefficients
and operations cause the phase response to be slightly different
from the ideal, floating-point design. Thus, the actual phase
response must be measured to make sure that the compensation
is accurate. The method to measure the phase response of
the digital IIR filters is similar to that of the analog system.
The measurement is performed on a PC, simulated in
MATLAB/Simulink with the Altera DSP Builder toolbox [9].

B. Phase Derivative Calculation

1) Orders: The full expression of (15) consists of an infinite
number of derivatives; however, it is impossible to calculate all
the derivatives. The error contribution of each derivative must
be identified, and balance should be made between simplicity
and accuracy. Table I shows the error contribution of each
order derivative for our extreme test case, which is the same
motion as in Fig. 5. From Table I, the first-order derivative
(velocity) contributes the majority of the data age error; the
contributions of the third and higher orders are negligible.
If requiring subnanometer accuracy, the second-order deriva-
tive (acceleration) must be considered. In our implementation,
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Fig. 8. Implementation of the phase derivatives calculation. Based

on (17) and (18), it calculates the first- and second-order derivatives. The
additional filters are used to attenuate the noise amplified by the derivative
operation. The multiplication with Fy and Fs2 is removed to the error
computation part.

the first two derivatives are calculated, and the rest of the terms
are ignored for simplicity.

2) Implementation: To compensate the phase in real time,
the phase derivatives should be calculated in real time, too.
Here are some restrictions to calculate or estimate the
derivatives [27].

1) The derivatives should be calculated or estimated online

and in real time.

2) The raw phase may contain measurement noises, which
impacts the derivative calculation.

3) The motion of the target (the shape of phase measure-
ment) is unknown and may be arbitrary. The raw phase
is only information can be used.

Our first attempt to calculate the first- and second-order

discrete derivatives is based on a finite difference method

¢d'(n) = (pa(n) — ¢pa(n — 1)) - Fy
¢d"(n) = (pd' (n) — pg'(n — 1)) - Fy

where F, is the sampling rate of the system. This method
is straightforward to understand, and the implementation
(see Fig. 8) can calculate derivatives instantaneously right after
new measurement data are available.

However, it is sensitive to the presence of noise in the signal.
The transfer function of the first derivative is

a7
(18)

H(s)=s. (19)

From the equation, we can know it amplifies the noise,
especially the high-frequency noise. For the second-order
derivative, the signal-to-noise ratio of the result becomes even
worse. Numerically calculating derivatives amplifies the noise,
which may make the result not useful anymore [28].

There have been some methods to estimate the derivative
of the noisy signal in signal processing and system control
applications. The basic idea is smoothing the signal first and
then calculating its derivative. The common methods include
polynomial regression, Tikhonov regularization, smoothing
spline, convolution smoothing, and total variation regular-
ization [29]. These methods either need a large number of
complex operations or depend on future samples (noncausal
systems). So they are impractical to be implemented in an
FPGA for online and real time estimating the derivative.

We choose an algebraic derivative estimation method, which
uses a finite weighted combination of integrations of a noisy
signal to estimate its derivatives for an arbitrarily small amount
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Fig.9. Schematic of the algebraic derivative estimation method. It only shows
the first-order derivative estimation. The second-order derivative estimation is
similar to the first order, and shares components with the first-order derivative.
The variable ¢ is generated by an internal counter.

of time [27]. It claims to have high robustness properties
with regard to influential noises. The principle is introduced
in [27] and [30] in detail. A real-time implementation of this
method is presented in [31].

If using five orders of integration, the first- and second-order
derivatives of raw phase can be estimated as

arbitrary constant 0 <f < ¢

¢d' (1) = 1§ 30¢ (1) (20)
— r>e
t 16
and
arbitrary constant 0<t<e
¢d"(t) = 1 4204(1) 24z 22 (21)
—_— > &
12 76
where ¢ is transient time, and
21 =20 — 450t*4 (1) (22)
22’ = 73 + 2400036 (1) (23)
23’ = 74 — 540012 (1) (24)
7 =175+ 4320t (1) (25)

75 = =7204(1). (26)

The schematic of this method is shown in Fig. 9. Because
the derivative estimations are accurate in only a small amount
of time, there is a strategy to reinitialize the computation
periodically [27].

