Complete Edge Function Onloading for Effective
Backend-driven Cyber foraging

Flavio Esposito*, Andrej Cvetkovskif, Tooska Dargahit, and Jianli Pan®
*Saint Louis University, USA T Mother Teresa University, FYROM,
I CNIT - University of Rome Tor Vergata, Italy, §University of Missouri-St. Louis, USA.

Abstract—Edge computing involves onloading or offloading
multiple virtual network functions from mobile devices to an
edge network substrate. In this paper, we present a model for
the complete edge function onloading problem, which consists of
three main phases: (1) Cyber foraging, which involves discovery
of resources monitoring the state of edge resources, (2) edge
function mapping, which involves matching requests to available
resources, and (3) allocation, which involves assigning resources
to mappings. Using optimization theory, we show how these
three phases are tightly connected, and how the wide spectrum
of existing solutions that either solve a particular phase, or
jointly solve two of the phases (along with their interactions),
are incomplete and may lead to inefficiencies. Moreover, with
extensive simulation experiments we demonstrate that joint
optimization of all three phases enables the edge network to
host a larger set of constrained edge function requests.

I. INTRODUCTION

Edge computing is a paradigm in which much of the
processing takes place in a process at the edge of the network,
as opposed to in the core of the network as in the Cloud
Computing paradigm. This (distributed) approach has been
shown to improve user experience by reducing the perceived
latency, and is growing in popularity because of the Internet
of Things (IoT) and the vast amount of data that sensors
generate. It is inefficient to transmit all the data a bundle
of sensors creates to the cloud for processing and analysis;
doing so requires a great deal of bandwidth and all the back-
and-forth communication between the sensors and the cloud
can negatively impact performance. In a challenged edge
computing scenario, e.g., in case of natural disaster, or for
medical applications, multiple processes need to establish and
maintain a set of virtual flows to guarantee a set of Service
Level Objectives, t.e., some acceptable levels of network
performance, to accomplish a phase or, more generally, to
provide a service. Several edge cloud infrastructures arose in
the research community, see e.g. [11], [17], as well as from
industry initiatives, such as Microsoft’s micro DCs [2] and
ETSI Mobile Edge Computing [9].

In contrast with the vast majority of these proposals, in this
paper we argue that back-end driven onloading is a wiser al-
ternative than client-driven offloading. Client-based offloading
has many difficult challenges, mostly due to the diversity of
devices: from the different operating systems, to the numerous
apps running on them, to accurate code profiling, and gauging
optimal offload conditions. Often a continuous monitoring of
network conditions is required, and several recent offload-

ing approaches ignore this crucial phase [2], [9]. Moreover,
resource constrained of geographically distributed end user
devices are often ignored in finding an optimal offloading
strategy. The edge cloud instead is inherently designed to
handle different types of devices, and practically has unlimited
energy and computational resources. Furthermore, it has ability
to accurately characterize access to users’ location and time
constraints [12]. One of the goals of edge computing is to
release devices from the burden of (expensive) computations,
so it is natural to think that such devices should not waste
resources to decide where to offload. Most importantly, the
edge cloud may benefit from an holistic view of where to run
the edge functions, a view that has been surprisingly neglected
in previous solutions. In this paper we focus on such view.

Our Contributions: In particular, in this paper we introduce,
model and evaluate with a simulation campaign the impact
of the complete edge function onloading problem, showing its
significant efficiency gains. The problem, solved by processes
in the edge cloud back-end, comprises three subproblems
(or phases): cyber-forage, edge function mapping, and edge
function binding or allocation. Cyber-forage is the process
of discovering resources capable of hosting the phase or
sequence of phases (i.e. mechanisms), by monitoring the state
of the substrate resources using sensors and other measurement
processes. The monitored states include energy consumption,
processor loads, memory usage, network statistics, etc.! Edge
Function Mapping is the phase in charge of matching edge
functions’ requests with the available resources. Due to the
possible combination of node and link constraints, this is the
most complex step in the mapping problem. This problem
is in fact NP-hard as it can be reduced from the multiway
separator problem [4]. The constraints include intra-node (e.g.,
desired edge location, processor speed, storage capacity, type
of network connectivity), as well as inter-node constraints
(e.g., network topology). The last subproblem — edge function
binding — involves assigning the resources that match the
edge function queries to the appropriate virtual function, con-
sidering additional constraints, e.g., location or infrastructure
physical limits. This last phase also ensures that users will not
exceed physical limits or their authorized resource usage. For
example, the system may decide not to allocate a service that

IThe term cyber foraging is often used as synonym of offloading. We
dissect this notion by clarifying its separation from the other two phases, and
removing the assumption that such operation is managed by mobile devices.

has not yet been authorized, even though the virtual network
could be physically mapped.

