Brick: Towards a Unified Metadata Schema For Buildings

Bharathan Balajit, Arka Bhattacharya?, Gabriel Fierro?, Jingkun Gao?,
Joshua Gluck?®, Dezhi Hong*, Aslak Johansen®, Jason Koh¢, Joern Ploennigs’,
Yuvraj Agarwal®, Mario Berges?®, David Culler?, Rajesh Gupta®,

Mikkel Baun Kjaergaard®, Mani Srivastava!, Kamin Whitehouse*

'UCLA, 2UC Berkeley, *Carnegie Mellon University, *University of Virginia,
*University of Southern Denmark, °UC San Diego, “IBM Research - Ireland

ABSTRACT

Commercial buildings have long since been a primary target for ap-
plications from a number of areas: from cyber-physical systems to
building energy use to improved human interactions in built envi-
ronments. While technological advances have been made in these
areas, such solutions rarely experience widespread adoption due to
the lack of a common descriptive schema which would reduce the
now-prohibitive cost of porting these applications and systems to
different buildings. Recent attempts have sought to address this
issue through data standards and metadata schemes, but fail to cap-
ture the set of relationships and entities required by real applica-
tions. Building upon these works, this paper describes Brick, a uni-
form schema for representing metadata in buildings. Our schema
defines a concrete ontology for sensors, subsystems and relation-
ships among them, which enables portable applications. We demon-
strate the completeness and effectiveness of Brick by using it to
represent the entire vendor-specific sensor metadata of six diverse
buildings across different campuses, comprising 17,700 data points,
and running eight complex unmodified applications on these build-
ings.

CCS Concepts

eInformation systems — Ontologies; Process control systems;
eComputer systems organization — Sensors and actuators;

Keywords

Smart Buildings, Building Management, Metadata, Schema, On-
tology

1. INTRODUCTION

Modern buildings are being integrated with a variety of networked
sensors and equipment to improve convenience, accessibility and
energy-efficient operations. These technological improvements hold
the promise of significant advances in centralized operation and
management, fault diagnosis, and integration to an emerging smart

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

BuildSys ’16, November 16 - 17, 2016, Palo Alto, CA, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4264-3/16/11...$15.00

DOIL: http://dx.doi.org/10.1145/2993422.2993577

grid. As of 2012, 14% of the buildings in the U.S. deployed Build-
ing Management Systems (BMS) to manage data collection and
remote actuation of the connected building infrastructure [8]. Inno-
vations in "Internet of Things" (IoT) devices have led to connected
lights, power meters, occupancy sensors and appliances that are
capable of interfacing with the underlying SCADA systems used
in building automation. New buildings are installed with BMS by
design, and older buildings are being continuously retrofitted with
networked systems for improved efficiency.

The networked devices present an opportunity for a building "ap-
plications plane" to provide new capabilities to building operators
and occupants alike. However, as a platform, even the most modern
BMS present a cacophony of data and information flows that vary
by buildings, vendors and across locations. The lack of a common
data representation prevents interoperability between buildings and
limits scalability of applications as developers need to map the het-
erogeneous data of each building to a common format. NIST es-
timates that the U.S. building industry loses $15.8 billion annually
due to lack of interoperability standards [26].

Attempts have been made to address this problem. Building In-
formation Models (BIM) [15] were introduced to address the inter-
operability concerns both for the design and operation of buildings.
The resultant schemata — Industry Foundation Classes (IFC) [11]
and Green Building XML (gbXML) [29] — were oriented towards
design and construction efforts. As a consequence, only limited
support was provided for BMS information. More recently, several
schemata, e.g. Project Haystack [2], SAREF [17], have emerged
to highlight the importance and use of building metadata. Brick
builds upon these efforts to devise a practical schema that demon-
strates real applications in a number of buildings across the U.S.
and Europe.

The challenge is to design a schema that can at the very least cap-
ture the points and relationships that actual building engineers and
facilities managers chose to put into the BMS deployments across a
heterogeneous set of buildings. The schema needs to be expressive
enough to capture the contextual information for building subsys-
tems and their data points so that canonical applications such as
fault diagnosis and demand response can be easily developed and
deployed. Recent work has shown that the existing schemata fall
short in capturing important relationships and concepts necessary
for applications for even one real building BMS [12].

Designing a comprehensive schema for the emerging IoT uni-
verse in order to run any possible application in any context is a
difficult problem and beyond the scope of this work. Instead, we fo-
cus on creating an information exchange platform that is focused on
commercial buildings where interactions among devices and peo-
ple are core to sophisticated applications. In developing such a

platform, we are guided by the sensors, attributes and relationships
that have been shown to be useful in the published literature with a
view towards composability and extensibility. In designing Brick,
we ask the following important questions and seek answers with
demonstrated effectiveness:

e Completeness: Can Brick represent all the metadata infor-
mation (such as a sensor’s location, type, etc.) contained in a
building’s BMS?

e Expressiveness: Can Brick capture all important relation-
ships between points that are (a) explicitly or implicitly men-
tioned in a building’s BMS, and (b) expressed in canonical
smart-building applications in published academic literature?

e Usability: Can Brick represent the information in a way that
is easy to use for both the domain expert and the application
developer? Can the schema provide support automation with
machine readable data formats and querying tools?

Our design of Brick is grounded by the information from BMS
across six buildings spread across two continents, comprising more
than 630,000 sqg-ft of floor space and more than 17,700 data points
supplied by BMS from six different vendors, and have vastly vary-
ing subsystems and sensors. We further refine our design require-
ments using eight canonical building applications that require inte-
grated information across commonly isolated building subsystems:
HVAC, lighting, spatial and power infrastructure.

We demonstrate that 98% of BMS data points across our six
buildings can be mapped to Brick, and our eight applications can
easily query the mapped building instances for required informa-
tion. We open source the Brick schema files, the BMS metadata
from our buildings, the application queries that run on top of Brick
and tutorials on how to map existing building metadata to Brick.
Brick schema and documentation can be found at http://brickschema.
org/.

2. BACKGROUND

Most large commercial buildings have monitoring and actuation
sensor networks that are accessed through the BMS or through
SCADA (Supervisory Control and Data Acquisition) systems.
These systems have programmable interfaces for higher level con-
trol, store historical data and provide visualization. Sensors or
control points in each building are generally set up with “labels”
following consistent naming conventions that describe the many
aspects of a data point, such as its function, type, location and
relationships to other subsystems. Labels in some buildings are
simply terse alphanumeric representations, while in other buildings
they are long-form and human readable. Typically, these labels
are attached to various user interfaces of the specific BMS/SCADA
systems, so that engineers and operators can check status and plot
trends.

However, “label” naming remains heterogeneous and is incon-
sistent between commercial vendors and even between buildings
set up by the same vendor. Thus, even with programmable ac-
cess to labels, data, and other descriptive information, scaling ana-
Iytics or intelligent control across commercial buildings remains
challenging. This is likely to be the case as long as the basic
steps in interpreting the metadata involve labor intensive efforts by
trained professionals with deep knowledge of building operations
and specifics of each building.

