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Dynamic Doppler Frequency Shift Errors:
Measurement, Characterization,

and Compensation
Chen Wang, Graduate Student Member, IEEE, and Jonathan D. Ellis

Abstract— Positioning calibration under dynamic conditions
is becoming increasingly of interest for high precision fields,
such as additive manufacturing and semiconductor lithography.
Heterodyne interferometry is often used to calibrate a stage’s
position because interferometry has a high dynamic range
and direct traceability to the meter. When using heterodyne
interferometry, filtering is routinely performed to process and
determine the measured phase change, which is proportional
to the displacement from one target location to another.
The filtering in the signal processing introduces a phase
delay dependent on the detection frequency, which leads to
displacement errors when target velocity is non-constant as is the
case in dynamic calibrations. This paper presents a phase delay
compensation method by measuring instantaneous detection
frequency and solving for the corresponding phase delay in a
field-programmable gate array (FPGA) in real time. The FPGA
hardware-in-the-loop simulation shows that this method can
significantly decrease the displacement error from ±100’s nm
to ±3 nm in dynamic cases and it will still keep subnanometer
resolution for quasi-static calibrations.

Index Terms— Displacement measurement, dynamic response,
field-programmable gate arrays (FPGAs), interferometry, phase
measurement.

I. INTRODUCTION

D ISPLACEMENT measuring interferometry is a widely
used technique for displacement metrology, posi-

tion feedback sensing, and position sensor calibration for,
e.g., capacitance sensors, linear variable differential transduc-
ers, and linescales. Displacement interferometry is often used
in applications that require its high bandwidth, high dynamic
range, and direct traceability to the meter [1]. During stage
calibration, measurements are typically performed in a quasi-
static configuration where either the velocity of the moving
stage is low or the stage is stepped to discrete positions and
held statically for the calibration to occur. The calibration
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data for the stage’s positioning can then be determined
independently from dynamic effects, including non-rigid body
motions in the stage and distortions from forces generated by
the stage’s motion into the frame, which can propagate into
the metrology loop.
In practice, many systems require a moving stage traveling

along a pre-programmed path to perform a repetitive function.
Calibration methods employing quasi-static motion profiles
often do not encompass the ultimate intended use of the stage.
The existing machine tool standards [2]–[4] define explicit
procedures for quasi-static calibrations. Recently, there is an
initiative to establish a standard for performing dynamic stage
calibrations to complement the existing standards for quasi-
static calibrations [5] and [7]. In this paper, we investigate how
the signal processing for heterodyne interferometry systems
is affected by the non-constant velocity profiles found when
dynamically calibrating positioning systems.
Interferometer architectures can vary depending on

the desired target geometry and intended application [7].
Traditionally, displacement interferometers have either a
retroreflecting target that is insensitive to target angular
rotation or a plane mirror target with a topology that
utilizes the angular sensitivity or is tilt insensitive for small
angles. There are two types of displacement interferometers:
1) homodyne, meaning a single optical frequency is used
and 2) heterodyne, meaning two optical frequencies are
used. In all cases, the metrology principle is the same: target
position changes are recorded as a Doppler frequency shift
in the optical frequency, which manifests as a measured
phase change. The target displacement is determined by the
measured phase change. As the velocity of the measurement
target changes, the instantaneous frequency of the detected
signal changes. The relationship between the Doppler
frequency shift and the velocity of target is

fD = 1

2π

dφ

dt
= Nn

λ

dx

dt
(1)

where φ is the phase difference between the reference and
measurement signals, N is the interferometer fold factor (two
for the interferometer used in this paper), n is the refractive
index along the optical path difference, λ is the nominal
wavelength of the laser light, and x is the displacement of
the target.
For heterodyne interferometry, the two optical frequencies

from the laser source provide a quasi-static heterodyne
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Fig. 1. Gain and phase from processing the heterodyne signals used in
this paper. A nominal 70-kHz heterodyne frequency is used with a ±20-kHz
Doppler frequency band. Due to filtering, the phase of the signal changes as a
function of Doppler frequency, causing errors during dynamic measurements.

frequency, fs , typically in the 1–4-MHz range for Zeeman
lasers and 20 MHz for single acousto-optic modulator (AOM)
lasers [8], [9]. Alternatively, two differentially driven AOMs
can be used to generate heterodyne frequencies of arbitrary
values ranging from kilohertz to tens of megahertz [10].
The combination of a nominal heterodyne frequency, fs ,

with a moving target inducing a Doppler frequency shift,
fD , means the frequency band of the measurement signal is
fs ± fD , as shown in Fig. 1. As the target velocity changes, the
instantaneous frequency of the measurement signal changes,
leading to a different local phase response as a function of
detection frequency due to filtering in the measurement [11].
This imparts a distortion in the measured phase change,
leading to errors when there are rapid position changes and
non-constant velocity motions of the target. It should be noted
that this error is not limited to interferometry as linescales
would exhibit a similar behavior as a function of frequency
for their phase measurements as well.
There has been limited reporting of this effect in the