To our knowledge, this is the first study that captures the

interactions among the onloading phases (Figure 1.) Previous
onloading solutions e.g. [12], only formulate or partially
address the problem, and always neglect at least one of
the interdependencies. We argue that providers should not
neglect such cooperations, as an efficient utilization of the
edge network is one of the key factors not only for profit
maximization, but also for avoidance of congestion on edge
links and nodes, and therefore for minimizing virtualization
artifacts experienced by edge computing applications.
Paper outline: The reminder of this paper is organized as fol-
lows: we discuss how related solutions in Section II. We then
introduce the three edge infrastructure services encompassing
our problem in Section III, and we describe how our model
unifies such phases holistically in Section IV. Then, we turn
our attention to the development of efficient solution methods
for our problem, exploiting the rich problem structure via
the dual-decomposition in Section V. In Section VI we show
with a simulation campaign how our approach improves the
performance of network virtualization applications that require
agility, and we conclude our work in Section VII.

II. RELATED WORK

The problem of optimizing the transmission of a workload
from a mobile device to the edge cloud is of central importance
for an efficient coordination. We classify existing optimization
solutions for edge offloading using five dimensions: opti-
mize the offloading destination [5], [7], [16], the load to
balance [10], [21], the user device mobility [19], [22], the
application partitioning [13] and the partition granularity [17].
Such classification covers the whole offloading process in a
sequential order from mobile devices to the edge cloud. We
only cite here representative solutions that helps us define our
contributions, but a more comprehensive reference list can be
found in these surveys [1], [14], [20].

MAUI [7] and CloneCloud [5] discuss different optimiza-
tion strategies for the offloading on a single-sever, while
ThinkAir [16] solves the resource allocation problem by paral-
lelizing the offloading on multiple virtual machines. We also
consider an optimal offloading destination, but we consider
also the cyber foraging and the final allocation phases, not
merely the edge function mapping phase. Shifting the focus to
problems that seek load balancing under limited resources and
processing abilities on the edge cloud, we consider the work of
Xia et al. [21], that proposed an online request admission algo-
rithm to maximize the system throughput. In [10], instead, the
authors proposed an algorithm for allocating VMs in a cloud
which consists of geographically diversified small data centers
close to users. The algorithm takes users’ specified constraints
into consideration including server geographic locations,with
resource cost and communication latency constraints. Our
model subsumes those approaches since it captures all these
constraints, but does not ignore the interactions among the
three subproblems. Moreover, using dual decomposition, as

On/Offloaded
Processes

CYBER
FORAGING

ON/OFFLOAD

FUNCEON ALLOCATION

MAPPING

‘ EDGE ’

Subset of Available
Edge Resources

List of Edge
Candidates

Fig. 1. Complete Edge Function Onloading: interactions and data exchanges.

shown in Section V, our network utility maximization problem
may also be asily distributed.

The third modeling classification dimension that we con-
sider is mobility. To improve the performance while satis-
fying the SLA of mobile applications, other authors [19],
[22] proposed different mobile-friendly architectures; the two-
tiered mobile cloud architecture in [22] for example, includes
computation capabilities both at the edge and the central cloud.
Both solutions aim at offloading location-aware phases of
mobile applications to ensure e.g., fairness of energy con-
sumption. Our model can captures also their constraints, but
defines a more flexible architecture in which each subproblem
can be solvable jointly in different tiers, or individually in a
centralized or distributed fashion. Moreover, these approaches
focus only on the location-aware mapping phase ignoring the
cyber foraging (discovery) and the final binding phases.

III. EDGE FUNCTION ONLOADING SUBPROBLEMS

In this section we present a model for each of the three
subproblems (phases) of the complete edge function onloading
problem. To do so, we first define a network as follows:
Definition 1 (Network): A Network is given by an undirected
graph G = (N, L, C) where N is a set of nodes, L is a set of
links, and each node or link e € N UL is associated with a set
of constraints C'(e) = {Ci(e),...,Cp(e)} where m > 0 is
the number of constraints on element e. We denote a physical
network as GP = (NP L C?), and an edge function to
onload as a graph GV = (NV, LV, CV).

Nodes in G represent standalone resources, whereas links
represent relationships between resources. Examples of stan-
dalone resources (nodes in G) include processors and storage.
Examples of relationships between resources include commu-
nication links, spatial or temporal relationships. Links may be
directed or undirected. For instance, a virtual network function
can be represented as a pipeline of processing units in which
each pair of adjacent node is connected using a directed edge;
a cluster of processing units would be instead represented
using a connected subgraph, in which each pair of vertices
are connected with an undirected edge. The labeled graph
Gy models the set of edge cloud resources and underlying
relationships that are necessary to support a specific user
application or phase. Labels in G may decorate either nodes
or edges. In a hosting graph, labels specify supply attributes
such as unit capacities and unit prices of processing or
communication links. In a requested graph of resources to

onload, labels specify demand attributes such as the minimum
CPU utilization, storage or other hardware or software package
needed by the standalone process to onload, or the minimum
bandwidth tolerable by communicating processes. Notice that
resources may have multidimensional capacities. In particular,
let 5 denote an application requesting a phase to onload on
the edge e.g., a computation. The request is defined as a triple
{7, %;,C;(e)} composed of 7, virtual nodes, 1); virtual links
and a vector of constraints

Cj(e) =< Cj(€1), . ,Cj(ec) >

where e is a vector of ¢ = 7; +1; elements — nodes and links
— of the edge function. 7; and 1); represent the cardinality
of NV and LY, respectively, while Cj(e) is the vector of
constraints summarized with the C"' notation.