Brick directly addresses this problem of building-specific “label”
namespaces by devising a normalized vocabulary (i.e., a list of do-
main terms) and relationships which enable programmatic explo-
ration of different facets of a building. Hence, building managers
can represent their BMS metadata using Brick, and applications can

Power Meter

| Lighting Controller | AHU

Supply Fan

VAV
Damper

| Return Fan

| Lighting Zone

Return Air Supply Air
Room 101 Room 102
Thermostat
Temperature HVAC|ZONE
CO2 Sensor

Figure 1: A simple example building that highlights the com-
ponents to be modeled in a building schema.

be developed on a uniform data model. While it is possible to con-
vert a particular building’s custom labels to the Brick schema using
semi-automated methods [12, 13, 10, 18, 19], we do not address
those techniques in this paper since they are orthogonal.

2.1 An Example Building

We start with a hypothetical building to understand the require-
ments of a uniform building data representation, outlining the cur-
rent state of the art. Figure 1 shows the major components of this
building that are of interest: an Air Handler Unit (AHU) supplying
conditioned air to a Variable Air Volume Box (VAV), which mod-
ulates the air provided to an HVAC zone consisting of two rooms.
The HVAC zone has a thermostat that contains a temperature and
CO2 sensor. The same two rooms are part of a Lighting Zone, and
the building Lighting Controller controls the zone lights based on
a schedule. We model the HVAC and lighting systems as examples
because these are the systems commonly found in a modern BMS.

At the very minimum, a schema should be able to model the
components illustrated in Figure 1 as well as their relevant points
(such as temperature sensors) and their related control parame-
ters. More realistically, we should be able to model diverse in-
frastructure systems such as HVAC, lighting, water, and express
the specifics of each installation as per end use and vendor require-
ments. For example, the AHU in an HVAC system can consist
of equipment such as fans, cooling coils, humidifiers, valves and
dampers. Each component could have further types; for example,
fans could be of type supply fan, return fan or exhaust fan, and each
fan would have its associated sensors measuring speed, air flow and
power consumption. In addition to this heterogeneity, the vendor
may choose not to install certain sensors, or to expose esoteric data
points whose functionality is unclear to others.

2.2 Current State of the Art

Project Haystack [2] aims to address heterogeneity in buildings
using tags to label different entities. For example, the temperature
sensor in Figure 1 would have the tags: [zone, temperature,
sensor]. Tags provide a flexible and easy to use framework for
annotating metadata to building data points. Haystack provides a
vocabulary of tags that describes building equipment, weather, dif-
ferent types of data points and properties such as unit and data type.
Their documentation provides guidelines for how to use the tags to
create hierarchies and relationships between different entities of in-
terest. Haystack uses a customized data format (Zinc) and there are
no standard tools that enforce or verify the myriad set of rules laid
out in their documentation. The lack of tools and a number of key

missing concepts, such as rooms and floors, make it difficult to map
existing buildings to Haystack [12].

IFC [11] is a standardized Building Information Model (BIM)
that developed from the need to have a common exchange model
for 3D architectural drawings. They are well designed to capture re-
lationships within building components. For example, IFC is good
at capturing space-related information. However, the concept of
Sensors was only added in the latest version and is still in its in-
fancy. Thus, IFC lacks many of the common metadata attributes
found in a typical BMS.

Semantic ontologies provide an alternative approach, with a for-
mal language to represent essential concepts, domain hierarchies
and relationships between the concepts. A number of ontologies
have been proposed for smart homes and buildings. Most of these
ontologies focus on realizing specific applications like controlling
things [14], energy management [22], or automated design and op-
eration [27]. Daniele et al. [17] combined these ontology modeling
efforts in collaboration with industry to create a simple but uni-
fied model called SAREF. They identify 20 recurring concepts in
homes and buildings across these ontologies, and lay out the steps
to convert SAREF to a custom ontology. These common concepts
do not effectively cover the diversity of devices and equipment in
buildings [12]. Brick adopts similar design principles as SAREF,
but our vocabulary and concepts are based on ground truth BMS
deployments and representative smart building applications.

Bhattacharya et al. [12] performed a comparison of these three
common metadata schemata in the buildings domain. The paper
uses 89 building applications published in literature as a baseline to
compare different schemata and shows that relationships between
different pieces of information are essential to enable interoperabil-
ity and portability of building applications. The paper compares the
capabilities of Haystack [2], IFC [11] and SAREF [17]. They use
three metrics to measure the effectiveness of a schema: (i) abil-
ity to completely map BMS metadata from three buildings to the
schema, (ii) ability of the schema to capture the relationships re-
quired by applications, and (iii) the flexibility of the schema to deal
with uncertainty as well as their extensibility to new concepts. The
paper concludes that none of the studied approaches satisfactorily
address these three requirements. The authors conclude that a new
approach is needed that specifically addresses the metadata prob-
lem and normalizes the diversity of devices and their relationships.

Haystack Tagging Ontology (HTO) [16] maps the Haystack tags
to an ontology, with each tag corresponding to an ontology class.
Thus, HTO is able to combine the flexibility of tags and the formal
modeling of ontologies to define essential BMS metadata and the
relationships between entities. However, HTO confines the ontol-
ogy to the defined tags, and the building entities which are a collec-
tion of tags (e.g. zone temperature sensor) are not modeled. HTO
also does not provide a way to compose complex subsystems in a
building and relies on Haystack tagging for mapping raw metadata
to the ontology. Brick follows a similar methodology to combine
tags and semantic models, but overcomes HTO’s limitations with a
vocabulary based approach and introduces encapsulation for com-
posing complex systems. Thus, Brick provides a direct mapping
to the data points and metadata exposed in a BMS and an enriched
ontology that can be queried with ontology tools.

Brick builds upon these works in several ways. We utilize the
tagging concept of Haystack and extend it with mechanisms to
model relationships and entities. We use the location concepts from
IFC. We use a semantic representation to utilize its flexibility and
extensibility properties. The semantics allows us to formalize, re-
strict, and verify the usage of tags, entities, and relationships.

3. SCHEMA DESIGN
3.1 Design Principles

Brick’s design focuses on the metadata and data points found in
real building deployments and requirements defined by end use ap-
plications. Brick is separated into a core ontology defining the fun-
damental concepts and their relationships as discussed below and
a domain specific taxonomy expanding the building specific con-
cepts. This allows users to extend new informational dimensions
as well as the taxonomy with their concepts. We obtain ground
truth information from six diverse buildings across the US and Eu-
rope, which have 17,700 data points and five different vendors in
total (Table 4). We pick eight popular applications from the list of
smart building applications compiled by Bhattacharya et al. [12],
and formulate metadata queries for these applications to drive the
basic requirements of Brick as well as evaluate how well our build-
ing metadata can be mapped to Brick. Section 6 contains our initial
findings for the six buildings evaluated thus far.

We have used terminology and organized the basic concepts in
a way that is consistent with BMS deployments in our buildings
and the vocabulary used by the building managers at our respective
institutions. We follow standard ontology design methods so that
developers can leverage available tools for data formatting (e.g.,
Turtle [7]) and querying (e.g., SPARQL [5]).