literature for phase measurements. Demarest [1] described
dynamic measurements, but these are in the context of
constant velocities, where the Doppler shift is nominally
constant and this effect is not present. Holmes [11] briefly
mentions this error in his thesis work, but it was only
in the context of estimating the error contribution. Given
that his work was limited to velocities around 1 mm/s,
this error had a negligible impact and warranted no further
investigation for compensation techniques. Djokic and So [12]
mention the phase shift introduced by filters will influence
the result in phase-angle measurement, but they state that
the phase shift does not cause appreciable change the phase
difference between two input signals, implying the frequencies
of input signals are almost same. Vandenbussche, et al. [13]
analyzed the inaccuracies introduced by the architecture of
the phase measurement system, including limited attenuation
and equivalent noise bandwidth of the filters, but do not
investigate the impact of non-constant phase response of filters
on the accuracy of the phase measurement system. In the
area of global positioning system (GPS) signal monitoring,
the dynamic effects of large accelerations and jerk on
frequency measurements are widely discussed [14]. However,
for GPS signals, the general parameter of interest is the
instantaneous frequency rather than a continuous high-speed
phase measurement as is the case in this paper.

In this paper, we investigate the source and magnitude
of this error, model the effects of this error, and propose
methods for measuring and compensating it for heterodyne
interferometry applications. We present compensation methods
using a Fourier transform approach, as well as a discrete
derivative method. We discuss the limitation of each method
and present the simulation results to validate the proposed
methods.

II. HETERODYNE INTERFEROMETRY SIGNAL PROCESSING

Prior to being processed, two optical signals are detected
and converted to voltage-level representations of interference
amplitude, typically called the measurement signal and
reference signal. The measurement signal has an instantaneous
frequency of fs ± fD , and its phase is measured and
continuously tracked against the reference signal at fs .
Typically, the analog signal is processed prior to converting
it to a digital signal to maximize the signal and quality
in the analog-to-digital converter (ADC). Fig. 2 shows the
analog processing used in this paper: a transimpedance
amplifier (TIA) is used to convert the current generated in
the photodiode to a voltage signal, followed by a high-pass
filter (HPF), high-gain inverting amplifier (IA), and low-pass
filter (LPF) before being converted to a digital signal in a
high-speed 14-bit ADC. For heterodyne system, this is a
typical processing configuration prior to performing the digital
phase processing algorithm.
The top path of the analog system in Fig. 2 is for the

reference signal, while the bottom path is for measurement
signals; it could be one channel from single-element
photodiode, or four channels from our quadrant photodiode,
based on our custom interferometer topology [15]–[17]. Fig. 3
shows the modeled phase response for this analog system.
In this paper, we used two separate heterodyne frequencies
depending on the anticipated target velocity with low-speed
applications using a 70-kHz heterodyne frequency (shown) and
high-speed applications using a 5-MHz heterodyne frequency
(not shown). The whole signal processing system in Fig. 2 is
designed for a 70-kHz heterodyne frequency, with a maximum
Doppler frequency shift of ±20 kHz [18].
There are three general phase measurement techniques:

1) phase-locked loop [19], [20]; 2) single-bin discrete Fourier
transform (SBDFT) [21], [22]; and 3) time interval analy-
sis [11], [19]. Fig. 2 shows an example of an SBDFT technique
(the digital processing part) that we used as part of this paper
with our heterodyne interferometer. The SBDFT generates
in-phase and quadrature signals using a voltage-controlled
oscillator (VCO) nominally at a frequency of fs . Each
VCO-generated in-phase and quadrature signal is multiplied
by the measurement signal, and using the trigonometric
relationship 2 cos A cos B = cos(A + B) + cos(A − B),
a pair of the sum and difference signals with a 90° phase
difference is generated. The summed frequency (high
frequency) component is removed using an LPF (Fig. 4).1

1The digital processing part is not an linear time-invariant system, which
does not have phase response. The phase response of SBDFT algorithm here
means that of digital filters.
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Fig. 2. Schematic of the heterodyne interferometry signal processing system. It consists of two parts, an analog processing part and a digital processing
part. The analog processing system employs several op-amp circuits, 1-kHz first-order HPFs, 200-kHz Sallen–Key LPFs, TIAs, and IAs, to process the analog
signal and improve the quality of the signal. The digital processing system used an SBDFT technique and was implemented in an FPGA in this design, in
which the LPFs are fourth-order, 20-kHz cutoff frequency, IIR filters.

Fig. 3. Modeled phase response of the analog processing system. It delays
the phase of signal as a function of frequency, which is the superimposition
of each circuit’s phase response. In the band of 70 ± 20 kHz, the phase
difference caused by this is over 30° [6].

An arctangent operation is then used to determine the
phase difference between the measurement signal and the
VCO signals. Other phase demodulation methods also could
be performed to extract the phase from the in-phase and
quadrature component pair, such as differentiate and cross
multiply [23], [24] and Kalman filters [23]. A similar process
is also computed for the reference signal, ultimately measuring
the phase difference between the reference signal and the
VCO signals. Both phase signals are modulo-2π and must
be unwrapped first [25], prior to computing the difference.
Common phase differences from the VCO signals cancel,
resulting in the desired phase between the measurement and
reference signals to be computed (detailed derivation in the
next section). Once the phase is known, the displacement can
be calculated from the phase difference from the start of a
measurement, scaled with the interferometer fold factor, N ,
refractive index, n, and wavelength, λ.