3) Performance: As mentioned earlier, the noise in the
signal significantly impacts the performance of the derivative
calculation. To investigate the influence of the noise, we add
different power levels of white noise to the input measure-
ment (2) and reference (3) signals, and check the measurement
error. Four different configurations are compared: 1) without
using data age error compensation (w/o DAEC); 2) using the
first method (17) and (18) but without filtering (1st w/o filter);
3) using the first method with filtering (1st w/ filter); and
4) using the second method (20) and (21) (2nd).

Table II shows the rms of the measurement error when
adding white noise to input signals. Here, we are interested
in the error introduced by the input noise, and ignore the data
age error from the time delay (they are different sources).
Without DAEC, after adding 0.2%, 1%, and 5% white noise
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TABLE I

MEASUREMENT ERROR RESULTING FROM DIFFERENT LEVELS
OF RANDOM WHITE NOISE TO MEASUREMENT
AND REFERENCE SIGNALS

Noise | S/N w/ DAEC
w/o DAEC
Level | [dB] 15t w/o filter | 15t w/ filter | 27d
0.2% 54.0 2.38 5259 4.13 3.21
1% 40.0 3.82 869.8 7.08 5.08
5% 26.0 8.80 1.9e+3 17.6 11.3

* The errors are quoted as rms [nm].

A

“§§

Fig. 10. Comparison between the actual displacement (blue curve), the
displacement information provided by the interferometer (red curve), and the
measurement result after processing (green curve).

to the input, the corresponding errors appear in the measure-
ment results, whose rms errors are 2.38, 3.82, and 8.8 nm,
respectively.

However, using a finite difference method to calculate the
derivatives and without filtering (Ist w/o filter) significantly
amplifies the error. A hundred nanometer level error appears in
the measurement result, which significantly worsens the mea-
surement resolution. With proper filtering, the original error
is amplified by a factor of 2. Using the algebraic derivative
estimation method (2nd), the error is slightly amplified by
around 1.3 times, which is better than the first method. The
results show that the performance of the last two methods is
acceptable when calculating the derivative of a noisy signal.

In practice, these noise or errors on input signals are
from upstream optical systems, environmental disturbances,
electrical power supply, and so on They can result in a noisy or
distorted (such as periodic error [7], [32], [33]) measurement
result. The blue curve in Fig. 10 is the displacement what we
want to measure, whereas the red curve includes additional
noise and distortion. Eventually, the measurement result after
processing is the green curve, which has a time delay . The
goal of this paper is to use the green curve to estimate the red
curve precisely (eliminate the time delay), without amplifying
the noise too much. As for the error between blue and red
curves, effort should be made to optimize the quality of the
input signals, which is beyond the scope of this paper but is
readily discussed in the literature.

C. Error Computation

The next step to compensate the data age error is solving the
error terms ¢4’ (t)7 and ¢4” (t)z>. The equivalent time delay z,
and phase derivatives are already known. The error terms
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Error Computation

Error Computation

(@ (b)

Fig. 11. Implementation of the error computation part. (a) Fixed time delay;
it multiplies the derivatives with time delay directly. (b) Variable time delay;
it stores precalculated errors in LUTs, and uses derivatives as the address.

[V Y Y B}
(= S R )
T T T T
L L L 1

Quantitative error [pm]

48 : . ' ' '
600 400 200 0 200 400

Frequency [kHz]

600

Fig. 12. Quantitative error of LUT. The LUT stores the 8192 points of the
first-order error for the Doppler frequency from —780 to 780 kHz, so the
frequency resolution is 95 Hz. The quantitative error is around 50 pm, which
is acceptable for this design. For the lower quantitative error, a larger LUT
volume is expected.

can be solved using (15) directly. However, the equivalent
time delay r actually has two types, fixed time delay 7 and
variable time delay 7 (fp). For each type of the time delay,
we implement an effective solution to compute the error.