3.2 Tags and Tagsets

We borrow the concept of tags from Project Haystack [2] (Sec-
tion 2.2) to preserve the flexibility and ease of use of annotating
metadata. We enrich the tags with an underlying ontology that crys-
tallizes the concepts defined by the tags and provides a framework
to create the hierarchies, relationships and properties essential for
describing building metadata. With an ontology, we can analyze
the metadata using standard tools and place restrictions to prohibit
arbitrary tag combinations or relationships. For example, we can
restrict the units of temperature sensors to Fahrenheit and Celsius.

We introduce the concept of a ragset that groups together relevant
tags to represent entities. With Haystack and related tagging on-
tologies [16], an entity such as zone temperature sensor
from Figure 1 is defined by its individual tags, so its properties
and relationships with other entities can only be specified at the
tag level. With tagsets, we have a cohesive concept of a zone
temperature sensor, and we can specify that the tempera-
ture is maintained between the zone’s cooling setpoint and
heating setpoint. The concept of tagsets works well with an
ontology class hierarchy - a zone temperature sensorisa
subclass of a generic temperature sensor, and will automat-
ically inherit all its properties. Further, we avoid use of complex
tags such as chilledWaterCool and hotWaterReheat in
Haystack. The vocabulary of Brick is defined by its list of tagsets.

3.3 Class Hierarchies

We define several high level concepts that provide the scaffold-
ing for Brick’s class hierarchy. As the central emphasis of our de-
sign is on representing points in the BMS, we introduce Point as
a class, with subclasses defining specific types of points: Sensor,
Setpoint, Command, Status, Alarm. Each point can have several
attributes, and we divide them into properties and relationships.
Properties are attributes that provide specifics about the point: units,
data type, etc. Relationships are attributes that relate the data point
to other classes such as its location or equipment it belongs to.

Brick implements the principle of informational dimensions dis-
cussed in [12]. We define three concepts as high level classes to
which a Point can be related to: Location, Equipment and Mea-

Relationship / Inverse Transitive? | Definition Endpoints

) . . Loc. / Sensor
contains/isLocatedIn Yes A physically encapsulates B Loc. / Equip.
controls/isControlledBy | No A determines or affects the internal state of B Function Block / Equip.

Equip. / Sensor

hasPart /isPartOf Yes A has some component or part B (typically mechanical) | Equip. / Equip.
Loc. / Loc.
. . . . Equip. / Sensor
hasPoint /isPointOf No A is measured by or is otherwise represented by point B quip S
Loc. / Sensor
. Function Block / Equip.
feeds/ isFedBy Yes A “flows” or is connected to B un.c on O.C / Equip
Equip. / Equip.
hasInput/isInputOf No Function A has an input B Function Block / Sensor
hasOutput / isOutputOf No Function A has an output B Function Block / Sensor

Table 1: List of the Brick relationships and their definitions. All definitions follow the form A <relationship> B, where
relationship is the first one listed, not the inverse. All Brick relationships are asymmetric, and transitive where marked. If
a relationship — is transitive, then if A — B and B — C, then A — C'is a valid relation. Asymmetric simply means that if A — B,

then B — A is invalid.

isPartOf,
feeds

isPointOf, |

e, /,/\“'
‘ measuresJ Relationship
\\ @ /,“‘
\\\ //

N //

Figure 2: Information concepts in Brick and their relationship
to a data point.

v Equipment v Location
> 'Fire Safety System’ Building
v HVAC Floor
> AHU 'HVAC Zone'
> Fan 'Lighting Zone'
4 Pump 4 Room
v 'Terminal Unit' v Point
'Fan Coil Unit' > Alarm
VAV > Command
> Valve > Sensor
'Lighting System’ 4 Setpoint
> 'Water System’ 4 Status

Figure 3: A subset of the Brick class hierarchy

surement (Figure 2). We can expand these concepts in future ver-
sions to expand the metadata covered by Brick (e.g. Network, Peo-
ple). Each concept has a class hierarchy to concretely identify each
entity in the building. For example, the Equipment class has sub-
classes HVAC, Lighting and Power, each of which have their own
subclasses. Figure 3 showcases a sample of Brick’s class hierarchy.

It is common in a domain to use multiple terminologies for the

same entity. For example, in HVAC systems, Supply Air Temp-—

erature and Discharge Air Temperature are used in-
terchangeably. We identify these synonyms from our ground truth
buildings, and mark the corresponding tagsets as being equivalent
classes in Brick. Note that the class hierarchy does not strictly fol-
low a tree structure, and we use multiple inheritance when appro-
priate. For example, a desk lamp can be a subclass of both the
lighting system and office appliance classes.

3.4 Fundamental Relationships

Relationships connect the different entities in the building and
are essential to providing adequate context for many applications.
For example, an HVAC fault detection app running on our example
building (Figure 1) needs to know the room in which the tempera-
ture sensor is located, the corresponding temperature setpoint and
the status of the VAV that supplies conditioned air to this room.

Table 1 defines the basic set of relationships in Brick. We have
designed these relationships to be minimal, multipurpose and intu-
itive so that it is easy for a user to specify a particular relationship.
The i sPartOf relationship captures the compositions among the
entities in the building. For example, a room isPartOf a floor,
an AHU isPartOf the HVAC system. The feeds relationship
captures the different flows in the building, such as the flow of air
from AHU to VAY, the flow of water from a tank to a tap, or the
flow of electricity from a circuit panel to an outlet. Each of these
relationships can have sub-properties. For instance, feeds can be
extended to feedsAirTo, feedsWaterTo, etc. Figure 4 shows
the relationships for a subset of the example building in Figure 1.

The Brick schema includes possible relationships among classes
as a guideline for users to add relationships to their instances.
For example, using ontology class restrictions we say that a
VAV can have points like zone temperature sensor,
discharge air flow setpoint, reheat valve
command, and it can have other equipment as its components
such as damper and reheat valve. These can be exploited
by a user interface to guide users while tagging raw metadata or
while establishing relationships between entities. Note that we do
not enforce these restrictions to enable the flexibility to compose
building metadata as per user requirements.

3.5 Function Blocks

The tags, tagsets, class hierarchies and fundamental relationships
provide sufficient expressiveness to describe our building metadata
and direct relationships. However, buildings equipment and points
are often grouped by multiple logical views such as control view.

We use Function Blocks to encapsulate details of such logical
groups that expose an interface through named inputs and outputs.
These are defined through isInputOf and isOutputOf rela-
tions to the particular function block acting as context. Function
Blocks may encapsulate other Function Blocks via the i sPartOf
relation.

Consider the example of air flow from AHU to VAV in our exam-
ple building (Figure 1). An AHU provides temperature controlled

Lighting Power hasPoint
Controller Meter .

controls feeds
Lighting hasPart HVAC | feeds
Zone Zone VAV

hasPart

hasPoint hasPart
hasPoint

hasPart
Room Room Temperature Damoer
102 101 Sensor >
Legend ‘ Point ‘ ‘Equipment‘ ‘ Location ‘ Relationship

Figure 4: Brick classes and relationships for a subset of the
example building in Figure 1.