III. DYNAMIC DOPPLER FREQUENCY SHIFTS

When the desired signal passes through a filter with
varied frequency, a frequency-dependent phase delay will
be introduced due to the non-constant phase response of
the filters. This problem will occur when the target, which
is measured by the interferometer, moves with a varied
velocity. However, this phenomenon widely exists in phase
measurement. Because filters are used to remove noise or

Fig. 4. Modeled phase response of the digital LPFs. Within its passband, up
to 180° phase delay could be introduced [6].

demodulate, signals always have a non-constant phase delays
even over narrow passbands, and the filters are irreplaceable
in most phase measurement algorithms. This delay can be
a critical phase measurement error in any application where
the velocity is varied continuously, such as in semiconductor
equipment and inspection, dynamic position calibration, and
pick-and-place machines. Thus, compensating the phase delay
due to non-constant phase response of filters is crucial to
accurate phase measurements, especially when there are high
velocities and accelerations in the system.
The phase measurement in heterodyne displacement inter-

ferometry systems consists of two main sources of dynamic
frequency shift error: 1) filtering in the high-frequency
detection regime and 2) filtering after the phase has been
converted to a quasi-DC level signal. The high-frequency
regime consists of any processing that would cause a
frequency-dependent phase delay prior to the signal being
multiplied by the signals from the VCO, which is the
analog processing system in this paper (Fig. 2). Similarly,
the low-frequency regime is for phase shifts induced after the
multiplication with the VCO, which is the digital processing
system in this paper. In the high-frequency regime, HPFs and
LPFs are typically used to remove the DC component and
high-frequency noise of the signals, contributing to the phase
delay. If the input measurement and reference signals are

um(t) = Um sin(2π fs t + φm) + UDC + UNoise (2)
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and

ur (t) = Ur sin(2π fs t + φr ) + UDC + UNoise (3)

where Um and Ur are the amplitudes of the measurement
and reference signals, fs is the nominal heterodyne frequency
of the laser source, φm and φr are the phases of the two
signals, and UDC and UNoise are the DC offset and noise,
which may differ in the two signals. After processing in the
high-frequency regime

um(t) = sin
(
2π fs t + φm + φh,m( fm)

)
(4)

and

ur (t) = sin
(
2π fs t + φr + φh,r ( fr )

)
(5)

where the amplitudes Um and Ur have been scaled by the
amplifier circuits, φh,m() and φh,r () are the high-frequency
regime phase responses (Fig. 3) for the measurement and refer-
ence signals, respectively, and fm and fr are the instantaneous
frequency of the two signals. The underlined terms represent
the Doppler-shift-induced errors that are typically ignored
in most traditional treatments. Because the instantaneous
frequency is a function of the heterodyne frequency and
Doppler frequency shift, φh,m( fm) = φh,m( fs, dφm/dt)
and φh,m( fr ) = φh,r ( fs , dφr/dt). Based on this, the output
signals of the high-frequency regime have varied phases, when
the Doppler frequency changes and there is an additional
phase component that is dependent on the instantaneous
frequency. In practice, the reference signal is held at
a nominally constant heterodyne frequency for traditional
displacement interferometry, but we include it here for
the sake of completeness and because there are some
interferometer architectures where reference frequency is not
constant [26], [27].
After converting to digital representations in the ADCs,

the signals are typically processed in an FPGA-based digital
signal processing module. The specific algorithms used to
measure the phase can be varied, but if there is any filtering
present, then it will exhibit this error. For this paper, we used
the SBDFT process shown in Fig. 2, but this compensation
methodology can be adapted for other processing algorithms.
The FPGA processing is used to extract the phase difference

between the reference and measurement signals in the
heterodyne interferometer. The VCO or numerically controlled
oscillator (NCO) blocks in the algorithm generate a constant
frequency in-phase, un,i , and quadrature, un,q , sinusoidal
signals

un,i (t) = sin(2π f̂s t) (6)

and

un,q (t) = cos(2π f̂s t) (7)

where f̂s indicates a frequency selected that is close to
the nominal heterodyne frequency. The measurement and
reference signals, (4) and (5), are separately multiplied by
each of two NCO output signals. Based on the trigonometric
product-to-sum identity, the products equal to a sum of one
high-frequency (4π fs) component and one low-frequency or

quasi-DC (φ) component. For the measurement signal, the
products are

um,i (t) = um(t) · un,i (t) (8)

um,q(t) = um(t) · un,q(t) (9)

which, if the LPF is assumed to filter the high-frequency term
at (4π fs), simplify to

um,i (t) = 1

2
sin

(
φm + φh,m( fm) + φl,m( fd,m)

)
(10)

and

um,q(t) = 1

2
cos

(
φm + φh,m( fm) + φl,m( fd,m)

)
(11)

where um,i and um,q are the in-phase and quadrature products
of the measurement signal, respectively, φl,m() is the phase
delay in the low-frequency regime for the measurement signal,
which is the function of frequency according to Fig. 4, and
fd,m is the Doppler frequency shift, fm– fs . This formulation
ignores the minor frequency difference between the actual
heterodyne frequency, fs , and the VCO assumed heterodyne
frequency, f̂s .
After that, an inverse tangent operation of um,i/um,q will

extract the absolute phase of the measurement signal, φ′
m ,

resulting in

φ′
m = φm + φh,m( fm) + φl,m( fd,m). (12)

A similar process can be used to determine the absolute
phase of the reference signal

φ′
r = φr + φh,r ( fr ) + φl,r ( fd,r ). (13)

Differencing the two absolute phases extracts the relative
phase difference �φ′ between the measurement and reference
signals

�φ′ = φ′
m − φ′

r

= φm − φr

+
(
φh,m( fm) + φl,m( fd,m) − φh,r ( fr ) − φl,r ( fd,r )

)
.

