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Using Reenactment to Retroactively Capture
Provenance for Transactions

Bahareh Sadat Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Radhakrishnan, Boris Glavic

Abstract—Database provenance explains how results are derived by queries. However, many use cases such as auditing and
debugging of transactions require understanding of how the current state of a database was derived by a transactional history. We
present MV-semirings, a provenance model for queries and transactional histories that supports two common multi-version concurrency
control protocols: snapshot isolation (SI) and read committed snapshot isolation (RC-SI). Furthermore, we introduce an approach for
retroactively capturing such provenance using reenactment, a novel technique for replaying a transactional history with provenance
capture. Reenactment exploits the time travel and audit logging capabilities of modern DBMS to replay parts of a transactional history
using queries. Importantly, our technique requires no changes to the transactional workload or underlying DBMS and results in only
moderate runtime overhead for transactions. We have implemented our approach on top of a commercial DBMS and our experiments
confirm that by applying novel optimizations we can efficiently capture provenance for complex transactions over large data sets.

Index Terms—Databases, Provenance, Concurrency Control, Transaction Processing, Reenactment
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1 INTRODUCTION

Provenance, information about the creation process and
origin of data, is critical for many applications including
auditing, debugging data by tracing erroneous results back
to erroneous inputs, and understanding complex transfor-
mations. How to model and capture the provenance of data-
base queries is relatively well understood. Most approaches
model provenance as annotations on data (e.g., tuples) and
propagate annotations to compute the annotation (prove-
nance) of a query result. That is, the annotation of a tuple
t in the result of a query records which input tuples are in
tuple t’s provenance and how these inputs were combined
to derive tuple t. Annotation propagation techniques have
been pioneered by systems such as Perm [1], DBNotes [2],
Orchestra [3], and others. However, many use cases require
the user to understand how data was derived by updates
executed as part of concurrent transactions which is not
supported by current approaches. For instance, tracing a
query result tuple back to its provenance in the query input
is not sufficient for auditing, because this type of provenance
does not explain how the query inputs were created (i.e., in-
serted or updated by past transactions). Another motivating
example is transaction debugging where a developer should
be able to inspect the execution of a transaction after the
fact to determine the cause of an erroneous outcome. This
requires a provenance model that exposes the inner states of
relations within transactions and their interactions with each
other including concurrency anomalies which occur under
non-serializable isolation levels.
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Given the lack of support for transactional provenance,
users resort to the audit logging and time travel functional-
ity natively supported by many DBMS (e.g., Oracle, DB2,
SQLServer) for their auditing and debugging needs. Time
travel enables access to the transaction time history of
relations, i.e., the user can query past committed versions
of the database. An audit log records which SQL statements
were executed by which user at which time and as part
of which transaction. Note that command logs can serve the
same purpose as audit logs in our framework as they both
store which statement was executed by which transaction at
what time. While these features can unearth facts about past
operations and database states, there are limitations. For ex-
ample, these features can not be used to track dependencies
based on read operations, e.g., how the tuples created by an
INSERT INTO SELECT ... depend on the tuples accessed by the
SELECT query. Also, they can not expose which statements
of a transaction affected a tuple which is important for
debugging transaction execution. Our approach overcomes
these limitations. We focus on transactions executed using
the snapshot isolation (SI) concurrency control protocol and
the read committed variant of this protocol (RC-SI).

Snapshot Isolation. Many DBMS such as PostgreSQL, Or-
acle, and MSSQL support SI. Under SI [4] each transaction
T sees a snapshot of the database containing changes of
transactions that have committed before T started and T ’s
own changes. Using SI, reads never block concurrent reads
or writes, because each transaction sees a consistent data-
base version as of its start. To support snapshots, old tuple
versions cannot be deleted until all transactions that may
need them have finished. Typically, this is implemented by
storing multiple timestamped versions of each tuple and
assigning a timestamp to every transaction as of its start that
determines which database version it will see (its snapshot).
Concurrent writes are allowed under SI. However, if several
concurrent transactions attempt to write the same data item,
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T SQL Time
T5 UPDATE Account SET bal = bal + 100 10

WHERE typ = ’Savings’;

T6 UPDATE Account SET bal = bal - 1500 11
WHERE cust = ’Alice’ AND typ = ’Checking’;

T5 UPDATE Account SET bal = bal + 300 12
WHERE typ = ’Savings’ AND bal > 5000 ;

T5 COMMIT; 13
T6 INSERT INTO Overdraft 14

(SELECT cust, a1.bal + a2.bal

FROM Account a1, Account a2

WHERE a1.cust = ’Alice’ AND a1.cust = a2.cust

AND a1.typ ̸=a2.typ AND a1.bal + a2.bal < 0);

T6 COMMIT; 15

Fig. 1: Example audit log for a transactional history
(a) Database before execution of T5 and T6

Account
cust typ bal

C1
T1,4

(I1T1,2
(x1)) Alice Checking 400

C2
T1,4

(I2T1,3
(x2)) Alice Savings 1000

C3
T2,3

(I3T2,1
(x3)) Peter Savings 4990

Overdraft
cust bal

(b) Database after execution of T5

Account cust typ bal
C1

T1,4
(I1T1,2

(x1)) Alice Checking 400
C2

T5,14
(U2

T5,11
(C2

T1,4
(I2T1,3

(x2)))) Alice Savings 1100
C3

T5,14
(U3

T5,13
(U3

T5,11
(C3

T2,3
(I3T2,1

(x3))))) Peter Savings 5390

(c) Database after execution of T6

Account cust typ bal
C1

T6,16
(U1

T6,12
(C1

T1,4
(I1T1,2

(x1)))) Alice Checking -1100
C2

T5,14
(U2

T5,11
(C2

T1,4
(I2T1,3

(x2)))) Alice Savings 1100
C3

T5,14
(U3

T5,13
(U3

T5,11
(C3

T2,3
(I3T2,1

(x3))))) Peter Savings 5390

Overdraft cust bal
C4

T6,16
(I4T6,15

(U1
T6,12

(C1
T1,4

(I1T1,2
(x1)) · C2

T1,4
(I2T1,3

(x2))))) Alice -100

Fig. 2: Running example database states

only one will be allowed to commit. This is often imple-
mented using write locks that are held until transaction
commit. A transaction T waiting for a lock is aborted if the
transaction T ′ holding the lock commits (and continues if
T ′ aborts). SI corresponds to isolation level SERIALIZE in
systems such as Oracle and older versions of PostgreSQL.

Read Committed Snapshot Isolation (RC-SI). Under
statement-level snapshot isolation or RC-SI, each statement
of a transaction T sees previous changes of T and of concur-
rent transactions that committed before the start of the state-
ment. To guarantee that each statement sees a consistent
snapshot, a statement waiting for a write-lock is restarted
when the transaction holding the lock commits. We refer to
this variant of SI as read-committed snapshot isolation (RC-SI),
because it corresponds to isolation level READ COMMITTED in,
e.g., Oracle and PostgreSQL. Note that some databases (e.g.,
PostgreSQL) resume the execution of the statement when a
lock is released instead of restarting it.

Example 1. Fig. 2a shows an example database storing in-
formation about banking accounts and overdrafts. Ignore the
annotations to the left of each tuple for now. Suppose Bob executed
the Transactions T5 shown in Fig. 1 under SI. Bob implemented
a policy of giving a $100 bonus to all savings accounts and an

additional $300 bonus to all savings accounts with a balance
higher than $5000. The database instance after the execution of
Transaction T5 is shown in Fig. 2b. Attribute values affected
by an update are highlighted in red. Meanwhile, Alice did with-
draw money ($1500) from her checking account which triggered
Transaction T6. This transaction inserts an overdraft record into
the relation Overdraft(cust,bal) since the total balance of
Alice’s accounts is negative after the withdrawal. The states of the
Account and Overdraft relations after the execution of both
transactions are shown in Fig. 2c. Alice, surprised to receive an
overdraft notice, checks her account. She observes that the total
balance of her accounts is positive and, thus, she should not have
received the $100 overdraft. This unexpected result is caused by
a concurrency anomaly called write-skew [4] which can occur
under SI. Recall that under SI each Transaction T executes over
a private snapshot which contains changes made by transactions
that committed before T ’s start. Hence, Transactions T6 sees the
previous balance of $1000 for Alice’s savings account and after
the withdrawal of $1500 from her checking account, it computes a
total balance of 1000 + (−1100) = −100 < 0.

Auditing or debugging errors such as the one illustrated
in the example above is virtually impossible without access
to past database states and operations. For the above exam-
ple, an audit log would provide information as shown in
Fig. 1 while time travel gives a user access to the database
states as shown in Fig. 2. However, these database states are
not very helpful in determining the cause of the overdraft,
because Alice’s total account balance is non-negative after
the execution of both transactions. Technically, once the
error is detected, a user with a deep understanding of SI
may be able to recognize that this particular interleaving of
operations can lead to a write-skew. However, even for a
power user it would be challenging to determine the cause
for such errors if several other transactions were run concur-
rently with the transactions involved in the error. Thus, this
example motivates the need for capturing the provenance
of tuples that are updated by concurrent transactions. We
now give a brief introduction of our provenance model for
transactions and then demonstrate how it can be used to
understand unexpected results.

