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Abstract—Traffic engineering at network edges is challenging
given the latency-sensitive nature of all applications that need
to be supported. End-to-end delay estimation and forecasts were
essential traffic engineering tools even before the mobile edge
computing paradigm pushed the cloud closer to the end user.
In this paper, we model the path selection problem for edge
traffic engineering using a risk minimization technique inspired
by portfolio theory in economics, and we use machine learning
to estimate path selection risks.

In particular, using real latency time series measurements,
both existing and collected with and without the GENI testbed,
we compare four short-horizon latency estimation techniques,
commonly used by the finance community to estimate prices of
volatile financial instruments. Our results suggest that a Bayesian
Network approach may lead to good latency (peak) estimation
performance, as long as there are dependencies among the time
series path latency measurements.

I. INTRODUCTION

Edge computing is a fairly novel computing paradigm in
which much of the node processing and traffic steering takes
place in a process or among paths at the edge of the network, as
opposed to in the core of the network as in the Cloud Comput-
ing paradigm. This approach has been shown to improve user
experience by reducing the perceived latency, and is growing in
popularity because of the Internet of Things (IoT) and the vast
amount of data that sensors generate. It is inefficient to transmit
all the data that a bundle of sensors creates to the cloud for
processing and analysis; doing so requires a great deal of
bandwidth and all the back-and-forth communication between
the sensors and the cloud can negatively impact performance.
Traffic engineering at the edge is critical not only to support
future Internet of (Medical) Things applications but perhaps
more importantly, to manage data marshaling across Points of
Presence, i.e., servers located at the edge of the network of
application provider, that nowadays generate the vast majority
of Internet traffic [8].

When multiple processes compete for resources in a net-
work, data transmission becomes inefficient, and the network
can become unreliable. Given the limited resources, application
providers may be unable to guarantee a level of service
or a level of experience in the network. This problem is
exacerbated in disaster scenarios, where connectivity is scarce
or unavailable, or when latency-sensitive applications such
as image pre-processing from a fleet of drones looking for
survivals need to produce feedback in a timely fashion.

Existing forecast-based path management solutions for
mobile and delay-sensitive applications are often tailored to
specific protocols or applications [3], [6], they focus on link
bandwidth [3] or switch queue size estimation [6], they are
not designed to dynamically steer traffic in a multi-path
network [3], [4], or they focus on maximizing performance
of a single flow [3], [10].

Our Contributions: In this paper, we present a model and
test a path management solution that, leveraging results from
portfolio theory and stochastic learning theory, helps edge traf-
fic engineers identify end-to-end paths (routes) whose future
estimated latency is minimized in a given (short) horizon. In
particular, leveraging a portfolio theory formulation [7], we
first introduce an analytic model for the path selection problem
in edge traffic engineering, capturing the risk-return factor
associated with a network path choice and its latency.1 In our
model, the problem of selecting a set of low-latency paths is
equivalent to the problem of selecting a portfolio of assets,
maximizing the expected return, subject to a given level of
(volatility) risk. Since our model captures the risk of a path
with its predicted latency value, we need a valuable short-
horizon latency estimation technique. To this end, we first
measured end-to-end latencies using the ICMP protocol over
the GENI testbed [1], and compared the performance of (four)
latency estimation techniques commonly used to predict future
prices of a volatile financial instrument: a Bayesian network
model [5], an autoregressive model, a moving average model,
and an AutoRegressive Moving Average (ARMA) model. We
then confirm our findings over traces from a real Internet
measurement dataset, available at [9].

Our results show that the Bayesian network approach is
the best latency (peak) predictor i.e., it has the lowest relative
error, as long as there are statistical dependencies among
the latency measurements, and such measurements do not
have latency variance too small. By dissecting the Bayesian
network construction process during our learning phase, we
also observe and quantify how, the dependency among sub-
sequent latency time series samples (which vary from path to
path) is highly correlated with the latency prediction error.
The Bayesian network is in fact a probabilistic graphical
model that represents random variables and their conditional
dependencies.

The rest of the paper is organized as follows: In § II we

1Aside from our initial work [2], to our knowledge, this is the first attempt
to apply portfolio theory to a networking problem.978-1-5386-1465-5/17/$31.00 c©2017 IEEE



present some motivating applications. In § II we introduce our
model inspired by portfolio theory; in § III we describe how we
applied the Bayesian network model to predict latencies and
in § IV we present our initial evaluation results. Finally, in § V
we present the limitations of our study, the lesson learned and
our ongoing and future work.