(14)

The ideal result should be φm − φr ; however, the extra

phase terms, φh,m( fm), φl,m( fd,m), φh,r ( fr ), and φl,r ( fd,r ),

contribute some error and are a function of the Doppler
frequency shift. For quasi-static measurements, these added
phase terms can be largely ignored. For dynamic measure-
ments, these added phase errors can contribute significant error
and must be considered.
Simulations were performed to illustrate how these extra

phase terms or phase delays impact the final result when
the target is moving with constant and non-constant velocity
profiles. As shown in Fig. 5, filters introduce constant phase
delay when target moving in constant velocity, which does
not cause an error in the measured phase value because the
relative displacement between any two time points is the
same in theory and in practice. However, when the target is
moving with a non-constant velocity, the phase delay and the
relative displacement change along with the Doppler frequency
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Fig. 5. Displacements and errors of the target moving with (a)
constant and (b) non-constant velocity profiles. They simulate the
target with a constant velocity of 4.75 mm/s (Doppler frequency
shift: 15 kHz) and with a non-constant velocity from 0 to 4.75 mm/s
(maximum Doppler frequency shift: 15 kHz), respectively. The acceleration is
9.5 m/s2. The phase (displacement) delay is a function of Doppler frequency
shift (velocity of the target). In (a), the displacement error is constant, about
120 nm, since the velocity is constant. In (b), the displacement error is non-
constant, from 0 to 120 nm, and changes along with the velocity [6].

shift (velocity of the target), which is undesirable in practice.
This issue can present a pervasive problem because even under
quasi-static conditions, the target still has a nominal Doppler
frequency shift value. To improve the dynamic performance of
the phasemeter under dynamic conditions, we present potential
compensation methods to significantly reduce this error.

IV. COMPENSATION METHODOLOGIES

Conceptually, the solution to compensate this phase error
is to subtract the phase delay from the measurement result.
From (14), the four varied terms contribute to the phase
delay. The high- and low-frequency regime phase responses
φh() and φl() must be known prior to the measurement, and
frequencies fm , fd,m , fr , and fd,r should be tracked in real
time. To compensate for those errors in real time, the four
phase terms φh,m( fm), φl,m( fd,m), φl,r ( fr ), and φl,r ( fd,r )
must be determined in real time, too. The schematic of the
overall phase compensation module (the dashed line block
in Fig. 2) is shown in Fig. 6, which includes an instantaneous
frequency monitoring part and a phase delay computation
part. The following sections detail two different methods for
monitoring the instantaneous frequency and two methods for
computation phase delay.

A. Phase Response Measurement

The preliminary step in the process is to determine the phase
responses of the system, specifically from analog and digital
filtering. Although the filter parameters are nominally known,

Fig. 6. Phase compensation module for measurement signal, which is
duplicated for the reference signal. It consists of two sections, the frequency
measurement section and phase delay computation section. Each section has
two potential methods to implement. In this design, the path with red arrow
was followed. First, the derivative of the raw measurement phase φ′

m is
taken to extract the instantaneous Doppler frequency shift fd,m . Then, the
corresponding phase delay φh,m( fm) + φl,m( fd,m) is found in LUT. Finally,
the phase delay is subtracted from the raw measurement phase, and gets
compensated for measurement phase φm .

Fig. 7. Experimental setup for measuring the analog system’s phase response.
The input laser is diffracted in the AOM that is amplitude modulated with a
swept sine over the desired frequency range. It is assumed the 6-ns response
time of the AOM imparts little delay in the system.

variations in component tolerances (analog) and difference
from fixed-point calculations (digital) cause deviations from
the desired performance. For analog components, the perfor-
mance of each amplifier chip, capacitive coupling in the board,
and near-field influence from other components can also cause
variations in the performance and phase profile. For digital
system, the delay and fixed-point operation make the response
a little different from the ideal floating-point design, but may
still cause slight variations. Thus, the actual phase response
must be measured to accurate compensate for this error.

1) Phase Measurement: To measure the phase response of
our analog system, a function generator was used to drive
an AOM to modulate the output power of a laser source
and vary the light intensity at the drive frequency. Then, a
lock-in amplifier was used to compare the phase difference
between the input and output signals of the analog processing
system. The experimental setup is shown in Fig. 7. The ideal
instrument to measure the frequency response of a system is
the network analyzer, which was not available for this test.
A potential problem of switching to a lock-in amplifier is that
this instrument may have a non-constant frequency response,
which is not specified by the manufacturer. Therefore, the
measurement result could be the frequency response of the
analog system superimposing on that of the lock-in amplifier.
When measuring the phase response of the analog system,

the function generator sent a chirp signal with the frequency
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sweeping from 1 to 100 kHz2 and the phase was recorded as
a function of frequency. For this paper, we used the output
signal of the function generator as the input reference signal
and assumed the AOM has a negligible phase response as it
has a 6-ns response rate [29].
The method to measure the phase response of digital filters

is similar to that of analog system. The digital signal process
model was designed in MATLAB/Simulink and the Altera
DSP Builder toolbox, which was simulated on a PC. A chirp
signal block generates the input signal, and the digital filters
introduce phase delay to output signal. By comparing the
phase difference of the input and output signals, the phase
response of digital filters could be identified.

