




based on OpenFlow protocol to intelligently route the data

packets among the physical compute severs.

In the data tier, the terminal monitors collect and dy-

namically upload real-time video source data to the nearest

available compute nodes. Each device is assigned with IP

address and carries two attributes to its upper-level server:

video resolution and location coordinates. From a global

perspective, the density of monitors determines the geograph-

ical distribution of the compute nodes since the computation

and storage resources on the edge servers should satisfy the

requirements of different applications in a specific area.

The working processes of the system can be briefly sum-

marized into the following key steps:

(1) Collecting application requests: For a specific surveil-

lance scenario, the requirements vary on different parameters

including video resolution, processing frequency, task location,

computing complexity and storage space. The system manager

determines and sends the application requests through SDN

northbound interfaces.

(2) Translating requirements: After receiving the detailed

requests from the upper level, SDN controller translated them

to the expression of system behaviors and the corresponding

data flow control configurations.

(3) Orchestrating configurations: In addition to the net-

work routing, the edge control node performs resource or-

chestration to satisfy the requirements of computing power for

specific surveillance tasks. The configurations are expressed by

templates in the form of text file as executable code to describe

the resource assignments including IP addresses, bandwidth

volumes, computer node flavors, security group and etc.

(4) Launching VM or VNF instances: The VNF instances

are launched on the in distributed compute nodes to flexibly

utilize the hardware resources. The parameters for VNFs are

retrieved from the orchestration file to specify CPU capacity,

memory space and floating IP addresses.

(5) Routing data flow: The network organization of com-

pute nodes and routers follows the SDN routing strategies

transmitted from the southbound interface. By implementing

the required network topologies, the source data uploaded from

the lower tier would be forwarded to the optimal edge nodes

through virtual switches (vSwitch).

(6) Capturing video: The source video stream is captured

and uploaded by the monitors deployed in each corner of city.

Once an urgent event happens, their coordinates would be used

to assign new data routing and offloading destinations.

By carrying the above six steps, the real-time surveillance

system could concurrently support different monitoring tasks.

Within the architecture design, we have four key designs to

enhance the efficiency of surveillance which distinguish our

system from other existing solutions:

a. Virutalized computing service provisioning

We use the VMs or VNF instances as the basic units to

provide computing services for video surveillance tasks. Video

analyzing algorithms run on the VNF instances launched

on the physical servers. With such a method, independent

workspace can be set up by launching different virtual in-

stances to avoid possible communication interference among

different applications such as license plate recognition and

face detection. Moreover, through hardware virtualization, a

physical machine could be virtualized into a reusable pool of

resources such as virtual CPU (vCPU), RAM memory space

and bandwidth. During the regular surveillance, applications

only take a part of resources. However, reserved computation

would be activated to offer a higher performance in emergency

mode. In addition, the GuestOS images that are pre-installed

with software and execution environment for different kinds

of surveillance applications are stored as the snapshots on the

compute nodes. Launching from the prepared images reduces

the time gaps between the starting and the ready-to-use status.

b. Flexible data flow control

Another key feature by implementing edge computing is

flexible data flow control. First, resources can be assigned to

the VNFs to exactly suit the specific latency and frequency

requirements on data collection and video analysis . Second,

when an emergency occurs, the related applications would be

pushed for higher priority for resources. The system tries to

allocate more computing power and bandwidth by spawning

new VMs. Third, the matching relationship between a camera

and its edge node is not fixed so that the camera could upload

data to another edge server in order to obtain lower latency or

computing resource if the original node is overloaded.

c. Dynamic resource orchestration through northbound in-

terfaces

We use the edge cloud control node as the orchestrator to

deploy and deliver the surveillance applications on the edge

cloud platform. Through the northbound interfaces, the or-

chestrator turns the high-level service-level agreements (SLAs)

among the application owners, application providers, and the

application managers into detailed resource allocation schemes

and commits them into detailed application implementation. A

typical example method is the Heat orchestrator in OpenStack

[11]. More advanced orchestrating method such as an ”intent”

based method would be more effective in implementing the

applications at the edge cloud. During the whole lifetime

of the surveillance applications deployed in the edge cloud,

the orchestrator will closely monitor the application resource

status and application topology. The surveillance application

can be scaled up or down by the orchestrator depending on

the different modes the application needs to work in.

d. Elastic surveillance modes

Considering the various application purposes, our system

can work elastically in two modes: normal monitoring mode

and emergency surveillance mode. In the normal mode, mul-

tiple monitoring tasks work smoothly to complete periodic

video processing at a relatively low frequency and event

prediction function owns higher priority in the resource pool.

However, when an emergent event occurs like tracing crim-

inals, the frame rates of video capturing increase and image

analysis for some particular objects turn to high-priority tasks.

