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ABSTRACT

One of the main goals of mobile edge computing is to support new
generation latency-sensitive networked applications. To manage
such demanding applications, a fine-grained control of end-to-end
paths is imperative. End-to-end delay estimation and forecast tech-
niques were essential traffic engineering tools even before the mo-
bile edge computing paradigm pushed the cloud closer to the end
user. In this paper, we model the path selection problem for edge
traffic engineering using a risk minimization technique inspired
by portfolio theory in economics, and we use machine learning to
estimate the risk of a path.

In particular, using real latency time series measurements, col-
lected with and without the GENI testbed, we compare four short-
horizon latency estimation techniques, commonly used by the fi-
nance community to estimate prices of volatile financial instru-
ments. Our initial results suggest that a Bayesian Network approach
may lead to good latency estimation performance and open a few
research questions that we are currently exploring.

1 INTRODUCTION

Mobile Edge Computing is a fairly novel computing paradigm in
which node processing and traffic engineering decisions may be
offloaded from processes on mobile devices to the edge of the net-
work. This approach has been shown to improve user experience
by reducing the perceived latency, and is growing in popularity
because of the Internet of Things (IoT) and the vast amount of
data that sensors generate. It is inefficient to transmit all the data
that a bundle of sensors creates to the cloud for processing and
analysis; doing so requires a great deal of bandwidth and all the
back-and-forth communication between the sensors and the cloud
can negatively impact performance. Traffic engineering at the edge
is critical not only to support future Internet of (medical) Things
applications, but also to support delay-sensitive applications whose
traffic spans across 5G customers or across several Points of Pres-
ence, i.e., servers located at the edge of the network of application
providers, see, e.g., the Facebook’s [? ] or the Google’s edge net-
works [? ].
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Most mobile edge computing applications orchestrate multiple

processes that compete for network resources, causing data trans-
missions to become inefficient, or data paths to become congested
or unreliable. This problem is exacerbated in mobile and challenged
environments, where network connectivity is scarce, unavailable,
and latency-sensitive applications need to pre-process real time
data captured from IoT devices, e.g., images captured by drones
or by first responder devices in a natural or man-made disaster
scenario. Existing forecast-based path management solutions for
mobile and delay-sensitive applications are often tailored to specific
protocols or applications [? ? ], they focus on link bandwidth [?
] or switch queue size estimation [? ], they are not designed to
dynamically steer traffic in a multi-path network [? ? ], or they
focus on maximizing performance of a single flow [? ? ].
Our Contributions: In this paper, we present a path management
solution that, leveraging results from portfolio theory and stochas-
tic learning theory, helps edge traffic engineers identify end-to-end
paths (routes) whose future estimated latency is minimized in a
given horizon. In particular, leveraging a portfolio theory formula-
tion [? ], we first introduce an analytic model for the path selection
problem in edge traffic engineering, capturing the risk-return factor
associated with a network path choice and its latency. In our model,
selecting a set of low-latency paths is equivalent to the problem
of selecting a portfolio of assets, maximizing the expected return
subject to a given level of (volatility) risk. Since our model captures
the risk of a path with its predicted latency value, we need a valu-
able short-horizon latency estimation technique. To this end, we
measured end-to-end latencies using the ICMP protocol over the
GENI testbed [? ], and compared the performance of (four) latency
estimation techniques commonly used to predict future prices of
a volatile financial instrument: a Bayesian network model [? ], an
autoregressive model, a moving average model, and an AutoRegres-
sive Moving Average (ARMA) model. Our initial results show that
the Bayesian network approach is the best latency (peak) predictor
i.e., it has the lowest relative error, as long as there are statistical
dependencies among the latency measurements, and such measure-
ments do not have latency variance too small.

The rest of the paper is organized as follows: In § ?? we present
our model inspired by portfolio theory; in § ?? we describe how we
applied the Bayesian network model to predict latencies and in § ??
we present our initial evaluation results. Finally, in § ?? we present
the limitations of our study, the lesson learned and our ongoing
and future work.