AHU Return Air
Temperature Sensor
VAV Supply Air
Flow Sensor

I:I Equipment Instance [Point Instance

as Function Block

hasInput hasOutput

AHU Supply Air
Temperature Sensor

hasInput

Zone Air
Temperature Sensor

——p» Relationship

feeds

hasOutput hasInput

Figure 5: An example of a function block that captures the tem-
perature control of air as it flows from the AHU to VAV in our
example building.

air to VAVs. In Figure 5, the AHU function block takes the return
air temperature sensor as its input and after heating/cooling sup-
plies air at an appropriate temperature. The feeds relationship
expresses the flow of air from the AHU to the VAV. The VAV func-
tion block shows that the VAV supply air flow sensor is affected
by both the AHU’s supply air temperature and the measured zone
temperature from a thermostat.

4. RDF AND SPARQL

Brick represents knowledge as a graph of entities (nodes) con-
nected by relationships (directed edges). This section briefly de-
scribes how Brick uses the RDF format to represent its knowledge,
and how this knowledge is traversed and queried using SPARQL.

4.1 Representing Knowledge in RDF

Brick adheres to the RDF (Resource Description Framework)
data model [24], which represents knowledge as a graph expressed
as tuples of subject-predicate-object known as triples. All build-
ings in Brick consist of a collection of such triples. A triple states
that some subject entity has some relationship predicate to some
other entity object — essentially a directed edge in a graph. This
simple structure enables the succinct and elegant composition of
the large, interconnected structures typical of building subsystems.

All entities and relationships exist in some namespace, indicated
by a namespace: prefix. Brick takes advantage of the standard
RDF [3], RDFS [4] and OWL [1] namespaces, which come with
their own graphs defining entities, relationships and restrictions.

The collection of triples in Figure 6 gives the representation of
the connection of the VAV to the Temperature Sensor using the
hasPoint relationship from the building graph in Figure 4. Line
1 declares an entity identified by the label building:myVAV:
this creates the myVAV entity in the building namespace. All
entities are implicitly created the first time they are mentioned.
brick:VAV is a class defined by the Brick ontology that repre-

1 building:myVAV rdf:type brick:VAV

2 building:myTempSensor rdf:type brick:Zone_Temperature_Sensor

3 building:myVAV brick:hasPoint building:myTempSensor

Figure 6: RDF triples instantiating a VAV and a Temperature
Sensor and declaring that the VAV measures temperature via
that sensor.

1 PREFIX rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-nsf
2 PREFIX rdfs: <http: W. .org/200(1/rdf hema#

3 PREFIX brick: o0://build . . log #

4 SELECT ?ahu ?room

5 WHERE ({

6 ?zone rdf:type brick:HVAC_ Zone .

7 ?room rdf:type brick:Room .

8 ?ahu rdf:type/rdfs:subClassOf+ brick:AHU .

9 ?ahu brick:feeds+ ?zone .

10 ?zone brick:hasPart ?room .

n o}

Figure 7: A simple SPARQL query for retrieving all rooms con-
nected to a given Air Handling Unit (AHU).

sents a variable air-volume box. The use of the rdf : type rela-
tionship declares that building:myVAVisabrick:VAV. Sim-
ilarly, line 2 of Figure 6 instantiates a Zone Temperature Sensor.
Line 3 uses the Brick relationship brick:hasPoint to declare
that building:myVAV is associated with the given temperature
Sensor.

4.2 Querying Knowledge with SPARQL

Applications query the Brick graph for entities and relationships
using SPARQL (SPARQL Protocol and RDF Query Language) [5].
SPARQL queries specify constraints and patterns of triples, and
traverse an underlying RDF graph to return those that match. For
Brick applications, this underlying graph consists of all the entities
and relationships in that building.

While SPARQL has many features, Brick is simple enough to
support all of our intended applications with a simple subset of
SPARQL. Figure 7, a query for retrieving all rooms which are con-
nected to a given AHU, contains a representative example of each
of these features.

Lines 1-3 declare the prefixes for the various namespaces to
shorten the references to entities; for brevity, we omit these from
all later queries in this paper. Line 4 contains the SELECT clause,
which states that the variables ?ahu and ? room should be returned
(the ? prefix indicates a variable). The WHERE clause determines
the types and constraints on these variables. Line 6 states that
?zone is any entity in the graph that is an instance of the class
brick:HVAC_Zone. Likewise, line 7 declares ?room to be an
instance of a brick :Room.

Brick provides both generic (such as AHU) and specific classes
of equipment (such as a RoofTop-Unit AHU). A building repre-
sented in Brick can specify the specific subclasses, or if that in-
formation is not available, instantiate a generic class. Line 8 is a
common construct in Brick queries which accounts for this type of
uncertainty in how Brick represents buildings. This sub-query re-
turns all entities ?ahu that are either an instance of a subclass of
brick:AHU or an instance of brick : AHU itself.

An application that does not require specific features of such sub-
classes may want to query for the generic class rather than exhaus-
tively specify every possible subclass. Because SPARQL and RDF
do not support the object-oriented programming style of classes,
the SPARQL query itself must specify the semantics of the type-
inheritance: entities that instantiate the generic class directly, or
entities that instantiate a subclass of the generic class.

After declaring the types of the entities involved, the query re-
stricts the set of relationships between the entities on lines 9 and 10
to determine which pairs of entities are connected. Line 9 finds
all HVAC zones downstream of a particular AHU by following
a chain of brick: feeds relationships (the + indicates that 1
or more edges can be traversed as long as the edges are of type
brick:feeds). Line 10 links the identified HVAC zones with
the rooms they contain. The correct relationships to use can be
determined from the Brick relationship list (Table 1).

This example query also illustrates an important quality of Brick
queries: establishing a link between two entities (even across dif-
ferent subsystems such as HVAC and spatial) does not require ex-
plicit knowledge of all intermediary entities. Rather, the query
denotes the relevant entities and relationships: the query in Fig-
ure 7 is indifferent to whatever building-specific equipment and
details lie between an Air Handler Unit and the end zones. This
is possible because the relationships between those entities all use
Brick’s brick: feeds relationship. What’s more, the query ac-
complishes this using only a few, straightforward expressions to re-
turn the relevant triples from the collection of thousands of entities
and relationships present in the building.

5. APPLICATIONS

A successful building schema must be able to capture the nec-
essary relationships and entities required by the family of possible
applications. Bhattacharya et al. establish that current industrial
standards lack the ability to sufficiently describe how those pieces
of equipment relate to each other [12]. Brick instead chooses to
represent the set of useful entities and relationships required by the
family of possible building applications. In this section, we con-
struct this set by pulling a representative example from each of the
eight common application dimensions identified by Bhattacharya
et al. [12]. We determine the effectiveness of the schema to be how
many of these entities and relationships it can capture.

