
Dynamic Game based Security framework in SDN-enabled
Cloud Networking Environments

Ankur Chowdhary Sandeep Pisharody
Adel Alshamrani Dijiang Huang

School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, AZ

<achaud16, spishar1, aalsham4, dhuang8>@asu.edu

ABSTRACT
SDN provides a way to manage complex networks by in-
troducing programmability and abstraction of the control
plane. All networks suffer from attacks to critical infrastruc-
ture and services such as DDoS attacks. We make use of the
programmability provided by the SDN environment to pro-
vide a game theoretic attack analysis and countermeasure
selection model in this research work. The model is based
on reward and punishment in a dynamic game with multiple
players. The network bandwidth of attackers is downgraded
for a certain period of time, and restored to normal when
the player resumes cooperation. The presented solution is
based on Nash Folk Theorem, which is used to implement a
punishment mechanism for attackers who are part of DDoS
traffic, and reward for players who cooperate, in effect en-
forcing desired outcome for the network administrator.

Keywords
Software Defined Networking (SDN), Game Theory, Dis-
tributed Denial of Service (DDoS), Moving Target Defense
(MTD), Cloud Systems

1. INTRODUCTION
Distributed Denial of Service (DDoS) is a major security

problem affecting networks. Some recent cases include a
massive DDoS attack on DNS provider Dyn in October 2016,
and an attack on the website krebsonsecurity.com which was
of magnitude 650 Gbps. The attackers leverage sophisti-
cated botnets such as Leet to send massive traffic to the
victim, thus overwhelming the limited capacity of the vic-
tim. Traditional networks usually incorporate mechanisms
such as firewall, Intrusion Detection System (IDS) and In-
trusion Prevention System (IPS) to detect and counter such
attacks. Since there are multiple entities (such as routers,
firewall, switches etc.) involved in enforcing the security
mechanism, and cooperative sharing of attack information
between devices that have data and control plane embedded

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’17, March 22-24, 2017, Scottsdale, AZ, USA
c⃝ 2017 ACM. ISBN 978-1-4503-4908-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3040992.3040998

in a single device is hard; it becomes very difficult to detect
and counter such attacks. In addition, each different device
may have vendor specific command and control mechanism.

Software Defined Network (SDN) provides separation be-
tween data and control plane [13]. A logically centralized
controller such as OpenDaylight (ODL) is used for taking
control decisions such as routing, load balancing, firewall
policies, IDS and Service Level Agreement (SLA) [14]. The
data-plane, which is involved with traffic forwarding remains
a part of devices such as switches and routers. The control
decisions taken by control plane are enforced by devices.

In this work we model the DDoS attack as a dynamic
game between the attacker and administrator. The attacker
has a goal of targeting critical infrastructure by sending a
huge volume of traffic through bots distributed inside or out-
side the target environment. While we can assume some of
the bots are detected by the IDS based on signature match,
modern DDoS botnets are very stealthy in nature. To this
end, we introduce a game theoretic model which will help
uncover entire botnet, and rate limit traffic from these ma-
licious users/bots. The concept of reward and punishment
which is used in game theoretic models to enforce coopera-
tion between firms has been employed in this research work.
To sustain mutually desirable outcomes, the agents/users
with undesired behavior are punished. Various game theo-
retic approaches that can be used to model the system have
been shown in the figure below.

Game Theory

Competitive

DynamicStatic

Cooperative

DynamicStatic

Figure 1: Game theory classification.

We consider our system to be a dynamic multi-player
game. A single network administrator (SDN Controller in
our case) is playing against multiple players, some of which
are attackers. We deploy administrator’s strategy in form of
Openflow rules. Since some of the countermeasures deployed
as part of defense strategy can conflict with some existing
rules, in our previous work [15] we use a flow rule conflict
detection and resolution algorithm to first detect and then

53

eliminate flow rule conflicts. The attackers have some in-
centive of deviating from normal behavior at a particular
instant but admin has control over network resource opti-
mization, and he can counter attacker’s move by limiting
his available bandwidth in next time instance of play.
In Section 2, we discuss a motivating example and some

key terminology. Section 3 introduces a reward-punishment
model based on Nash Folk theorem. Section 4 consists of
implementation and Section 5 discusses the evaluation of a
game theoretic model on a small test environment. We dis-
cuss some related work in dealing with DDoS attacks in SDN
and compare our model to them in Section 6. Finally, con-
clusion of this work and direction for the future are discussed
in Section 7.