1.1 A Provenance Model For Transactions
Our provenance model called Multi-version semirings (MV-
semirings) records provenance as annotations on tuples.
While there are existing solutions for computing the prove-
nance of updates [3], [5], [6], these approaches do not sup-
port transactions and are not integrated with provenance for
queries. The annotation of a tuple t in our model is a sym-
bolic expression that encodes 1) which tuples where used to
derive t (variables, e.g., x1, x2, . . . represent tuples) 2) how
these tuples have been combined (addition and multiplica-
tion represent alternative and joint use of inputs) 3) which
DML operations executed by which transactions at which
time did create the annotated tuple version (represented by
function symbols which we call version annotations). For ex-
ample, the annotation IidT,ν(x) represents the fact that an in-
sert of transaction T executed at time ν created a tuple with
identifier id that is represented as variable x. Similarly, U ,
D, and C represent update, delete, and commit operations.
Note that we do not consider provenance dependencies at
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Account Provenance for the First Update Provenance for the Second Update u1 u2

cust typ bal P(cust,u1) P(typ,u1) P(bal,u1) P(cust,u2) P(typ,u2) P(bal,u2) U1 U2

C2
T5,14(U

2
T5,11(C

2
T1,4(c2))) Alice Savings 1100 Alice Savings 1000 Alice Savings 1100 T F

C3
T5,14(U

3
T5,13(U

3
T5,11(C

3
T2,3(c3)))) Peter Savings 5390 Peter Savings 4990 Peter Savings 5090 T T

Fig. 3: Relational encoding of the provenance and intermediate results for relation Account with respect to Transaction T5.

the application side in this work. For instance, consider an
application that runs a query, stores the result in a client-side
variable, and then uses the variable in an update statement.
Detecting such dependencies requires tracking provenance
of procedural programming languages which is beyond the
scope of this work. The annotations shown to the left of
each tuple in Fig. 2 are the provenance annotations of these
tuples in our model. For example, consider C1

T1,4
(I1T1,2

(x1)),
the annotation of the first tuple shown in Fig. 2a. Based on
this annotation we know that this tuple has tuple identifier
1 and was created by an insert of a Transaction T1 executed
at time 2. This transaction did commit this tuple version at
time 3. Typically, a user would like to be able to drill down
into a part of a history instead of tracing the origin of a
tuple through the whole history of the database. Our model
supports this type of drill down by replacing subexpressions
in an annotation with fresh variables to prune parts of
the history from a tuple’s annotation. For example, if the
user wants to focus her investigation on the operations
of Transaction T5 then this is achieved in our model by
replacing subexpressions enclosed in commit operations by
transactions which committed before T5’s start with fresh
variables and removing tuples that were not affected by a
transaction. For example, C2

T5,14
(U2

T5,11
(C2

T1,4
(I2T1,3

(x2)))),
the annotation of the second tuple in Fig. 2b, would be
replaced with C2

T5,14
(U2

T5,11
(C2

T1,4
(c2))) for some fresh vari-

able c2. To ease understanding of provenance expressed
in our model and to enable queries over provenance, we
define relational encodings of such provenance annotations.
These encodings are quite flexible in that the user can
choose, e.g., whether 1) version annotations are shown and
2) how tuple versions are represented (either as a pair of
tuple identifier and timestamp or using the tuple’s attribute
values). For instance, Fig. 3 shows the relational encoding
of the provenance of the Account relation restricted to
operations by Transaction T5 (annotations in our model are
shown on the left). Here the user has chosen the option to
encode tuples in the provenance by their attribute values
and to show intermediate tuple versions produced by the
transaction. We explain this example in more detail below.

Tracking Read and Write Dependencies of Tuples. One
way to debug the example error is to determine which tuple
versions were used to derive the erroneous overdraft tuple.
This would unveil that it was computed based on Alice’s
savings account balance before the bonus was added by
Transaction T5. Note that this is a read dependency. The
second account tuple version from Fig. 2a was read by
the INSERT INTO Overdraft SELECT ... statement which was
executed by Transaction T6. In our model, this is encoded
in the annotation of the new overdraft tuple which includes
C2

T1,4
(I2T1,3

(x2)), the annotation of the account tuple from
which it was derived. Time travel can expose write depen-
dencies caused by updates if a tuple can be identified across

versions (e.g., the DBMS uses immutable tuple identifiers).
However, it cannot be used to track read dependencies.

Tracking Applications of Updates. Understanding which
statements of which transactions were involved in the
derivation of a tuple version is important to answer au-
diting questions such as “What data was affected by state-
ments executed by a compromised user account?”. Audit
logs record which statements were executed and when
they were executed. However, even when this information
is correlated with a transaction time history using time
travel, it is highly non-trivial to answer such questions
since 1) only write tuple dependencies are available and
2) time travel only exposes committed database states. In
our model, this information is encoded in the nesting of
version annotations. For example, based on the annotation
of the second tuple in the database state shown in Fig. 2b
we know that this tuple version was created by an update
of Transaction T5 which was applied to a tuple created by
an insert of Transaction T1. Furthermore, we know when
these operations were executed and when these transactions
did commit. The annotation of the new overdraft tuple in
the running example shows that none of the updates of
Transaction T5 (adding the account bonuses) did affect the
tuples on which the overdraft is based on.

Exposing Intermediate States. Our relational encoding of
provenance can expose intermediate states of relations pro-
duced by transactions, e.g., the state of a relation after
a particular operation. Furthermore, the encoding records
dependencies across such states. This is useful investigating
whether and how an update modified a tuple.

Example 2. Recall that Fig. 3 shows the provenance of the
Account relation w.r.t. Transaction T5. The provenance annota-
tion of each tuple is encoded in additional attributes that are added
to the schema. A “provenance” attribute P (attr, u) stores the
value of attribute attr for the version of a tuple in the provenance
seen by the update statement u. We use u1 and u2 to denote
the updates of Transaction T5. For instance, attributes P (bal, u1)
and P (bal, u2) store the balance of a tuple before the execution of
update u1 respective u2. The boolean attribute Ui stores whether
the version annotation for update ui is part of the provenance,
i.e., whether ui affected a tuple. Suppose manager Tom wants to
know which accounts received the $300 bonus implemented by the
update u2 and what was the previous balance of these accounts
before the bonus. This question can be answered by the SQL query
shown below where Prov denotes the encoding from Fig. 3.
SELECT P(cust,u2), P(bal,u2) FROM Prov WHERE U2 = True

Understanding Errors Caused by Concurrency Anomalies.
We have demonstrated in [7] how our model can be used
to debug errors caused by concurrency anomalies such as
the write-skew [4] in the running example. Errors caused by
anomalies are common, but hard to debug since they may
only occur for a particular interleaving of transactions.
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1.2 Capturing Provenance With Reenactment
We have developed a provenance capture mechanism that
produces the relational encoding of our provenance model
for a provenance request and have implemented this mecha-
nism in our provenance database middleware called GProM
(https://github.com/IITDBGroup/gprom). We use reenact-
ment, a novel technique for replaying a transactional history
(or parts thereof) using queries instrumented to capture
provenance. Reenactment retroactively captures the prove-
nance of tuple versions produced by a history. Notably,
our approach does not require any eager materialization of
provenance during transaction execution. Hence, we avoid
paying the runtime and storage overhead of provenance
capture for every transaction executed by the system. Reen-
actment solely relies on the information provided by audit
logs and time travel and is expressible in SQL. Many users
that would be interested in provenance already use these
features. Furthermore, as we demonstrate in Sec. 7.3, the
overhead of activating these features is quite manageable
(less than 20% for the workloads we considered). Impor-
tantly, our approach does not require any modifications of
the underlying DBMS or transactional workload.

We have introduced our vision of GProM in [8] and
have presented our approach for RC-SI in [9]. The main
contributions of this work are:

• We introduce multi-version semirings (MV-semirings), a
provenance model for database queries and transac-
tions. In our model, tuples are annotated with symbolic
expressions that model dependencies among tuples and
which operations affected a tuple. We use a relational
encoding of our model for querying provenance.

• We introduce reenactment, a technique for replaying a
transactional history using queries. The reenactment
query for a transaction T is equivalent to T within
the context of a history under MV-semiring semantics,
i.e., it returns the same database state and has the same
provenance. We reduce reenactment queries with MV-
semiring semantics to queries in standard SQL that
return a relational encoding of provenance.

• We develop optimizations for reenacting SI and RC-
SI transactions including alternative ways of encoding
reenactment as SQL queries and filtering unrelated
information from the provenance early on.

• Our experiments demonstrate that 1) provenance cap-
ture based on reenactment is very efficient and scales to
large databases, complex transactions, and large num-
ber of updates; and 2) the storage and runtime overhead
incurred by time travel and audit logging is tolerable
and significantly smaller than the overhead of eagerly
capturing provenance during transaction execution.

The remainder of this paper is organized as follows. We
review related work in Sec. 2 and introduce our provenance
model in Sec. 3. We define an annotated semantics of SI and
RC-SI transactional histories in Sec. 4, cover reenactment in
Sec. 5, discuss implementation and optimizations in Sec. 6,
present experimental results in Sec. 7, and conclude in Sec. 8.

