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Abstract—Edge computing involves onloading or offloading
multiple virtual network functions from mobile devices to an
edge network substrate. In this paper, we present a model for
the complete edge function onloading problem, which consists of
three main phases: (1) Cyber foraging, which involves discovery
of resources monitoring the state of edge resources, (2) edge
function mapping, which involves matching requests to available
resources, and (3) allocation, which involves assigning resources
to mappings. Using optimization theory, we show how these
three phases are tightly connected, and how the wide spectrum
of existing solutions that either solve a particular phase, or
jointly solve two of the phases (along with their interactions),
are incomplete and may lead to inefficiencies. Moreover, with
extensive simulation experiments we demonstrate that joint
optimization of all three phases enables the edge network to
host a larger set of constrained edge function requests.

I. INTRODUCTION

Edge computing is a paradigm in which much of the

processing takes place in a process at the edge of the network,

as opposed to in the core of the network as in the Cloud

Computing paradigm. This (distributed) approach has been

shown to improve user experience by reducing the perceived

latency, and is growing in popularity because of the Internet

of Things (IoT) and the vast amount of data that sensors

generate. It is inefficient to transmit all the data a bundle

of sensors creates to the cloud for processing and analysis;

doing so requires a great deal of bandwidth and all the back-

and-forth communication between the sensors and the cloud

can negatively impact performance. In a challenged edge

computing scenario, e.g., in case of natural disaster, or for

medical applications, multiple processes need to establish and

maintain a set of virtual flows to guarantee a set of Service

Level Objectives, i.e., some acceptable levels of network

performance, to accomplish a phase or, more generally, to

provide a service. Several edge cloud infrastructures arose in

the research community, see e.g. [11], [17], as well as from

industry initiatives, such as Microsoft’s micro DCs [2] and

ETSI Mobile Edge Computing [9].

In contrast with the vast majority of these proposals, in this

paper we argue that back-end driven onloading is a wiser al-

ternative than client-driven offloading. Client-based offloading

has many difficult challenges, mostly due to the diversity of

devices: from the different operating systems, to the numerous

apps running on them, to accurate code profiling, and gauging

optimal offload conditions. Often a continuous monitoring of

network conditions is required, and several recent offload-

ing approaches ignore this crucial phase [2], [9]. Moreover,

resource constrained of geographically distributed end user

devices are often ignored in finding an optimal offloading

strategy. The edge cloud instead is inherently designed to

handle different types of devices, and practically has unlimited

energy and computational resources. Furthermore, it has ability

to accurately characterize access to users’ location and time

constraints [12]. One of the goals of edge computing is to

release devices from the burden of (expensive) computations,

so it is natural to think that such devices should not waste

resources to decide where to offload. Most importantly, the

edge cloud may benefit from an holistic view of where to run

the edge functions, a view that has been surprisingly neglected

in previous solutions. In this paper we focus on such view.

Our Contributions: In particular, in this paper we introduce,

model and evaluate with a simulation campaign the impact

of the complete edge function onloading problem, showing its

significant efficiency gains. The problem, solved by processes

in the edge cloud back-end, comprises three subproblems

(or phases): cyber-forage, edge function mapping, and edge

function binding or allocation. Cyber-forage is the process

of discovering resources capable of hosting the phase or

sequence of phases (i.e. mechanisms), by monitoring the state

of the substrate resources using sensors and other measurement

processes. The monitored states include energy consumption,

processor loads, memory usage, network statistics, etc.1 Edge

Function Mapping is the phase in charge of matching edge

functions’ requests with the available resources. Due to the

possible combination of node and link constraints, this is the

most complex step in the mapping problem. This problem

is in fact NP-hard as it can be reduced from the multiway

separator problem [4]. The constraints include intra-node (e.g.,

desired edge location, processor speed, storage capacity, type

of network connectivity), as well as inter-node constraints

(e.g., network topology). The last subproblem — edge function

binding — involves assigning the resources that match the

edge function queries to the appropriate virtual function, con-

sidering additional constraints, e.g., location or infrastructure

physical limits. This last phase also ensures that users will not

exceed physical limits or their authorized resource usage. For

example, the system may decide not to allocate a service that

1The term cyber foraging is often used as synonym of offloading. We
dissect this notion by clarifying its separation from the other two phases, and
removing the assumption that such operation is managed by mobile devices.
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has not yet been authorized, even though the virtual network

could be physically mapped.