2. BACKGROUND
In this Section, we introduce some background concepts

used in this research work.

Definition 1. We define a N player extensive form repeated
game G with perfect information between multiple players
as G = {N,Ai, ui} where N = {1, 2, . . . n} denotes number
of players, ai ∈ Ai is the action set available to player i.
ui : ai �→ Ri is the payoff function that maps actions to
reward value R.

Definition 2. We consider that the game has been played
to t periods of time, and define game history in an instance t
as ht = {a1, a2, .., at−1} = At−1. This denotes actions taken

by a player until now. H1 = {∅}, and H =
∞∑
t=1

Ht.

A player i prefers an action at over bt if ui(a
t) ≥∗

i ui(b
t).

The payoff profile for a player is considered feasible in this
game, i.e. convex combination of payoff profiles of outcome
of A, s =

∑
a∈A αau(a) such that

∑
a∈A αa = 1. Here s

represents the strategy vector for a player.

We illustrate the game used in this work with an example
of two players, who take turns to decide on an action. As-
sume the players P1 and P2 correspond to an attacker and
administrator.

Definition 3. The strategy vector of a player i, s∗i is
best response to strategy vector of all other players s∗−i if
ui(s

∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) for all si. This vector is a Nash

Equilibrium if the relation holds for all si and all i.

For the two player example, we consider both players
would try to play Nash Equilibrium value against each other.
Let us consider utility in terms of network bandwidth for
this game. P1 has actions a1 = {Cooperate, Defect} and P2

has action set a2 = {Cooperate, Defect}. As long as any
player behaves in a benign manner, the administrator will
allow normal bandwidth to the player. If attack from some
malicious node in a network is detected by administrator,
he/she will play a strategy of Rate-Limiting the attacker’s
bandwidth available. Sample payoff matrix in normal form
has been shown in the Figure 1, where B denotes the total
network bandwidth.
Since we consider a dynamic game with perfect informa-

tion, we need to consider an extensive form of the game.
For this particular example, consider that the attacker
chooses action a1

2, that is defect against P2 who assumes
all users for network behave in a benign way and chooses

Player 2

a1
2 a2

2

Player 1
a1
1 (B

2
, B

2
) (3B

4
, B

4
)

a2
1 (B

4
, 3B

4
) (B

5
, 4B

5
)

Table 1: Normal form representation of Attacker
and administrator Payoff’s

a1
2, i.e. cooperate. However, in second period t = 2 he/she

checks the history H of P1 defined above, observes the
earlier defect action, and selects a2

2 irrespective of action
chosen by P1. To punish the P1 further, he chooses same
action as t = 2 in period t = 3. The deviation from normal
behavior is considered a trigger strategy.

We define the minmax payoff in a Game before introduc-
ing definition of Nash Folk theorem which we use as the basis
for our deterrence algorithm for malicious users.

Definition 4. The minmax payoff value of a player is
the lowest payoff value that can be forced upon a given
player by all other players. This is denoted by value vi =
mina−i∈A−i maxai∈Ai ui(a−i, ai).

Since the future payoff is less desirable compared to the
current payoff value, we use discount factor δ ∈ (0, 1]. We
use this variable to motivate the definition of the Nash Folk
theorem.