2 RELATED WORK

Several provenance models for relational queries have been
introduced in related work including Why-provenance,

minimal Why-provenance [10], and Lineage [11]. Prove-
nance polynomials introduced by Green et al. [12] gener-
alize these provenance models for positive relational al-
gebra queries (RA+). Green’s semiring annotation frame-
work has been the target of extensive research including
relations annotated with annotations from multiple semi-
rings [13], rewriting queries to minimize provenance [14],
factorization of provenance polynomials [15], extraction of
provenance polynomials from the PI-CS [1] model, and
extensions for aggregation [16] and set difference [17]. Our
MV-semirings generalize this model to support updates
and transactions. Similar to our approach, Lipstick [18],
LogicBlox [19], DBNotes [2], Perm [1], and many other
systems encode provenance annotations in a standard data
model and use query instrumentation to propagate these
annotations. Several papers [5], [6] study provenance for up-
dates, e.g., Vansummeren et al. [5] compute provenance for
SQL DML statements. However, these approaches modify
updates to eagerly capture provenance, do not track pro-
venance through concurrent transactions, and are often not
integrated with provenance for queries. We take interactions
among transactions into account using a generalization of
the semiring model for transactions. Command logs/audit
logs provide information about the update statements and
transactions that were executed, but they do not directly
encode data dependencies and tuple versions.

3 THE MV-SEMIRING MODEL

We now formally introduce our MV-semiring model that
extends K-relations with support for transactions.
K-relations. MV-semirings are based on the semiring pro-
venance framework [12]. In this framework, relations are
annotated with elements from an annotation domain K . Let
K = (K,+K, ·K, 0K, 1K) be a commutative semiring. A K-
relation R is a (total) function that maps tuples to elements
from K with the convention that tuples mapped to 0K, the 0
element of the semiring, are not in the relation. A structure
K is a commutative semiring if it fulfills the equational laws
shown on the top of Fig. 4. Depending on the domain K ,
the annotations can serve different purposes. For instance,
the semiring N, natural numbers with standard arithmetics,
corresponds to bag semantics. If a tuple t occurs twice in
a bag semantics relation R, then this tuple would be anno-
tated with 2 in the N-relation corresponding to R. As we will
see in the following, the operators of the positive relational
algebra (RA+) over K-relations are defined by combining
input annotations using the +K and ·K operations where
addition represents alternative use of inputs (e.g., union)
and multiplication denotes conjunctive use (e.g., join).
Provenance polynomials. Provenance polynomials (semi-
ring N[X]), polynomials over a set of variables X which
represent tuples in the database, model an expressive type
of provenance by encoding how a query result tuple was
derived by combining input tuples. Using N[X], every tuple
in an instance is annotated with a unique variable x ∈ X
and query results are annotated with polynomials over these
variables. For example, a tuple that was derived by joining
tuples identified by x1 and x2 would be annotated with
x1 · x2. Since our main concern is provenance, we mostly
limit the discussion to N[X] and its MV extension.

https://github.com/IITDBGroup/gprom
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Laws of commutative semirings
k + 0K = k k · 1K = k (neutral elements)

k + k′ = k′ + k k · k′ = k′ · k (commutativity)
k + (k′ + k′′) = (k + k′) + k′′

k · (k′ · k′′) = (k · k′) · k′′ (associtivity)

k · 0K = 0K (annihilation through 0)
k · (k′ + k′′) = (k · k′) + (k · k′′) (distributivity)

Evaluation of expressions with operands from K

k + k′ = k +K k′ k · k′ = k ·K k′ (if k ∈ K ∧ k′ ∈ K)

Equivalences involving version annotations

A(0K) = 0K A(k + k′) = A(k) +A(k′)

Fig. 4: Equivalence relations for Kν

MV-semirings. MV-semirings are a specific class of semi-
rings that encode the derivation of tuples based on a history
of transactional updates. For each semiring K, there exists a
corresponding semiring Kν , e.g., N[X]ν is the MV-semiring
corresponding to the provenance polynomials semiring
N[X]. Since N encodes bag semantic relations, Nν represents
bag semantics with embedded history. Fig. 2 shows exam-
ples of N[X]ν annotations. In these symbolic expressions,
variables (e.g., x1, x2, . . . ) represent freshly inserted tuples
and uninterpreted function symbols (the aforementioned
version annotations) encode which operations were applied
to the tuple. The nesting of version annotations records the
sequence of operations that created a tuple version.
Version Annotations. A version annotation Xid

T,ν(k) de-
notes that an operation of type X (update U , insert I ,
delete D, or commit C) that was executed at time ν − 1
by transaction T affected a previous version of a tuple with
identifier id and previous provenance k. Assuming domains
of tuple identifiers I, version identifiers V, and transaction
identifiers T, let A denote the set of all version annotations:

IidT,ν , U
id
T,ν , D

id
T,ν , C

id
T,ν for id ∈ I, ν ∈ V, T ∈ T (1)

Example 3. Consider the N[X]ν -relation Account
in Fig. 2b. The second tuple is annotated with
C2

T5,14
(U2

T5,11
(C2

T1,4
(I2T1,3

(x2)))), i.e., it was created by
an update of Transaction T5, which updated a tuple that was
inserted by T1. Based on the outermost commit annotation, this
tuple version is visible to transactions starting after version 13.

MV-semiring Annotation Domain. Fixing a semiring K,
we define the domain of semiring Kν based on the set of
finite symbolic expressions P whose syntax is defined by
the grammar shown below where k ∈ K and A ∈ A.

P := k | P + P | P · P | A(P ) (2)

The semantics of these expressions is defined in Def. 1
and Fig. 4. Note that + and · in these expressions are used
to encode that a tuple depends on multiple input tuples,
e.g., a query such as the one used by the insert of example
Transaction T6 or an update that modifies two tuples that
are distinct in the input to be the same in the output (e.g.,
UPDATE Account SET typ = ’Savings’). For example, consider
a query Πtyp(Account) evaluated over the instance from
Fig. 2a. The result tuple (Savings) is derived from the

second and third tuple in the Account table (the two
tuples with this value in attribute typ) and, thus, would
be annotated with C2

T1,4
(I2T1,3

(x2))+C3
T2,3

(I3T2,1
(x3)) where

addition represents alternative use of these two tuples.
We would expect certain symbolic expressions produced
by the grammar above to be equivalent, e.g., expressions
in the embedded semiring K can be evaluated using the
operations of the semiring (k1 + k2 = k1 +K k2) and
updating a non-existing tuple does not lead to an existing
tuple (A(0K) = 0K). This is achieved by defining domain
Kν as the set of equivalence classes (denoted as []∼) for
expressions in P based on the equivalences shown in Fig. 4.

Definition 1. Let K = (K,+K, ·K, 0K, 1K) be a commutative
semiring. The MV-semiring Kν is the structure

Kν = (Kν ,+Kν , ·Kν , [0K]∼, [1K]∼)

where ·Kν and +Kν are defined as

[k]∼ ·Kν [k′]∼ = [k · k′]∼ [k]∼ +Kν [k′]∼ = [k + k′]∼

Addition and multiplication output a symbolic expres-
sion by connecting the inputs with + or · and then output
the equivalence class for this expression. Consider semiring
N, which encodes bag semantics relations by annotating
each tuple with a natural number representing its multi-
plicity. For example, assume a tuple t is annotated with the
Nν -expression U1

T,ν(3 · 6). Here 3 and 6, elements from the
embedded semiring N, represent multiplicities. Applying
equivalence k·k′ = k·Kk′, we can evaluate 3·6 = 3·N6 = 18.
Thus, t appears with multiplicity 18 and was updated by an
update (U ) of transaction T . The update was run at time
ν − 1 and, thus, the tuple became valid at time ν.

Normal Form and Admissible Instances. Kν expressions
admit a (non unique) normal form representing an element
k ∈ Kν as a sum

∑n
i=0 ki where none of the ki contains any

addition operations. Any Kν element can be brought into
this normal form by applying the equivalences from Fig. 4.
Intuitively, each summand in the normal form corresponds
to a tuple under bag semantics. Thus, we will sometimes
refer to a summand as a tuple version. Assuming an arbi-
trary, but fixed, order over such summands we can address
elements in such a sum by position. We use n(k) to denote
the number of summands in a normalized annotation k and
k[i] to refer to the ith element in the sum according to the
assumed order. We use this normal form to define updates
and transactions. Note that some expressions produced by
the grammar in Equation (2) can not be produced by any
transactional history. For instance, U1

T,11(C
1
T,10(. . .)) is in-

valid, because it implies that Transaction T executed an up-
date after its commit. A Kν instance is admissible if either 1)
it is empty or 2) it is the result of evaluating a transactional
history (formally defined later) over an admissible instance.