To our knowledge, this is the first study that captures the

interactions among the onloading phases (Figure 1.) Previous

onloading solutions e.g. [12], only formulate or partially

address the problem, and always neglect at least one of

the interdependencies. We argue that providers should not

neglect such cooperations, as an efficient utilization of the

edge network is one of the key factors not only for profit

maximization, but also for avoidance of congestion on edge

links and nodes, and therefore for minimizing virtualization

artifacts experienced by edge computing applications.

Paper outline: The reminder of this paper is organized as fol-

lows: we discuss how related solutions in Section II. We then

introduce the three edge infrastructure services encompassing

our problem in Section III, and we describe how our model

unifies such phases holistically in Section IV. Then, we turn

our attention to the development of efficient solution methods

for our problem, exploiting the rich problem structure via

the dual-decomposition in Section V. In Section VI we show

with a simulation campaign how our approach improves the

performance of network virtualization applications that require

agility, and we conclude our work in Section VII.

II. RELATED WORK

The problem of optimizing the transmission of a workload

from a mobile device to the edge cloud is of central importance

for an efficient coordination. We classify existing optimization

solutions for edge offloading using five dimensions: opti-

mize the offloading destination [5], [7], [16], the load to

balance [10], [21], the user device mobility [19], [22], the

application partitioning [13] and the partition granularity [17].

Such classification covers the whole offloading process in a

sequential order from mobile devices to the edge cloud. We

only cite here representative solutions that helps us define our

contributions, but a more comprehensive reference list can be

found in these surveys [1], [14], [20].

MAUI [7] and CloneCloud [5] discuss different optimiza-

tion strategies for the offloading on a single-sever, while

ThinkAir [16] solves the resource allocation problem by paral-

lelizing the offloading on multiple virtual machines. We also

consider an optimal offloading destination, but we consider

also the cyber foraging and the final allocation phases, not

merely the edge function mapping phase. Shifting the focus to

problems that seek load balancing under limited resources and

processing abilities on the edge cloud, we consider the work of

Xia et al. [21], that proposed an online request admission algo-

rithm to maximize the system throughput. In [10], instead, the

authors proposed an algorithm for allocating VMs in a cloud

which consists of geographically diversified small data centers

close to users. The algorithm takes users’ specified constraints

into consideration including server geographic locations,with

resource cost and communication latency constraints. Our

model subsumes those approaches since it captures all these

constraints, but does not ignore the interactions among the

three subproblems. Moreover, using dual decomposition, as

Fig. 1. Complete Edge Function Onloading: interactions and data exchanges.

shown in Section V, our network utility maximization problem

may also be asily distributed.

The third modeling classification dimension that we con-

sider is mobility. To improve the performance while satis-

fying the SLA of mobile applications, other authors [19],

[22] proposed different mobile-friendly architectures; the two-

tiered mobile cloud architecture in [22] for example, includes

computation capabilities both at the edge and the central cloud.

Both solutions aim at offloading location-aware phases of

mobile applications to ensure e.g., fairness of energy con-

sumption. Our model can captures also their constraints, but

defines a more flexible architecture in which each subproblem

can be solvable jointly in different tiers, or individually in a

centralized or distributed fashion. Moreover, these approaches

focus only on the location-aware mapping phase ignoring the

cyber foraging (discovery) and the final binding phases.

III. EDGE FUNCTION ONLOADING SUBPROBLEMS

In this section we present a model for each of the three

subproblems (phases) of the complete edge function onloading

problem. To do so, we first define a network as follows:

Definition 1 (Network): A Network is given by an undirected

graph G = (N,L,C) where N is a set of nodes, L is a set of

links, and each node or link e ∈ N ∪L is associated with a set

of constraints C(e) = {C1(e), . . . , Cm(e)} where m ≥ 0 is

the number of constraints on element e. We denote a physical

network as GP = (NP , LP , CP ), and an edge function to

onload as a graph GV = (NV , LV , CV ).
Nodes in G represent standalone resources, whereas links

represent relationships between resources. Examples of stan-

dalone resources (nodes in G) include processors and storage.

