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ABSTRACT

One of the main goals of mobile edge computing is to support new

generation latency-sensitive networked applications. To manage

such demanding applications, a fine-grained control of end-to-end

paths is imperative. End-to-end delay estimation and forecast tech-

niques were essential traffic engineering tools even before the mo-

bile edge computing paradigm pushed the cloud closer to the end

user. In this paper, we model the path selection problem for edge

traffic engineering using a risk minimization technique inspired

by portfolio theory in economics, and we use machine learning to

estimate the risk of a path.

In particular, using real latency time series measurements, col-

lected with and without the GENI testbed, we compare four short-

horizon latency estimation techniques, commonly used by the fi-

nance community to estimate prices of volatile financial instru-

ments. Our initial results suggest that a Bayesian Network approach

may lead to good latency estimation performance and open a few

research questions that we are currently exploring.

1 INTRODUCTION

Mobile Edge Computing is a fairly novel computing paradigm in

which node processing and traffic engineering decisions may be

offloaded from processes on mobile devices to the edge of the net-

work. This approach has been shown to improve user experience

by reducing the perceived latency, and is growing in popularity

because of the Internet of Things (IoT) and the vast amount of

data that sensors generate. It is inefficient to transmit all the data

that a bundle of sensors creates to the cloud for processing and

analysis; doing so requires a great deal of bandwidth and all the

back-and-forth communication between the sensors and the cloud

can negatively impact performance. Traffic engineering at the edge

is critical not only to support future Internet of (medical) Things

applications, but also to support delay-sensitive applications whose

traffic spans across 5G customers or across several Points of Pres-

ence, i .e ., servers located at the edge of the network of application

providers, see, e .д., the Facebook’s [? ] or the Google’s edge net-

works [? ].
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Most mobile edge computing applications orchestrate multiple

processes that compete for network resources, causing data trans-

missions to become inefficient, or data paths to become congested

or unreliable. This problem is exacerbated in mobile and challenged

environments, where network connectivity is scarce, unavailable,

and latency-sensitive applications need to pre-process real time

data captured from IoT devices, e .д., images captured by drones

or by first responder devices in a natural or man-made disaster

scenario. Existing forecast-based path management solutions for

mobile and delay-sensitive applications are often tailored to specific

protocols or applications [? ? ], they focus on link bandwidth [?

] or switch queue size estimation [? ], they are not designed to

dynamically steer traffic in a multi-path network [? ? ], or they

focus on maximizing performance of a single flow [? ? ].

Our Contributions: In this paper, we present a path management

solution that, leveraging results from portfolio theory and stochas-

tic learning theory, helps edge traffic engineers identify end-to-end

paths (routes) whose future estimated latency is minimized in a

given horizon. In particular, leveraging a portfolio theory formula-

tion [? ], we first introduce an analytic model for the path selection

problem in edge traffic engineering, capturing the risk-return factor

associated with a network path choice and its latency. In our model,

selecting a set of low-latency paths is equivalent to the problem

of selecting a portfolio of assets, maximizing the expected return

subject to a given level of (volatility) risk. Since our model captures

the risk of a path with its predicted latency value, we need a valu-

able short-horizon latency estimation technique. To this end, we

measured end-to-end latencies using the ICMP protocol over the

GENI testbed [? ], and compared the performance of (four) latency

estimation techniques commonly used to predict future prices of

a volatile financial instrument: a Bayesian network model [? ], an

autoregressive model, a moving average model, and an AutoRegres-

sive Moving Average (ARMA) model. Our initial results show that

the Bayesian network approach is the best latency (peak) predictor

i .e ., it has the lowest relative error, as long as there are statistical

dependencies among the latency measurements, and such measure-

ments do not have latency variance too small.

The rest of the paper is organized as follows: In § ?? we present

our model inspired by portfolio theory; in § ?? we describe how we

applied the Bayesian network model to predict latencies and in § ??

we present our initial evaluation results. Finally, in § ?? we present

the limitations of our study, the lesson learned and our ongoing

and future work.



2 MODELING RISKY PATHS USING
PORTFOLIO THEORY

Aside from its applications for financial asset allocation, we argue

that portfolio theory [? ] is a valuable resource allocation tool

also for traffic engineering problems, especially in mobile edge

computing, where latency is as crucial as stock prices. In this section

we first give a background on portfolio theory, applied to a standard

financial portfolio selection problem and then we describe how we

use it to model risky paths for an edge traffic engineering problem.