2) Phase Response Curve Parameterization: The sampling
characteristics limit the number of points that the phase is
known in the frequency domain. To solve the phase delay for
any of the potential frequencies of interest, the expressions of
the curves must be known. Thus, curve fitting can be used to
parameterize the expression of the phase response curve.
The phase response has an exact expression, derived from

the basic equations based on its topology. For example, the
phase response of a second-order LPF that is widely used in
this design is

φ(ω) = −tan−1
(
1

α

(
2

ω

ω0
+

√
4 − α2

))

−tan−1
(
1

α

(
2

ω

ω0
−

√
4 − α2

))
(15)

where ω represents the angular frequency, ω0 denotes the
angular cutoff frequency of the filter, and α is the damping
ratio of the filter, which is the inverse of the quality factor
Q of the filter.
The curve for an HPF has a similar form of expression.

However, it is more complicated to fit the phase response curve
of a complete system, like the analog system in Fig. 2, whose
phase response is Fig. 3.
Since only a specific frequency band is of interest

(50–90 kHz in Fig. 3) and the actual response will vary from
the theoretical value, the phase response curve can simply be
treated as normal curve and polynomial curve fitting can be
used to parameterize the phase response using

φ( f ) =
n∑

i=0

pi f n−i+1 (16)

where φ( f ) is the phase response, f is the measured
frequency, pn are the coefficients for polynomial fitting, and
n is the order.
Fig. 8 shows a ninth polynomial fitting of the modeled phase

response of the analog processing system in band 50–90 kHz.
The error between the original curve and the fitted curve is in
nanoradian, which is negligible.
For the digital filters, there is an additional way to

parameterize the phase response, which is using the MATLAB
System Identification Toolbox. It can identify the system and
create the transfer function from the measured input–output

2The frequency of 102.4 kHz is the upper limit for the SR830 lock-in
amplifier to lock a signal [28].

Fig. 8. Curve fitting for modeled analog phase response. In the range
50–90 kHz, the error between the original phase response and the calculated
phase by ninth polynomial fitting coefficients is in the range of ±100 nrad.
The original and fitted data are offset for clarity.

data directly. By knowing the transfer function, the exact
expression of phase response is known. For the phase response
of the digital filters in this design, the System Identification
Toolbox can create the transfer function with a 99.41% fit to
the data, and the RMS error is approximately 2.23 mrad. Based
on the variability, the RMS error is approximately 0.11 nm
over the ±15-kHz Doppler frequency shift band, assuming
a two-pass interferometer using a wavelength of 633 nm.
Hence, the methods to parameterize phase response curve

through polynomial fitting for analog system, or through
System Identification Toolbox for digital filters, are effective
and precise to achieve the goal.

B. Frequency Measurement

To compensate the phase in real time, the frequency
measurement should be performed in real time. Frequencies
fm and fr are the frequencies of the input measurement and
reference signals, and fd,m and fd,r are the Doppler frequency
shifts in the measurement and reference signals. Since fm ( fr )
is the sum of split frequency fs and Doppler frequency shift
fd,m ( fd,r ) and the split frequency is nominally known, only
one set of frequencies is necessary to measure fm ( fr ) or
fd,m ( fd,r ).
There are two potential methods to measure the frequencies.

One is the short-time Fourier transform (STFT). This would
be suitable to measure fm and fr of the measurement and
reference signals at the beginning of the digital processing in
the FPGA. Another method is to directly compute the discrete
derivative of the raw phase. This would measure fd,m and fd,r

after digital processing getting uncompensated raw phase.
1) Short-Time Fourier Transform Method: The Fourier

transform can display the spectrum of a signal, and it can
be used to locate the primary signal frequency. However, the
Fourier transform deals with the data set in the entire sample
period. It shows the whole scope of the spectrum, but ignores
the time dependence on a signal where the frequency may
change, as is the case in this paper. In this application, the
frequency is varied temporally, and the frequency at each time
point or over a short time period is preferred.
The STFT employs a moving window function by

multiplying it with the signal; the window is nonzero only in a
short period. Thus, it can measure the spectrum in every local
section, whose period is the width of the window, localizing
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Fig. 9. Comparison between the measured results using the STFT with
windows of three different lengths and the theoretical frequency. The lengths
of the window are 256, 512, and 1024 points, the type of the window function
is Hamming, the hop size is 16 points, and the FFT length is 1024 points.
In addition, the theoretical signal is 70-kHz split frequency plus maximum
±20-kHz Doppler frequency [70 kHz + 20 kHz sin(2π · 20 Hz t)].

the signal with varied frequency throughout a larger time
period. The STFT is

F( f, τ ) =
∫ ∞

−∞
x(t)w(t − τ )e− j2π f t dt (17)

where the w(t) is the window function, τ is the hop size,
which determines the speed of the window moving along the
time axis, and F( f, τ ) is the spectrum of the signal in every
short period; the frequency which is corresponding to the
maximum value of F( f, τ ) is the primary frequency of the
signal in this local section. There are a variety of window
functions available, commonly Hanning, Hamming, cosine,
and Gaussian that can be applied to establish the bin size over
which the STFT is computed [30].
However, the STFT has a fixed time-frequency resolution.

