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Abstract—During the past decade, the concepts and applica-
tions of Internet of Things (IoT) are pervasively propagated to the
academia and industries. The widely distributed IoT devices con-
tribute to building an effective smart urban surveillance system,
which manages the regular operations and handles emergencies.
The real time monitoring uploads massive amounts of data
to the backbone network and requires prompt feedbacks. The
recent rapid development of “edge computing” (also called Fog
Computing or Mobile Edge Computing in different literature)
aims at pushing the computation and storage resources from
the remote data center to the edge of network for reducing the
burden of backbone and the computing latency. In this paper,
we design a three-tier edge computing system architecture to
elastically adjust computing capacity and dynamically route data
to proper edge servers for the real-time surveillance applications.
A system prototype integrating Network Functions Virtualization
(NFV) and Software-Defined Networking (SDN) is implemented
in an OpenStack based virtualization environment. Moreover, we
introduce schemes of resource reallocation and workload balance
in urgent situations. Experimental results of the prototype show
the great potentials of using edge computing for future large-scale
and distributed smart urban surveillance applications.

Index Terms—Internet of Things, Smart City, Edge Comput-
ing, Real-time Surveillance

I. INTRODUCTION

Urbanization has become a fact for most developed coun-
tries and a fast rising trend for developing countries all over
the world. According to the urban population data from the
United Nations (U.N.), the number of cities that is greater
than medium-size will increase from 488 in 2014 to 662 in
2030 [1]. The urban population agglomeration, especially in
megacities like New York, Beijing, and Tokyo, are bringing
challenges in fighting against ongoing emergencies such as
criminal activities. Fortunately, with the advancement of Inter-
net of Things (IoT) and its application in smart cities, a huge
quantity of terminal devices could be deployed around the
buildings, streets, highways and factories for security surveil-
lance [2]. In the state-of-the-art surveillance system, the dis-
tributed monitors capture images and videos and send a large
volume of data to the remote servers or data centers. These
big data from the city surveillance system potentially brings
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Surveillance applications using edge computing

problems including backbone network congestion, lack of
close-by computing power for real-time analysis and decision
making, and increasing complexity of system management.
Such traditional architecture is not scalable when the number
of the devices and the traffic are constantly increasing. It faces
significant challenges for the future smart city applications
that require low backbone bandwidth consumption and latency
in tracing criminal, recognizing moving cars and other fast
reaction tasks.

We envision a better surveillance system empowered by the
IoT and edge computing technologies. In such a new system
architecture, the large amount of video data do not have to
be uploaded through the backbone network and processed
remotely. Instead, these real-time video streams are analyzed
locally by the nearby edge cloud servers. As illustrated in
Fig. 1, the edge clouds deployed in local areas serve various
surveillance use cases concurrently under the management
of an application controller. For example, a pedestrian flow
detection and prediction application could be deployed to
help reduce the occurrence rate of crowd accidents and crisis
such as stampede in large festivals and events. The city law
enforcement and emergency organizations could get alerts
before illegal events, act quickly during incidents and tracking
escaped criminals. In short, a smart and well-organized mon-
itoring system with balanced computing resource empowered



by the IoT and edge computing technologies would be a
priceless assistance for city security.

In this paper, we propose an elastic real time surveillance
system architecture built on the top of a geographically
distributed edge cloud platform. Instead of deploying expen-
sive, static, and physical Closed Circuit Television (CCTV)
servers, in the proposed new system, the computing and data
processing tasks are carried out by the elastic dynamically
launched Virtualized Network Functions (VNFs) on the edge
servers, which are beneficial in cost, scalability, flexibility
and rich functional components. The edge servers resources
can be dynamically allocated and adjusted based on the
actual workload of the surveillance application to avoid waste
and maximize the utilization efficiency. Moreover, the pro-
posed system architecture coherently integrates Network Func-
tions Virtualization (NFV) and Software-Defined Networking
(SDN) to guarantee the smooth operation on the hardware
resource virtualization and the programmable virtual networks
and entities configuration [3]. A group of Virtual Machines
(VMs) or VNFs launched in the distributed edge cloud servers
work together for a specific surveillance task, and they are
configured, monitored, and managed effectively by the SDN
controller.

To evaluate the system performance, We implement a
prototype of the proposed architecture and perform a series
of case studies to demonstrate the elastic edge cloud man-
agement and dynamic resources allocation when the system
tracks mobile objects that randomly move across different
cloud areas. Through a series of preliminary experiments, we
demonstrate the feasibility and effectiveness of the proposed
system architecture.