For fixed time delay, it is straightforward to multiply the
fixed time delay with the derivative directly. Since the fixed
time delay 7 is known, 72/2 also can be known in advance.
In the measurement, the instantaneous first and second deriv-
atives can be multiplied by those two constants in real time.
The implementation is as shown in Fig. 11(a).

The variable time delay is a function of the derivative of
phase. When the target has nonconstant velocity, the time delay
changes along with the velocity and acceleration. For every
newly calculated derivative, it must find the corresponding
time delay first, and then perform the multiplication to get
the error. Our solution is to build two LUTs, which store
the precalculated first- and second-order error directly, and
uses derivative information as an address to access the errors.
Once derivatives are determined, and errors are determined as
well. By doing this, the additional multipliers are not needed
anymore. The implementation is as shown in Fig. 11(b).

However, a potential problem of using LUT is the quantita-
tive error. LUT can only store a limited number of data, which
means it has to evenly take samples in the whole range. When
the actual derivative is located between two samples, it has
to round to the nearest one, which introduces the quantitative
error. The volume of the LUT determines the interval between
the two samples, and thus determines the quantitative error.
In this implementation, we choose an 8192-sample LUT.
Fig. 12 shows the quantitative error it introduced.
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PC FPGA Error
Matlab/ Correction
Simulink W 122
I
Ethernet I\geeis Phasemeter

Fig. 13. Setup of HIL simulation. On PC side, stimulus is generated by
MATLAB/Simulink, and transmitted to FPGA by Ethernet. On FPGA side,
the stimulus is processed by the phasemeter and error correction module, and
the result is transmitted back to PC for further processing and analysis.

VI. VERIFICATION

To determine the functionality and performance of this
DAEC module, a series of verifications were performed.
A technique called FPGA hardware-in-the-loop (HIL) was
used to verify the functionality and performance of the
FPGA design.

Traditional software simulations for FPGA digital signal
processing algorithms have a long simulation runtime, and
application-specific availability and accuracy. Because the
software cannot fully imitate the conditions and environment
of the real world, the results may not reflect its real perfor-
mance in hardware. Unlike software simulation, HIL simula-
tion allows data to be processed in real time by the FPGA
hardware rather than by the software. The stimulus data are
generated by MATLAB/Simulink, which could be arbitrary
or customized, and fed to the FPGA, and then the FPGA
computational results are collected by the MATLAB/Simulink
for further analysis and display. This approach accelerates
simulation time, and also ensures that the algorithm will
behave as expected in the real world [34]. The setup of this
simulation is shown in Fig. 13.

In the simulations, only the data age error from the digital
system is compensated, because the digital system is easy to
perform the HIL simulation and its delay time information is
easy to obtain. Once the time delay information from other
source is determined, it can easily replace or update the
predefined time delay in the compensation module.

In this paper, it verifies the overall performance of deriva-
tives tracking and error computation for fixed delay time and
variable delay time.

A. Fixed Delay Time

The filters in phase demodulation are implemented as FIR
filters, which have linear phase response; thus the phase delay
introduced by the filter is fixed. And the digital system has
fixed processing time, so the total equivalent time delay is
fixed. Several simulations are performed to verify the perfor-
mance of compensating this fixed time delay. In this design,
37-tap FIR filters and eight-stage cascaded integrator-comb
filters are employed, whose cutoff frequency is about 750 kHz.
The overall time delay of the system is 3.68 us.

1) Static: First, a static simulation is performed. When the
velocity of the target is zero, according to (15), the data
age error should be zero too. However, the precision of the
fixed-point operations, high-frequency residuals after filtering,
and other sources of noise influences the precision of the
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Fig. 14. Data age error (blue curve) and the residual error after compensation
(red curve) for (a) static and (b) constant velocity scenarios.

phase (displacement) measurement. The new add-on DAEC
module should not compensate any phase in the case, but it
may introduce some error itself. So the static simulation is
to verify how the compensation module influences the static
performance of the phase measurement. Fig. 14(a) shows the
errors before and after compensation.