This means there is a tradeoff between high time resolution
and high frequency resolution. The STFT corresponding to
a shorter window length produces a sharper time resolution,
but a poorer frequency resolution than those corresponding
to a longer window length [30]. Fig. 9 shows simulations
of measuring frequencies by the STFT using windows with
three different lengths. From the figure, it can be seen how
this property of the STFT can cause problems in real-time
measurement. Using a 256-point window for the STFT has
a lower frequency resolution, resulting in a staircase type
of response. On the contrary, a 1024-point window has a
better frequency resolution. Since it needs a longer interval,
1024 points, to compute the fast Fourier transform (FFT) once,
it is time sensitive and introduces significant delay.

2) Phase Derivative Method: The frequency is the first
derivative of the phase, and computing the derivative of the
final measured phase can obtain the Doppler frequency shift by

fD = 1

2π

dφ

dt
. (18)

Fig. 10 shows a simulation of measuring the frequency
by this method. The theoretical signal is same as that
in Fig. 9. The measured result compares nicely, the algorithm
is straightforward to understand, and the computation is readily
achievable in real time, although noise can be amplified.
However, this method and STFT method have an inherent
problem. The frequencies are computed based on signals
[(4), (5), or (14)], which have suffered from the phase delay.
From Fig. 5, it can be clearly seen that the filters influence not

Fig. 10. Comparison between the measured frequency using derivative and
the theoretical frequency (left axis) with the error between the two (right axis).
The theoretical frequency is same as that in Fig. 9. The measured frequency
has small oscillations at local sections. The measured and theoretical data are
offset for clarity.

only the value of phase (displacement) but also influence its
slope (frequency), so the frequency based on the inaccurately
measured phase will also be inaccurate to some degrees.

3) STFT Versus Derivative: Since it is impractical to
measure the frequencies using the unprocessed analog signal
at the entry of the phasemeter, which is free from phase delay
from any filters, the STFT or derivative methods are still the
practical means to implement corrections. From Figs. 9 and 10,
the frequency error from the STFT (several kilohertz) is
much more than that from the derivative method (hundreds of
hertz). This is specifically assuming the measured oscillating
frequency ( f ) is at 20 Hz (Fig. 9). Different errors will occur,
and potentially be greater, when the measured oscillating
frequency is higher. From those simulations, the frequency
errors from the STFT method and the measured Doppler
frequency shift ( fd,m and fd,r ) have the same kilohertz
order of magnitude. With f increasing, the errors become
comparable with the measured frequency. The reason is that
the STFT in this simulation always needs 256 to 1024 point
samples to operate the FFT; when the period of the measured
signal approaches to time interval of those samples, the STFT
will lose its ability to measure the local frequency. However,
the derivative method is less related with this problem, and
the error is always hundreds of hertz.
In addition to the resolution, the properties of real-time

implementation and resource usage must be considered. The
STFT method requires large amounts of multipliers and
adders. For an N-point FFT, it needs 2 × N × log2N times
real multiplications and 2 × N × log2N times real additions.
It also spends lots of time on the calculation, which impacts
the real-time measurement. On the contrary, the derivative is
relatively light and simple and only needs subtractors and
shifters. Hence, the derivative method is chosen to monitor
the instantaneous Doppler frequency shifts in this design.

4) Performance: Simulations were performed to determine
how the displacement and the velocity of a target’s position
were affected by the frequency measurement. Assuming the
target displacement is

x = A sin(2π f t) (19)

then the velocity and acceleration are derived by

v = 2π f A cos(2π f t) (20)

a = −4π2 f 2A sin(2π f t) (21)
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Fig. 11. Comparison of the frequency measurement errors in different motion
profiles. In the first subfigure, the motion profile has a linearly increasing
frequency from 0 to 200 Hz and a constant displacement amplitude of
3.8 µm, and the maximum Doppler frequency is about 15 kHz. In the second
subfigure, the motion profile has a constant frequency of 200 Hz and a linearly
increasing displacement amplitude from 0 to 3.8 µm, and the maximum
Doppler frequency is about 15 kHz. In the third subfigure, the motion profile
has a linearly increasing frequency from 0 to 200 Hz and a constant velocity
amplitude about 4.75 mm/s, and the Doppler frequency amplitude is about
15 kHz constantly. In the fourth subfigure, the motion profile has a linearly
increasing frequency from 20 to 200 Hz and a constant acceleration amplitude
of 0.6 m/s2. Based on these results, the measured frequency error differs
depending on the oscillation amplitude, velocity, and acceleration of the target.

according to (1), the Doppler frequency is given by

fD = Nn

λ
2π A f cos(2π f t). (22)

Fig. 11 compares the frequency measurement errors from
the derivative method when the amplitude of x , f , v, or a
is constant. From the two top subfigures in this figure, both
the displacement amplitude x and the frequency f of the
target affect the error using the derivative method. From the
two bottom subfigures, the error would change along with
frequency f , although the amplitude of velocity v (Doppler
frequency shift) is constant; the amplitude of the error would
be constant when the amplitude of acceleration a is constant,
even if the frequency f is changed. That means the frequency
measurement error depends on the amplitude of acceleration.
This can be the effect that is mentioned in the previous section:
this frequency measurement mechanism has its own inherent
limitation when using the phase, which suffers from the phase
delay to calculate the frequency. The measurement error is
about 3% of the maximum measured frequency.