A. Modeling Cyber Foraging of Onloader Candidates

To model the cyber foraging (discovery of resources able to
execute tasks), we introduce two vectors of binary variables,
nP,i=1,...,|NF|and py, k = 1,...,|P|, where P denotes
the set of all paths in G, that are equal to 1 if the i*" physical
node and the k' physical path, respectively, are available, and
zero otherwise. An element is available if a cyber foraging
operation is able to find it, given a discovery protocol policy,
e.g., find all (or the first k shortest) physical paths no later than
a given deadline, or find as many available physical nodes as
possible within a given number of hops. If the system does
not return at least y physical nodes and at least ¢ available
physical paths among all the possible |N*'| nodes and |P]
paths of the physical network G, then the user’s request
should be immediately discarded or stored in a queue for later
allocation attempts. Among all possible resources, the system
may choose to return a set that maximizes a given notion
of utility. Those utilities may have the role of selecting the
resources that are closer — with respect to some notion of
distance — to the given set of constraints C'(e). We denote as
u; € R and wi € RN the utility of physical nodes and paths,
respectively. Regardless of the type of technology (wireless
or wired), the search algorithm (from flooding to unicast
or anycast), the architecture of the cyber foraging system
(unstructured, structured, hybrid, centralized or distributed),
and the type of the resource to be discovered, we model the
maximum number of nodes and paths that the protocol is able
to discover with T' € [0, |[NF|] and ¥ € [0, |P|], respectively.
Those variables represent the (limited) time interval after
which the protocol has to return an answer to the system, or
the restricted scope of the provider running this infrastructure
service. Therefore, the cyber foraging phase can be modeled
with the following optimization problem:

maximize n!, k) Z u; n + Z WE Pk
iENP keP
subject to v < Z nf <Tr
iENP (D
P < Zpk <wv
keP

nP py € {0,1} Vi, Vk

After the cyber foraging phase is completed, the vectors of
available physical resources (nf’, p) are passed to the virtual
network mapper (bottom left block in Figure 1). Although
the two discovery operations on nodes and paths are not
independent, we assume that the path foraging, for example a
k-shortest path algorithm [8], is run after the node discovery
process is completed, so a path cannot be found if all the
physical nodes comprising it have not been yet discovered.
Moreover, we denote as (ng,pkj) the resource status under
a query from edge function j, where 7 = 1,... , and J
denotes the set of edge functions to be onloaded/offloaded.
Note how problem (1) is an integer program. In general, the
running time of those problems is in a worst-case exponential,
and they can be solved with exact methods, e.g., branch and
bound or branch and cut (see e.g. [3]). However, since problem
(1) is separable, its worst-case complexity is polynomial:

Proposition II1.1. The unconstrained cyber foraging problem
(Problem 1) can be solved in polynomial time.

Proof. First we note how problem (1) is separable, 7.e. if we

define f1(n Z U; n and fo(p) Z Wi Pk, then the
iENP keP
solution of problem (1) is f* = f{ + f5, where

ff=SUP{f1v§ > al<T, nfE{O,l}W}

iENP

and

f3 =sup {f2|¢ < Zpk <V, pp€{0,1} Vk‘} :
keP
Therefore, an algorithm V to solve (1) runs the following
steps: (i) run quicksort [18] independently on the vectors u
and w, (ii) set to one the first I" nf) ’s and the first ¥ py’s, (iii)
compute f*. Since the worst-case running time of quicksort
is O(n?), step (i) has worst-case performance of O(|N¥|? +
|P|?), and so the running time of V is polynomial. O

Note that even though the complexity is polynomial, it may
still be impractical to run an O(n?) in the number of paths.

B. Modeling Edge Function Mapping

The edge function mapping phase takes as input all
the available edge resources (subset of all the existing
resources passed by the cyber foraging phase) P’ C P
and N C NP, maps edge functions to edge nodes, links
connecting edge nodes to physical paths, and returns a list of
candidates — virtual nodes and virtual links — to the resource
binder. We model the edge function mapping phase as follows:

Definition 2 (Edge Function Mapping): Given an edge
function GV = (NV,LV,CV) and a physical edge network
GP = (NP,LF ,CF), a virtual network mapping is a
mapping of GV to a subset of G, such that each edge
function process node is mapped onto exactly one edge cloud

node, and each virtual link is mapped onto at least one path
p on the edge network. Formally, the mapping is a function

M:GY - (NF,P))

where M is called a valid mapping if all constraints of GV
are satisfied, and for each [V = (sV,¢") € LY, 3 a physical
path p : (s, t"") € P with source s and destination ¢¥ with
M(sV) = s and M(tV) =t 2

To model this phase for an onloading request j, Vj € J, we
define two vectors of binary variables ”Z Vi € N¥' and lij
vk e P,

The variables n), = 1 if a virtual instance of node i is
mappable — there exists a physical node that satisfies all
constraints of user j request — and zero otherwise, while
l; = 1 if a virtual instance of the physical path k£ asked by
edge function j is mappable — there exists at least a physical
path p such that all the links in p satisfy the constraints
of user j request — and zero otherwise. The edge function
mapping can be modeled by the following network utility
maximization problem:

maximize g(ny}, lr;) = Z(Z @ijn}; + Z Dilijs)