Definition 5. The Nash Folk Theorem for a an extensive
form game states that payoff profile which was present for
Nash Equilibrium denoted by wi can be enforced upon a given
player in the long term by punishing him for a given pe-
riod of time. If the player P1 deviates from good behavior,
his opponents will use minmax strategy against him/her till
the continuous reward value is no better than in the case

where he never shows malicious behavior. wi ≥ vi +
T∑

t=1

δt ×

mina−i∈A−imaxai∈Aiui(a
t
−i, a

t
i). Here vi denotes defection

payoff for attacker at t = 0. The second equation on right
hand side i.e. mina−i∈A−imaxai∈Aiui(a

t
−i, a

t
i) shows that

P1 has been min-maxed by other players from t = {1, T} if
he defect at t = 0. The value for T , i.e. time periods for
which punishment should be carried out can be derived by
solving this linear inequality.

Extensive form game tree for such a game is depicted in
Figure 2 below. The P1 represents the attacker and P2 rep-
resent the network admin in this figure.

The path in green indicates the administrator’s choice of
action when the user behaves normally. We can see the pay-
off matrix from Table 1 and check average bandwidth at end
of period t = 2, which will be B

2
since the user is cooper-

ating at t = {0, 1}. In case user P1 defects (behaves as an
attacker), he/she will gain bandwidth 3B

4
at t = 1, but the

administrator P2 will punish user at t = 1, resulting in a
bandwidth BW = B

5
during the next time period. The re-

sulting average BW will be 1
2
× { 3B

4
+ B

5
} = 0.475B, which

is lower than 0.75B, the bandwidth had P1 behaved in a
cooperative fashion. The path in red shows attack coun-
termeasure procedure followed by P2. In the long term the
attacker will be better off by behaving normally (sending no
malicious traffic) if we deploy rate limiting mechanism using
this scheme.

54

P1

P1

P2 P2

P1

t=0

P1 P1 t=2 t=2

t=1

 Avg BW = ½ ∗ (3𝐵𝐵𝐵𝐵
4 + 𝐵𝐵𝐵𝐵

5) Avg BW = ½ ∗ (𝐵𝐵𝐵𝐵
2 + 𝐵𝐵𝐵𝐵

2)

Figure 2: Extensive form of Dynamic Game

3. SYSTEM ARCHITECTURE & MODEL
The system architecture as shown in Figure 3 consists of

ODL [9] based SDN platform. The southbound APIs are
used for interacting with data-plane elements. We assume
that the switches for our architecture are Openflow enabled.
These switches interact with the hosts inside or outside the
network. As can be seen, some hosts send normal traffic
to switch while others act as part of a DDoS botnet. The
SDN controller platform consists of several elements such as
topology manager to perform any network topology recon-
figuration, network config element to ensure persistence of
the current network configuration.

Southbound REST API

Northbound REST API

Openflow Enabled
Device Open vSwitch

DDoS
Prevention

Attack Graph
Generator

Attack
Countermeasure

Evaluator

Snort
IDS

Topology
Manager

Network
Config

SDN Controller Platform

Dataplane Elements

Network Services and
Orchestration

Figure 3: System Architecture

The main element from this layer used by us is Snort
IDS [3]. We consider a signature based detection mechanism
to collect and categorize network traffic as malicious or be-
nign. This information is passed on to a network service and
orchestration layers through northbound REST APIs. We
consider three types of DDoS attacks in this work namely,
SYN-Flood Attack, UDP Flood Attack, ICMP Flood At-

tack. The example below shows Snort signature used as a
trigger for DDoS prevention mechanism based on the game
theoretic approach.

alert tcp $HOME_NET any -> $HOME_NET 80

(flags: S; msg:"Possible TCP DoS";

flow: stateless; threshold: type both,

track by_src, count 70, seconds 10;

sid:10001;rev:1;)

Once Snort triggers the DDoS defense mechanism, the
SDN flow table will be updated to rate limit the traffic from
a particular source to destination in the home network.

Figure 4: Traffic Rate Limiting in SDN

Figure 4 shows various entries for a given SDN flow table
[1]. The match field is used for matching ingress port and
packet headers. In this example, we have snort alert for IP
Address 192.168.2.1, which has been classified as attacker’s
IP. The Instruction field of flow table is added. The rate
limit decided by the algorithm is set in Rate sub-field of
Band Field in Meter Table. In the Figure 4 Once the period
of punishment decided by the administrator is over for this
particular IP address, the Rate sub-field will be updated to
default traffic burst rate. We use the REST API to push
these values continuously to ODL controller.