2 MODELING RISKY PATHS USING
PORTFOLIO THEORY

Aside from its applications for financial asset allocation, we argue
that portfolio theory [? ] is a valuable resource allocation tool
also for traffic engineering problems, especially in mobile edge
computing, where latency is as crucial as stock prices. In this section
we first give a background on portfolio theory, applied to a standard
financial portfolio selection problem and then we describe how we
use it to model risky paths for an edge traffic engineering problem.
Background: Portfolio Theory. Maximizing the return is un-
doubtedly the first goal of every investor. The second main char-
acteristic of an investment is the level of perceived risk to obtain
such return, compared to the average over the investment period.
Portfolio theory [? ] formalizes the problem of selecting a portfolio
i.e., the set of items (e.g., financial instruments) that maximizes
the expected return given some level of risk. The problem can be
alternatively formulated as a risk minimization problem, given an
expected value of return.

The classical portfolio problem considers n assets held over a
period of time. Let us denote with z; the dollar amount of asset i
held throughout the investment period, at the price obtained at the
beginning of the investment period. The simplest formulation does
not consider obligations to buy assets at the end of the period, that
would yield z; < 0, so asset i always corresponds to z; > 0; We let
pi denote the relative price change of asset i over the period, i.e., its
change in price over the period divided by its price at the beginning
of the period. The overall dollar return on the portfolio is hence
given by r = p’ z, where the optimization variable is the portfolio
vector z € R". A wide variety of constraints on the portfolio can
be considered. Let us consider 17 z = B, that is, the total budget to
be invested is B, which is often normalized to one.

Considering a stochastic model for price (or latency) changes,
we have that p € R” is a random vector, with known mean p and
covariance X on the assets (paths) in the portfolio. Therefore, with
portfolio z € R", the return r is a (scalar) random variable with
mean p’ z and variance z! 3z. The choice of portfolio z involves
a trade-off between the mean of the return and its variance. The
portfolio optimization problem is the following quadratic program:

minimize z! Xz
z

subject to  pz > rmin
1T

1)

z=1,

zi>0 Vi=1,...,n.

The risk of a small or large loss, i.e., a change in portfolio values
below its expected value, is directly related to the standard deviation,
and increases with it. For this reason, the standard deviation (or
the variance) is used as a measure of the risk associated with the
portfolio.

Modeling Risky Paths in Mobile Edge Computing. We model
the domain of financial instruments to be selected as physical paths,
and the portfolio to be invested as virtual paths (or flows) con-
necting two end-points. We then model the expected return of our
portfolio over a period of time (the time during which we hold the
assets) as the throughput during the considered lifetime of a flow.
The availability of all resources composing the portfolio (in our

case physical links) fluctuates due to edge user mobility, failures,
and the statistical multiplexing nature of connectionless networks.
Packets corrupted or lost due to queuing delays or congestion in-
crease throughput variance across each flow and the mobile and
prone to failures nature of edge computing applications exacerbate
such variations. For each path (flow) j, we model its risk (volatility)
with z;j, that is, as the probability of obtaining a given latency
variance if we select z;j. We now describe a method that we used
to estimate such path latency, that can be in turn used as input of
our optimization problem.

3 PREDICTING RISKY PATHS

Bayesian Networks. A Bayesian network is a probabilistic graphi-
cal model containing random variables and their conditional depen-
dencies, expressed by a directed acyclic graph. The edge x; — x;
represents the dependency of the random variable x; on the random
variable x;, in which x; is the parent of child x;. Each random vari-
able (a latency value) has a corresponding conditional probability
table that is used to determine the conditional probability P(x;|x;),
i.e., the probability of x; given x;, where:
P(x; N x j)

P(xj)
We define the set of parents for the random variable x; to be Pa(x;).
To construct a Bayesian network from discretized data, we follow
the constraint-based approach outlined by Koller and Friedman [?
]. We omit such description in this paper for lack of space.

Our approach is based on three steps: (1) Discretize latency
measurements using k-means clustering, (2) construct a Bayesian
network with discretized latency data, and (3) predict latency using
the Bayesian network by maximizing conditional probability P(x;
| Pa(x;)). We use k-means clustering to discretize path latency
measurements. The k-means clustering algorithm partitions obser-
vations (y1, y2, ..., Yn) into sets S = {S1, Sz, . . ., Sk } by minimizing
the within-cluster sum of squares:

k
argmin » > lly - ull’. 3)

i=1 yes;

P(xi|xj) = (2)

where y; is the mean of the observations in S;. We define the set of
discrete latency values as {ay, .. ., an }, where n is the total number
of clusters.