JjE€J ieNP! keP’
(3)
subject to:

S onfj= Vied €5

iENF’
> k=1 Vied (5)

kep’

v _ P . P .

nj=mn;; Yie N*' VjeJ (6)
lkj < Pkj vk c P’ V_] eJ @)
ni,ny, prj, ey € {0,1} Vi Vj Vk, ®)

where ©;; is the system’s gain that when function j gets
onloaded or offloaded to edge node 4, and ®; is the system’s
gain if the user j uses path k. The first two sets of constraints
(4 and 5) enforce that all the virtual resources requested by
each user are mapped. Constraint (6) ensures that the one-
to-one mapping between virtual and physical nodes is not
violated, and constraint (7) ensures that at least one hosting
path is going to be assigned to each virtual link. This inequality
would be strict if, for example, we force path splitting in
the link assignment. Moreover, constraints (8) denote the
non negativity domain of the the nodes and links variables
n® nV, pandl

C. Modeling Onload/Offload Allocation

As soon as the edge function mapping candidates have
been identified, a Set Packing Problem (SPP) needs to be

2Note how the mapping function M may accept any edge function graph,
including a graph whose [NV | = 1 and |LY| = 0; hence, assignments as
M(sV) = s are well defined. Note also that even if a path may have
intermediate nodes, we only need its starting and ending node to define the

mapping.

run, considering both edge function priorities and capacity
constraints on the physical resources. When demand exceeds
supply and not all the needs can be met, virtualization systems
goals can no longer be related to maximizing utilization, but
different policies to guide resource allocation decisions have
to be designed. A natural policy is to seek efficiency, namely,
to allocate resources to the set that bring to the system the
highest utility. To such an extent, the research community
has frequently proposed market-based mechanisms to allocate
resources among competing interests while maximizing the
overall user utility. A subclass of solutions dealing with this
type of allocation is represented by auction-based systems.
Auction-Based Allocation. An auction is the process of buy-
ing and selling goods or services by offering them up for bid,
taking bids, and then selling them to the highest bidder. The
last phase of our problem builds on the Combinatorial Auction
Problem (CAP). The CAP considers a set O of resources (or
objects) and a collection of users J each asking for a subset
of O. J is a subset of the powerset of O, P(O) — the set of all
the possible subsets of O, including the empty set and O itself.
Each user has associated a non-negative utility w;. The edge
infrastructure provider that runs the binding phase seeks the
largest utility collection of subsets, namely, it seeks to allocate
the set of edge functions that maximize its aggregate utility.
Let y; = 1 if the gt set in J with utility wj is selected,
and zero otherwise. Moreover, let a;; = 1 if the jth set in J
contains the resource of type ¢ € O and zero otherwise. If we
also assume b; copies of resource ¢, we have:

maximize Z w;y;
JeJ
subject to Z ai;y; <b; Vie O ©))
jeJ
y; €{0,1} Vje J
which is a multi-resource SPP. As shown in [6], in fact, a
CAP is NP-Hard and equivalent to a SPP. Intuitively, we need
to check all the possible combinations of bids w; to find out
which is the set of bidders that maximizes the provider’s profit.
Leveraging on Problem 9, we model the onload/offload
allocation phase with the following mixed integer |LV|-
commodity flow problem:

Objective:
maximize h(y;) = ijyj (10)
jeJ
subject to:
> nY <y Cp Vie NV (11)

jeJ

5™ (5,4 15) < ybliw) Viow € NP/, i w, Vi
JjEJ

(12)
Yo e Do fhi=0VkeP, Vie NP\ {s" 1"
weNF’ wENP/
(13)
Z ffk,w - Z fllf),sk = b(Sk,w) Vk e P! (14)
weNP/ weNP/

Z ftkk,w _ Z ff},tk = —b(ty,w) Yk e P' (15)
wENP! weNP!

fre =0 VEY i,we N (16)

nj,y; €{0,1) Yie N vjeJ (17)

We model an edge function link to be a flow on a physi-
cal network. Therefore, we consider the allocator as a flow
allocator, and we include the flow conservation conditions,
that is, we enforce the net flow of all the physical nodes to
be zero (constraint 13), except when a node is the source s*
(14) or the destination t* (15) of the flow (or virtual link or
physical path) k. Note how the flow constraints model the
connection between a link and its end-nodes. Variable b(e7)
represents the bandwidth necessary to allocate the virtual link
¥ asked by user j. Moreover, constraint (16) denote the non-
negativity domain of the flows f, where C* and C! are the
numbers of virtual nodes and links, respectively, that can be
simultaneously hosted on the physical node 7 and physical path
k, respectively, and y; is a binary variable equal to 1 if user j
has been allocated and zero otherwise. A weight w; is assigned
to each user j, and it depends on the allocation policy used.
Note how, since the set packing problem is NP-Hard, problem
(10) is also NP-Hard.