3





be in direct proportion to the movement speed of the moving

targets. In the emergency surveillance area, the involved n

monitors are denoted by C1:n = {C1, C2, ..., Cn} with the

dynamically changing value n. Correspondingly, the required

computing amounts for monitors are V1:n = {V1, V2, ..., Vn}.

In addition, we hold a list of m edge nodes E1:m =
{E1, E2, ..., Em}. Assuming that Ni monitors are located in

the service space of the edge node Ei, the total required

amount of computing resource is: Wtot−i =
∑Ni

k (Ck × Vk).
The current available resource of Ei is Wcur−i, so that the

system still need:

Wreq−i = Wtot−i −Wcur−i =

Ni
∑

k

(Ck × Vk)−Wcur−i (1)

Then assuming the computing power provided by one VM is

Vvm, the number of VMs to be launched on the node Ei is:

Nlaunch =
Wreq−i

Vvm

=

∑Ni

k (Ck × Vk)−Wcur−i

Vvm

(2)

In the case that Wtot−i 6 Wcur−i, the system owns enough

power to meet the current requirements. Nterm VMs could be

terminated to release resources for other applications:

Nterm =
Wcur−i −Wtot−i

Vvm

(3)

Whenever the system launches new VMs or terminates VMs,

such decision is determined by the tracking location and the

number of related monitors: (Px, Py), Ni ⇒ Nlaunch or

Nterm.

(2) Edge nodes work balance

Because of the limit of the available resource pool including

vCPU, RAM and storage, the requests to launch new VMs on

the edge node may not be satisfied. In this case, a part of

video data should be uploaded to the nearby second-suitable

edge node. Based on the node list E1:m, we maintain a list

of the communication delay between the monitor Ci and

the edge nodes: Li−1:m = {Li−1, Li−2, ..., Li−m}. When

the resource shortage occurs, some workload of the monitors

initially bound to Ei would be transferred to another node with

the lowest delay. In order to guarantee the effectiveness of the

surveillance system, the monitors located away from tracking

center (Px, Py) are chosen based on the order of their distances

from far to near, denoted by the Euclidean distances:

D(P,Ci) =
√

(Px − Ci−x)2 + (Py − Ci−y)2 (4)

where (Ci−x, Ci−y) is the monitor coordinate.

If the required computing resource decreases because of the

object mobility, the system cancels the workload transfers and

the original nodes will continue serving the applications.

V. EXPERIMENTATION AND RESULTS

To validate and evaluate the proposed system architecture

and prototype implementation, we conduct a series of experi-

ments.

A. Experiment Testbed

The experiment testbed is built with four desktops, one

router, one switch, a number of Raspberry Pi 3 Model Bs

with camera modules v2. In the testbed, one desktop acts as

the control node that manages the other three desktops as the

computer nodes. The desktop configurations are Intel i7 quad-

core processor 3.2GHz, 16GB RAM, 1TB storage and two

NICs with Ubuntu 16.04 LTS operating system. The router is

used to create VLAN for the communication between desktops

and offers accesses via NAT method to divide the experimental

network into two parts: management intranet for and provider

extranet. Meanwhile, the desktops and router connect to the

provider network via the switch to obtain internet service. The

video sources are provided by the Raspberry Pi and the camera

modules installed outside the buildings, whose video solution

is up to 1080P (1920x1080). With all the devices, we deployed

OpenStack with Newton version, which is the currently second

newest and relatively mature. On the each compute node, we

launched three VMs with public floating IPs for Raspberry Pi

accessing.

B. Tests and Results

(1) Data volume

The volume of video data uploaded to the edge servers are

estimated using camera modules to record videos of different

resolutions in the common city scenes. The real-time video is

simulated so that the Pi camera uploads 16 frames of video

per second to its VM server. Assuming that the number of

monitors deployed in a typical big city like London is about

200,000, we estimate the data size created in such a city per

second for different resolutions, as illustrated in Fig. 4.

The results show that thousand Gigabytes (GBs) of data

for a city-level application would flood into the network

under the future IoT and smart city environment. In this case,

edge computing could effectively prevent the congestion of

backbone network and process data at local areas.

(2) Data Processing and Transmit Latency

A face recognition application is implemented with

OpenCV 3.2 [12] to test the processing speed of the video

frames sent to the VM. The recognition contains two steps:

(1) detect the faces in the image; (2) compare each face

with the datasets already trained by the face images of our

target persons. The face detection is performed by utilizing

the Haar Cascade classifiers and the comparison by LBPH

face recognizer. The VM for testing is configured with four

vCPUs, 4G RAM and 100 GB storage, while the Pi camera

could capture 16 frames per second. Fig. 5 shows the execution

time to process one frame recorded in different resolutions.

Because of the resolution difference, the process time increases

rapidly from average 3.5 ms to 32 ms with the increment of

data size. However, such a performance gap can be reduced

by implementing more advanced algorithms.

Besides the processing time, the edge node deployed on the

university campus near the cameras could also save the prop-

agation time compared to the central cloud method. The edge

5