Examples of relationships between resources include commu-

nication links, spatial or temporal relationships. Links may be

directed or undirected. For instance, a virtual network function

can be represented as a pipeline of processing units in which

each pair of adjacent node is connected using a directed edge;

a cluster of processing units would be instead represented

using a connected subgraph, in which each pair of vertices

are connected with an undirected edge. The labeled graph

GV models the set of edge cloud resources and underlying

relationships that are necessary to support a specific user

application or phase. Labels in G may decorate either nodes

or edges. In a hosting graph, labels specify supply attributes

such as unit capacities and unit prices of processing or

communication links. In a requested graph of resources to
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onload, labels specify demand attributes such as the minimum

CPU utilization, storage or other hardware or software package

needed by the standalone process to onload, or the minimum

bandwidth tolerable by communicating processes. Notice that

resources may have multidimensional capacities. In particular,

let j denote an application requesting a phase to onload on

the edge e.g., a computation. The request is defined as a triple

{γj , ψj , Cj(e)} composed of γj virtual nodes, ψj virtual links

and a vector of constraints

Cj(e) =< Cj(e1), . . . , Cj(ec) >

where e is a vector of c = γj+ψj elements — nodes and links

— of the edge function. γj and ψj represent the cardinality

of NV and LV , respectively, while Cj(e) is the vector of

constraints summarized with the CV notation.

A. Modeling Cyber Foraging of Onloader Candidates

To model the cyber foraging (discovery of resources able to

execute tasks), we introduce two vectors of binary variables,

nP
i , i = 1, . . . , |NP | and pk, k = 1, . . . , |P|, where P denotes

the set of all paths in GP , that are equal to 1 if the ith physical

node and the kth physical path, respectively, are available, and

zero otherwise. An element is available if a cyber foraging

operation is able to find it, given a discovery protocol policy,

e.g., find all (or the first k shortest) physical paths no later than

a given deadline, or find as many available physical nodes as

possible within a given number of hops. If the system does

not return at least γ physical nodes and at least ψ available

physical paths among all the possible |NP | nodes and |P|
paths of the physical network GP , then the user’s request

should be immediately discarded or stored in a queue for later

allocation attempts. Among all possible resources, the system

may choose to return a set that maximizes a given notion

of utility. Those utilities may have the role of selecting the

resources that are closer — with respect to some notion of

distance — to the given set of constraints C(e). We denote as

ui ∈ ℜ and ωk ∈ ℜ the utility of physical nodes and paths,

respectively. Regardless of the type of technology (wireless

or wired), the search algorithm (from flooding to unicast

or anycast), the architecture of the cyber foraging system

(unstructured, structured, hybrid, centralized or distributed),

and the type of the resource to be discovered, we model the

maximum number of nodes and paths that the protocol is able

to discover with Γ ∈ [0, |NP |] and Ψ ∈ [0, |P|], respectively.

Those variables represent the (limited) time interval after

which the protocol has to return an answer to the system, or

the restricted scope of the provider running this infrastructure

service. Therefore, the cyber foraging phase can be modeled

with the following optimization problem:

maximize f(nP
i , pk) =

∑

i∈NP

uin
P
i +

∑

k∈P

ωkpk

subject to γ ≤
∑

i∈NP

nP
i ≤ Γ

ψ ≤
∑

k∈P

pk ≤ Ψ

nP
i , pk ∈ {0, 1} ∀i, ∀k

(1)

After the cyber foraging phase is completed, the vectors of

available physical resources (nP , p) are passed to the virtual

network mapper (bottom left block in Figure 1). Although

the two discovery operations on nodes and paths are not

independent, we assume that the path foraging, for example a

k-shortest path algorithm [8], is run after the node discovery

process is completed, so a path cannot be found if all the

physical nodes comprising it have not been yet discovered.

Moreover, we denote as (nP
ij , pkj) the resource status under

a query from edge function j, where j = 1, . . . , |J |, and J

denotes the set of edge functions to be onloaded/offloaded.