The rest of this paper is organized as follows. Section II
briefly introduces the current related work on city monitoring
and edge computing. Section III is the system design and
the model of the proposed elastic urban security surveillance
system. Second IV explains the key implementation processes
and issues. Second V presents the experiments and analysis
results. Finally, the conclusion follows in Section VI.

II. RELATED WORK

With the advancements in IoT and related technologies,
more and more city scale surveillance solutions are developed
and tested by academia.

The concept of real-time city is introduced by Rob Kitchin
[4] drawing researchers attention on how many digital devices
are instrumented in the cities and how the mass of data is
utilized to serve the city governance. Considering the data
offloading from cameras to the data center, Zhou et al. [5]
proposed a meshed network based on the routes of public
buses, where the nearest bus stop acts as a node to upload
video data. To fully take advantages of video analysis results,
Shao et al. [6] constructed a solution to collaboratively monitor
ongoing events according to the previous evidence and current
information in a spatial-temporal manner.

Facing the challenges of low latency and massive data pro-
cessing, edge cloud or edge computing shows great potentials
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for large scale video applications. Two seminal studies about
edge computing efforts are: fog computing built on the de-
ployment of self-organized devices like sensors on the network
edge [7]; and cloudlet as micro data center distributed based on
the specific applications to push computing power close to the
customers, such as AR/VR video processing [8]. Moreover,
The applications of edge computing are explored under the
background of IoT and some use cases are studies to verify
its superiority [9]. For example, A UAV surveillance system is
designed to performs multi-target tracking by uploading real-
time video to the nearest fog node [10].

III. SYSTEM DESIGN

Utilizing edge computing and SDN technologies, our
surveillance system design aims at elastically monitoring reg-
ular and urgent security events in urban areas with low latency
and backbone bandwidth consumption, where the cameras are
deployed to form a dense and connected network. Fig. 2
illustrates the system architecture and relations between the
functional components. The architecture consists of three tiers
from top to bottom: application tier, edge computing tier, and
data tier.

The applications tier contains three components. The ap-
plication owners provide the detailed specification of required
resources for data processing and storage of various tasks. The
application providers collect information and plan resources
allocation and configurations. Meanwhile, the system man-
agers monitor the running status of the applications and deal
with the useful feedbacks from the below tiers to determine
the following task arrangements.

The edge computing tier include edge cloud nodes and
SDN components. Specifically, the SDN northbound inter-
face communicates with upper tier while the southbound
interface enables connections between SDN controllers and
virtual computing entities (VNFs). The edge cloud consists
of a controller node and a number of compute nodes. The
VMs or VNFs are loaded on the compute nodes to provide
computing power for the surveillance applications. Moreover,
SDN controller configures and manages the VMs flow tables



based on OpenFlow protocol to intelligently route the data
packets among the physical compute severs.

In the data tier, the terminal monitors collect and dy-
namically upload real-time video source data to the nearest
available compute nodes. Each device is assigned with IP
address and carries two attributes to its upper-level server:
video resolution and location coordinates. From a global
perspective, the density of monitors determines the geograph-
ical distribution of the compute nodes since the computation
and storage resources on the edge servers should satisfy the
requirements of different applications in a specific area.

The working processes of the system can be briefly sum-
marized into the following key steps:

(1) Collecting application requests: For a specific surveil-
lance scenario, the requirements vary on different parameters
including video resolution, processing frequency, task location,
computing complexity and storage space. The system manager
determines and sends the application requests through SDN
northbound interfaces.

(2) Translating requirements: After receiving the detailed
requests from the upper level, SDN controller translated them
to the expression of system behaviors and the corresponding
data flow control configurations.

(3) Orchestrating configurations: In addition to the net-
work routing, the edge control node performs resource or-
chestration to satisfy the requirements of computing power for
specific surveillance tasks. The configurations are expressed by
templates in the form of text file as executable code to describe
the resource assignments including IP addresses, bandwidth
volumes, computer node flavors, security group and etc.

(4) Launching VM or VNF instances: The VNF instances
are launched on the in distributed compute nodes to flexibly
utilize the hardware resources. The parameters for VNFs are
retrieved from the orchestration file to specify CPU capacity,
memory space and floating IP addresses.

(5) Routing data flow: The network organization of com-
pute nodes and routers follows the SDN routing strategies
transmitted from the southbound interface. By implementing
the required network topologies, the source data uploaded from
the lower tier would be forwarded to the optimal edge nodes
through virtual switches (vSwitch).

