Speeding up Children Reunification in Disaster
Scenarios via Serverless Computing
Extended Abstract

Kyle Coleman
Computer Science Department
Saint Louis University, St. Louis, MO
kyle.coleman@slu.edu

ABSTRACT

Children constitute a vulnerable population and special considera-
tions are necessary in order to provide proper care for them during
disasters. After disasters such as Hurricane Katrina, the rapid identi-
fication and protection of separated children and their reunification
with legal guardians is necessary to minimize secondary injuries
(i.e., physical and sexual abuse, neglect and abduction). At Camp
Gruber, an Oklahoma shelter for Louisianan’s displaced by Hurri-
cane Katrina, 70% of the children were with their legal guardian
after 2 weeks while the last child was reunified after 6 months.

In this project, we are using serverless computing to scale and
minimize database queries as well as to speed up machine learning
tasks for rapid reunifying time, in support of a federated set of first-
responders. In particular, we are using a Flask-based web system
that leverages Apache OpenWhisk to run both (face and text) profile
recognition software at the back-end.

1 INTRODUCTION

Large scale natural disasters such as Hurricane Irma result in in-
surmountable damage to structures and devastating chaos within
families. Many children are separated from their families and re-
unification can be a time and resource- consuming challenge. Dis-
tressed, young or injured children often cannot self-identify. Exam-
ples of text features used for recognition by first-responders are
name, home address, and social security number. Matching this
information manually (when available) can prolong the reunifica-
tion time. To solve this problem, we are implementing a system
empowered by serverless computing for fast, scalable and federated
profile matching.

In serverless computing, the application logic is split into func-
tions called by external or internal events. The actions in our case
are defined by machine learning (classification) operations. In partic-
ular, the system goal is to match text and visual profile information
uploaded by guardians with children’s profiles available on the dis-
tributed database. Our events instead are database queries executed
by first-responder devices. We picked serverless computing so that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WoSC’17, December 11-15, 2017, Las Vegas, NV, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5434-9/17/12...$15.00
https://doi.org/10.1145/3154847.3154851

Flavio Esposito
Computer Science Department
Saint Louis University, St. Louis, MO
flavio.esposito.slu.edu

Rachel Charney

Department of Pediatrics
Saint Louis University, St. Louis, MO
rachel.charney@health.slu.edu

Step 4: OpenWhisk does face recognition Step 3: Flask server queues images
processing and DB queries for information. and sends them to OpenWhisk

Information is sent back to first-responder via Flask PO
——=—> A&lal)
g & Gam I
Iy —— - R r— M
Step 1: Parent uploads

«—>
recent portrait of child to DB “ Step 2: First-responder uploads image(s)
Oponiitisk of lost child(ren) to Flask server

Figure 1: System Architecture and workflow
our system would inherit the benefits of an idle but responsive plat-
form in case of bursty demands. Our prototype utilizes specifically
Apache OpenWhisk [3]. In the next section we describe our system
design and our ongoing work.

2 SYSTEM ARCHITECTURE

Our architecture utilizes serverless computing in conjunction with
an efficient micro-framework for web development called Flask [2].

A user with a mobile device requests a match via a HTTP POST
that uploads images to our Flask web server, which pre-processes
by queuing the images based on the unique IP address of the sender.
After the collected images are uploaded, they are forwarded to
our Apache OpenWhisk server. Here, we run a face recognition
application, available at [1].

We are extending our system so that the application will com-
pare both text and existing uploaded photos against a pre-existing
collection of profiles. When a match is found, it will utilize the name
attached to the pre-existing photo to perform a database query for
relevant information regarding the child. The database will then
return identifying information such as Date of Birth, Social Security
Number, emergency contact information, current medications, ex-
isting health problems such as allergies, and medical history in an
easily readable format. We will test our system using anonymized
images and profiles available from the Disaster Preparedness Center
at SSM Cardinal Glennon Children’s Hospital.

Our system usage will be easily extendable to other types of miss-
ing scenarios, for example, adults, elderly or handicapped patients,
or even pets. Finally, our system design will be general enough and
a good proof-of-concept demonstrating how to apply serverless
technology to a useful set of delay sensitive applications by means
of machine learning tools.

REFERENCES

[1] Face Recognition 2017. Face Recognition. (2017). Retrieved September 14, 2017
from https://github.com/ageitgey/face_recognition

[2] Flask 2017. Flask. (2017). Retrieved September 14, 2017 from http://flask.pocoo.org

[3] OpenWhisk 2017. Apache OpenWhisk. (2017). Retrieved September 14, 2017 from
https://openwhisk.incubator.apache.org