Note how problem (1) is an integer program. In general, the

running time of those problems is in a worst-case exponential,

and they can be solved with exact methods, e.g., branch and

bound or branch and cut (see e.g. [3]). However, since problem

(1) is separable, its worst-case complexity is polynomial:

Proposition III.1. The unconstrained cyber foraging problem

(Problem 1) can be solved in polynomial time.

Proof. First we note how problem (1) is separable, i.e. if we

define f1(n
P
i ) =

∑

i∈NP

uin
P
i and f2(pk) =

∑

k∈P

ωkpk, then the

solution of problem (1) is f∗ = f∗1 + f∗2 , where

f∗1 = sup

{

f1|γ ≤
∑

i∈NP

nP
i ≤ Γ, nP

i ∈ {0, 1} ∀i

}

and

f∗2 = sup

{

f2|ψ ≤
∑

k∈P

pk ≤ Ψ, pk ∈ {0, 1} ∀k

}

.

Therefore, an algorithm ∇ to solve (1) runs the following

steps: (i) run quicksort [18] independently on the vectors u

and ω, (ii) set to one the first Γ nP
i ’s and the first Ψ pk’s, (iii)

compute f∗. Since the worst-case running time of quicksort

is O(n2), step (i) has worst-case performance of O(|NP |2 +
|P|2), and so the running time of ∇ is polynomial.

Note that even though the complexity is polynomial, it may

still be impractical to run an O(n2) in the number of paths.

B. Modeling Edge Function Mapping

The edge function mapping phase takes as input all

the available edge resources (subset of all the existing

resources passed by the cyber foraging phase) P ′ ⊆ P
and NP ′ ⊆ NP , maps edge functions to edge nodes, links

connecting edge nodes to physical paths, and returns a list of

candidates — virtual nodes and virtual links — to the resource

binder. We model the edge function mapping phase as follows:

Definition 2 (Edge Function Mapping): Given an edge

function GV = (NV , LV , CV ) and a physical edge network

GP = (NP , LP , CP ), a virtual network mapping is a

mapping of GV to a subset of GP , such that each edge

function process node is mapped onto exactly one edge cloud
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node, and each virtual link is mapped onto at least one path

p on the edge network. Formally, the mapping is a function

M : GV → (NP ,P) (2)

where M is called a valid mapping if all constraints of GV

are satisfied, and for each lv = (sV , tV ) ∈ LV , ∃ a physical

path p : (sP , tP ) ∈ P with source sP and destination tP with

M(sV ) = sP and M(tV ) = tP 2.

To model this phase for an onloading request j, ∀j ∈ J , we

define two vectors of binary variables nVij ∀i ∈ NP ′, and lkj
∀k ∈ P ′,

The variables nV
ij = 1 if a virtual instance of node i is

mappable – there exists a physical node that satisfies all

constraints of user j request – and zero otherwise, while

lkj = 1 if a virtual instance of the physical path k asked by

edge function j is mappable – there exists at least a physical

path p such that all the links in p satisfy the constraints

of user j request – and zero otherwise. The edge function

mapping can be modeled by the following network utility

maximization problem:

maximize g(nV
ij , lkj) =

∑

j∈J

(
∑

i∈NP ′

Θijn
V
ij +

∑

k∈P′

Φkj lkj)

(3)

subject to:

∑

i∈NP ′

nV
ij = γj ∀j ∈ J (4)

∑

k∈P′

lkj = ψj ∀j ∈ J (5)

nV
ij = nP

ij ∀i ∈ NP ′ ∀j ∈ J (6)

lkj ≤ pkj ∀k ∈ P ′ ∀j ∈ J (7)

nP
ij , n

V
ij , pkj , lkj ∈ {0, 1} ∀i ∀j ∀k, (8)

where Θij is the system’s gain that when function j gets

onloaded or offloaded to edge node i, and Φkj is the system’s

gain if the user j uses path k. The first two sets of constraints

(4 and 5) enforce that all the virtual resources requested by

each user are mapped. Constraint (6) ensures that the one-

to-one mapping between virtual and physical nodes is not

violated, and constraint (7) ensures that at least one hosting

path is going to be assigned to each virtual link. This inequality

would be strict if, for example, we force path splitting in

the link assignment. Moreover, constraints (8) denote the

non negativity domain of the the nodes and links variables

nP,nV,p and l.