Queries and Update Operations. We extend the standard
definition of positive relational algebra (RA+) over K-
relations [12] with an operator {t → k} that creates a
singleton relation (a tuple t annotated with k). Let t.A
denote the projection of a tuple t on a list of projection
expressions A and t[R] to denote the projection of t on the
attributes of relation R. For a condition θ and tuple t, θ(t)
denotes a function that returns 1K if t |= θ and 0K otherwise.
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Definition 2. Let R and S denote K-relations, t, t′ denote tuples,
and k ∈ K. The operators of RA+ are defined as:

ΠA(R)(t) =
∑

t′:t′.A=t

R(t′) (R ∪ S)(t) = R(t) + S(t)

σθ(R)(t) = R(t) · θ(t) {t′ → k}(t) =
{
k if t = t′

0K else

(R ▷◁ S)(t) = R(t[R]) · S(t[S]) (for R ∪ S tuple t)

Updates are also defined using semiring operations.
However, in contrast to queries, they create version annota-
tions. We support updates corresponding to SQL constructs
INSERT, UPDATE, DELETE, and COMMIT. An operation is executed
at a time ν as part of a transaction T . Updates take a
normalized, admissible Kν -relation R as an input and return
an updated version of R. An insertion I[Q,T, ν](R) inserts
the result of query Q into relation R. The annotations of
inserted tuples are wrapped in version annotations and
are assigned fresh identifiers (idnew). An update operation
U [θ,A, T, ν](R) applies projection expressions in A to tuples
that fulfill condition θ. Both U [θ,A, T, ν](R) and delete
D[θ, T, ν](R) wrap annotations of tuples fulfilling condition
θ in version annotations. A commit C[T, ν](R) adds commit
version annotations. We use ν(u) to denote the version
when an update u was executed and id(k) to denote the
id of the outermost version annotation of k ∈ Kν (well-
defined for admissible Kν -relations).

Definition 3. Let R be a normalized, admissible Kν -relation. Let
A be a list of projection expressions with the same arity as R and
idnew to denote a fresh id. Let Q be a query over a database D
such that for every {t → k} operation in Q we have k ∈ K. We
define updates over Kν -relations as:

U [θ,A, T, ν](R)(t) = R(t) · (¬θ)(t)

+
∑

t′:t′.A=t

n(R(t′))∑
i=0

U
id(R(t′)[i])
T,ν+1 (R(t′)[i]) · θ(t′)

I[Q,T, ν](R)(t) = R(t) + Iidnew

T,ν+1(Q(D)(t))

D[θ, T, ν](R)(t) = R(t) · (¬θ)(t)

+

n(R(t))∑
i=0

D
id(R(t)[i])
T,ν+1 (R(t)[i]) · θ(t)

C[T, ν](R)(t) =

n(R(t))∑
i=0

COM[T, ν](R(t)[i])

COM[T, ν](k) =

{
Cid

T,ν+1(k) if k = Xid
T,ν′(k′) ∧X ∈ {U, I,D}

k else

As a convention, if an attribute a is not listed in the list
of expressions A of an update then a → a is assumed.
For instance, the first update of example transaction T5

would be written as U [typ = 'Savings', bal + 100 →
bal, T5, 10](Account). What tuple identifiers (idnew) are as-
signed by inserts to new tuples is irrelevant as long as iden-
tifiers are sufficient for uniquely identifying tuples (see [20]).
Properties of MV-semirings. We now discuss several prop-
erties of our model. A formal treatment including proofs
is presented in our technical report [20]. An important
property of provenance polynomials is that the result of

a query Q in any semiring K can be computed from the
N[X] result of Q by replacing variables in polynomials with
elements from K and evaluating the resulting expression
in K. This property was proven by Green et al. [12] by
demonstrating 1) that the process described above is a
semiring homomorphism, i.e., a mapping h : N[X] → K
that agrees with semiring operations; and 2) that homo-
morphisms commute with queries. In [20], we demonstrate
that any homomorphism h : K1 → K2 can be lifted to a
“history-preserving” homomorphism hν : K1

ν → K2
ν by

applying h to each K1 element in a K1
ν element k. Lifted

homomorphisms also commute with updates and trans-
actional histories. Thus, N[X]ν enjoys the same generality
property among MV-semirings as N[X] does for semirings.
Any Kν -relation can be transformed into a corresponding
K-relation, by “evaluating” the history embedded in a
Kν element k. This is achieved through a homomorphism
hU : Kν → K that evaluates the symbolic expression k by
interpreting version annotations as functions from K → K
and by interpreting the operations + and · in semiring K.
Insert, commit, and update annotations are interpreted as
the identify function on K whereas deletion annotations are
interpreted as the function that maps every input to 0K. For
example, consider C4

T6,16
(I4T6,15

(U1
T6,12

(C1
T1,4

(I1T1,2
(x1)) ·

C2
T1,4

(I2T1,3
(x2))))), the annotation of the overdraft tuple

in Fig. 2c. By interpreting the version annotations as the
identity function on N[X], this expression would be trans-
formed into the N[X]-expression x1 · x2. Furthermore, we
demonstrate that Q ≡N[X]ν Q′ ⇒ Q ≡Kν Q′ for any
MV-semiring Kν . Thus, the equivalence between histories
and reenactment queries that we prove for N[X]ν in Sec. 5
implies equivalence for any Kν . In particular, reenactment
works for bag semantics (semiring Nν ).

4 TRANSACTIONS AND HISTORIES

We now define transactional histories for Kν -databases un-
der SI and RC-SI in a way that is backward compatible to the
bag semantics version of SI/RC-SI. A transaction T = {u1,
. . . , un, c} is a sequence of update operations followed by a
commit operation (c) with ν(ui) < ν(uj) for i < j. A history
H = {T1, . . . , Tn} over a database D is a set of transactions
over D with at most one operation at each version ν. We use
Start(T ) = ν(u1) and End(T ) = ν(c) to denote the time
when transaction T did start (respective did commit). Note
that an update u in our algebra records explicitly when it
was executed in its version identifier ν(u). We use R[ν] to
denote the state of relation R at time ν produced by the
history. Note that R[ν] only contains committed changes.
R[T, ν] denotes relation R as seen by transaction T at time
ν. Our version annotations do not explicitly store when a
tuple version was invalidated by an update. Invalidation is
implicitly encoded in the nesting of version annotations.

Definition 4. Let H be a history over a database D. The version
R[ν] of relation R ∈ D at time ν and the version R[T, ν] of
relation R visible within transaction T ∈ H at time ν are defined
in Fig. 5 and 6 for SI and RC-SI, respectively.

4.1 Snapshot Isolation Histories
A transaction T under SI sees 1) its own updates and 2)
the updates of transactions that have committed before
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(a) Historic Relation R[T, ν]

R[T, ν] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if ν < Start(T )

R[ν] if Start(T ) = ν

u(R[T, ν − 1]) if ∃u ∈ T : ν(u) = ν − 1 ∧ u updates R ∧ End(T ) ̸= ν − 1

C[T, ν − 1](R[T, ν − 1]) if End(T ) = ν − 1

R[T, ν − 1] else
(b) R[ν]: Committed Tuple Versions at Time ν

R[ν](t) =
∑

T∈H∧End(T )<ν

n(R[T,ν](t))∑
i=0

R[T, ν](t)[i] · VALIDAT(T, t, R[T, ν](t)[i], ν)

(c) Valid Tuple Versions from Transaction T at ν

VALIDAT(T, t, k, ν) = 1 if k = Cid
T,ν′(k′) ∧ (¬∃T ′ ̸= T : End(T ′) ≤ ν ∧ UPDATED(T ′, t, k, ν)), 0 otherwise

(d) Tuple Versions Updated By Transaction T

UPDATED(T, t, k, ν) ⇔ ∃u ∈ T, t′, i, j : ν(u) < ν ∧R[T, ν(u)](t)[i] = k ∧R[T, ν(u) + 1](t′)[j] = Xid
T,ν(u)+1(k) ∧X ∈ {U,D}

Fig. 5: SI historic database definition

(a) Historic Relation R[T, ν]

R[T, ν] = u(Rext[T, ν − 1]) if ∃u ∈ T : ν(u) = ν − 1 ∧ u updates R ∧ End(T ) ̸= ν − 1

(b) Rext[T, ν]: Tuple Versions Visible Within Transaction T at Time ν

Rext[T, ν](t) =

n(R[ν](t))∑
i=0

R[ν](t)[i]× VALIDEX(T, t, R[ν](t)[i], ν) +

n(R[T,ν](t))∑
i=0

R[T, ν](t)[i]× VALIDIN(T, t, R[T, ν](t)[i], ν)

(c) Validity of Summands (Tuple Versions) Within Annotations

VALIDIN(T, t, k, ν) = 1 if ∃ν′, k′, id : k = Xid
T,ν′(k′) ∧X ∈ {U,D, I}, 0 otherwise

VALIDEX(T, t, k, ν) = 0 if UPDATED(T, t, k, ν), 1 otherwise

Fig. 6: RC-SI historic database definition

Start(T ). The first condition is encoded in the definition
of R[T, ν] and the second one in the definition of R[ν].
Relation Versions Visible Inside an SI Transaction. R[T, ν]
contains the result of applying the latest update of T before
ν to the version valid before the update. As a convention,
we define R[T, ν] = ∅ if ν < Start(T ). The 1st update in
a transaction sees R[Start(T )], the version of R containing
all changes of transactions committed before T started (2nd

case in Fig. 5a). We explain how to compute R[ν] below.
Consider a transaction T = u1, . . . , un, c and assume for
simplicity that every update is modifying the same relation
R. The 2nd update u2 within the transaction will see the ver-
sion of R produced by applying update u1 to R[Start(T )],
the 3rd update u3 will run over the version of R produced
by u2, and so on. This is encoded by the 3rd and 5th case
in Fig. 5a. u denotes one of the operations as defined in
Def. 3. If T executed an update on R at version ν − 1 then
R[T, ν] is the result of applying the update to R[T, ν − 1]. If
transaction T committed at ν − 1 then we apply a commit
operation (Def. 3) to R[T, ν−1] (4th case). If the transaction
did not execute any operation at ν − 1 (including the case
where ν > End(T )+1) then R[T, ν] = R[T, ν−1] (5th case).
Relation Versions Containing Committed Changes. Under
SI, a transaction starting at ν will see a version of relation
R that contains changes of transactions committed before ν.
Recall that we use R[ν] to denote this version of R. Fig. 5b
to 5d show the definition of R[ν]. R[ν] can be written as
a union (sum) over all tuple versions (annotations) created

by transactions that committed before ν as long as the same
tuple version is no included more than once. Furthermore,
we should not include annotations that correspond to tuple
versions which have been replaced with newer versions or
were deleted. This is checked using a predicate VALIDAT.