(6) Capturing video: The source video stream is captured
and uploaded by the monitors deployed in each corner of city.
Once an urgent event happens, their coordinates would be used
to assign new data routing and offloading destinations.

By carrying the above six steps, the real-time surveillance
system could concurrently support different monitoring tasks.

Within the architecture design, we have four key designs to
enhance the efficiency of surveillance which distinguish our
system from other existing solutions:

a. Virutalized computing service provisioning

We use the VMs or VNF instances as the basic units to
provide computing services for video surveillance tasks. Video
analyzing algorithms run on the VNF instances launched
on the physical servers. With such a method, independent

workspace can be set up by launching different virtual in-
stances to avoid possible communication interference among
different applications such as license plate recognition and
face detection. Moreover, through hardware virtualization, a
physical machine could be virtualized into a reusable pool of
resources such as virtual CPU (vCPU), RAM memory space
and bandwidth. During the regular surveillance, applications
only take a part of resources. However, reserved computation
would be activated to offer a higher performance in emergency
mode. In addition, the GuestOS images that are pre-installed
with software and execution environment for different kinds
of surveillance applications are stored as the snapshots on the
compute nodes. Launching from the prepared images reduces
the time gaps between the starting and the ready-to-use status.

b. Flexible data flow control

Another key feature by implementing edge computing is
flexible data flow control. First, resources can be assigned to
the VNFs to exactly suit the specific latency and frequency
requirements on data collection and video analysis . Second,
when an emergency occurs, the related applications would be
pushed for higher priority for resources. The system tries to
allocate more computing power and bandwidth by spawning
new VMs. Third, the matching relationship between a camera
and its edge node is not fixed so that the camera could upload
data to another edge server in order to obtain lower latency or
computing resource if the original node is overloaded.

¢. Dynamic resource orchestration through northbound in-
terfaces

We use the edge cloud control node as the orchestrator to
deploy and deliver the surveillance applications on the edge
cloud platform. Through the northbound interfaces, the or-
chestrator turns the high-level service-level agreements (SLAS)
among the application owners, application providers, and the
application managers into detailed resource allocation schemes
and commits them into detailed application implementation. A
typical example method is the Heat orchestrator in OpenStack
[11]. More advanced orchestrating method such as an "intent”
based method would be more effective in implementing the
applications at the edge cloud. During the whole lifetime
of the surveillance applications deployed in the edge cloud,
the orchestrator will closely monitor the application resource
status and application topology. The surveillance application
can be scaled up or down by the orchestrator depending on
the different modes the application needs to work in.

d. Elastic surveillance modes

Considering the various application purposes, our system
can work elastically in two modes: normal monitoring mode
and emergency surveillance mode. In the normal mode, mul-
tiple monitoring tasks work smoothly to complete periodic
video processing at a relatively low frequency and event
prediction function owns higher priority in the resource pool.
However, when an emergent event occurs like tracing crim-
inals, the frame rates of video capturing increase and image
analysis for some particular objects turn to high-priority tasks.



Meanwhile, the network bandwidth allocation would be recon-
figured to boost the performance of event areas.

IV. SYSTEM IMPLEMENTATION

In this section, we present the prototype implementation
details and discuss its advantages in handling the emergency
surveillance situations.

A. Edge Cloud Platform

We choose OpenStack as the basic edge cloud platform for
the surveillance application. The video surveillance application
is deployed and delivered on the edge cloud prototype which
controls a cluster of compute, network and storage resources.
The OpenStack based Infrastructure as a Service (IaaS) cloud
computing platform is open source and rapid-developing,
which consists of several key services including computing
(Nova), networking (Neutron), identify (Keystone), orchestrat-
ing (Heat), imaging (Glance), object storing (Swift), and other
extension projects. The edge cloud could be set up effectively
with various scales and capabilities using OpenStack.

Our prototype implementation consists of five key Open-
Stack services, as illustrated in Fig. 2. Specifically, Keystone
provides the authentication API to identify the users and VMs
to access the system resources. The administrator also obtains
rights to launch and modify the virtual network topology after
the identity verification. Nova manages the computing resource
pool through the virtualization technologies. VMs spawned by
Nova support various kernel formats such as qcow?2, iso, vdi,
docker, etc. Neutron takes responsibility to build no bottleneck,
flexible and dynamic network configuration. Swift provides
the storage of object file system that can fast distribute data
among the compute nodes, such as video file and operating
system snapshots. Heat works as an orchestrator to specify
and commit resource for the new applications by executing
the configuration templates. From the perspective of system
architecture, Nova and Neutron client services run on the
compute nodes and the other service are administered by
the control node. It is worth noting that a dedicated big-data
architecture is needed from the application providers to meet
the Service Level Agreements (SLAs) of the applications for
more advanced surveillance systems with various data types.