C. Modeling Onload/Offload Allocation

As soon as the edge function mapping candidates have

been identified, a Set Packing Problem (SPP) needs to be

2Note how the mapping function M may accept any edge function graph,
including a graph whose |NV | = 1 and |LV | = 0; hence, assignments as
M(sV ) = sP are well defined. Note also that even if a path may have
intermediate nodes, we only need its starting and ending node to define the
mapping.

run, considering both edge function priorities and capacity

constraints on the physical resources. When demand exceeds

supply and not all the needs can be met, virtualization systems

goals can no longer be related to maximizing utilization, but

different policies to guide resource allocation decisions have

to be designed. A natural policy is to seek efficiency, namely,

to allocate resources to the set that bring to the system the

highest utility. To such an extent, the research community

has frequently proposed market-based mechanisms to allocate

resources among competing interests while maximizing the

overall user utility. A subclass of solutions dealing with this

type of allocation is represented by auction-based systems.

Auction-Based Allocation. An auction is the process of buy-

ing and selling goods or services by offering them up for bid,

taking bids, and then selling them to the highest bidder. The

last phase of our problem builds on the Combinatorial Auction

Problem (CAP). The CAP considers a set O of resources (or

objects) and a collection of users J each asking for a subset

of O. J is a subset of the powerset of O, P (O) – the set of all

the possible subsets of O, including the empty set and O itself.

Each user has associated a non-negative utility wj . The edge

infrastructure provider that runs the binding phase seeks the

largest utility collection of subsets, namely, it seeks to allocate

the set of edge functions that maximize its aggregate utility.

Let yj = 1 if the jth set in J with utility wj is selected,

and zero otherwise. Moreover, let aij = 1 if the jth set in J

contains the resource of type i ∈ O and zero otherwise. If we

also assume bi copies of resource i, we have:

maximize
∑

j∈J

wjyj

subject to
∑

j∈J

aijyj ≤ bi ∀i ∈ O

yj ∈ {0, 1} ∀j ∈ J

(9)

which is a multi-resource SPP. As shown in [6], in fact, a

CAP is NP-Hard and equivalent to a SPP. Intuitively, we need

to check all the possible combinations of bids wj to find out

which is the set of bidders that maximizes the provider’s profit.

Leveraging on Problem 9, we model the onload/offload

allocation phase with the following mixed integer |LV |-
commodity flow problem:

Objective:

maximize h(yj) =
∑

j∈J

wjyj (10)

subject to:
∑

j∈J

nV
ij ≤ yjC

n
i ∀i ∈ NP ′ (11)

∑

j∈J

(

f
kj
i,w + f

kj
w,i

)

≤ yjb(i, w) ∀i, w ∈ NP ′, i 6= w, ∀k

(12)
∑

w∈NP ′

fki,w −
∑

w∈NP ′

fkw,i = 0 ∀k ∈ P ′, ∀i ∈ NP ′ \ {sk, tk}

(13)
∑

w∈NP ′

fksk,w −
∑

w∈NP ′

fkw,sk
= b(sk, w) ∀k ∈ P ′ (14)
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∑

w∈NP ′

fktk,w −
∑

w∈NP ′

fkw,tk
= −b(tk, w) ∀k ∈ P ′ (15)

fki,w ≥ 0 ∀k, ∀ i, w ∈ NP (16)

nV
ij , yj ∈ {0, 1} ∀i ∈ NP ′ ∀j ∈ J (17)

We model an edge function link to be a flow on a physi-

cal network. Therefore, we consider the allocator as a flow

allocator, and we include the flow conservation conditions,

that is, we enforce the net flow of all the physical nodes to

be zero (constraint 13), except when a node is the source sk

(14) or the destination tk (15) of the flow (or virtual link or

physical path) k. Note how the flow constraints model the

connection between a link and its end-nodes. Variable b(ekj)
represents the bandwidth necessary to allocate the virtual link

ek asked by user j. Moreover, constraint (16) denote the non-

negativity domain of the flows f , where Cn
i and Cl

k are the

numbers of virtual nodes and links, respectively, that can be

simultaneously hosted on the physical node i and physical path

k, respectively, and yj is a binary variable equal to 1 if user j

has been allocated and zero otherwise. A weight wj is assigned

to each user j, and it depends on the allocation policy used.