Background: Portfolio Theory. Maximizing the return is un-

doubtedly the first goal of every investor. The second main char-

acteristic of an investment is the level of perceived risk to obtain

such return, compared to the average over the investment period.

Portfolio theory [? ] formalizes the problem of selecting a portfolio

i .e ., the set of items (e .д., financial instruments) that maximizes

the expected return given some level of risk. The problem can be

alternatively formulated as a risk minimization problem, given an

expected value of return.

The classical portfolio problem considers n assets held over a

period of time. Let us denote with zi the dollar amount of asset i

held throughout the investment period, at the price obtained at the

beginning of the investment period. The simplest formulation does

not consider obligations to buy assets at the end of the period, that

would yield zi < 0, so asset i always corresponds to zi > 0; We let

pi denote the relative price change of asset i over the period, i .e ., its

change in price over the period divided by its price at the beginning

of the period. The overall dollar return on the portfolio is hence

given by r = pT z, where the optimization variable is the portfolio

vector z ∈ Rn . A wide variety of constraints on the portfolio can

be considered. Let us consider 1T z = B, that is, the total budget to

be invested is B, which is often normalized to one.

Considering a stochastic model for price (or latency) changes,

we have that p ∈ Rn is a random vector, with known mean p̄ and

covariance Σ on the assets (paths) in the portfolio. Therefore, with

portfolio z ∈ Rn , the return r is a (scalar) random variable with

mean p̄T z and variance zT Σz. The choice of portfolio z involves

a trade-off between the mean of the return and its variance. The

portfolio optimization problem is the following quadratic program:

minimize
z

zT Σz

subject to p̄z ≥ rmin

1
T z = 1,

zi > 0 ∀i = 1, . . . ,n.

(1)

The risk of a small or large loss, i .e ., a change in portfolio values

below its expected value, is directly related to the standard deviation,

and increases with it. For this reason, the standard deviation (or

the variance) is used as a measure of the risk associated with the

portfolio.

Modeling Risky Paths in Mobile Edge Computing.We model

the domain of financial instruments to be selected as physical paths,

and the portfolio to be invested as virtual paths (or flows) con-

necting two end-points. We then model the expected return of our

portfolio over a period of time (the time during which we hold the

assets) as the throughput during the considered lifetime of a flow.

The availability of all resources composing the portfolio (in our

case physical links) fluctuates due to edge user mobility, failures,

and the statistical multiplexing nature of connectionless networks.

Packets corrupted or lost due to queuing delays or congestion in-

crease throughput variance across each flow and the mobile and

prone to failures nature of edge computing applications exacerbate

such variations. For each path (flow) j , we model its risk (volatility)

with zi j , that is, as the probability of obtaining a given latency

variance if we select zi j . We now describe a method that we used

to estimate such path latency, that can be in turn used as input of

our optimization problem.

3 PREDICTING RISKY PATHS

Bayesian Networks. A Bayesian network is a probabilistic graphi-

cal model containing random variables and their conditional depen-

dencies, expressed by a directed acyclic graph. The edge x j → xi
represents the dependency of the random variable xi on the random

variable x j , in which x j is the parent of child xi . Each random vari-

able (a latency value) has a corresponding conditional probability

table that is used to determine the conditional probability P(xi |x j ),

i .e ., the probability of xi given x j , where:

P(xi |x j ) =
P(xi ∩ x j )

P(x j )
. (2)

We define the set of parents for the random variable xi to be Pa(xi ).

To construct a Bayesian network from discretized data, we follow

the constraint-based approach outlined by Koller and Friedman [?

]. We omit such description in this paper for lack of space.

Our approach is based on three steps: (1) Discretize latency

measurements using k-means clustering, (2) construct a Bayesian

network with discretized latency data, and (3) predict latency using

the Bayesian network by maximizing conditional probability P(xt
| Pa(xt )). We use k-means clustering to discretize path latency

measurements. The k-means clustering algorithm partitions obser-

vations (y1, y2, . . . , yn ) into sets S = {S1, S2, . . . , Sk } by minimizing

the within-cluster sum of squares:

argmin
S

k∑

i=1

∑

y∈Si

| |y − µi | |
2
, (3)

where µi is the mean of the observations in Si . We define the set of

discrete latency values as {a1, . . . ,an }, where n is the total number

of clusters.