When the stage is static, the phasemeter has an error
about 2 pm (blue curve), which determines the displacement
resolution. There should be no data age error in a static
scenario; however, the compensation module has amplified
the error (by derivative operations), which makes the error
increase to 0.4 nm (red curve). So the compensation module
impacts the displacement measurement a little in this scenario.

2) Constant Velocity: The constant velocity motion is the
most common scenario, which all previous studies focus on.
The constant velocity motion introduces constant data age
error. In fact, it will not impact the displacement measurement,
because with constant data age error, the relative distance
changes within a certain time interval are still the same.

The 158-mm/s velocity (Doppler frequency 500 kHz)
motions have been simulated. Fig. 14(b) shows the errors
before and after compensation. Before compensation, the raw
error is about £10 pm (blue curve), which is the residual high-
frequency component after filtering. However, after compen-
sation, the error is still amplified.

3) Linear Increasing Velocity: This case is a nonconstant
velocity scenario. According to (15), the first derivative is no
longer a constant value, and the second derivative is no longer
zero, so they introduce a nonconstant data age error. Thus,
the measurement cannot represent the current displacement
precisely.

A simulation simulates a linear increasing velocity
motion from —158 to 158 mm/s (Doppler frequency from
—500 to 500 kHz) in 5 ms. Fig. 15(a) shows the errors
before and after compensation. The data age error can be
up to 0.6 xm at the maximum velocity (blue curve). After
compensation, the error is reduced within 0.8 nm (red curve).
Because the filters do not have a consistent magnitude
response, the residual error for different velocities is different.

4) Linear Increasing Acceleration: In this scenario, the
second derivative starts to introduce nonconstant data age
error. A simulation simulates a linear increasing acceleration
motion from 0 to 1.58 x 103 m/s? in 5 ms. Fig. 15(b) shows
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Fig. 15. Data age error (blue curve) and the residual error after compen-

sation (red curve) for (a) linear increasing velocity and (b) linear increasing
acceleration scenarios.
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Fig. 16. Data age error (blue curve) and the residual error after compensation
(red curve) for (a) sinusoid velocity and (b) sinusoid velocity with varied
oscillating frequency scenarios.

the errors before and after compensation. The data age error
can be up to 0.8 xm at maximum velocity and maximum
acceleration (blue curve). After compensation, the error is
reduced within £0.8 nm (red curve).

5) Sinusoidal Velocity: A sinusoidal velocity is a typi-
cal scenario for the movement of a stage in manufacturing
processes. Sinusoidal motion profiles are desired for velocity
changes, because accelerations and higher order terms (snap,
jerk, and so on) are predictable. The difference between this
scenario and the scenarios mentioned earlier is that the high-
order derivatives in the scenarios mentioned earlier are zero
or constant. However, in the sinusoidal velocity scenario, the
high-order derivatives start to play a role in producing data age
error. Our compensation module is an approximation, which
only deals with the first two order errors and ignores the
higher order errors. Simulations have been done to explore
the performance of this approximation.

A simulation simulates a sinusoidal changed velocity
motion. The Doppler frequency of this motion is given by

Jp = fpcosQx fot) 27)

where f) is the peak frequency, which is 500 kHz (158 mm/s)
here and f, is the frequency of velocity oscillating, which
is 1 kHz here. Fig. 16(a) shows the errors before and after
compensation. The data age error is also oscillating, and
the maximum error is about 0.6 um (blue curve). After
the compensation, the residual error keeps within £0.8 nm
(red curve) with a sinusoidal shape, because higher order
derivatives contribute some error.