Note how, since the set packing problem is NP-Hard, problem

(10) is also NP-Hard.

IV. COMPLETE EDGE FUNCTION ONLOADING

To clarify how the three phases of the complete edge func-

tion onloading problem interact, and how they may influence

the efficiency of edge computing applications, we formulate a

centralized optimization problem that treats the three phases

as inseparable. We consider the objective function of the

complete edge function onloading problem to be the sum

of the objectives of its three standalone phases, under the

union of their constraints, with the addition of a few coupling

constraints:

maximize α · f(nP
ij , pkj) + β · g(nV

ij , lkj) + δ · h(yj)
subject to constraints of problems (1), (3) and (10)

nV
ij = nP

ij ∀i ∀j
lkj ≤ pkj ∀k ∀j
yj ≤ nV

ij ∀i ∈ NP ′ ∀j ∈ J

yj ≤ lkj ∀k ∈ P ∀j ∈ J.
(18)

The first set of constraints is identical to those described

for problems (1), (3) and (10), while the last four constraints

are coupling (or complicating) constraints, as they bind the

three phases of the edge function onloading problem together.

If those constraints were absent, the problem could be sep-

arated and each phase could be solved independently. Such

constraints guarantee that an edge function is not mapped

unless enough resources have been found by the cyber foraging

phase, and that the mapped edge function components are all

bindable. Finally, α, β and δ are weight factors whose values

depend on the application. They model the general nature

of the problem and they can be used to subsume different

(existing or novel) edge function onloading or offloading

strategies, depending on whether or not they capture each

single phase. To our knowledge, in existing solutions, all the

above constraints have never been simultaneously considered.

From an optimization theory point of view, constraint addition

or omissions in general may result in sub-optimal or infeasible

solutions. For example, the cyber foraging constraints impact

the other phases of the onloading process, since an edge

resource not found certainly cannot be mapped or allocated.

Moreover, we risk or running the edge function mapping phase

on resources that can never be reserved because they would

exceed the physical capacity constraints. Such inefficiencies

are quantified, in our simulation study.

V. DECOMPOSING THE COMPLETE EDGE FUNCTION

ONLOADING PROBLEM

We now turn our attention to the development of efficient

solution methods for Problem (18). Our approach is based on

exploiting the problem structure via the dual-decomposition

methods (see, e.g., [3] Ch. 6). Due to the rich structure of

this problem, there are many ways to formulate the dual

problem, depending on which constraints are introduced with

the Lagrange multipliers. To make the problem separable, we

consider only dual problems created by introducing Lagrange

multipliers for the coupling constraints. For example, if we

relax constraints yj ≤ nV
ij and yj ≤ lkj , then that the problem

becomes separable into two subproblems EFM and ALLOC.

So we solve the primal problem:

maximize β · g(nVij , lkj) + δ · h(yj)
subject to yj ≤ nV

ij ∀i ∀j
yj ≤ lkj ∀k ∀j
decoupled constraints in (18)

(19)

by computing the dual function V (λ, µ) i.e. the objective

function of the dual problem:

V = supnV
ij
,lkj ,yj

L(nVij , lkj , yj , λij , µkj)

subject to λij ≥ 0 ∀i ∀j
µkj ≥ 0 ∀j ∀k
decoupled constraints in (18)

(20)

where the partial Lagrangian function is given by:

L = βg(nV
ij , lkj) + δh(yj) (21)

−
∑

i∈NP ′

∑

j∈J

λij(yj − nV
ij)−

∑

k∈P′

∑

j∈J

µkj(yj − lkj) = (22)

∑

j∈J

∑

i∈NP ′

βΘijn
V
ij +

∑

j∈J

∑

k∈P′

βΦkj lkj + (23)

∑

i∈NP ′

∑

j∈J

λijn
V
ij +

∑

k∈P′

∑

j∈J

µkj lkj + (24)