4. IMPLEMENTATION
System setup used and algorithmic details for Nash Folk

theorem based DDoS Prevention are discussed in this sec-
tion.

4.1 Openflow Rate Limiting Algorithm
The Openflow based rate limiting algorithm described

in this section consists of two procedures. One procedure
SET-RATE-LIMIT-METER is used for invoking meter with
specified meterID in the corresponding flow table. By de-
fault the meter table is optional for a Flow Table. The
host behaving normally will not face any decreased band-
width. However, if the host is behaving maliciously and
a trigger event based on Snort IDS alert is used to invoke
meter with ID 1, the Bandwidth would be set to a value de-
cided by the rate limit policy, depending upon cooperation
or defection of malicious host in the current and subsequent
periods. Lines 7-10 depict the preset values of bandwidth
for host i Pi. The procedure NASH-FOLK-RATE-LIMIT
based on the greedy approach loops through all flow tables
in invoking meter with rate limiting threshold if matching
source host is found in the list of malicious hosts from a
Snort IDS (lines 11-17). The procedure of punishment is

55

Algorithm 1 SDN-DDoS-Rate-Limit-Algo

1: procedure Set-Rate-Limit-Meter(meterName, ban-
dID, bandRate)

2: MeterName ← this.meterName
3: mbh ← MeterBuilder.meterBandHeader()
4: mbh.setBandID(this.bandID)
5: mbh.setBandRate(this.bandRate)

6: procedure Nash-Folk-Rate-Limit(
)

7: ui(coop, coop) ← Bc {Host Pi cooperates}
8: ui(coop, def) ← {Bcd > Bc} {Host Pi defects}
9: ui(def, coop)] ← {Bdc < B} {Host Pi defected at

tk−1}
10: ui(def, def) ← {Bdd < Bdc} {Host Pi defected at

tk−1 and tk }
11: for i ∈ [0,n-1] do
12: ft ← FlowTablei
13: if ft.match.src ip ∈ DDoSTrigger(src ip)

and
k∑

t=0

δtui(coop, coop) ≤ ui(coop, def) +

k∑
t=1

δtui(def, {coop, def}) then

14: x ← ft.Instruction()
15: x.SET-RATE-LIMIT-METER(”RLMeter”, 1,

ui(det, coop))
16: else
17: x.SET-RATE-LIMIT-METER(”RLMeter”, 1,

ui(det, det))

carried out for k instances of time where value of k is de-

termined by equation
k∑

t=0

δtui(coop, coop) ≤ ui(coop, def) +

k∑
t=1

δtui(def, {coop, def}) in line 13. This linear equation en-

sures that defecting host is no better than for case of normal
behavior at end of k periods of punishment.

5. EVALUATION
We used network simulator [2] and ODL controller on

Ubuntu 16.04 OS. We conducted two experiments in our
evaluation. The first experiment uses the algorithm pro-
posed in Section 4 to deal with ICMP flood attacks. The
second experiment uses the same algorithm for TCP SYN
flood and UDP flood based attacks on a fat tree topology.
The variation in topologies for both experiments is used to
check the generality of our solution.

5.1 Experiment 1: ICMP Flood DDoS Attack
on Linear Topology

In our first experiment we created a linear topology in
mininet environment with the number of hosts varying from
50 to 500. The topology had a single layer of hosts, all
connected to one switch. An example of linear topology can
be seen in Figure 5.
We created an attack script in python, which uses mul-

tiprocessing to spawn shell for each host and send ICMP
traffic of large packet sizes to a single host in the network.
The traffic is port mirrored to a dummy port. The IDS in-
tercepts the attack signature for ICMP flood DDoS attack
and passes information to ODL controller. ODL application

Figure 5: Linear Topology in SDN

for DDoS mitigation decreases the traffic rate by a factor δ
consecutively until the long term average for traffic is within
normal traffic burst from a provided host. In this particular
experiment we used the value of damping factor δ = 0.8.
This scheme punishes all the attacking hosts by degrading
traffic throughput gracefully, instead of blocking the traffic
entirely or rate limiting to a fixed value, which can affect
the traffic from legitimate users.