IV. COMPLETE EDGE FUNCTION ONLOADING

To clarify how the three phases of the complete edge func-
tion onloading problem interact, and how they may influence
the efficiency of edge computing applications, we formulate a
centralized optimization problem that treats the three phases
as inseparable. We consider the objective function of the
complete edge function onloading problem to be the sum
of the objectives of its three standalone phases, under the
union of their constraints, with the addition of a few coupling
constraints:

maximize o - f(nf;, pe;) + B - g(ng}, leg) + 6 - h(y;)
subject to constraints of problems (1), (3) and (10)
nx = nE Vi Vj
lej < prj VE Vj
y <nj; Vie N VjeJ
y]SlkJ VkeP Vjeld
(18)

The first set of constraints is identical to those described
for problems (1), (3) and (10), while the last four constraints
are coupling (or complicating) constraints, as they bind the
three phases of the edge function onloading problem together.
If those constraints were absent, the problem could be sep-
arated and each phase could be solved independently. Such
constraints guarantee that an edge function is not mapped
unless enough resources have been found by the cyber foraging
phase, and that the mapped edge function components are all
bindable. Finally, o, $ and § are weight factors whose values
depend on the application. They model the general nature
of the problem and they can be used to subsume different
(existing or novel) edge function onloading or offloading

strategies, depending on whether or not they capture each
single phase. To our knowledge, in existing solutions, all the
above constraints have never been simultaneously considered.
From an optimization theory point of view, constraint addition
or omissions in general may result in sub-optimal or infeasible
solutions. For example, the cyber foraging constraints impact
the other phases of the onloading process, since an edge
resource not found certainly cannot be mapped or allocated.
Moreover, we risk or running the edge function mapping phase
on resources that can never be reserved because they would
exceed the physical capacity constraints. Such inefficiencies
are quantified, in our simulation study.

V. DECOMPOSING THE COMPLETE EDGE FUNCTION
ONLOADING PROBLEM

We now turn our attention to the development of efficient
solution methods for Problem (18). Our approach is based on
exploiting the problem structure via the dual-decomposition
methods (see, e.g., [3] Ch. 6). Due to the rich structure of
this problem, there are many ways to formulate the dual
problem, depending on which constraints are introduced with
the Lagrange multipliers. To make the problem separable, we
consider only dual problems created by introducing Lagrange
multipliers for the coupling constraints. For example, if we
relax constraints y; < nx and y; < ly;, then that the problem
becomes separable into two subproblems EFM and ALLOC.
So we solve the primal problem:

maximize S - g(nl‘g, lg;) + 96 - h(y;)
subject to y; < n}; Vi Vj

Yj <lij VK Vi

decoupled constraints in (18)

(19)

by computing the dual function V' (A, i) i.e. the objective
function of the dual problem:

_ v
V= supny i, L(n, Ukjs Yjs Nigs bk)

subject to Aij >0 Vi Vj 20
prj >0 Vi Vk 20
decoupled constraints in (18)
where the partial Lagrangian function is given by:
L = Bg(n}j, lk;) + 0h(y;) (2D
= 0 Ny =) = DD gy —) = (22)
iENP jeJ keP’ jeJ
D D BOunl+ > Bl + 23
je€JieNP! jeJ keP’
> St X St @
iENP’ jEJ keP’ jed
dowiyi— DY Mgy — D D my= (29)
jeJ ieNPrjeJ keP’ jeJ

Z Z (B0 + Aij)ny; + Z Z (BPrj + purej) ks

jEJieNF’ je€J keP’

follow a uniform distribution between 50 to 200 units, and the

+ (26) Jink bandwidths follow a uniform distribution from 1 to 10

units.
Evaluation Metrics. The common goal of the proposed solu-

Z(wj - Z Aij — Z tj)y; | (27) tion is the maximization of a notion of onloader utility, which

jeJ iENF’ keP’

Since the dual function is always convex [3], this is a
convex optimization problem. Note that the dual function can
be evaluated separately in the mapping and the allocation
variables:

V(Xijs tikj) = Verm (Nij, pkj) + Varcoco(Nij, peg) (28)
where:
Verv = sup Equation (26)
1nV >0
subject to Aij =20 Vi Vj
prj >0 Vj Vk
EFM decoupled constraints in (18)
and (29)
Varroc = sup Z(wj - Z Aij — Z 1ik5)Yj
yz0 ey iENP/ keP’
subject to Aij >0 Vi Vj
pr; >0 Vj Vk
ALLOC decoupled constraints in (18)
(30)

As we are solving the dual problem instead of the original
primal, we know from duality theory that this problem will
only give us appropriate results unless strong duality holds.
This is the case because the original relaxed problem is convex
and there always exist a strictly feasible solutions (i.e., the
Slater’s condition is verified [3]). The Slater’s condition in
our case means that there exists a feasible solution such that
y; < nyj and y; <l ; that is, it is possible, for example, to
have no users (y = 0) allocated even if some edge function
node could be mapped. The dual decomposition results in each
user solving, for the given Lagrangian multipliers,

y; (A) = arg ma[(w; — S Xi— > myl GD
iENP! keP’

which is unique, due to the strict concavity of w.