∑

j∈J

wjyj −
∑

i∈NP ′

∑

j∈J

λijyj −
∑

k∈P′

∑

j∈J

µkjyj = (25)
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



∑

j∈J

∑

i∈NP ′

(βΘij + λij)n
V
ij +

∑

j∈J

∑

k∈P′

(βΦkj + µkj)lkj



+ (26)





∑

j∈J

(wj −
∑

i∈NP ′

λij −
∑

k∈P′

µkj)yj



 (27)

Since the dual function is always convex [3], this is a

convex optimization problem. Note that the dual function can

be evaluated separately in the mapping and the allocation

variables:

V (λij , µkj) = VEFM (λij , µkj) + VALLOC(λij , µkj) (28)

where:

VEFM = sup
l,nV ≥0

Equation (26)

subject to λij ≥ 0 ∀i ∀j
µkj ≥ 0 ∀j ∀k
EFM decoupled constraints in (18)

(29)and

VALLOC = sup
y≥0

∑

j∈J

(wj −
∑

i∈NP ′

λij −
∑

k∈P′

µkj)yj

subject to λij ≥ 0 ∀i ∀j
µkj ≥ 0 ∀j ∀k
ALLOC decoupled constraints in (18)

(30)

As we are solving the dual problem instead of the original

primal, we know from duality theory that this problem will

only give us appropriate results unless strong duality holds.

This is the case because the original relaxed problem is convex

and there always exist a strictly feasible solutions (i.e., the

Slater’s condition is verified [3]). The Slater’s condition in

our case means that there exists a feasible solution such that

yj < nV
i,j and yj < lk,j that is, it is possible, for example, to

have no users (y = 0) allocated even if some edge function

node could be mapped. The dual decomposition results in each

user solving, for the given Lagrangian multipliers,

y∗j (λ, µ) = argmax
yj≥0

[(wj −
∑

i∈NP ′

λij −
∑

k∈P′

µkj)yj ] (31)

which is unique, due to the strict concavity of wj .

VI. PERFORMANCE EVALUATION

Evaluation Environment. To validate our model, we imple-

mented an event driven simulator assessing the impact of the

cooperation gain among the edge function onloading phases.

Our simulator captures the three phases as shown in Figure 1.

To generate our hosting physical network, we use the BRITE

topology generator [15] following a flat Waxman topology

generation model. BRITE has been commonly used in research

that requires practical network topology generation. Unless

otherwise specified, the substrate edge network has 100 nodes

and 500 links, a scale that corresponds to a medium-sized

Internet Service Provider (ISP). Each end-user process to be

onloaded has a CPU requirement, chosen uniformly at random

between 1 and 100 units. The CPU resources at the edge nodes

follow a uniform distribution between 50 to 200 units, and the

link bandwidths follow a uniform distribution from 1 to 10
units.

Evaluation Metrics. The common goal of the proposed solu-

tion is the maximization of a notion of onloader utility, which

can be, in its simplest case, the number of concurrent allocated

edge functions. The aim of our evaluation is to show how

each singleton phase of the complete edge function onloading

problem alone is insufficient to guarantee an efficient cyber

foraging, since each phase influences the decision space of the

others. We test our idea implementing two allocation policies:

First Come First Serve (FCFS) and Revenue Maximization. In

FCFS, each request is onloaded without any notion or vision of

future requests. We picked this algorithm as a baseline being

the simplest packing heuristic. In the Revenue Maximization

heuristic instead, the edge function whose utility is maximized

is picked first, given a pool of simultaneously considered

functions to onload. After the node mapping phase, we try

to map each virtual link to the first or second shortest path

that satisfies the capacity constraints, or else we reject the

requested edge function. Results obtained increasing k in a

k-shortest path virtual link allocation are similar, and we omit

them for lack of space. We now summarize our evaluation

results with a few take-home messages.