B. Compute Unit

The Virtual Machines (VMs), as the VNF entities, launched
on the edge server provide computing service for video
processing, as the basic compute units. Before initiating and
spawning a VM from an OS image, the system should assign
the stack flavors including bearer network, communication
protocols, security group, volumes, storage space and more
configurations. Heat is an orchestration engine of OpenStack
to gather the flavors and generate templates of a set of
configurations. Through Heat-API component, the system ad-
ministrator could create a stack from a template and launch
VMs to be ready for user applications. In addition to stack
configuring, image snapshotting is performed to provide ready-
to-use compilation environments and effectively reduces VM
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launching time. To adjust the data flow of a specific VM
instance, the Nova flavor could be assigned with bandwidth
limits by the traffic shaping tool — tc to modify the inbound
and outbound transmission.

C. Network Configuration

The network structure is managed by Neutron service which
controls the communication protocols, firewall rules, security
groups, routing policies and floating ip pools. We construct
the network of the surveillance system with VPN technology,
where all the VMs for the same tasks are in the same
VLAN even if located at different geographical areas. Each
VM owns a virtual IP in the VLAN domain and can be
associated with a public floating IP to be accessible from the
Internet. The network of VMs is called provider network that
offers computing service for user applications. Besides the
provider network, the connected control node and compute
nodes compose the management network, which performs
software package installation, DNS, NTP and NAT in order
to transmit data packets to the correct VMs and ports.

D. Elastic Resource Allocation

In the elastic surveillance application for smart cities, when
emergency events happen, the computing resources are re-
allocated to handle the emergency. Due to the mobility of
the objects being tracked, the data offloading and processing
should be elastic to ensure that all pieces of evidence or clues
are recorded and filtered within acceptable latency. For our
surveillance system, a dynamic algorithm is proposed to adjust
VM resources to deal with the tracking scenario, as illustrated
in Fig. 3.

(1) VMs launching adjustment

In our algorithm, the city is presented as a two-dimension
map, where each place has a coordinate. When the police need
searching for or tracking a criminal P, the location can be
estimated or determined, and denoted by (P, P,). The real-
time object tracking needs the collaboration of nearby moni-
tors in the cycle coverage with the center point (P, P,) and
the radius 2. Moreover, we add a margin 2, to the radius to
compensate the service delay because of VM launching time.
In this case, not only the launching delay, but also coordinate
error is corrected. It is worth noting that the value R, should



be in direct proportion to the movement speed of the moving
targets. In the emergency surveillance area, the involved n
monitors are denoted by Cy., = {C1,Cq,...,C,} with the
dynamically changing value n. Correspondingly, the required
computing amounts for monitors are Vi., = {V4, Vs, ..., V;, }.
In addition, we hold a list of m edge nodes Ej.,, =
{E1, Es, ..., By, }. Assuming that N; monitors are located in
the service space of the edge node FE;, the total required
amount of computing resource is: Wiy = Zk (Cr x Vi).
The current available resource of E; is W_,,._;, so that the
system still need:

Wreqfi = Wtotfi - cu'r ) (1)

;9
X
§

Then assuming the computing power provided by one VM is
Vym, the number of VMs to be launched on the node F; is:

Wrequ Zk (Ck X Vk) Wcur—i
an va

In the case that Wior—; < Weyr—i, the system owns enough
power to meet the current requirements. Ny¢,,, VMs could be
terminated to release resources for other applications:
Wewr—i — Wiot—;
Nterm _ cur—1 tot—1 (3)
Vom

Whenever the system launches new VMs or terminates VMs,
such decision is determined by the tracking location and the
number of related monitors: (Py, Py), N; = Nigunch OF
N, term:-

(2) Edge nodes work balance

Because of the limit of the available resource pool including
vCPU, RAM and storage, the requests to launch new VMs on
the edge node may not be satisfied. In this case, a part of
video data should be uploaded to the nearby second-suitable
edge node. Based on the node list Ej.,,, we maintain a list
of the communication delay between the monitor C; and
the edge nodes: L; 1., = {Li—1,Li—2,..., Li—sm}. When
the resource shortage occurs, some workload of the monitors
initially bound to E; would be transferred to another node with
the lowest delay. In order to guarantee the effectiveness of the
surveillance system, the monitors located away from tracking
center (P,, P,) are chosen based on the order of their distances
from far to near, denoted by the Euclidean distances:

D(P.C;) = \/(P, — Ciiy)? +

where (C;_,, C;_,) is the monitor coordinate.