C. Phase Delay Computation

The last main step to compensate the phase delay is solving
for the phase delays φa( fm), φd ( fd,m), φa( fr ), and φd ( fd,r ).
The phase responses φa() and φd() and frequencies fm ( fr )
or fd,m ( fd,r ) are already known, thus there are two ways
to solve for the phase delays. One method is a calculation in
real time, while another is looking up a table that stores the
previously calculated phase delays.

1) Direct Calculation: This way resembles the inverse
process of curve fitting, which calculates the phase delay using
the instantaneous frequency and parameters of the curve.
In practice, the parameters are stored in the FPGA.

For each measured frequency, it operates additions and
multiplications (polynomial) or arctangents and divisions
(principle expression) to calculate the phase in FPGA.
The resolution of this method is restricted by the precision

of curving fitting itself, because the precision of the parameters
determines the calculation. Furthermore, the operations in an
FPGA are fixed point, which means it will also lose some
resolution. The following section will study the precision
this method could achieve. Direct calculation in the FPGA
occupies a large amount of on-chip resources, especially
multipliers. Furthermore, the calculation costs significant time,
limiting real-time performance.

2) Lookup Table: To avoid using significant on-chip
resources and computation time, an alternative method is to
build a lookup table (LUT) that stores the phase delay in the
FPGA. For each measured frequency, it can look up the table
and find the corresponding phase delay. The phase delays are
previously determined, and the number and the word length
of phase delays are limited by the volume of the table.
The precision of this method mainly relies on the size of

LUT. Since LUT can store a limited number of phase points,
it will introduce a quantification error when the measured
frequency is located between two frequency samples. In that
case, the frequency will be approximated to the nearest
sample. The larger the table is, the less narrow the interval
is, leading to a more precise phase approximation. The
following section will study how the quantification error
impacts the performance of this method. This method requires
memory elements but not multipliers. It is relatively less
resource intensive with less calculation delay than the direct
calculation.

3) Direct Calculation Versus LUT: Simulations were
performed to compare the precision of the two methods.
The decimal length in both methods is 8 bits for fixed-point
operations and storage in the LUT. The table stores
4096 phase delay samples for the Doppler frequency shift
from −2.4 to 2.4 kHz. From Fig. 12, the error caused by
direct solving is less than 4 mrad, which is about half of
that of LUT. Both of the errors are less than 0.5 nm in
displacement. However, as the decimal length and the volume
of the LUT are increased, the error from LUT method will
decrease proportionally.
Since the LUT quantification error is minimal, controllable,

and fewer resources are needed, the LUT was implemented
for this paper.
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Fig. 12. Comparison of error introduced by LUT method and direct
calculation. The errors are in the range of 8 mrad (LUT) and 4 mrad (direct
calculation).

Fig. 13. Measurement errors before phase compensation and after phase
compensation with or without filters, when the velocity of the target is zero
and the Doppler frequency shift is zero as well. The data are offset for clarity.

V. OVERALL VERIFICATION

An overall verification was done to determine the
performance of this phase compensation solution and error
contribution of the three main parts. A technique called
FPGA hardware-in-the-loop (HIL) was used to verify the
functionality and the performance of the overall design.
Traditional software simulations for such FPGA fixed-point

digital signal processing algorithms have a long simulation
runtime, and application-specific availability and accuracy.
Conversely, HIL simulation allows data to be processed in
real time by the FPGA hardware rather than by the software.
The stimulus data are generated by MATLAB and fed to the
FPGA, and the FPGA computational results are read back by
the MATLAB software for further analysis and display. This
approach accelerates simulation time, and also ensures that the
algorithm will behave as expected in the real world, so will
the availability and accuracy [31].
Several simulations were performed to verify the static and

dynamic characteristics of the phase compensation module
and whole phasemeter model, which simulate different target
motions, including static, constant velocity, and non-constant
velocity motions.

A. Static Simulation

In theory, when the velocity of target is zero or constant, the
Doppler frequency shift should be zero or constant. According
to the curve of filter’s phase response, the error due to phase
delay is zero or constant as well, which does not impact
the relative displacement measurement. However, in practice,
the precision of the fixed-point operation, the high-frequency
residuals after filters, and other sources influence the precision
of the phase (displacement) measurement. Fig. 13 shows the
static error (red), which is about ±15 pm.

Fig. 14. Measurement errors before phase compensation and after phase
compensation with or without filters, when the velocity of the target is
(a) 4.75 × 10−4 and (b) 4.75 × 10−3 m/s, respectively. The Doppler
frequencies corresponding to these two velocities are 1.5 and 15 kHz. The
data are offset for clarity.