II. MODELING RISKY PATHS IN AN EDGE NETWORK

USING PORTFOLIO THEORY

Aside from its applications for financial asset allocation, we
argue that portfolio theory [7] is a valuable resource allocation
tool also for traffic engineering problems, especially in mobile
edge computing, where latency is as crucial as stock prices.
In this section we first give a background on portfolio theory,
applied to a standard financial portfolio selection problem and
then we describe how we use it to model risky paths for an
edge traffic engineering problem.
Background: Portfolio Theory. Maximizing the return is
undoubtedly the first goal of every investor. The second main
characteristic of an investment is the level of perceived risk
to obtain such return, compared to the average over the
investment period. Portfolio theory [7] formalizes the problem
of selecting a portfolio i.e., the set of items (e.g., financial
instruments) that maximizes the expected return given some
level of risk. The problem can be alternatively formulated as a
risk minimization problem, given an expected value of return.
In general, determining what constitutes a desirable portfolio
depends on many factors, including risk profile or psychology
of the investor. We consider a portfolio p to be desirable if for
a given expected rate of return µp the portfolio has the least
variance σ2

p. The classical portfolio problem considers n assets
held over a period of time. Let us denote with zi the dollar
amount of asset i held throughout the investment period, at
the price obtained at the beginning of the investment period.
The simplest formulation does not consider obligations to buy
assets at the end of the period, that would yield zi < 0, so asset
i always corresponds to zi > 0; 2 We let pi denote the relative
price change of asset i over the period, i.e., its change in price
over the period divided by its price at the beginning of the
period. The overall dollar return on the portfolio is hence given
by r = pT z, where the optimization variable is the portfolio
vector z ∈ R

n. A wide variety of constraints on the portfolio
can be considered. Let us consider 1T z = B, that is, the total
budget to be invested is B, which is often normalized to one.

Considering a stochastic model for price (or latency)
changes, we have that p ∈ R

n is a random vector, with
known mean p̄ and covariance Σ on the assets (paths) in the
portfolio. Therefore, with portfolio z ∈ R

n, the return r is a
(scalar) random variable with mean p̄T z and variance zTΣz.
The choice of portfolio z involves a trade-off between the
mean of the return and its variance. The portfolio optimization
problem is the following quadratic program:

minimize
z

zTΣz

subject to p̄z ≥ rmin

1
T z = 1,

zi > 0 ∀i = 1, . . . , n.

(1)

2A more advanced model could captures also the short position investment
strategy in asset i, i.e., the obligation to buy the asset at the end of the period,
that yields zi < 0. We do not consider such “shorts” in our model.

The problem seeks the portfolio z that minimizes the return
variance (associated with the risk), subject to achieving a
minimum acceptable mean return rmin (in our case, network
throughput), and satisfying the portfolio budget without short-
ing (i.e., constraints zi > 0). The risk of a small or large loss,
i.e., a change in portfolio values below its expected value, is
directly related to the standard deviation, and increases with
it. For this reason, the standard deviation (or the variance) is
used as a measure of the risk associated with the portfolio.

Modeling Risky Paths in Mobile Edge Computing. We
model the domain of financial instruments to be selected as
physical paths, and the portfolio to be invested as virtual
paths (or flows) connecting two end-points. We then model
the expected return of our portfolio over a period of time
(the time during which we hold the assets) as the throughput
during the considered lifetime of a flow. The availability of all
resources composing the portfolio (in our case physical links)
fluctuates due to edge user mobility, failures, and the statis-
tical multiplexing nature of connectionless networks. Packets
corrupted or lost due to queuing delays or congestion increase
throughput variance across each flow and the mobile and prone
to failures nature of edge computing applications exacerbate
such variations. For each path (flow) j, we model its risk
(volatility) with zij , that is, as the probability of obtaining
a given latency variance if we select zij . We now describe a
method that we used to estimate such path latency, that can be
in turn used as input of our optimization problem.