If the required computing resource decreases because of the
object mobility, the system cancels the workload transfers and
the original nodes will continue serving the applications.

2)

Nlaunch =

(Py - Cify)2 “4)

V. EXPERIMENTATION AND RESULTS

To validate and evaluate the proposed system architecture
and prototype implementation, we conduct a series of experi-
ments.

A. Experiment Testbed

The experiment testbed is built with four desktops, one
router, one switch, a number of Raspberry Pi 3 Model Bs
with camera modules v2. In the testbed, one desktop acts as
the control node that manages the other three desktops as the
computer nodes. The desktop configurations are Intel i7 quad-
core processor 3.2GHz, 16GB RAM, 1TB storage and two
NICs with Ubuntu 16.04 LTS operating system. The router is
used to create VLAN for the communication between desktops
and offers accesses via NAT method to divide the experimental
network into two parts: management intranet for and provider
extranet. Meanwhile, the desktops and router connect to the
provider network via the switch to obtain internet service. The
video sources are provided by the Raspberry Pi and the camera
modules installed outside the buildings, whose video solution
is up to 1080P (1920x1080). With all the devices, we deployed
OpenStack with Newton version, which is the currently second
newest and relatively mature. On the each compute node, we
launched three VMs with public floating IPs for Raspberry Pi
accessing.

B. Tests and Results

(1) Data volume

The volume of video data uploaded to the edge servers are
estimated using camera modules to record videos of different
resolutions in the common city scenes. The real-time video is
simulated so that the Pi camera uploads 16 frames of video
per second to its VM server. Assuming that the number of
monitors deployed in a typical big city like London is about
200,000, we estimate the data size created in such a city per
second for different resolutions, as illustrated in Fig. 4.

The results show that thousand Gigabytes (GBs) of data
for a city-level application would flood into the network
under the future IoT and smart city environment. In this case,
edge computing could effectively prevent the congestion of
backbone network and process data at local areas.

(2) Data Processing and Transmit Latency

A face recognition application is implemented with
OpenCV 3.2 [12] to test the processing speed of the video
frames sent to the VM. The recognition contains two steps:
(1) detect the faces in the image; (2) compare each face
with the datasets already trained by the face images of our
target persons. The face detection is performed by utilizing
the Haar Cascade classifiers and the comparison by LBPH
face recognizer. The VM for testing is configured with four
vCPUs, 4G RAM and 100 GB storage, while the Pi camera
could capture 16 frames per second. Fig. 5 shows the execution
time to process one frame recorded in different resolutions.
Because of the resolution difference, the process time increases
rapidly from average 3.5 ms to 32 ms with the increment of
data size. However, such a performance gap can be reduced
by implementing more advanced algorithms.

Besides the processing time, the edge node deployed on the
university campus near the cameras could also save the prop-
agation time compared to the central cloud method. The edge
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nodel is the nearest server to the experimental camera while
the node3 is the farthest one. For comparison, we test the aver-
age communication delays to four Amazon AWS servers: US-
East (Virginia), US-East(Ohio), US-West(California) and US-
West(Oregon). The experimental results, as shown in Fig. 6,
verifies that edge computing provides highly responsive cloud
services for city surveillance with low end-to-end latency and
low jitter.

(3) Elastic Response

Since the workload of the user applications varies over
time and the analyzing requirements change in an emergency
event, the computing resources should be elastically adjusted
quickly and smoothly based on the task loads. We create an
Operating System (OS) snapshot of the ready-to-use OpenCV
environment, which loads the complete basic libraries and
contribute libraries, and its size is 7.8 GB. Then thirty VMs are
launched concurrently to meet the handle the urgent requests.
Fig. 7 demonstrate that the VM launch times are in minutes
level ranging from 1 to 2 minutes. The launching speed is
acceptable for boosting the emergency overloaded requests in
short time.

VI. CONCLUSION

In this paper, we proposed an IoT based elastic surveillance
system using Edge Computing paradigm to perform data
processing near the IoT devices in the smart city applications.
A prototype for evaluating practical environment was imple-
mented on a lightweight OpenStack platform and VMs serves
as the unit of computing. The achievements of the elastic
administration and resource allocation are sustained by the
geographically distributed computing nodes and the reliable
control node. We also discussed the methods for adjusting
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system performance and balancing workload to meet the
regular and emergent requirements. The experimental results
demonstrated that the system is rapid, responsive, flexible,
scalable and easily configurable.
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