Determining Valid Tuple Versions. VALIDAT(T, t, k, ν)
evaluates to 1 if two conditions are met: 1) annotation k
was produced by transaction T , i.e., the outermost version
annotation in k is from T ; 2) the tuple version corresponding
to k was not updated (predicate UPDATED(T ′, t, k, ν)) by an-
other transaction T ′ that committed before ν (End(T ′) < ν).

Checking for Tuple Updates. UPDATED(T, t, k, ν) is true
if transaction T has invalidated the tuple version corre-
sponding to t annotated with k before ν. A transaction T
has invalidated a summand k in an annotation of a tuple
t if there exists an operation u (update or delete) within
the transaction that has updated tuple t into tuple t′ and
ν(u) < ν. Thus, there has to exist i and j so that a summand
R[T, ν(u)](t)[i] = k is in the annotation on t before the
update and after the update the annotation of tuple t′

contains a summand R[T, ν(u) + 1](t′)[j] = Xid
T,ν(u)+1(k)

where X ∈ {U,D} (either a delete or update).

Example 4. Consider Account[T6, 11], the version of relation
Account from our running example visible to Transaction T6

at version 11. Since Start(T6) = 11, this version is equal to
Account[11]. We construct Account[11] by combining tuple
annotations created by transactions that committed before T6
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started as long as these tuple versions have not been invalidated by
another already committed transaction. For instance, Transaction
T1 did create the annotation k = C1

T1,4
(I1T1,2

(x1)) on tuple a1 =
(Alice, Checking, 400) as shown in Fig. 2a. VALIDAT evaluates to
1 for this annotation of tuple a1 if no transaction that committed
before 11 has invalidated this version. Since there is no such
transaction, we get Account[11](a1) = C1

T1,4
(I1T1,2

(x1)).

4.2 Read-Committed SI Histories

Under RC-SI, an update u of a transaction T sees 1) changes
of previous updates of T and 2) changes of transactions
that committed before ν(u). We use Rext[T, ν] to denote the
version of R seen by u.

Relation Versions Visible Inside a RC-SI Transaction.
For RC-SI, we also apply the definition from Fig. 5a. The
only difference is the 3rd case: an update was executed by
transaction T at time ν−1 and its modifications are reflected
in R[T, ν]. The modified 3rd case is shown in Fig. 6a. The
update sees tuple versions created by: 1) the transaction’s
own updates; 2) other transactions which committed before
ν − 1. We discuss how to compute this version of a relation
R (denoted by Rext[T, ν − 1]) in the following.

Relation Version Visible to Updates. Fig. 6b shows the
definition of Rext[T, ν], the version of relation R that is
visible to an update of transaction T executed at time ν.
The first sum computes a version of relation R that contains
all tuple versions which were created by transactions that
committed before Start(T ) and have not been modified
by a previous update of transaction T . This is checked by
function VALIDEX that returns 0 if the tuple version has
been replaced with a new updated version and 1 otherwise.
Function VALIDEX uses predicate UPDATED(T, t, k, ν) which
was already introduced in Sec. 4.1 (Fig. 5d). The second sum
only considers tuple versions R[T, ν] created by previous
updates of T which is checked by function VALIDIN.

Relation Versions Containing Committed Changes. We use
the same definition as for SI (Fig. 5b and Fig. 5c).

Example 5. Assume T5 and T6 were executed under RC-SI
instead of SI. Consider Account[T6, 14], the version of Account
visible to the insert of T6 at time 14. As shown in Fig. 2c,
the first update of Transaction T6 did create the annotation
U1
T6,12

(C1
T1,4

(I1T1,2
(x1))) on the tuple (Alice, Checking, -1100)

of Account. Therefore, VALIDIN returns 1 whereas VALIDEX
returns 0 and Accountext[T6, 14] contains this version.

4.3 Provenance Filtering

A tuple’s annotation stores its derivation history since the
origin of the database. This amount of information can
be overwhelming to a user. As mentioned in Sec. 1, we
can restrict provenance to tuple versions affected by a
transaction. To restrict R[T,End(T )], the provenance of a
Transaction T for relation R, we apply two filtering steps:
1) filter out tuples that were not affected by T . In this step,
every summand is removed from the annotation of a tuple
if it is not wrapped in a commit annotation of T , i.e., it is
not of the form Cid

T,ν(k) 2) remove parts of the provenance
that correspond to operations before the start of T . Each
subexpression that is wrapped in the commit annotation

of a transaction T ′ ̸= T is replaced with a variable dis-
ambiguated by tuple identifiers, i.e., every subexpression
Cid

T ′,ν(k) is substituted with Cid
T ′,ν(xid). Assume we are

interested in Transaction T and T ′ ̸= T . An expression
Cid

T ′,ν′(IidT ′,ν′′(I
id1

T ′,ν1
(x1) · Iid2

T ′,ν2
(x2))) in the annotation of a

tuple updated by T would be replaced with Cid
T ′,ν′(xid).

5 REENACTMENT

Reenactment captures provenance for an update u (or trans-
action T ) within the context of a history H by executing
an annotation equivalent reenactment query R(u) (or R(T )).
Annotation equivalent (≡N[X]ν ) means that such a query
produces the same result and provenance. Recall that this
implies equivalence for any MV-semiring Kν . Since RA+

operators do not introduce version annotations, we define
an operator for this purpose.

Definition 5. The operator αX,T,ν(R) for X ∈ {I, U,D} takes
as input a Kν -relation R and wraps every summand in a tuple’s
annotation in XT,ν . The commit annotation operator αC,T,ν(R)
only wraps summands produced by Transaction T using operator
COM[T, ν](k) from Definition 3.

αX,T,ν(R)(t) =

{∑n(R(t))
i=0 COM[T, ν](R(t)[i]) if X = C∑n(R(t))
i=0 XT,ν(R(t)[i]) otherwise

5.1 Update Reenactment
We first define reenactment for an update u that is executed
over the historic database seen by u’s transaction T at the
time of the update (R[T, ν(u)]). Here we abuse notation and
treat R[T, ν] as a syntactic construct that we can substitute
with an algebraic expression which computes this version
of R. For example, Q(D[T, ν]) denotes the query Q where
every access to a relation R is substituted by R[T, ν].

Definition 6. Let H be a history over database D. The
reenactment query R(u) for an operation u in H is:

R(U [θ,A, T, ν](R)) = αU,T,ν+1(ΠA(σθ(R[T, ν]))) ∪ σ¬θ(R[T, ν])

R(I[Q,T, ν](R)) = R[T, ν] ∪ αI,T,ν+1(Q(D[T, ν]))

R(D[θ, T, ν](R)) = αD,T,ν+1(σθ(R[T, ν])) ∪ σ¬θ(R[T, ν])

An update applying the expressions from A to all input
tuples matching condition θ and wraps the annotation of
such tuples into an update annotation. All other tuples are
not modified. We can compute the result of an update as
the union between these sets. Similarly, a deletion wraps
tuples matching its condition in delete annotations. Thus, it
can be reenacted as the union between deleted (matching
condition θ) and unmodified inputs. An insert statement
adds the result of a query Q to relation R. It can be reenacted
as the union between relation R and the result of Q.

Example 6. Consider the reenactment query for the first update
operation R(u1) of Transaction T6. u1 = U [cust = 'Alice' ∧
typ = 'Checking', bal − 1500 → bal, T6, 11](Account) of
example Transaction T6. The reenactment query R(u1) is:
αU,T6,11(Πcust,typ,bal−1500→bal(σcust='Alice'∧typ='Checking'

(Account[T6, 11])))

∪σ¬(cust='Alice'∧typ='Checking')

(Account[T6, 11])



9

Theorem 1. Let u be an update. Then, u ≡N[X]ν R(u).