Evaluation Results. (1) Simultaneously optimizing the three

phases of the complete edge function onloading problem

increases global resource utilization. In Figure 2(a-c) we show

the impact of the edge function request rate over the efficiency

loss when the cyber foraging phase is ignored. The x-axis

shows the edge function request rate. The y-axis show the

fraction of allocated edge function (or efficiency loss), when

the feedback-loop depicted in Figure 1 is open, that is, when

the virtual edge function mapping and binding (allocation)

algorithm is unaware of all the available resources {nP
ij , pkj}

provided by the cyber foraging service. We then compare the

two edge function mapping policies (revenue maximization

and First Come First Serve) on two different sets of nodes

and edges; first, assuming full knowledge of the physical edge

resources, and hence using the sets (NP ,P) — the set of all

the possible physical nodes and physical paths in the network –

and then, using (N ′, P ′), a subset of discovered physical nodes

and paths. A path p is discovered if each node in p ∈ NP ′. A

physical node nP
i ∈ NP ′ if it is h̄ hops away from a random

node of the physical topology, when a discovery-protocol event

is triggered. The value of h̄ will depend on the application.

We fixed h̄ = p̄+1 where by p̄ we denote the average length

of a shortest path. With these settings, given our physical

network topologies, about 70% of the paths are available after

a foraging operation. The efficiency loss is then computed as

the ratio between the number of Mappable Edge Function

(MEF) computed on the set tuple (NP ′,P ′), MEF(NP ,P)

minus MEF(NP ′,P′), normalized by MEF(NP ,P), that is:

Efficiency Loss :=
MEF(NP ,P) −MEF(NP ′,P′)

MEF(NP ,P)

. (32)

We can see how, initially, as the onloading request rate
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lack of cooperation between the edge function mapping and

the binding phase, but the algorithm has full knowledge of

the physical topology. We do not study the case where the

knowledge of both physical and virtual resources are partial

(since the results are not surprising), but we focus on analyzing

the effect of each individual cooperation.

In Figure 2g, we show the impact of the physical node

capacity on the efficiency loss, this time computed as follows:

Efficiency Loss :=
MEF(NP ′,P′) −OEF(NP ′,P′)

OEF(NP ′,P′)

(33)

where, MEF(NP ′,P′) is defined as in Equation (32),

OEF(NP ′,P′) is the set of onloaded edge function when the

set of available nodes is NP ′, and the set of available paths

P ′, and, in this case study, (NP ,P) ≡ (NP ′,P ′). 3

The edge function mapping phase, in this scenario, only

checks whether or not there exists at least a node node whose

(total and not residual) CPU capacity is larger than it was

requested for each edge function process – third constraint of

problem (3) – and whether or not there exists a physical path

whose (total and not residual) bandwidth capacity on each

link is greater than or equal to that requested for each virtual

link – fourth constraint of problem (3). When both constraints

are satisfied, the edge function is mappable. On the x-axis we

have the maximum node capacity: x = 10 means that the edge

node capacity is assigned uniformly at random between 1 and

10 while the capacity of a single link is set to 5, that is, each

physical link can host at most 5 virtual edge function links.

Note that the range of efficiency loss goes from 12% to a peak

of 43% when the Revenue Maximization policy is used.

In Figure 2h we show the impact of the pool size –

the number of simultaneous edge function requests collected

before running the last two edge onloading phases– on the

efficiency loss. Note how, as the allocation candidates increase,

the allocation policy used changes the efficiency performance.

This observation suggests an important principle in designing

centralized or distributed solutions for the complete edge func-

tion onloading problem, that is, without cooperation among the

edge onloading phases, complex mapping algorithms do not

help increase the global system utilization.

VII. CONCLUSIONS

In this paper, we presented a model for the complete

edge function onloading problem, a series of interconnected

infrastructure management services consisting of three main

phases: cyber forage, edge function mapping, and binding or

allocation. We modeled via optimization each of the three

phases, and we showed that such phases are tightly connected,

that they should be run by the back-end infrastructure, and

that the solutions that either solve a particular phase, or jointly

solve multiple phases along with the interactions between them

are incomplete and may lead to inefficiencies. We carried out

a simulation study using our own event driven simulator to

3Note how, in the previous simulation scenario, we always have
MEF(N′,P′) ≡ OEF(NP ′,P′).

demonstrate that the proposed cooperation enables a substrate

(mobile) edge cloud provider to host a larger set of constrained

virtual network requests, and that the design of protocols that

consider interaction among the phases may be as crucial as the

adoption of a more efficient offloading or onloading algorithm.
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