VI. PERFORMANCE EVALUATION

Evaluation Environment. To validate our model, we imple-
mented an event driven simulator assessing the impact of the
cooperation gain among the edge function onloading phases.
Our simulator captures the three phases as shown in Figure 1.
To generate our hosting physical network, we use the BRITE
topology generator [15] following a flat Waxman topology
generation model. BRITE has been commonly used in research
that requires practical network topology generation. Unless
otherwise specified, the substrate edge network has 100 nodes
and 500 links, a scale that corresponds to a medium-sized
Internet Service Provider (ISP). Each end-user process to be
onloaded has a CPU requirement, chosen uniformly at random
between 1 and 100 units. The CPU resources at the edge nodes

can be, in its simplest case, the number of concurrent allocated
edge functions. The aim of our evaluation is to show how
each singleton phase of the complete edge function onloading
problem alone is insufficient to guarantee an efficient cyber
foraging, since each phase influences the decision space of the
others. We test our idea implementing two allocation policies:
First Come First Serve (FCFS) and Revenue Maximization. In
FCFS, each request is onloaded without any notion or vision of
future requests. We picked this algorithm as a baseline being
the simplest packing heuristic. In the Revenue Maximization
heuristic instead, the edge function whose utility is maximized
is picked first, given a pool of simultaneously considered
functions to onload. After the node mapping phase, we try
to map each virtual link to the first or second shortest path
that satisfies the capacity constraints, or else we reject the
requested edge function. Results obtained increasing £ in a
k-shortest path virtual link allocation are similar, and we omit
them for lack of space. We now summarize our evaluation
results with a few take-home messages.

Evaluation Results. (/) Simultaneously optimizing the three
phases of the complete edge function onloading problem
increases global resource utilization. In Figure 2(a-c) we show
the impact of the edge function request rate over the efficiency
loss when the cyber foraging phase is ignored. The z-axis
shows the edge function request rate. The y-axis show the
fraction of allocated edge function (or efficiency loss), when
the feedback-loop depicted in Figure 1 is open, that is, when
the virtual edge function mapping and binding (allocation)
algorithm is unaware of all the available resources {n;, py;}
provided by the cyber foraging service. We then compare the
two edge function mapping policies (revenue maximization
and First Come First Serve) on two different sets of nodes
and edges; first, assuming full knowledge of the physical edge
resources, and hence using the sets (N*P) — the set of all
the possible physical nodes and physical paths in the network —
and then, using (N’, P’), a subset of discovered physical nodes
and paths. A path p is discovered if each node in p € N7, A
physical node n” € N’ if it is h hops away from a random
node of the physical topology, when a discovery-protocol event
is triggered. The value of h will depend on the application.
We fixed h = p+ 1 where by p we denote the average length
of a shortest path. With these settings, given our physical
network topologies, about 70% of the paths are available after
a foraging operation. The efficiency loss is then computed as
the ratio between the number of Mappable Edge Function
(MEF) computed on the set tuple (N, P’), MEF yr p
minus M EF(yr/ pry, normalized by M EF(r p), that is:

MEF(Nny]D) - MEF(NP/"])/)
MEF(NPJ)) '

Efficiency Loss := (32)

We can see how, initially, as the onloading request rate

— e. P 1
-e- Rgvenue Ma).(lmlzz\lm“ —<:— fﬂvel(l‘ue Ma:m“:a[m“ - ®-Revenue Maximization - ®- Revenue Maximization
—0—First Come First Serve 08 irst Come First Serve 08 —o— First Come First Serve —o—First Come First Serve
o’ @ @ »n 08 - = Shortest Paths Length Distribution|
o o o 8
H =6 = | N
>0 .0 .06 = 06 .
o o %) [N
3 g 5 g i
k) L4 2 (0 \
S 0. G 0 G 04 ‘S 04 \
= = = = N\
] L w L o -
. 0.2 0.2% 7 02 e sl N
!."' ~ N
X 0 0 P - 8=
0 20 40 60 80 100 20 0 60 80 100 0 20 40 60 80 100 2 4 6 8 10
Edge Function Request Rate Edge Function Request Rate Edge Function Request Rate Cyber-Foraging radius [no. of hops]
(a) 100 nodes and 500 links (b) 200 nodes and 1000 links (c) 500 nodes and 2500 links (d) 100 nodes and 500 links
1 1 1 05
- ®- Revenue Maximization - ®-Revenue Maximization - ®- Revenue Maximization - ®- Revenue Maximization
—o—First Come First Serve —0—First Come First Serve —o— First Come First Serve 04 | |—o—First Come First Serve
@ 8 a1 |- Shortest Paths Length Distribution] ¢ 08 -+ Shortest Paths Length Distribution| 038 @
g g 3 g
1 i} e} = 0.3
- 0.6 >0.6 1 0.6 >
I %) > [9)
c c Q < 02
() (o) s)
'S 04 G 04 Soa)
= = & £,
w] T]
02 02 - 0.2
- ~ 0
ol I 0t] 0
2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 18 2 4 6 8 10 0 5 10 15 20
Cyber-Foraging radius [no. of hops] Cyber-Foraging radius [no. of hops] Onloader physical capacity [no. of EF] Edge Function Pool Size