Proof. We prove the theorem by substitution of opera-
tor definitions. We show the proof for an update u =
U [θ,A, T, ν](R). The proofs for inserts and deletes are anal-
ogous. The reenactment query R(u) for u is:

αU,T,ν+1(ΠA(σθ(R[T, ν]))) ∪ σ¬θ(R[T, ν])

We have to show that u(t) = R(u)(t) for any t ∈ R. Let Q′ =
ΠA(σθ(R[T, ν])). Substituting RA+ definitions we get:

R(u)(t) =
n(Q′(u))∑

i=0

U
id(Q′(u)[i])
T,ν+1 (Q′(u)[i]) + (R(t) · ¬θ(t))

Now we substitute Q′(t) =
∑

u:u.A=t(R(u)·θ(u)) and apply
commutativity of + to get

= R(t) · ¬θ(t) +
n(Q′(t))∑

i=0

U
id(Q′(t)[i])
T,ν+1 ((

∑
u:u.A=t

R(u) · θ(u))[i])

Using the MV-semiring equivalence A(k + k′) = A(k) +
A(k′), we can pull out the inner sum in the second part:

. . .+
∑

u:u.A=t

n(R(u)·θ(u))∑
i=0

U
id((R(u)·θ(u))[i])
T,ν+1 ((R(u) · θ(u))[i])

Note that n(R(u) · θ(u)) = n(R(u)) if θ(u) = 1. If θ(u) = 0
then n(R(u) · θ(u)) ̸= n(R(u)), but this does not affect the
result, because then R(u)[i] · θ(u) = 0. An analog argument
holds for id(R(u) · θ(u)). Applying distributivity and using
the MV-semiring equivalence A(k ·k′) = A(k) ·k′ for k′ = 1
or k′ = 0 to pull out the multiplication θ(u) we get:

= R(t) · ¬θ(t) +
∑

u:u.A=t

n(R(u))∑
i=0

U
id(R(u)[i])
T,ν+1 (R(u)[i]) · θ(u)

= U [θ,A, T, ν](R)(t)

5.2 SI Reenactment

To reenact a transaction, we merge the reenactment queries
for updates of the transaction in a way that respects the
visibility rules enforced by the concurrency control protocol.
Under SI, each update ui of a transaction T sees the version
of the database at transaction start plus local modifications
of updates uj from T with j < i. Thus, effectively, each
update ui updating the relation R is evaluated over the
annotated relation produced by the most recent update uj

that updated R with j < i. Since we have proven that
u ≡N[X]ν R(u), each reference to a relation R[T, ν] produced
by update uj can be replaced with R(uj) (as mentioned
above we treat R[T, ν] as a symbolic expression in this
context). Applying this substitution recursively and adding
an annotation operator to wrap the final outputs in commit
annotations results in a single query RR(T ) per relation R
affected by T . We use R(T ) to denote all relations targeted
by at least one update of T and LAST(T,R, ν) to denote the
last update executed before ν in T that updated relation R.

Definition 7. Let T be a transaction in a history H . The
reenactment query R(T ) for T is:

R(T ) = {RR(T ) | R ∈ R(T )}
RR(T ) = αC,T,End(T )(RR(LAST(T,R,End(T ))))

where query RR(u) is computed as follows. We initialize
RR(u) = R(u) and then apply the following substitution rule
until a fix point is reached (for every relation S accessed by T ,
only references of the form S[Start(T )] remain):
Pick a relation mention S[T, ν] in the current RR(u)

• If ∃u′ ∈ T : u′ updates S ∧ ν(u′) < ν then replace S[T, ν]
with R(LAST(T, S, ν))

• Otherwise, replace S[T, ν] with S[Start(T )]

Technically, R(T ) for a transaction T is a set of queries.
However, abusing terminology we refer to this set as the
reenactment query of T and by T ≡N[X]ν R(T ) mean that
for every R ∈ R(T ), the reenactment query RR(T ) for a
relation R is equivalent to the effect that transaction T has
on relation R. The structure of the reenactment query for SI
transactions updating a single relation R is outlined below.
R[Start(T )] R(u1) R(u2) R(u3) R(un−1) R(un)

Example 7. Consider Transaction T5 from the running
example. Let us refer to its operations as u1 and u2. We use
the following abbreviations in this example: Account = A,
cust = c, typ = t, and bal = b. Consider the construction of
the reenactment query for T5 on A. The last update modifying
A is u2. Thus, RA(T5) = αC,T,13(RA(u2)). Operation u2

updates relation A at version 12. The reenactment query for u2 is:

RA(u2) = αU,T5,13(Πc,t,(b+300)→b(σt='Savings'∧b>5000(A[T5, 12])))

∪ σ¬(t='Savings'∧b>5000)(A[T5, 12])

The last update of Transaction T5 that modified relation A
before version 12 is u1. Thus, the access to A[T5, 12] in
RA(u2) is replaced with RA(u1). The access to relation A
by update u1 is not replaced in RA(u1), because there is
no update operation in T5 that updated this relation before
u1 was executed. The final reenactment query RA(T5) is:

RA(T5) = αC,T,13(RA(u2))

RA(u2) = αU,T5,13(Πc,t,(b+300)→b(σt='Savings'∧b>5000(RA(u1))))

∪ σ¬(t='Savings'∧b>5000)(RA(u1))

RA(u1) = αU,T5,11(Πc,t,(b+100)→b(σt='Savings'(A[10])))

∪ σ¬(t='Savings')(A[10])

Theorem 2. Let T be a transaction. Then, T ≡N[X]ν R(T ).

Proof. We now prove the theorem by induction over the
number of updates in transaction T . To simplify the ex-
position, assume WLOG that T updates a single relation
R. Induction Start: For a transaction with a single up-
date u1, the theorem follows from equivalence for up-
dates (Thm. 2) and the equivalence of the commit an-
notation operator and commit annotations produced by
T (both are defined using COM). Induction Step: Assume
that T ≡N[X]ν R(T ) for transactions with up to i up-
dates. We have to show that the same holds for any T =
u1, . . . , ui, ui+1, c. Let Ti = u1, . . . , ui, c. WLOG assume
End(T ) = End(Ti). We know that R(Ti) ≡N[X]ν Ti ⇒
R[Ti, End(Ti)] = R[Ti, ν(ui) + 1]. Since Ti and T have
executed the same updates over the same input, it follows
that R[Ti, ν(ui) + 1] = R[T, ν(ui) + 1]. From the definition
of R[T, ν] we know that R[T,End(T )] = R[T, ν(ui+1) +
1] = ui+1(R[T, ν(ui+1)]). Using the equivalences stated
above we can deduce ui+1(R[T, ν(ui+1)]) ≡N[X]ν ui+1(
RR(ui))). We know that R(ui+1) ≡N[X]ν ui+1 and, thus, it
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(a) Version Merge Operator

µ(R1, R2)(t) =

n(R1(t))∑
i=0

R1(t)[i]× isMax(R2, R1(t)[i]) +

n(R2(t))∑
i=0

R2(t)[i]× isStrictMax(R1, R2(t)[i])

(b) Check Tuple Versions of a Relation R

isMax(R, k) = 0 if ∃t′, k′, j : idOf(R(t′)[j]) = idOf(k) ∧ versionOf(R(t′)[j]) > versionOf(k), 1 otherwise
isStrictMax(R, k) = 0 if ∃t′, k′, j : idOf(R(t′)[j]) = idOf(k) ∧ versionOf(R(t′)[j]) ≥ versionOf(k), 1 otherwise

idOf(Xid
T,ν(k

′)) = id versionOf(Xid
T,ν(k

′)) = ν

Fig. 7: Definition of auxiliary operators used in RC-SI reenactment

follows that R[T,End(T )] ≡N[X]ν RR(ui+1). Since RR(T ) =
αC,T,End(T )(RR(ui+1)) this concludes the proof.

5.3 RC-SI Reenactment
Based on our model for RC-SI histories that we did present
in Sec. 4.2, we have to construct reenactment queries for up-
dates of a transaction T such that Rext[T, ν(u)] is the input
of every update u over relation R. Rext[T, ν(u)] contains
tuple versions from R[ν] and also those tuples from R that
have been modified by previous updates of the transaction
T . Thus, we can compute it as a union between these two
sets of tuple versions by filtering out invalid tuple versions.
Version Merge Operator. This operator [9] merges two
version R1 and R2 of a relation R such that the output
includes 1) each tuple version once that exists in both inputs
and 2) the newer version of each tuple which exists as
different versions in both inputs (shown in Fig. 7). We
construct Rext[T, ν] using this operator. Functions isMax
and isStrictMax used to define µ are explained below.
Check Tuple Versions of a Relation. isMax(R, k) returns
0 when relation R has a newer version of the tuple version
encoded as annotation k. Function isStrictMax is a strict
version of isMax function that also returns 0 when the tuple
version k exists in R. These functions use idOf(k) to access
identifiers and versionOf to retrieve the version identifiers
from an annotation k. These functions are only defined for
inputs from normalized, admissible Kν -relation (see Sec. 3).

RC-SI transactions that modify multiple relations
are handled analog to SI. Hence, we only present the
construction of reenactment queries for RC-SI transactions
that update a single relation R. The reenactment query for
the Transaction T = (u1, . . . , un, c) executed under RC-SI is
defined recursively. It is constructed starting with a commit
annotation operator applied to the reenactment query
R(un) for the last update of T . Then for i ∈ n− 1, . . . , 1
we replace R[T, ν(ui+1)] in the query constructed so
far with µ(R(ui), R[ν(ui+1)]). Operator µ computes
Rext[T, ν(ui+1)] which is the input seen by ui+1. The
structure of the reenactment query for RC-SI transactions
for a single relation R is shown below.

R[ν(u1)] R(u1)

R[ν(u2)]

µ R(u2)

R[ν(u3)]

µ R(u3) R(un−1)

R[ν(un)]

µ R(un)

Theorem 3. If T is a RC-SI transaction, then T ≡N[X]ν R(T ).