5.1 Designing Relationships

We use these representative applications to establish the set of
required relationships as well as the domains of those relationships.
Relationships define how entities are associated, which for a given
entity may include:

e Taxonomy: what class or classes of things define an entity

e Location: which building, floor and room an entity is in, but
also where in the room it is

e Equipment Connections: what equipment an entity is con-
nected to, and how it is connected

e Equipment Composition: what equipment an entity is a
part of, or what equipment is a part of it

e Subsystem: how the entity is situated in a building subsys-
tem such as HVAC, Electrical or Lighting

e Monitoring: what measures the entity or what it measures

Portability and orthogonality are two primary concerns in de-
signing the set of relationships to include in an effective ontology.
When describing or reasoning about a building, the set of possi-
ble relationships between any two entities (i.e. set of named edges
between any two nodes) should be small enough and well-defined
such that the “correct” relationship should be obvious. This or-
thogonality reduces the possibility of inconsistency across build-
ings. Taken to its extreme, orthogonality informs a set of relation-
ships that are specific and non-redundant, which can lead to overfit-
ting the set of relationships for a particular building or subsystem.
To support the goal of designing a unified metadata across many

Energy Apportionment [20]
Web Displays [9]
Model-Predictive Control [31]
Participatory Feedback [23]
Demand-Response [32]

NILM [25]

Entities

Temp Sensor

CO2 Sensor

Occ Sensor

Lux Sensor

Power Meter

Airflow Sensor

Generic X X

HVAC

Lighting

Reheat Valve

VAV

AHU

Chilled Water

Hot Water

Building

Floor

Room

HVAC Zone

Lighting Zone

Sensor isLocIn Loc.
Equip isLocIn Loc.
Loc. hasPart Loc.
Loc. hasPoint Sensor
Equip hasPoint Sensor
Equip hasPart Sensor
Equip feeds Zone
Equip feeds Room
Equip feeds Equip
Zone hasPart Room

> Fault Detection and Diagnosis [30]

> > | Occupancy Modeling [21]

Sensors
XX
>
Mo

ool

Equipment
Lol

XK XX X

TR X R XX

>
PR AR X
ool

bl

Locations

kel
PR AR X
>
> el ekl e Ko Tl
HKRH X

Relationships
XXX XX
>
PP XX
>
KX R MH K XX

X

Table 2: This table shows at a high level which entities and
relationships are required by each of the eight representative
applications.

buildings, these relationships must also be sufficiently generic to
be portable to many buildings.

Resolving these two tensions leads to the set of relationships
listed in Table 1. We demonstrate here that this set of relationships
is sufficient to cover the requirements of the representative appli-
cations. The specific entities and relationships each application re-
quires are listed in Table 2. We implemented the eight applications
in Table 2 and ran them on the six buildings; the results are collated
in Table 3. The actual points exposed for each building by the BMS
are the primary limiting factor for whether or not each application
runs on a building: if a BMS exposes no lighting points, then a
lighting application cannot run. In addition, applications have to
account for the diversity of points across buildings: Brick defines
synonym tagsets where possible, but there will always be a degree
of disambiguation that is application-specific.

Brick allows applications to write portable queries that identify
relevant resources in a building-agnostic manner. An application
can then adapt its behavior to the set of returned resources, likely
using some API to interact with the required points. For this reason,
we implement each of the applications as a set of SPARQL queries
that return the set of relevant entities and relationships.

5.2 Results

We implement eight applications — one from each of the appli-
cation categories in [12] — as a set of SPARQL queries identifying
the relationships in Table 2. These queries do not contain the full
operating logic of the application, but rather serve as a bootstrap-

Building

Application EBU3B | GTH | GHC | IBM | Rice | Soda
Occupancy [21] 261 245 366 821 265 232
Energy Apportionment [20] | - 302 - 397 4 -
Web Displays [9] 699 81 65 835 106 | 605
MPC [31] 482 69 428 324 110 | 482
Participatory Feedback [23] | - 253 - 386 - -
FDD [30] 229 12 229 728 - 136
NILM [25] 6 82 - 1348 | - -
Demand Response [32] 2300 24 2490 | 608 4 152

Table 3: Number of matching triples in each building for the
SPARQL queries consisting the eight applications. A non-zero
number indicates that the application successfully ran on the
building. Buildings with ‘=’ did not have any relevant points
exposed in the BMS.

I SELECT ?airflow_sensor ?room ?vav

2 WHERE {

3 ?airflow_sensor rdf:type/rdfs:subClassOfx*
brick:Supply Air Flow_ Sensor .

?vav rdf:type brick:VAV .

?room rdf:type brick:Room .

?zone rdf:type brick:HVAC_ Zone .

?vav brick:feeds+ ?zone .

?room brick:isPartOf ?zone .

1 ?airflow_sensor brick:isPointOf ?vav .

1

Z 5 0 ® a0 u s

}

Figure 8: ZonePAC query for airflow sensors and rooms for
VAVs. The query returns all relevant triples for ZonePAC to
bootstrap itself to a new building.

ping step for the application to discover the set of available and
relevant resources. Table 3 contains the results of running these
queries over the six buildings for each of the applications.

The applications that ran on the majority of buildings did so
because they rely on HVAC and construction/spatial information
readily exposed by the BMS. This includes VAVs, AHUs, HVAC
zones, relevant sensors, and how these connect to each other. The
Participatory Feedback application operates entirely on lighting con-
trols, which rarely appear in a BMS, thus limiting its portability.
Likewise, the NILM application relies on power meters, which also
may not be integrated into the BMS.

The primary challenge in developing portable queries was ac-
counting for the variance in relationships across buildings. For
example, a zone temperature sensor may have either of the two
connections indicated in Figure 4: it may have an isPointOf
relationship with an HVAC zone entity or a VAV entity. These in-
consistencies arise from differences in building construction and
the representation of the points in the BMS. It is possible to ac-
count for these differences in SPARQL to construct truly portable
queries.

5.3 [Example Application: ZonePAC

The ZonePAC [9] application incorporates monitoring and mod-
eling of HVAC zone behavior and power usage with occupant feed-
back to provide a platform for occupants to directly contribute to
the efficacy and efficiency of a building’s HVAC system. ZonePAC
requires the following relationships:

the mapping of VAVs to HVAC zones and rooms

the heating and cooling state of all VAVs in the building

the mapping of VAV airflow sensors to rooms

all available power meters for heating or cooling equipment

Immediately, the requirements of this application outstrip the
features provided by other metadata solutions. ZonePAC needs
to relate entities across subsystems typically isolated or ignored in

modern BMS: the spatial construction of the building, the func-
tional construction of the HVAC system, and the positioning of
power meters in that infrastructure. Brick simplifies this cross-
domain integration and makes it possible to retrieve all relevant
information in a few simple queries.

To identify the airflow sensors and rooms served for each
VAYV, the application uses the query in Figure 8. The appli-
cation uses Brick’s synonyms to capture both Discharge
Air Temperature Sensors as well as Supply Air
Temperature Sensors. Airflow sensors have an
isPointOf relationship with the VAVs, and the rest of the
relationships in the application mirror those in Figure 4. The “Web
Displays” row of Table 3 contains the results of running ZonePAC
over the six buildings.

6. CASE STUDIES

We showcase the effectiveness of our schema by converting six
buildings with a wide range of BMS, metadata formats, and build-
ing infrastructure into Brick. We discuss the challenges faced in
converting various buildings into Brick to demonstrate Brick’s ro-
bustness as well as to provide guidance for those facing similar
challenges when using Brick.