Constructing the Latency Bayesian Network. We construct a
Bayesian network using the collected discretized latency measure-
ments. Each node in the network represents the latency at a point in
time relative to time ¢, with the aim of predicting the latency at time
t. The set of nodes in the network is {x;—pn, X;—n+1,. . .»X¢—1, Xt }.
The set of possible states for a node is composed by the means of
the clusters.

Predicting Latency. Once the Bayesian network is constructed,
we use it to predict path latency at time ¢, given the latency measure-
ments for all nodes in the set Pa(x;). Similar approaches have been
used to predict daily stock price fluctuations [? ]. We first obtain
the discrete latency values for parent nodes of x;, and then predict
the discrete latency by computing the conditional probability P(x;
| Pa(x;)) for each of the possible states of x;. The predicted latency
ay is the state a; of node x; in which the conditional probability
is maximized: a; = argmaxg, P(aj|Pa(x;)), where each state a; is
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Figure 1: The Bayesian Network approach predicts e2e latencies more accurately w.r.t. Autoregressive, Moving Average and
Autoregressive moving average: (a) ICMP traffic from Saint Louis to Stanford.edu (b) ICMP traffic across VMs in the same GENI

rack. (c) ICMP traffic across two East-coast GENI racks.
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Figure 2: (a) The Bayesian network prediction with 10 clus-
ters has the lowest latency prediction error w.r.t. Autoregres-
sive, Moving Average and Autoregressive moving average.
(b) Impact of the number of clusters in the Bayesian network
on the prediction error.

the mean of cluster S;. To construct a portfolio, we predict the next
value of latency for each available path in a network. We then se-
lect the set of paths (portfolio) that minimize the overall predicted
latency (the risk).

4 EVALUATION

We evaluate our method against an autoregressive model, a moving
average model, and an ARMA (autoregressive moving average)
model. These methods captures the time series of latency values.
Unlike Bayesian networks, they do not model the dependencies
within a dataset. Forecasts are made by these time series models
by combining past values. Consistent with the Bayesian network
method, each predicted latency value is a one-step-ahead forecast.
Although an extensive evaluation campaign would be needed to
draw more meaningful conclusions, our initial results suggest that
the Bayesian network approach predicts e2e latencies more ac-
curately w.r.t. autoregressive, moving average and autoregressive
moving average models (Figure ??). Our measurements include
ICMP traffic (i.e. ping) from Saint Louis to the Stanford. edu web
server, and within the GENI testbed [? ]; we emulated an edge net-
work pinging VMs in the same GENI rack as well as across two close
enough East-coast GENI racks. To quantify the superior behavior
of the Bayesian network approach, we show the distribution of
errors across the tested methods in Figure ??a. Finding the optimal
number of clusters that minimize the prediction error is still an

open question, but our initial results suggest that, as long as there is
dependency among latency measurements, 8 or 10 clusters produce
the best accuracy, especially for latency peaks (Figure ??b).

5 LIMITATIONS, LESSON LEARNED AND
FUTURE WORK

Our finding are far from ideal for several reasons. The accuracy
of the Bayesian network is limited by its ability to correctly iden-
tify and model dependencies in the data. If the variance within a
dataset is small, or the dependencies between variables are weak,
the Bayesian network is likely to miss the dependencies. Addition-
ally, the clustering process is likely to hide small dependencies
because the variance between two data points can be lost when
they belong to the same cluster, as we use the cluster mean as
input to the Bayesian network. Our results were also limited by
the consistency of the latency values in our data. We found that
this resulted in the cluster means having a small spread. When the
Bayesian network predicted the incorrect cluster, the value of the
predicted cluster was close to the actual latency value, resulting in
low errors despite the erroneous prediction.

In future work, we plan to explore improvements to our Bayesian
network prediction method. We also plan to continue investigating
the dependencies in latency data through alternative methods. We
also intend to expand our latency prediction method to a multipath
network in order to implement a more complete path management
solution.
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