Proof. Assume that transaction T = u1, . . . , un, c is updat-
ing a single relation R. We need to show that the input
R[T, ν(u)] for an update u is the same as the input pro-
duced for R(u) by the reenactment query for Transaction

T . We prove this fact by induction over the number of
updates in Transaction T . Induction Start: Let T = u1, c.
This case is analog to SI. Induction Step: Assume that
R[T, ν(ui)] = Rext[T, ν(ui)] for any i ≤ n where i is
the number of operations in Transaction T . We need to
prove that for any transaction T = u1, . . . , un+1, c we
have that Rext[T, ν(un+1)] is equal to the input for the
reenactment query R(un+1) of un+1 within the reenactment
query R(T ). In the reenactment query, the input to R(un+1)
is µ(R(un), R[ν(un+1)]). Based on the induction hypothesis
we have R(un) = R[T, ν(un+1)]. Thus, denoting ν(un+1) as
νn+1:

µ(R(un), R[ν(un+1)])(t)

=

n(R[T,νn+1](t))∑
i=0

R[T, νn+1](t)[i]

× isMax(R[νn+1], R[T, νn+1](t)[i])

+

n(R[νn+1](t))∑
i=0

R[νn+1](t)[i]

× isStrictMax(R[T, νn+1], R[νn+1](t)[i])

Rext[T, νn+1](t) is also defined as a sum over the elements
from R[T, νn+1](t) and R[νn+1](t). Individual summands
are filtered out using VALIDIN and VALIDEX. Thus, to prove
that µ(R(un), R[ν(un+1)]) = Rext[T, ν(un+1)], we have to
show that if the isMax or isStrictMax function returns
1 on a summand then the same is true for VALIDIN or
VALIDEX, respectively. Fixing a tuple t and a tuple version
(summand) k with tuple identifier id in its annotation, we
have to distinguish between five cases based on whether
such a tuple version occurs in R[ν(un+1)] and/or in
R[T, ν(un+1)], and, if it occurs in both, whether one of these
versions is newer. We show the proof for one of these cases.
The remaining cases are similar in nature (see [21]). Case 1:
For this case, we assume that the first tuple version with
identifier idOf(k) was created by an insert of Transaction
T before νn+1 and, thus k is only present in R[T, νn+1](t).
Therefore, function isMax( R[νn+1], k) returns 1 and k is
in µ(R(un), R[ν(un+1)])(t). Similarly, since k is the latest
version, we have that VALIDIN( R[T, νn+1], t, k, νn+1) re-
turns 1 because k’s outmost version annotation is from T .
Thus, k is also present in Rext[T, νn+1]. Having proven that
µ(R(un), R[ν(un+1)]) = Rext[T, ν(un+1)] it follows that
T ≡N[X]ν R(T ).

6 IMPLEMENTATION AND OPTIMIZATIONS

We have implemented provenance capture for transactions
in our GProM (Generic Provenance Middleware) system.
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GProM
Parser SELECT *

FROM ...

PROVENANCE OF 
(SELECT * FROM ...

Provenance
Instrumentation

Transaction
Reenactor Optimizer SQL Code

Generator

Audit Log
-- --- ---
-- -- --- -- -- - - - -----

Versioned TablesDBMS
Backend

Fig. 8: GProM architecture

Fig. 8 shows how the system processes a transaction pro-
venance request. GProM translates SQL statements with
provenance requests into a relational algebra with annotated
semantics. Transaction provenance requests are processed
by the reenactor module that constructs the reenactment
query for a transaction using the audit log of the backend
DBMS to determine which statements were executed by the
transaction. The provenance instrumentation module rewrites
the reenactment query with annotated semantics into a
relational algebra expression that produces our relational
encoding of MV-semiring annotations. This query uses time
travel to access past database states. We return provenance
restricted to a transaction T using the method discussed
at the end of Sec. 4. Afterwards, we optimize the algebra
expression and then compile it into SQL code. We present
optimizations specific to reenactment in the following and
refer the reader to [22] for a detailed discussion of GProM’s
heuristic and cost-based optimization framework.

6.1 Reducing MV to Standard Relational Semantics

We encode a normalized MV-semiring annotation of a tu-
ple as a set of tuples - one for each summand. We add
provenance attributes to the result schema to store tuples
in the provenance (variables in MV-semiring expressions)
and version annotations for each summand. For instance,
a tuple t annotated with x + y would be encoded as
two tuples encoding the summand x and y, respectively.
When computing the provenance of a Transaction T , ini-
tial annotations for a relation R are created to represent
variables in annotations. We access the snapshot of R as
of the start of Transaction T and create annotations by
duplicating attribute values using projection. Note that the
relational encoding of annotations produced by this step
corresponds to the result of applying the filtering step 2
in Sec. 4.3 to R[Start(T )]. Here we assume a standard SI
based implementation of time travel that allows us to access
a snapshot Rν of relation R containing all committed tuple
versions valid at ν. Furthermore, we expect a snapshot to
store the following information for each tuple version: 1)
the transaction that created the tuple version (attribute Xid)
and 2) a unique tuple identifier (attribute Id). We instrument
the remaining operators to propagate annotations from their
inputs. Consider a transaction T = (u1, . . . , un, c). We
apply a selection U1 ∨ . . . ∨ Un to the result to implement
filtering step 1 that removes tuples that were not affected by
Transaction T (see Sec. 4.3). The details of our encoding and
instrumentation are presented in our technical report [20].

Reenacting With CASE. Our reenactment approach trans-
lates an UPDATE into a union between two accesses of the
input relation. For a sequence of updates in a transaction
this leads to queries where both inputs of such a union are

again unions. Unless intermediate results are reused, this
leads to an exponential number of unions (in the number of
updates). Instead of computing the union between the set of
updated tuples and non-updated tuples, we can use the SQL
CASE construct to decide for each tuple whether it should be
updated. We can reenact an update U [θ,A, T, ν](R) using a
projection constructed as follows. We replace each expres-
sion e → a in A with CASE WHEN θ THEN e ELSE a END AS a.
Version annotation attributes (Ui) are computed in a similar
fashion. This approach is also applicable for deletes.

Example 8. Consider a Transaction T with a single update:
UPDATE Account SET bal = bal + 100 WHERE typ = 'Savings';
Reenactment produces the following query (for simplicity we omit
instrumentation for propagating annotations). SQL construct
R AS OF t denotes the use of time travel to compute snapshot Rt.
Using CASE instead of union we get:
SELECT cust, type, (CASE WHEN (typ = 'Savings')

THEN bal + 100 ELSE bal END) AS bal
FROM Account AS OF Start(T );

6.2 Prefiltering Provenance
Recall that we apply a selection on U1∨ . . .∨ Un to the result
of reenactment to filter out tuples that were not affected by
any update of the transaction. Thus, the reenactment query
is evaluated over all tuples from RStart(T ). We now discuss
two optimizations that filter out tuples early on.
Prefiltering With Update Conditions. The naive method
can be improved if we can determine upfront which tuples
will be affected by a transaction. Consider a transaction
T = u1, . . . , un, c where each ui is an UPDATE and a tuple
t valid at transaction start. Tuple t was modified by a subset
(potentially empty) of the updates of T . If t is affected, then
there has to exist a first update ut in T that modified tuple t.
Thus, t has to fulfill the condition of ut. This observation
can be used to characterize the set of tuples affected by
the transaction. In particular, this is the set fulfilling the
condition θ1 ∨ . . . ∨ θn where θi is the condition of the ith

update operation. Hence, it is safe to apply a selection on
this condition to the input of reenactment. This approach
is not applicable to a relation R if one of the transaction’s
inserts uses a query that accesses relation R. Delete opera-
tions can be handled like update operations whereas inserts
create new tuples and there is no need for prefiltering.
Join With Committed Tuple Versions. The version of the
database at commit of transaction T contains all tuple
versions that were created by T . Recall that snapshots use
a column Xid to store the updating transaction. Thus,
we can determine which tuple versions were created by a
transaction T by running a query σXid=T (REnd(T )+1). To
retrieve the version of these tuples valid at transaction start,
we can join the result of this query with RStart(T ). Here,
we assume that the database uses unique immutable tuple
identifiers stored in attribute Id. We join on this identifier,
i.e., in the reenactment query we replace RStart(T ) with
RStart(T ) ▷◁ ΠId(σXid=T (REnd(T )+1)). This approach is
only applicable to relations that are not accessed by any
insert’s query in the transaction.

7 EXPERIMENTS

Our experimental evaluation studies 1) the performance of
provenance capture and 2) the overhead for transaction exe-
cution comparing our approach (using reenactment, audit
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Fig. 10: History size
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Fig. 11: Optimization methods
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logging and history maintenance) with an approach that
directly stores provenance. All experiments are run with
DBMS X as a backend (name omitted due to licensing
restrictions). We use a synthetic workload to evaluate how
our approach scales in various parameters and a TPC-C
workload to test its performance for realistic transactions.
All experiments were executed on a machine with 2 x AMD
Opteron 4238 CPUs (12 cores in total), 128 GB RAM, and 4
x 1TB 7.2K HDs in a hardware RAID 5 configuration.