Table 4 contains a summary of the construction and infrastruc-
ture of the six buildings, and how well Brick was able to capture
their exposed BMS points. To evaluate the effect of “overfitting”
Brick’s tagsets to the set of known BMS points, we examined the
% of BMS points covered by Brick’s tagsets for Rice Hall and
Soda Hall both before and after we incorporated their specialized
points into Brick. Using an unaltered Brick, we matched 93.5%
and 93.1% of Rice and Soda Hall’s BMS points respectively. Af-
ter incorporating the BMS-specific points, they scored 98.5% and
98.7% respectively, using Brick’s class hierarchy to avoid compro-
mising generalizability. Thus, we can conclude that Brick’s tagsets
do not overfit the set of six buildings. Examining Table 4, we can
see that Brick matches the majority of points in all six buildings.

6.1 Gates Hillman Center at CMU

The Gates and Hillman Center (GHC) at Carnegie Mellon Uni-
versity is a relatively new building, completed in 2009, with
217,000 square feet of floor space, 9 floors, and 350+ rooms of vari-
ous types (offices, conference rooms, labs), and contains over 8,000
BMS data points for various HVAC sensors, setpoints, alarms, and
commands. CMU contracts with Automated Logic for building
management.

The GHC includes 11 AHUs of different sizes serving multiple
zones: three small AHUs serve one giant auditorium, one big lab-
oratory and three individual rooms respectively. Eight large AHUs
supply air to more than 300 VAVs. GHC’s HVAC system also con-
tains computer room air conditioning (CRAC) systems which are
equipped with additional cooling capacity to maintain the low tem-
perature in a computer room and fan coil units systems to provide
cooling and ventilation functions. Despite the existence of these
more esoteric subsystems, Brick matched 99% of GHC’s BMS
points, with the remaining points being too uncommon to be re-
quired by most applications (such as a Return Air Grains
Sensor which measures the mass of water in air). The direct
translation of BMS tags into Brick was relatively simple, only re-
quiring a mapping between the human-readable BMS data points
and Brick for each unique data point type.

The major challenge in converting the GHC to Brick was de-
termining the relationships between pieces of equipment, which
were not encoded in the BMS’s labels. While the information is
available through an Automated Logic GUI representation of the

Building Name Location Year | Size (ft?) | # of Points | % Tagsets Mapped | # Relationships Mapped
Gates Hillman Center (GHC) Carnegie Mellon Univ., Pittsburgh, PA | 2009 217,000 8,292 99% 35,693
Rice Hall Univ. of Virginia, Charlottesville, VA 2011 100,000 1,300 98.5% 2,158
Engineering Building Unit 3B (EBU3B) | UC San Diego, San Diego, CA 2004 150,000 4,594 96% 8,383
Green Tech House (GTH) Vejle, Denmark 2014 38,000 956 98.8% 19,086
IBM Research Living Lab Dublin, Ireland 2011 15,000 2,154 99% 14,074
Soda Hall UC Berkeley, Berkeley, CA 1994 110,565 1,586 98.7% 1,939

Table 4: Case Study Buildings Information.

building, there was no machine readable encoding of which VAVs
connected to which AHUs. This required examining the build-
ing plans directly to incorporate these relationships (of which there
were over 400). While a barrier to generating a Brick representa-
tion of a building, this example also shows the benefits that such a
representation provides. Instead of being reliant upon manually ex-
amining a GUI to determine relationships between equipment, the
Brick representation shows these relationships in both human and
machine readable formats once represented in Brick.

6.2 Rice Hall at UVA

Rice Hall hosts the Computer Science Department at the Univer-
sity of Virginia. The building consists of more than 120 rooms in-
cluding faculty offices, teaching and research labs, study areas and
conference rooms distributed over 6 floors with more than 100,000
square feet of floor space. The building contracts with Trane for
building management.

Rice Hall contains 4 AHUs associated with more than 30 Fan
Coil Units (FCU) and 120 VAVs serving the entire building. Be-
sides the conventional HVAC components, the building features
several different new air cooling units, including low temperature
chilled beams and ice tank-based chilling towers, an enthalpy wheel
heat recovery system, and a thermal storage system. The building
also contains a smart lighting system including motorized shades,
abundant daylight sensors and motion sensors. Rice Hall’s BMS
points are easily interpretable for conversion to Brick despite it
containing some uncommon equipment such as a heat recovery and
thermal storage systems as part of the building design as an energy-
efficient “living laboratory”. Moreover, the set of relationships de-
fined by Brick sufficiently captured how the uncommon equipment
related to other components of the HVAC system.

A few of these points, suchas Ice Tank Entering Water
Temperature Sensor, are specific to Rice Hall among the set
of six buildings we examined. Nonetheless, Brick’s structure al-
lows for the clean integration of new tagsets into the hierarchy with-
out disrupting the representation of existing buildings.

6.3 Engineering Building Unit 3B at UCSD

The Engineering Building Unit 3B (EBU3B) at University of
California, San Diego hosts the Department of Computer Science
& Engineering and contains offices, conference rooms, research
laboratories, an auditorium and a computer room. The building was
constructed in 2004 and has 150,000 square feet of floor space with
over 450 rooms. The BMS of EBU3B is provided by Johnson Con-
trol Inc., and contains more than 4500 data points, most of which
belong to the HVAC system and power metering infrastructure.

The HVAC system consists of a single AHU that supplies con-
ditioned air to 200+ VAV units and some FCUs. There is a CRAC
system serving the computer room and there are exhaust fans for all
kitchens and restrooms. The HVAC system also consists of Vari-
able Frequency Drives (VFD), valves, heat exchangers and cooling
coils to facilitate operation of AHU and CRAC. Brick’s schema
provides the necessary tagsets and relationships to account for all
of these components and their data points. The university cen-
tral power plant provides the hot and cold water necessary for the

HVAC and domestic hot water system. The corresponding sensors
that measure the hot and cold water use were modeled in Brick,
but the central plant was left out as it was not part of the building.
The building contains meters that measure power consumption of
various subsystems: lighting, computer room, HVAC system and
elevator. The meters were associated to the corresponding systems
with 1 sPointOf relationship as required by the applications.

An issue that arose in mapping EBU3B to Brick was that the
AHU supply air was divided into two parts that supplied air to two
wings of the building. Brick currently does not provide a means
to model this division of supply air which has proven relevant to
the diagnosis of various faults. Moving forward, Brick can address
this by modeling the AHU discharge air as a resource, which can
also help model other concepts such as cold water supply from a
central plant. Alternatively, the discharge air can be attributed to
the cooling coil that modulates its temperature, and the cooling coil
can be said to feed discharge air to the terminal units.

Additionally, EBU3B’s BMS contains data points corresponding
to Demand Response events, which exposes an interesting confla-
tion of the representation and operation of the building. Because
BMS are typically written as monolithic applications over building-
specific representations, they must incorporate external signals such
as Demand Response into the set of BMS points. Conversely, Brick
decouples the resources and infrastructure of a building from the
processes managing the building.