Number
of At-
tacking
Hosts

ICMP Flood
Traffic (Mb/s)

ICMP Traffic
post Rate

Limit(Mb/s)

50 39.49 1.33
100 79.85 2.70
200 163.69 5.54
300 241.17 8.122
400 321.96 10.83
500 467.16 15.69

Table 2: Number of Hosts vs ICMP Traffic at T=30s
post attack.

The table shows that traffic burst at target for 100
hosts is 79.85 Mbps when there is no attack prevention
mechanism to deal with DDoS attack. However, once the
trigger for Rate Limit is set by IDS, the traffic decreases
to 2.70 Mbps, a decrease of factor 30. Similarly, as the
number of attacking hosts increase from 100 to 500, the
throughput of DDoS attack increases from 79.58 Mbps to
467.16 Mbps, which shows a linear scaling in attack traffic.
The Rate Limit (RL) algorithm quickly adapts to increased
traffic and decreased corresponding traffic limit for 500
hosts to a value 15.69 Mbps. On comparing attack traffic
and corresponding rate limited traffic for 500 hosts, we
can observe a decrease by a factor of 29. The experiment
shows a successful countermeasure using a game theoretic
approach of punishing the attacker on a sufficiently large
network.

5.2 Experiment 2: TCP/UDP Flood DDoS At-
tack on Fat Tree Topology

Most of the attacks faced by organizations target some
DNS server to send large burst of TCP or UDP packets to
target host. Also, since data centers follow fat tree topol-
ogy architecture, we conducted experiment to test our algo-

56

rithm on a fat tree topology using mininet, with depth=3,
and fanout=3. We used a damping factor δ = 0.9 for this
experiment.

Figure 6: Fat Tree topology in SDN

In this experiment the normal allowed limit for TCP and
UDP traffic set by SDN controller was 3.0 Mbps. We ran
TCP SYN Flood DDoS attack on a topology of 64 hosts.
The traffic decay once the rate limiting algorithm based at-
tack countermeasure mechanism is triggered based on IDS
alerts is plotted in red in Figure 7. Initially DDoS traffic
is 157.03 Mbps, which clearly violates the permissible limit.
The SDN controller pushes the flow to deal with this attack,
and the traffic is reduced to 18.11 Mbps at t=10s. The traf-
fic burst reaches a value 3.02 Mbps at t=50s, which is nearly
equal to normal traffic rate allowed on this network.

10 20 30 40 50 60
0

10
20
30
40
50

100

140

160

Time

A
tt
a
ck
er
’s

B
a
n
d
w
id
th
(M

b
/
s)

SYN Flood Traffic(Mb/s)
UDP Flood Traffic(Mb/s)

Figure 7: TCP and UDP Flood Attack Mitigation
on fat tree topology

Similarly, the traffic pattern for a UDP flood attack starts
off around 127.38 Mbps. The rate limit algorithm decreases
this value to 15.12 Mbps at t=10s. Traffic rate is further
reduced to 4.52 Mbps at t=40s. Finally traffic burst reaches
a value 3.01Mbps at t=60s, and algorithm stops further
enforcement of rate limit after t=60s. The IDS waits for
further intrusion alerts at this point to notify the controller
in case, malicious traffic is still sent by attacking hosts. Thus
we can see from this experiment that the algorithm will take
less than one minute to mitigate TCP and UDP based DDoS
attacks on a sufficiently large network.