2610

_ 20 1§ _ e
£ £'g &
g 10 05 §§ 05 5 &
Q Q
& o 0 §r5 £
%“fo &) go O
= -10 05% 5 -05 05 3
A 58 5
-20 -1 5 =
2 3 45 23 4 5
Tlme [ms] Tlme [ms]
(a) (b)
_ 200 2 E _ 200 E
g z E Fl
5 100 1 S 5 100 1 S
Q Q
g o 0EE o 0 E
go O %ﬂfu &)
= -100 13 g -100 -1
8 5 3 5
-200 2 K -200 2 K
2 3 45 2 3 45
Time [ms] Time [ms]
©) (d)
__ 200 E _ 200 E
g 2 & Pl
. 100 25 100 S
Q Q
& o EE o £
) S o e
%o @) %0 @)
5 -100 T g -100 3
< S < P
a) g A S
-200 25 7 200 &
01 2 3 45 0123 435
Time [ms] Time [ms]
(e) ®

Fig. 17. Data age error (blue curve) and the residual error after compensation
(red curve) for (a) static, (b) constant velocity, (c) linear increasing velocity,
(d) linear increasing acceleration, (e) sinusoid velocity, and (f) sinusoid
velocity with varied oscillating frequency scenarios.

Another simulation also assesses a sinusoid velocity motion,
but the oscillating frequency is increasing from 0.5 to 5 kHz.
Fig. 16(b) shows the errors before (blue curve) and after
(red curve) compensation. When the oscillating frequency is
high, the residual error after compensation becomes signifi-
cant, which is produced by the higher order (>3rd) derivatives,
and cannot be ignored anymore

i $a™ (1) o

n!

% 0. (28)
n=3

We examined this scenario as an extreme case. In fact, the
oscillating frequency of our typical measurement scenario is
much lower than 5 kHz. Compensating the first- and second-
order error is sufficient for our measurements. For motion
whose velocity changes at a rapid pace, more higher order
derivatives must be kept to be accurate.

B. Variable Delay Time

If implementing the filter as IIR filters, a varied phase delay
is introduced. The total equivalent time delay is varied as well.
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In this design, the fourth-order IIR filters are employed, whose
cutoff frequency is 750 kHz. The overall time delay of the
system is varied around 0.85 us.

The same simulations are performed to verify the perfor-
mance of compensating this varied time delay in Fig. 17.
Similarly, the compensation module introduces some error
itself, which is about 0.6 nm. In the static [Fig. 17(a)]
and constant velocity [Fig. 17(b)] scenarios, the error after
compensation is larger than the original error.

In linear increasing velocity [Fig. 17(c)], linear increasing
acceleration [Fig. 17(d)], and sinusoid velocity [Fig. 17(e)]
scenarios, the data age error is within 2150 nm (blue curve),
which is about one-fourth of that of FIR. Because the time
delay introduced by the IIR is less than FIR, the data age
error is less as well. However, the performance of the error
compensation is not as well as that of FIR. The residual error
is about 1.5 nm (red curve), which is about two times of FIR.
The reason is that the filtering performance of the fourth-order
IIR filter is not as well as the 37-tap FIR filter, so the signal
at frequency 2 fy + fp is not completely suppressed.

In the sinusoidal velocity with varied oscillating frequency
[Fig. 17(f)] scenario, the residual error becomes significant,
because the compensation module still just compensates the
first- and second-order error. With the oscillating frequency
increasing, the higher order error cannot be ignored.

VII. CONCLUSION

The data age error becomes significant but often overlooked
when there are rapid position changes and nonconstant veloc-
ity motions of the target, whose value could be up to hundreds
of nanometers depending on the motion of the target and the
time delay of the system.

In this paper, we have investigated the source of data age
error, presented an upgraded model of this error, proposed
methods for modeling and compensating it for heterodyne
interferometry applications, and implemented the error com-
pensation module in an FPGA. The synthesizable error com-
pensation module consists of a derivative tracking part, and an
error computation part.

The FPGA HIL simulation results show that this implemen-
tation can decrease the data age error from 600 to 0.8 nm
for fixed time delay, and from £150 to +£1.5 nm for the
variable time delay in dynamic cases and still keep the sub-
nanometer resolution in quasi-static cases. This increases the
dynamic accuracy of displacement measurement, especially
for nonconstant velocity motions.
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