Throughput Variance Estimation via Semi-Definite Pro-
gramming. In our model, we consider each virtual path to
be a portfolio, where financial instruments composing such
portfolios are physical nodes, and each virtual CPU capacity
unit is the quantity that each virtual path requester invests on
a candidate physical node. All virtual nodes to be allocated
model the budget of the portfolio, usually normalized to one. In
the classical portfolio optimization problem, the portfolio x is
the optimization variable, and investors seek to minimize their
risk subject to a minimum mean return, sometimes with other
constraints as well (for example weather or not short sell is
allowed). In classical portfolio optimization problems, the price
statistic is known, that is, both average and variance of the
price p and Σ are known parameters input to the problem. To
manage our virtual paths, an alternative version of the classical
portfolio optimization problem can be considered. In particular,
we bound the risk (known thanks to our measurement history)
and we assume that a portfolio (virtual path vector) x is known,
but only partial information is available about the covariance
matrix Σ. This is because Software-Defined Network (SDN)
controllers are only informed about the status of a partial
subset of the network status. Queuing delays in a distributed
system, for example, can be at best approximated by a set
of past measurement. These round-trip-time of instantaneous
throughput measurement sample form the best upper and lower
bound on each covariance matrix element. Therefore, we have:

Lij ≤ Σij ≤ Uij , (2)

where L and U are given by the past measurements on the
given virtual path (portfolio). We then seek the virtual path
allocation with minimum throughput variance (risk), over all
covariance matrices consistent with the given bounds. We



define the worst-case variance of the virtual path as:

σ2
wc = sup{xTΣx|Lij ≤ Σij ≤ Uij ,Σij ≥ 0 i, j = 1, . . . , n}.

(3)
Hence, to decide how to allocate or migrate a virtual path
with expected throughput variance (risk) bound, we solve the
following semidefinite program:

maximize
Σ

xTΣx

subject to Lij ≤ Σij ≤ Uij i, j = 1, . . . , n,

Σij ≥ 0 i, j = 1, . . . , n.
∑

j∈VH

Σij = 1 ∀i

(4)

Candidate hosting physical paths (i.e., portfolio allocations)
are usually fairly short even in large networks, so the dimen-
sion of the problem is small, and the time to solution sharp. An
algorithm can simultaneously solve a large number of instances
of the problem with different portfolio candidate and pick the
physical path with the lowest risk bound.

III. BAYESIAN NETWORKS TO PREDICT RISKY PATHS

A Bayesian network is a probabilistic graphical model con-
taining random variables and their conditional dependencies,
expressed by a directed acyclic graph. The edge xj → xi

represents the dependency of the random variable xi on the
random variable xj , in which xj is the parent of child xi.
Each random variable has a corresponding conditional proba-
bility table (CPT) that is used to determine the conditional
probability P(xi|xj), the probability of xi given xj , where

P (xi|xj) =
P (xi ∩ xj)

P (xj)
We define the set of parents for

the random variable xi to be Pa(xi). To construct a Bayesian
network from discretized data, we follow the constraint-based
approach outlined by Koller and Friedman [5].

Our approach is based on the following three steps: (1)
Discretize latency measurements using k-means clustering. (2)
Construct a Bayesian network with discretized latency data and
(3) Predict latency using the Bayesian network by maximizing
conditional probability P(xt | Pa(xt)).

We use k-means clustering to discretize path latency mea-
surements, and we found the optimal number of clusters is
decided empirically. We then construct a Bayesian network
using the discretized latency measurements. Each node in the
network represents the latency at a point in time relative to time
t, with the aim of predicting the latency at time t. The set of
nodes in the network is: {xt−n, xt−n+1, ..., xt−1, xt}. The set
of possible states for a node is composed of the means of the
clusters. Once we construct the Bayesian network, we use it to
predict path latency at time t given the latency measurements
for all nodes in the set Pa(xt). Similar approaches have been
used to predict daily stock price fluctuations [11]. We obtain
the discrete latency values for parent nodes of xt. We then
predict the discrete latency by computing the conditional
probability P(xt | Pa(xt)) for each of the possible states of xt.
The predicted latency at is the state al of node xt in which the
conditional probability is maximized. To construct a portfolio,
we predict the future latency of each path in a network. We
then select the set of paths which minimizes overall predicted
latency. Using this portfolio, we can dynamically steer traffic
such that risk is minimized.

IV. EVALUATION

We evaluate our method against an autoregressive model, a
moving average model, and an ARMA (autoregressive moving
average) model. These methods captures the time series of
latency values. Unlike Bayesian networks, they do not model
the dependencies within a dataset. In particular, AR(p), an
autoregressive model of order p, is constructed by regressing
a value within a time series against previous values in the
series. Latency is then forecasted by the model, using a linear
combination of previous latency values. MA(q), a moving
average model of order q, is instead created from a linear
combination of past white noise error terms. Finally, the
ARMA model combines AR(p) and MA(q). The variable to
be predicted is regressed against its past values, and its error
term is then modeled from previous error values.