(e) 200 nodes and 1000 links (f) 500 nodes and 2500 links

(g) 500 nodes and 2500 links (h) 500 nodes and 2500 links

Fig. 2. (a-c) Impact of the edge function offload request rate on the efficiency loss for different algorithms, and increasing number of physical network size.
(d-f) Impact of the discovery radius on efficiency loss for different virtual network mapping algorithms and increasing number of topology size. (g) Impact
of the physical node capacity on the Edge Function Mapping — Allocation cooperation. (h) Impact of the pool size on the efficiency loss.

increases, the impact that the cyber foraging phase has on
the mapping-allocation algorithm increases too. This translates
to greater resource occupancy, and hence a larger global
utilization (Figure 2d-f). It is interesting to note however,
that, (2) the efficiency loss exhibits a maximum for high
request rates. This is because, when an edge function phase
is completed, the cyber foraging service is not immediately
notified of this resource availability.

(3) Efficient path management solutions are more important
than efficient node mapping: Note how, for smaller physical
graphs, the number of available resources decreases and so
does the efficiency loss. That seems obvious as fewer resources
are available. However, it is interesting to note how, for
medium and larger physical networks, the efficiency loss
does not significantly change (compare Figures (2b) and (2c).
To explain this behavior, we had to observe the number of
available distinct physical paths for each physical network size,
whose length distribution in shown in Figure 2d-f (dashed
lines); given our simulation settings, there are not enough
paths in the largest (BRITE generated) physical network to
allocate more edge onload requests, even if more edge physical
nodes are available. This result suggests that, when devising
heuristics or approximation algorithms for the NP-Hard edge
function onloading problem, we should keep in mind that the
physical paths are the real scarce resource in the mapping
process.

Resource Discovery Interaction. The three Figures 2(a-
¢), highlight the benefit of a cooperation between the edge
function mapping and the cyber foraging phases on different
physical substrates, with equivalent physical edges over phys-
ical nodes ratio: in 2(a) we used 100 nodes and 500 links,

in 2(b) 200 nodes and 1000 links, while in 2(c) 500 nodes
and 2500 links. Note from the drawn shortest path length
distribution that the average length increases from around 6
in 2(d) to around 8 in 2(f). On the x-axis we have the radius
—number of hops that the resource discovery has reached from
a fixed random physical node. For the network that produced
Figure 2(d) e.g., a cyber foraging radius of 11 hops is enough
to cover the whole physical network. Intuitively, such restricted
knowledge forces some of the variables nf; and p;; to zero,
reducing the probability that a user j can be mapped or even
allocated. On the y-axis we show again the efficiency loss as
defined previously. The first take-home message is that the
same efficiency improvements apply similarly to both small
and large scale physical topologies. This is again due to the
fact that the link mapping strategy strongly depends on the
number of available physical paths in P/, whose size is similar
although the size of the topologies changes. Note how the
efficiency loss deriving from a (lack of) cooperation with the
cyber foraging phase increases when the information available
would be otherwise limited, and more interestingly, when only
few updates on the availability of the resources are permitted.

Edge Function Mapping - Allocation Interaction. We now
show how, with full awareness of the underlying edge network
topology, the cooperation between virtual network mapping
and allocation could lead to efficiency improvement as well.
Referring to Figure 1, in the previous simulation scenario
we have allowed full exchange of the set of candidates, i.e.
variables {nlyj,lkj}, and we have analyzed the performance
restricting the knowledge of the available resources, i.e.,
variables {nf;, Pk;}. This time instead, we show what happens
when, to the contrary, the set of candidates is unknown due to

lack of cooperation between the edge function mapping and
the binding phase, but the algorithm has full knowledge of
the physical topology. We do not study the case where the
knowledge of both physical and virtual resources are partial
(since the results are not surprising), but we focus on analyzing
the effect of each individual cooperation.

In Figure 2g, we show the impact of the physical node
capacity on the efficiency loss, this time computed as follows:

MEF(NP/J)/) - OEF(NP/J)/)
OEF(NP/J;/)

Efficiency Loss := (33)
where, MEFyr: pry is defined as in Equation (32),
OEF(nr: pry is the set of onloaded edge function when the
set of available nodes is N¥”, and the set of available paths
P’, and, in this case study, (N, P) = (N, P’). 3

The edge function mapping phase, in this scenario, only
checks whether or not there exists at least a node node whose
(total and not residual) CPU capacity is larger than it was
requested for each edge function process — third constraint of
problem (3) — and whether or not there exists a physical path
whose (total and not residual) bandwidth capacity on each
link is greater than or equal to that requested for each virtual
link — fourth constraint of problem (3). When both constraints
are satisfied, the edge function is mappable. On the x-axis we
have the maximum node capacity: = 10 means that the edge
node capacity is assigned uniformly at random between 1 and
10 while the capacity of a single link is set to 5, that is, each
physical link can host at most 5 virtual edge function links.
Note that the range of efficiency loss goes from 12% to a peak
of 43% when the Revenue Maximization policy is used.