5.3 Complexity Analysis
The algorithmic complexity will depend upon the number

of users in the system. In the worst case, all (N number of
users) will behave maliciously. We consider n to be number
of flow tables, and k to be upper bound on time for punish-
ing a particular host. The complexity will be O(N ×n× k).
The values n and k will be constant, so we get c = n×k. The
complexity will effectively be O(N×c) ∼ O(N). Thus Open-
flow Rate Limiting Algorithm will have linear time complex-
ity. The algorithm will be very fast with guaranteed termi-
nation.

6. RELATED WORK
We analysed several works that either use some intelli-

gent framework to deal with active attacks in SDN or use
some game theoretic model in network security. In [16], au-
thors combine game theory and Machine Learning (ML) to
model attacker’s behavior in ML feature space. This work
uses spam filtering as a target application to provide defense
against current and future attacks. Random host mutation
based on SDN platform has been used by Jafarian et al. [10]
to map real and virtual IP addresses, and make reconnais-
sance hard for malicious hosts. Chung et al. [8] [7] have
used proactive defense and countermeasure analysis frame-
work in cloud network. The authors have used z Bayesian
framework for attack analysis. Our work is based on Nash
Equilibrium based attack model in dynamic games.

Braga et al. [5] have used pattern recognition based on Self
Organizing Maps (SOM) to filter DoS attack traffic in NOX
based Openflow network. The solution is lightweight com-
pared to earlier works on the DoS attack detection based on
KDD dataset. We have some concerns about the accuracy of
pattern recognition in DDoS attack detection hence we have
relied on signature based detection mechanism. FRESCO
[17] which has been developed on top of NOX based SDN
framework provides modular security to defend against net-
work attacks. Bot Miner service module in FRESCO uses
clustering mechanism to detect bots through network level
flow analysis. Markov game based framework for two player
zero sum game has been discussed by Alpcan et al. [4]. Their
framework used Markov Chain based attack modeling to
send information to IDS, so that the administrator can deal
with active attacks.

Kampanakis et al. [12] have discussed obfuscation as a
possible Moving Target Defense (MTD) strategy to deal
with attacks in SDN environment. Authors have discussed
OS fingerprinting and network reconnaissance as specific
types of attacks in SDN. Random mutations of this nature
may, however disrupt any active services and some cost-
benefit analysis of MTD strategy is necessary. Another ap-
proach based on MTD solution for prevention of DoS at-
tacks on SDN networks has been discussed by [11]. The
authors propose the idea of moving secret proxies to new
network locations using a greedy algorithm. This solution
however is limited to malicious insiders in a network. A scal-
able attack graph approach to deal with system vulnerability
based multi-hop attack has been discussed by Chowdhary et
al. [6]. The authors use distributed hypergraph partitioning
approach to construct an attack graph for a large system,
however don’t discuss the possible countermeasures to deal
with active attacks such as DDoS, NTP amplification, etc.,
which we discuss as part of this work. In [18] authors use a

57

game theoretic framework to deal with attacks against web
applications. This work uses Stackelberg game to model
attack and defense.

7. CONCLUSIONS
We analyzed a game theoretic framework based on re-

ward and punishment mechanism which is used successfully
in game theoretic modeling. Using a greedy algorithm we
solved an optimization problem for rate limiting network
bandwidth as a punitive mechanism for misbehaving play-
ers in a dynamic network game. The optimization algorithm
used in this work, based on Nash Folk theorem, allowed us
to degrade network bandwidth gracefully, without apply-
ing a static hard limit on network traffic. Our experimen-
tal work targeted DDoS attacks, specifically ICMP Flood,
TCP SYN Flood, UDP Flood. The algorithm is able to
deal with all these attacks based on alerts received from
SDN controller. The framework proposed leveraged bene-
fit of network optimization and programmability offered by
SDN quite well, and the proposed algorithm can adapt well
on varying topologies as demonstrated by Experiments 1
and 2 in Section 5.
We used the damping factor δ to be on higher side