6.4 Soda Hall at UC Berkeley

Soda Hall, constructed in 1994, houses the Computer Science
Department at UC Berkeley. It mostly consists of closed small to
medium sized office spaces, where either faculty or groups of grad-
uate students sit. The BMS system, provided by the now-defunct
Barrington Systems, exposes only the sensors in the HVAC system.

The HVAC system of the building runs on pneumatic controls,
and comprises 232 thermal zones. The zones on the periphery of
the building have VAVs with reheat, while the other zones do not.
For a VAV with reheat, the same control setpoint indicates both
the amount of reheat and the amount of air flowing into a zone,
by using a proprietary value mapping mechanism. While the value
mapping is building-specific, Brick can express the fact that the
same sensor controls both the reheat and air flow by labeling the
point as a subclass of both reheat and airflow tagsets. The logic for
communicating with the point correctly would be handled by some
other system; Brick simply identifies the available points.

Unique to the set of buildings presented here, the operational set
of Soda Hall’s HVAC components is not static. Soda Hall con-
tains a redundant configuration of chillers, condensers and cooling
towers. At any point of time, one of each of these systems is oper-
ational, while the others are kept as hot standby. An isolation valve
setpoint indicates which of the redundant subsystems is currently
operating. Brick completely expressed the redundant subsystem ar-
rangement, but the equipment contained several unique points such
as On Timer for the chiller subsystem that had to be added to
Brick’s tagsets.

6.5 Green Tech House

The Green Tech House (GTH), constructed in 2014, is a 38,000
square feet office building containing 50 rooms spanning three sto-
ries and functions as office spaces, a cafeteria, meeting rooms and
bathrooms. The BMS of GTH is Niagara, but to protect basic build-
ing functionality only a subset of the BMS points are exposed via
oBIX. Therefore the Brick representation was constructed from a
combination of BMS points and screen shots from the BMS as the
oBIX points do not include AHU nor VAV points.

Compared to the rest of the buildings examined here, the thermal
conditioning of GTH is reversed. Air is heated centrally in a single
AHU and distributed to VAVs with cooling capabilities. The AHU
uses a rotary heat exchanger to recovers heat from the return air.
The pressure of the AHU return and supply air of the north and
south side of the building are measured separately. Additionally,
most rooms have radial heating on either walls or floors. These
are supplied by two independent hot water loops, heated by district
heating.

The main challenge in creating the Brick representation of GTH
was accounting for infrastructural differences compared to the AHU
and VAV constructs Brick is designed around. Although equiva-
lents are present neither the BMS nor the technical documentation
of GTH refers to AHUs and VAVs. For the purposes of running
Brick applications, we mapped the HVAC subgraph of components
onto Brick’s model. Two flows of air goes through the subgraph
mapping to a VAV. We employed a functional block to differentiate
between these and keep the interface of the VAV. However, this is
not an ideal solution. It is not Brick’s goal to disguise the construc-
tion of building subsystems, but rather to abstract away the intrica-
cies of subsystem composition between buildings. Future versions
of Brick will account for such variation.

6.6 IBM Research Living Lab

The IBM Research building in Dublin was retrofitted as modern
15,000 m? office in 2011 from an old factory. The building serves
as living laboratory for IBM’s Cognitive Building research and is
heavily equipped with modern building automation technology to
provide a rich data source for research.

The building was refurnished in multiple steps and new systems
were installed by different companies. As a result, the diversity
of systems and labels is very high in the building. The building
contains now about 2,154 datapoints collected from 11 different
systems. The building is served by 4 AHUs with about 115 points
but has also some old disconnected legacy systems in the point list.
Unique about the building is that it contains 150 desk temperature
sensors and 250 smart meters. It also has 1,000 points related to
161 FCUs as well as 350 points on the lighting system including
150 PIR sensors and door people counters.

The diversity of the dataset made the mapping of the datapoints
to Brick challenging as several types were not covered that are par-
ticularly related to the unique systems such as the FCU and people
counters. The large number of FCUs that are connected to different
AHU, boilers and chillers are unique for this building and show the
capability and importance of the relationship modelling. Similar is
the hierarchy of smart meters that monitor various equipment from
FCUs to lighting and AHU.

7. CONCLUSION AND DISCUSSION

This study has addressed an important open problem that was
referenced in [10, 12, 13, 18, 19] — Can there be a building meta-
data schema that is complete, expressive and usable? Completeness
entails that the schema expresses the vast majority of the points
found in large commercial buildings that facilities managers thought

worthy to include in the BMS tags, as well as the points and rela-
tionships necessary for important building applications. Expres-
siveness entails that the schema’s namespace is well-defined, and
one can implement applications using it rather than using the ad-
hoc namespace of the particular building. Usability entails that the
schema is understandable, and the total amount of work required
to convert the existing buildings into the schema is limited and
bounded, and can perhaps be automated at a reasonable scale using
solutions such as [10] and [13].

We have defined a schema, Brick, that we believe is a strong
candidate to solving this open problem. Brick builds upon prior
work and introduces a number of novel concepts. Brick uses clear
tags and tagsets to specify sensors and subsystems in a building. It
defines an ontology and a class hierarchy for this list of tags and
tagsets. Relationships are represented as triples, which allows us
to leverage existing tools to build and query the resulting build-
ing representations. Brick proposes Functional Blocks to abstract
out complexity but also aid in system composition and hierarchies.
Finally, Brick uses the notion of synonyms to equate sensors and
subsystems similar in function.

Brick is complete, capturing an average of 98% of BMS data
points across six diverse buildings comprising almost 17,700 data
points and 615,000 sq-ft of floor space. Brick is expressive, suc-
cessfully running eight canonical applications on these buildings.
Four applications ran on all six buildings, while the remaining ap-
plications ran on buildings whose BMS exposed the requisite points.
Brick is usable, as converting each of the buildings’ legacy meta-
data to the normalized schema took no more than 20 man-hours.The
resulting schema is understandable and easy to query as shown in
Figures 6, 7 and 8.

Brick tries to maintain orthogonality in describing tagsets and re-
lationships, i.e. there should be a single straightforward way to de-
scribe an entity, collection of entities and their inter-relationships.
The functional block model in Brick proves very helpful in ab-
stracting out the complexity and heterogeneity of particular sub-
sytems in buildings, while aiding system composition and hierar-
chies. For instance, functional blocks’ easy replication, instanti-
ation and composition can help Brick quickly specify the numer-
ous VAV zones and its associated points in a building. Functional
blocks also help hide the subtle differences between complex sub-
systems such as an AHU.

Brick distinguishes itself from other standards in the building-
metadata domain by virtue of its process of the production of open
reference implementations on real buildings serving as a means of
evaluating the effectiveness of the solution. Developing a reference
standard through such a process has been successful in other fields,
most notably the IETF [6] for internet protocols and algorithms.
The code, schema, and reference implementations of all the build-
ings in our testbed are available at http://brickschema.org/.

We hope that our solution to this well-defined open metadata
problem lays the foundation for industry and academic collabora-
tion to produce bonafide standards that could be transformative in
producing energy efficient buildings and portable applications.