In Figure 2h we show the impact of the pool size —
the number of simultaneous edge function requests collected
before running the last two edge onloading phases— on the
efficiency loss. Note how, as the allocation candidates increase,
the allocation policy used changes the efficiency performance.
This observation suggests an important principle in designing
centralized or distributed solutions for the complete edge func-
tion onloading problem, that is, without cooperation among the
edge onloading phases, complex mapping algorithms do not
help increase the global system utilization.

VII. CONCLUSIONS

In this paper, we presented a model for the complete
edge function onloading problem, a series of interconnected
infrastructure management services consisting of three main
phases: cyber forage, edge function mapping, and binding or
allocation. We modeled via optimization each of the three
phases, and we showed that such phases are tightly connected,
that they should be run by the back-end infrastructure, and
that the solutions that either solve a particular phase, or jointly
solve multiple phases along with the interactions between them
are incomplete and may lead to inefficiencies. We carried out
a simulation study using our own event driven simulator to

3Note how, in the previous simulation scenario, we always have
MEF(N/"p/) = OEF(NP/J;/).

demonstrate that the proposed cooperation enables a substrate
(mobile) edge cloud provider to host a larger set of constrained
virtual network requests, and that the design of protocols that
consider interaction among the phases may be as crucial as the
adoption of a more efficient offloading or onloading algorithm.

ACKNOWLEDGMENT

This work has been partially supported by the National
Science Foundation award CNS-1647084.

REFERENCES

[11 A. Ahmed and E. Ahmed. A survey on mobile edge computing. In
2016 10th International Conference on Intelligent Systems and Control
(ISCO), pages 1-8, Jan 2016.

[2] V. Bahl. Micro data centers for mobile edge computing (keynote talk)
https://goo.gl/fkwpzm, 2015.

[31 S. Boyd and L. Vandenberghe. Convex
http://www.stanford.edu/people/boyd/cvxbook.html, 2004.

[4] B. Chun and A. Vahdat. Workload and failure characterization on a
large-scale federated testbed. Technical report, IRB-TR-03-040, Intel
Research Berkeley, 2003.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud:
Elastic Execution Between Mobile Device and Cloud. In Proc. of the
Sixth Conf. on Comp. Systems, EuroSys *11, pages 301-314, 2011.

[6] S. de Vries and R. V. Vohra. Combinatorial auctions: A survey.
INFORMS Journal on Computing, (3):284-309, 2003.

[7]1 E. Cuervo et al. MAUL Making Smartphones Last Longer with
Code Offload. In Proc. of the 8th Intern. Conf. on Mobile Systems,
Applications, and Services, MobiSys 10, pages 49-62, 2010.

[8] D. Eppstein. Finding the k shortest paths. [EEE Symposium on
Foundations of Computer Science, 1994.

[9] ETSI. Mobile Edge Computing https://goo.gl/zgnft4, 2017.

[10] F. Hao, M. Kodialam, T. V. Lakshman, and S. Mukherjee. Online
allocation of virtual machines in a distributed cloud. IEEE/ACM
Transactions on Networking, PP(99):1-12, 2016.

Ketan Bhardwaj et al. AppFlux: Taming App Delivery via Streaming.
In Usenix Conf. on Timely Res. in Oper. Systems (TRIOS), 2015.
Ketan Bhardwaj et al. Fast, scalable and secure onloading of edge
functions using airbox. In IEEE/ACM Symp. on Edge Computing, 2016.
[13] Li, Zhiyuan et al. Computation offloading to save energy on handheld
devices: A partition scheme. In Proc. of the 2001 Inter. Conf. on
Compilers, Arch., and Synthesis for Embedded Systems, CASES, 2001.
P. Mach and Z. Becvar. Mobile edge computing: A survey on ar-
chitecture and computation offloading. /EEE Communications Surveys
Tutorials, PP(99):1-1, 2017.

A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Universal topology
generation from a users perspective. Technical report, BUCS-TR-2001-
003, CS Department, Boston University, 2001.

S. Kosta et al. ThinkAir: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading. In 2012 Proceedings
IEEE INFOCOM, pages 945-953, March 2012.

M. Satyanarayanan, P. Bahl, R. Cceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. [EEE Pervasive Computing,
8(4):14-23, 2009.

R. Sedgewick. Implementing quicksort programs.
21:847-857, October 1978.

T. Taleb and A. Ksentini. An analytical model for follow me cloud. In
2013 IEEE Global Communications Conference (GLOBECOM), pages

1291-1296, Dec 2013.

S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. A
survey on mobile edge networks: Convergence of computing, caching
and communications. IEEE Access, PP(99):1-1, 2017.

Q. Xia, W. Liang, and W. Xu. Throughput maximization for online
request admissions in mobile cloudlets. In 38th Annual IEEE Conference
on Local Computer Networks, pages 589-596, Oct 2013.

Q. Xia, W. Liang, Z. Xu, and B. Zhou. Online algorithms for location-
aware task offloading in two-tiered mobile cloud environments. In
IEEE/ACM 7th Inter. Conf. on Utility and Cloud Computing, 2014.

Optimization.

(11]

[12]

[14]

[15]

(16]

(17]

[18] Commun. ACM,

[19]

[20]

[21]

[22]