Forecasts are made by these time series models by combin-
ing past values. Consistent with the Bayesian network method,
each predicted latency value is a one-step-ahead forecast.

We summarize our results in a few take home messages.
(1) Our results suggest that the Bayesian network approach
predicts end-to-end latency (peak) values more accurately
with respect to the benchmark approaches autoregressive,
moving average and autoregressive moving average models
(Figure 1). Our evaluation include both a large dataset of traffic
measurements, available at [9], as well as our own ICMP
traffic measurements (i.e. ping) from a server located in
the Saint Louis area towars the Stanford.edu web server.
Moreover, we ping a couple of virtual machines within the
GENI testbed [1] without reserving any virtual link bandwidth.
We emulated an edge network pinging VMs in the same GENI
rack as well as across two close enough East-coast GENI racks.
To quantify the superior behavior of the Bayesian network
approach, we show the distribution of errors across the tested
methods in Figure 29.

Finding the optimal number of clusters that minimize the
prediction error is still an open question, but our results
suggest that, (2) as long as there is dependency among latency
measurements, 8 or 10 clusters produce the best accuracy,
especially for latency peaks (Figure 2− 10).

(3) Lower Density in the Bayesian network means lower
prediction accuracy. To further dissect this observation, we
observed the number of edges present in the Bayesian network.
By definition, the density of such stochastic data structure
is a proxy of the interdependencies among the time series.
Even though determining what causes the flow time series to
have loose or tight latency interdependencies requires a deeper
analysis, focus of our current work, we empirically observe
that lack of data dependencies means ineffectiveness of the
Bayesian network predictor. This is not surprising, given the
nature of the predictor, and it is further confirmed when the
latency time series are sampled from a random distribution
(results not shown).

(4) Our results are confirmed using across a large dataset
of TCP Internet traffic traces, available at [9]. Our results
on this dataset matched the results obtained from the GENI
testbed, with the Bayesian network outperforming the autore-
gressive, moving average, and autoregressive-moving average
models. We found that repeated experiments on this dataset
with a consistent number of clusters produced different cluster
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(a) SLU - Stanford (b) GENI: GPO Rack (c) GENI: GPO - University of Washington

Fig. 1. The Bayesian Network approach predicts e2e latencies more accurately w.r.t. Autoregressive, Moving Average and Autoregressive moving average: (a)
ICMP traffic from Saint Louis to Stanford.edu (b) ICMP traffic across VMs in the same GENI rack. (c) ICMP traffic across two East-coast GENI racks.
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Fig. 2. (1-8) The Bayesian model produced lower errors than the autoregressive model for approximately 64% of predictions for the University of Naples
Federico II dataset (first 8 plots). (9) The Bayesian network prediction with 10 clusters has the lowest latency prediction error w.r.t. Autoregressive, Moving
Average and Autoregressive moving average. (10) Impact of the number of clusters in the Bayesian network on the prediction error.

centers because initial cluster centers are chosen randomly in
the k-means method (used to construct the Bayesian network).
This, however, surprisingly, did not have a noticeable affect on
the accuracy of the Bayesian network (Figure 2).

V. CONCLUSIONS

In this paper, we modeled the path selection problem
for edge traffic engineering using portfolio theory, and we
compared different path prediction methods, used in real stock
market time series analysis, to estimate path selection risks. Al-
though our results suggest that a Bayesian Network approach
may lead to good latency (peak) estimation performance, as
long as there are dependencies among the time series path
latency measurements, our finding are far from ideal for several
reasons. The accuracy of the Bayesian network is limited
by its ability to correctly identify and model dependencies
in the data. If the variance within a dataset is small, or
the dependencies between variables are weak, the Bayesian
network is likely to miss the dependencies. Additionally, the
clustering process is likely to hide small dependencies because
the variance between two data points can be lost when they
belong to the same cluster, as we use the cluster mean as input
to the Bayesian network. Our results were also limited by the
consistency of the latency values in our data. We found that
this resulted in the cluster means having a small spread. When
the Bayesian network predicted the incorrect cluster, the value
of the predicted cluster was close to the actual latency value,
resulting in low errors despite the erroneous prediction.
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