It is expected to compensate zero phase when the velocity
of target is zero or constant. However, from Fig. 13, the error
after compensation (blue) is much larger than that before
compensation, which is about ±300 pm. The reason is that
the phase error couples into the frequency measurement,
which was discussed in the previous sections. The frequency
measurement introduces high-frequency components due to
the derivative, which is exhibited in the final measurement
result and increases the noise.
To improve the quasi-static measurements, an LPF was

applied after the frequency measurement module to remove the
high-frequency components. Fig. 13 shows the effects of the
added filter in the static test where the error after compensation
with the filter (green) is almost same as the red one. Like other
filters in this design, this filter certainly introduces extra phase
delay. Because the phase for compensation is much smaller
than phase measurement result, a tiny distortion of the phase
for compensation has only a minor influence on the whole
measurement result. This will be discussed in the following
section.

B. Dynamic Simulation

The dynamic tests consist of constant velocity and non-
constant velocity tests.
In the constant velocity test, the motions of the target with

two different velocities, 4.75 × 10−4 and 4.75 × 10−3 m/s
(the limits of the phasemeter for this instance), were
simulated. The displacement errors before and after the phase
compensation are shown in Fig. 14.
Theoretically, the error caused by the phase delay should be

constant when the target is moving with a constant velocity.
For low-velocity motions, the error should be near zero
because the Doppler frequency shift is low. From Fig. 14(a),
the measurement errors (red) do exist even for small Doppler
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Fig. 15. Measurement errors before phase compensation and after phase
compensation with or without filters, when the frequency of the target linearly
increases from 0 to 200 Hz and the amplitude of velocity maintains at
4.75 × 10−3 m/s (the amplitude of Doppler frequency shift maintains
at 15 kHz).

frequencies but are still less than ±0.5 nm. However, the
measurements with phase compensation (blue) get worse,
even though the Doppler velocity is low, reaching just over
±1 nm. In Fig. 14(b), the increased Doppler frequency still
leads to a dynamic error (red) that gets magnified from the
derivative measurement (blue). The reason is that when the
velocity increases, the accuracy of the frequency measurement
goes down, and the profile of the phase response at higher
frequencies is not as accuracy as in lower frequencies.
By adding a filter on the derivative measurement, the errors

(green) can decrease by half. However, for high Doppler
frequency shifts, the error cannot get back to the level before
compensation [Fig. 14(b)].
In the non-constant velocity test, we simulated the motion

of the target oscillating in a linearly increasing frequency
from 0 to 200 Hz, and the amplitude of velocity remains at
4.75 × 10−3 m/s (the amplitude of Doppler frequency shift
maintains at 15 kHz). The profile of the motion is shown in
the third subfigure in Fig. 11. The phase errors before and
after the phase compensation are shown in Fig. 15.
In this situation, the phase delay does influence the phase

(displacement) measurement. From Fig. 15, the displacement
error before compensation (red) is about ±120 nm. The phase
compensation module decreases this error to ±3 nm (blue), a
reduction of about 97%. However, the added filter harms the
dynamic response of the phase compensation. After 100 Hz
(at 25 ms), the error with filter (green) increases more rapidly
than that without filter (blue). The reason is that the phase
delay of the added filter actually starts to play a role.
From these simulations, it can be found this solution has

subnanometer static performance with a filter after frequency
measurement module. In dynamic simulations, the phase
compensation method effectively reduces the phase error from
filtering effects. The filter on the derivative measurement
slightly impacts the accuracy of the compensation when the
motion of target has a high frequency (higher than 100 Hz).
It will be a tradeoff between the static and dynamic
performance.

VI. CONCLUSION

The filter-introduced phase delay in interferometry
displacement measurements was not extensively investigated
in the literature. To the best of the authors’ knowledge, there
was no clear and direct method published to eliminate or

compensate the displacement error due to the phase delay.
However, this effect becomes significant but often overlooked
when there are rapid position changes and non-constant
velocity motions of target, whose value could be up to
hundreds of nanometers depending on the non-constant phase
response of filters and the Doppler frequency shift.
In this paper, we have investigated the source and

magnitude of this error, modeled the effects of this error,
proposed methods for measuring and compensating it for
heterodyne interferometry applications, and implemented the
phase compensation module in an FPGA. The synthesizable
phase compensation module consists of a Doppler frequency
shift measurement part using an instantaneous derivative
method and a phase delay computation part using LUT.
The FPGA HIL simulation results show this method can
decrease the error from ±100’s nm to ±3 nm in dynamic
cases and still keep subnanometer resolution in quasi-static
cases. This increases the dynamic accuracy of the phasemeter,
thus increases the accuracy of the displacement interferometry
measurement. However, this method is not limited to only
heterodyne interferometry but rather it can be applied to other
frequency shifting measurement techniques like homodyne
interferometry and linescale signal processing.
At present, this paper demonstrates the FPGA HIL

simulations using a designed heterodyne frequency at 70 kHz,
with a maximum Doppler frequency shift of 20 kHz
(maximum velocity of 6.33 mm/s). Future work will verify
the design through the experiments with interferometry in
practice and demonstrate the phase compensation for higher
speed application using a 5-MHz heterodyne frequency with
a maximum Doppler frequency shift of 2 MHz (633 mm/s).
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