Constructing the Latency Bayesian Network. We construct a

Bayesian network using the collected discretized latency measure-

ments. Each node in the network represents the latency at a point in

time relative to time t , with the aim of predicting the latency at time

t . The set of nodes in the network is {xt−n ,xt−n+1, . . . ,xt−1,xt }.

The set of possible states for a node is composed by the means of

the clusters.

Predicting Latency. Once the Bayesian network is constructed,

we use it to predict path latency at time t , given the latencymeasure-

ments for all nodes in the set Pa(xt ). Similar approaches have been

used to predict daily stock price fluctuations [? ]. We first obtain

the discrete latency values for parent nodes of xt , and then predict

the discrete latency by computing the conditional probability P(xt
| Pa(xt )) for each of the possible states of xt . The predicted latency

at is the state al of node xt in which the conditional probability

is maximized: at = argmaxal P(al |Pa(xt )), where each state al is
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(a) SLU - Stanford (b) GENI: GPO Rack (c) GENI: GPO - University of Washington

Figure 1: The Bayesian Network approach predicts e2e latencies more accurately w.r.t. Autoregressive, Moving Average and

Autoregressivemoving average: (a) ICMP traffic from Saint Louis to Stanford.edu (b) ICMP traffic across VMs in the same GENI

rack. (c) ICMP traffic across two East-coast GENI racks.
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(a) Predictors Comparison (b) Clusters Impact

Figure 2: (a) The Bayesian network prediction with 10 clus-

ters has the lowest latency prediction error w.r.t. Autoregres-

sive, Moving Average and Autoregressive moving average.

(b) Impact of the number of clusters in the Bayesian network

on the prediction error.

the mean of cluster Sl . To construct a portfolio, we predict the next

value of latency for each available path in a network. We then se-

lect the set of paths (portfolio) that minimize the overall predicted

latency (the risk).

4 EVALUATION

We evaluate our method against an autoregressive model, a moving

average model, and an ARMA (autoregressive moving average)

model. These methods captures the time series of latency values.

Unlike Bayesian networks, they do not model the dependencies

within a dataset. Forecasts are made by these time series models

by combining past values. Consistent with the Bayesian network

method, each predicted latency value is a one-step-ahead forecast.

Although an extensive evaluation campaign would be needed to

draw more meaningful conclusions, our initial results suggest that

the Bayesian network approach predicts e2e latencies more ac-

curately w.r.t. autoregressive, moving average and autoregressive

moving average models (Figure ??). Our measurements include

ICMP traffic (i .e . ping) from Saint Louis to the Stanford.edu web

server, and within the GENI testbed [? ]; we emulated an edge net-

work pinging VMs in the same GENI rack as well as across two close

enough East-coast GENI racks. To quantify the superior behavior

of the Bayesian network approach, we show the distribution of

errors across the tested methods in Figure ??a. Finding the optimal

number of clusters that minimize the prediction error is still an

open question, but our initial results suggest that, as long as there is

dependency among latency measurements, 8 or 10 clusters produce

the best accuracy, especially for latency peaks (Figure ??b).

5 LIMITATIONS, LESSON LEARNED AND
FUTUREWORK

Our finding are far from ideal for several reasons. The accuracy

of the Bayesian network is limited by its ability to correctly iden-

tify and model dependencies in the data. If the variance within a

dataset is small, or the dependencies between variables are weak,

the Bayesian network is likely to miss the dependencies. Addition-

ally, the clustering process is likely to hide small dependencies

because the variance between two data points can be lost when

they belong to the same cluster, as we use the cluster mean as

input to the Bayesian network. Our results were also limited by

the consistency of the latency values in our data. We found that

this resulted in the cluster means having a small spread. When the

Bayesian network predicted the incorrect cluster, the value of the

predicted cluster was close to the actual latency value, resulting in

low errors despite the erroneous prediction.

In future work, we plan to explore improvements to our Bayesian

network prediction method. We also plan to continue investigating

the dependencies in latency data through alternative methods. We

also intend to expand our latency prediction method to a multipath

network in order to implement a more complete path management

solution.