7.1 Setup and Workload

Datasets and Workload. We use a relation with five uni-
formly distributed, numeric columns. We created variants
R10K , R100K , and R1000K with 10K, 100K, and 1M tuples
and no significant history (H0). Additionally, we generated
three variants of R1000K with different history sizes H10,
H100, and H1000 (100K, 1M, and 10M tuples history). At
first, we only consider transactions that consist solely of
update statements. We vary the following parameters: U
is the number of updates per transaction, e.g., U10 is a
transaction with 10 updates. T is the number of tuples
affected by each update. Unless stated otherwise, we use
T1. The tuple to be updated is selected randomly using
the primary key (uniform distribution). The default isolation
level used in the experiments is SERIALIZABLE (SI).
Compared Methods. We compare different configurations
for capturing provenance for a transaction - each using a
subset of the optimizations described in Sec. 6. Experiments
were repeated 100 times and we report the average runtime.
NoOpt (N): Computes the provenance of all tuples in a
relation, even tuples that were not affected by the transac-
tion, i.e., we do not apply the filter condition on the version
annotation attributes. Prefilter (P): Only returns provenance
of tuples affected by the transaction using a selection on
the disjunction of the conditions of the transaction’s up-
dates (see Sec. 6.2). The database system was instructed to
materialize the intermediate result corresponding to each
update in the reenactment query using temporary relations.
Prefilter+Opt (PO): This is the same as Prefilter, but we
merge operators (particularly, projections) to reduce the
number of query blocks. HistJoin (HJ): We use a join to
compute partial provenance as described in Sec. 6.2. This

configuration merges operators where possible. The maxi-
mum allocated execution time for each method is 1,000 sec.

7.2 Performance of Provenance Capture
In this set of experiments we execute the transactional
workload beforehand and measure the performance of cap-
turing provenance for transactions from this workload. We
study how our reenactment approach scales in database and
history size as well as complexity of the transaction (number
of operations, amount of modified tuples, types of updates).
Relation Size and Updates/Transaction. We compute the
provenance of transactions varying the number of updates
per transaction (U1 up to U1000) and the size of the da-
tabase (R10K , R100K , and R1000K) without significant
history (H0). Fig. 9 shows the runtime of capturing pro-
venance for one transaction. We scale linearly in R and
U . By reducing the amount of data to be processed by
the reenactment query and by merging operators, the PO
approach is up to three orders of magnitude faster than the
naive N configuration.
History Size. We capture provenance for transactions with
10 updates (U10) over relations with 1M tuples (R1000K)
and history sizes: H0, H10, H100, and H1000. As shown
in Fig. 10, N exhibits almost constant performance. The
runtime is dominated by evaluating the reenactment query
over 1M tuples (all tuples in one version of the relation)
hiding the impact of scanning the history. Since we have
not created any indexes on the history relations, the PO
approach only has the advantage of processing less tuples
in the provenance computation, but still has to scan most of
the history to find tuples that were updated.
Comparing Optimization Techniques. Fig. 11 shows results
for varying the number of updates (U1 to U1000) using
R1000K-H1000. Compared with P, PO benefits from avoid-
ing materialization. This optimization is more effective for
larger transactions, as reenactment queries for such trans-
actions are increasingly complex. While resulting in ∼20%
improvement for U100, it improves the runtime by a factor
of roughly 10 for U1000. The cost of PO is affected by the
first selection that is applied to 1M tuples (no index on the
history relation). The size of this condition is linear in the
number of update operations. The runtime of HJ is almost
not affected by parameter U , because it is dominated by
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the join between historic relations. PO outperforms HJ by a
factor of about 3. For U1000, the N method did not finish
within the allocated time slot (1000 sec.).
Affected Tuples Per Update. Fig. 12 shows results for U10
where each update modifies 10, 100, 1000, or 10000 tuples
of the R1000K-H1000 relation. As evident from Fig. 12, the
runtime is not significantly affected when increasing the
number of affected tuples per update. It is dominated by
scanning the history and filtering out updated tuples (PO)
or the self-join between historic relations (HJ). Increasing the
T parameter by 3 orders of magnitude results in a runtime
increase of about 150% (PO) and 20% (HJ).
Index vs. No Index. Fig. 13 shows the effect of replicating
the indexes defined for the R1000K-H1000 relation to its
corresponding history relation. We vary U (U1 to U1000).
We omit the N (no benefit from indexes) and P (consistently
outperformed by PO) configurations. Using indexes im-
proves execution time of queries that apply PO considerably.
TPC-C. We capture provenance for the TPC-C benchmark.
We execute a TPC-C workload over an instance with 32
warehouses. The resulting database is roughly 16GB large.
The benchmark defines 5 transaction types, out of which 2
are read-only. We compare the N and PO methods for the
3 transaction types that execute updates. Fig. 14 shows the
result for computing the provenance of a single transaction
of each type. Each of these transactions only modifies a few
tuples. Thus, the cost for PO is quite low. The cost for N is
dominated by scanning the full input relation.
Isolation Levels. Fig. 15 compares the performance of cap-
turing provenance for SI and RC-SI. We use R1000K-H1000
and vary the number of updates per transaction (U1 to
U1000). As expected, SI reenactment is more efficient than
RC-SI reenactment, because for RC-SI we have to check
for each tuple and update whether the tuple is visible
to the update. The impact is more noticeable for efficient
configurations such as P and larger number of updates
(U1000). The runtime of N is dominated by a full scan of
the large input and history tables and by having to produce
1M output rows. For U1000, the method N did not finish
within the allocated time slot (1000 sec.).

7.3 Overhead and Eager Provenance Capture
We use audit logging and time travel to reconstruct pro-
venance of past transactions. We now quantify the runtime
and storage overhead of DBMS X’s built-in temporal and
audit features. We measure the execution time of 10,000
transactions with U10 and T1 run over the R1000 instance.
Fig. 17 shows the total runtime for three configurations:
without temporal and audit logging features (W/O), with
temporal features, and with both the temporal and audit
logging features. If history maintenance is activated then
this results in about 12% runtime overhead (see Fig. 17). This

Total Runtime (sec)
+ Relative Overhead (rel)

Method sec rel
Reenact 32.59 19%
1Step 67.18 145%
Full H10 64.02 133%
Full H100 71.98 162%
Full H1000 220.16 702%

Storage Size (MB)
#Tuples / Update Method H10 H100 H1000

T1

History 41 97 655
Audit Log 36 360 3600

Total 77 457 4255
Full 62 181 1245

1Step 45 191 1658

T10 Audit Log 4 36 360
Total 45 133 1015

T100 Audit Log 0.3 4 36
Total 41.3 98 691

Fig. 18: Eager vs. reenactment

result agrees with DBMS X’s documentation which states 5%
overhead for mixed read-write workloads. Also activating
audit logging results in a total overhead of ∼ 19%.

We now compare our approach with eager provenance
capture during transactions execution. We consider two
configurations: 1Step stores a separate provenance record
for each tuple version and statement in an extra relation.
Each record is linked to the provenance record for the
previous tuple version. The provenance of a transaction
is reconstructed by recursively joining these provenance
records; Full stores the complete derivation history of each
tuple in an additional column. Results are shown in Fig. 18.

Transaction Execution Overhead. Using the workload from
Sec. 7.3, we compare the overhead for transaction execution
incurred by these two eager methods with our method. The
performance of our method and 1Step remains stable when
increasing the size of the history. In contrast, the overhead of
Full increases with the history size, as the size of provenance
per tuple increases and the attribute storing provenance has
to be updated by every operation. Both 1Step and Full do
significantly slow down the transaction processing showing
up to a factor of 7 higher overhead than our approach.

Storage Size. We compare the storage size used by the
three methods for a table with 1M rows varying the size
of the history (H10, H100, and H1000) and number of
tuples affected by each update (T1, T10, and T100). For
our method we show the total storage space as well as the
breakdown into a relation plus history and the audit log.
Only the size of the audit log is affected by the T parameter.
Thus, we only show our method for T10 and T100 since the
other methods require the same storage for all T values. The
results shown in Fig. 18 demonstrate that in the worst case
(1 tuple affected per update), our method requires up to ∼4
times more storage than the best approach. This overhead
is caused by the audit log storing one SQL statement per
modified tuple. However, if more tuples are affected by each
statement then our method requires about the same or less
space than the alternatives.

Retrieving Provenance. We now compare the performance
of using reenactment (the PO method) for retrieving pro-
venance with 1Step and Full. Fig. 16 shows the result for
capturing provenance of transactions with U10 and T1
varying the history size (H). We created relevant indexes
for each method. Optimized reenactment outperforms both
alternatives, because Full requires filtering tuples based on
the transaction identifier that is stored in the provenance
column and 1Step requires a recursive query or multi-way
join to reconstruct the provenance of a transaction from
provenance records for each update.
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8 CONCLUSIONS

We present the first solution for capturing provenance for
transactions run under SI and RC-SI. Our approach is based
on reenactment, i.e., replaying updates and transactions as
queries with annotated semantics. Using audit logging,
time travel, and a relational encoding of reenactment, we
retroactively capture the provenance of tuples produced by
transactional histories using a standard DBMS. In future
work, we will study reenactment for more expressive query
languages (e.g., aggregation [16]). Reenactment has many
potential applications such as answering historic What-
If queries (e.g., “What would have happened if we had
updated accounts using 10% interest?”).
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