8. FUTURE WORK

We have taken the initial concrete to steps to adopt Brick schema
for smart building applications. Our future work will focus on sev-
eral directions to make Brick adaptable and usable in a wide va-
riety of contexts. Brick vocabulary is primarily based on BMSes
in office and university buildings, and needs to incorporate other
types of buildings such as restaurants, shopping malls and hospi-
tals. Brick also needs to be extensible to emerging IoT devices and
applications. We designed Brick with these extensions in mind, and

envisage that such extensions can be made easily with additional
tags/tagsets. Another challenge is converting legacy label/SCADA-
based metadata to Brick, and this mapping can be automated further
drawing from techniques in [13, 10, 18, 19, 28]. Such techniques
should be augmented to help a facilities manager infer which are
the best tags/tagsets and relationships that a particular label should
be mapped to. Automated mapping is a first step towards mak-
ing Brick usable in real building deployments. Brick also needs
an equivalent of a model-checker to ensure the correctness of the
generated metadata. We need tools that makes it easy for a novice
user to work with semantic querying. The Brick schema will act as
the anchor point for development of these tools. We can evaluate
usability of Brick in building deployments once these supporting
tools are developed.

Acknowledgments

Our sincere thanks to the following grants for supporting this
work — National Science Foundation grants: CPS-1239552,
NSF-1636879, 1IS-1636916, CSR-1526237, CNS-1526841, NSF-
1305362; U.S. Department of Energy grant: DE-EE0006353;
King Abdullah University of Science and Technology award: Sen-
sor Innovation Award #OSR-2015-Sensors-2707; Innovation Fund
Denmark award: COORDICY(4106-00003B); EU H2020 grant:
TOPAs (676760) and support from Intel Corporation.

9. REFERENCES

[1] OWL Namespace. http://www.w3.0rg/2002/07/owl#.

[2] Project Haystack. http://project-haystack.org/.

[3] RDF Concepts Namespace.
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#.

[4] RDF Schema Namespace.
https://www.w3.0rg/2000/01/rdf-schema#.

[5] SPARQL Query Language.
https://www.w3.org/TR/rdf-sparql-query/.

[6] The Internet Engineering Task Force (IETF®)).
https://www.ietf.org/.

[7] Turtle. https://www.w3.org/TR/turtle/.

[8] U.E.I. Administration. User’s guide to the 2012 cbecs
public use microdata file. Commercial Buildings Energy
Consumption Survey (CBECS), page 33, May 2016.

[9] B. Balaji, H. Teraoka, R. Gupta, and Y. Agarwal. Zonepac:
Zonal power estimation and control via HVAC metering and
occupant feedback. In BuildSys, pages 1-8. ACM, 2013.

[10] B. Balaji, C. Verma, B. Narayanaswamy, and Y. Agarwal.
Zodiac: Organizing large deployment of sensors to create
reusable applications for buildings. In BuildSys, pages
13-22. ACM, 2015.

[11] V. Bazjanac and D. Crawley. Industry foundation classes and
interoperable commercial software in support of design of
energy-efficient buildings. In Building SimulationdAZ99,
volume 2, pages 661-667, 1999.

[12] A. Bhattacharya, J. Ploennigs, and D. Culler. Short paper:
Analyzing metadata schemas for buildings: The good, the
bad, and the ugly. In BuildSys, pages 33-34. ACM, 2015.

[13] A. A.Bhattacharya, D. Hong, D. Culler, J. Ortiz,

K. Whitehouse, and E. Wu. Automated metadata
construction to support portable building applications. In
BuildSys, pages 3—12. ACM, 2015.

[14] D. Bonino and F. Corno. DogOnt — ontology modeling for
intelligent domotic environments. In ISWC - Int. Semantic
Web Conf., volume 5318, pages 790-803. 2008.

[15] T. Cerovsek. A review and outlook for a *building
information model’(BIM): A multi-standpoint framework for
technological development. Advanced engineering
informatics, 25(2):224-244, 2011.

[16] V. Charpenay, S. Kabisch, D. Anicic, and H. Kosch. An
ontology design pattern for iot device tagging systems. In 5th
Int. Conf. on the Internet of Things (I0T), pages 138—145.
IEEE, 2015.

[17] L. Daniele, F. den Hartog, and J. Roes. Study on semantic
assets for smart appliances interoperability: D-S4: Final
report. Technical report, European Union, 2015.

[18] J. Gao, J. Ploennigs, and M. Berges. A data-driven meta-data
inference framework for building automation systems. In
BuildSys, pages 23-32. ACM, 2015.

[19] D. Hong, H. Wang, J. Ortiz, and K. Whitehouse. The
building adapter: Towards quickly applying building
analytics at scale. In BuildSys, pages 123—132. ACM, 2015.

[20] M. Jahn, T. Schwartz, J. Simon, and M. Jentsch.
Energypulse: tracking sustainable behavior in office
environments. In Int. Conf. on Energy-Efficient Computing
and Networking, pages 87-96. ACM, 2011.

[21] D. Jung, V. B. Krishna, N. Q. M. Khiem, H. H. Nguyen, and
D. K. Yau. Energytrack: Sensor-driven energy use analysis
system. In BuildSys, pages 1-8. ACM, 2013.

[22] M. J. Kofler, C. Reinisch, and W. Kastner. A semantic
representation of energy-related information in future smart
homes. Energy and Buildings, 47:169-179, 2012.

[23] A. Krioukov, S. Dawson-Haggerty, L. Lee, O. Rehmane, and
D. Culler. A living laboratory study in personalized
automated lighting controls. In BuildSys, pages 1-6. ACM,
2011.

[24] O. Lassila and R. R. Swick. Resource description framework
(RDF) model and syntax specification. 1999.

[25] A. Marchiori and Q. Han. Using circuit-level power
measurements in household energy management systems. In
BuildSys, pages 7-12. ACM, 2009.

[26] NIST GCR. Cost analysis of inadequate interoperability in
the US capital facilities industry. National Institute of
Standards and Technology (NIST), 2004.

[27] J. Ploennigs, B. Hensel, H. Dibowski, and K. Kabitzsch.
Basont-a modular, adaptive building automation system
ontology. In IECON - 38th An. Conf. of IEEE Industrial
Electronics Society, pages 4827-4833. IEEE, 2012.

[28] E.Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. the VLDB Journal,
10(4):334-350, 2001.

[29] S. Roth. Open green building XML schema: A building
information modeling solution for our green world, gbXML
schema (5.12). 2014.

[30] J. Schein, S. T. Bushby, N. S. Castro, and J. M. House. A
rule-based fault detection method for air handling units.
Energy and Buildings, 38(12):1485-1492, 2006.

[31] D. Sturzenegger, D. Gyalistras, M. Morari, and R. S. Smith.
Semi-automated modular modeling of buildings for model
predictive control. In BuildSys, pages 99-106. ACM, 2012.

[32] T. Weng, B. Balaji, S. Dutta, R. Gupta, and Y. Agarwal.
Managing plug-loads for demand response within buildings.
In BuildSys, pages 13—18. ACM, 2011.