{0.8, 0.9} in this experimental work to put more weight on
future punishment based payoff to the attacker. The normal
bandwidth which we used as a baseline for threshold band-
width was selected by observing normal TCP, UDP traffic in
a medium sized network for a time duration of about 10-15
minutes. Both these parameters can have an impact on final
results and convergence time of the algorithm. We plan to
study the impact of variation in these two parameters in the
OpenStack based cloud as an extension of this work.
Our motivation in use of a signature based IDS was to deal

with DDoS attacks whose signature can be easily identified.
Most of anomaly detection methods we studied prior to the
experimental setup of this work suffered from the issue false
alarms. We plan to use Artificial Intelligence (AI) based
algorithms to train our system for identified attacks and
use anomaly detection along with signature based detection
mechanism to construct a comprehensive attack mitigation
solution as part of future work.
A limitation of our experimental work is the number of

host subprocess we can spawn using the multiprocessing
thread, which is currently limited to around 500. We plan to
leverage a cloud framework based on OpenStack to deal with
this scalability concern and analyze the impact of algorithm
on dynamic attacks in a real cloud environment.

Acknowledgments
This research is supported by NSF Secure and Resilient Net-
working (SRN) Project (1528099) and NATO Science for
Peace & Security Multi-Year Project (MD.SFPP 984425).
S. Pisharody is supported by a scholarship from the NSF Cy-
berCorps program (NSF-SFS-1129561). Adel Alshamrani is
supported by King Abdul Aziz University, Jeddah, Saudi
Arabia.

8. REFERENCES
[1] Openflow switch specification v 1.3.1.

https://www.opennetworking.org/.

[2] Mininet Virtual Network https://www.mininet.org/,
2015.

[3] Snort IDS, https://www.snort.org/, 2017.

[4] T. Alpcan and T. Basar. An intrusion detection game
with limited observations. In Proceedings of the 12th
Int. Symp. on Dynamic Games and Applications, 2006.

[5] R. Braga, E. Mota, and A. Passito. Lightweight DDoS
flooding attack detection using NOX/OpenFlow. In
Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, pages 408–415. IEEE, 2010.

[6] A. Chowdhary, S. Pisharody, and D. Huang. SDN
based scalable MTD solution in cloud network. In
Proceedings of the 2016 ACM Workshop on Moving
Target Defense, pages 27–36. ACM, 2016.

[7] C.-J. Chung. SDN-based Proactive Defense Mechanism
in a Cloud System. PhD thesis, Arizona State
University, 2015.

[8] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and
D. Huang. NICE: Network intrusion detection and
countermeasure selection in virtual network systems.
Dependable and Secure Computing, IEEE
Transactions on, 10(4):198–211, 2013.

[9] L. Foundation. Opendaylight SDN controller.
https://www.opendaylight.org/, 2017.

[10] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow
random host mutation: Transparent moving target
defense using software defined networking. In
Proceedings of the first workshop on Hot topics in
software defined networks, pages 127–132. ACM, 2012.

[11] Q. Jia, K. Sun, and A. Stavrou. MOTAG: Moving
target defense against internet denial of service
attacks. In 2013 22nd International Conference on
Computer Communication and Networks (ICCCN),
pages 1–9. IEEE, 2013.

[12] P. Kampanakis, H. Perros, and T. Beyene. SDN-based
solutions for moving target defense network
protection. In World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2014 IEEE 15th
International Symposium on a, pages 1–6. IEEE, 2014.

[13] D. Kreutz, F. M. Ramos, P. Verissimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-defined networking: A comprehensive survey.
proceedings of the IEEE, 103(1):14–76, 2015.

[14] E. Z. Nick Feamster, Jennifer Rexford. The road to
sdn: An intellectual history of programmable
networks. In Proceedings of the ACM SIGCOMM,
pages 87–98. ACM, 2014.

[15] S. Pisharody, A. Chowdhary, and D. Huang. Security
policy checking in distributed SDN based clouds. In
2016 IEEE Conference on Communications and
Network Security (CNS) (IEEE CNS 2016), Oct. 2016.

[16] K. G. Richard Colbaugh. Predictability oriented
defense against adaptive adversaries. In Proceedings of
IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 14–17. IEEE, 2012.

[17] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong,
G. Gu, and M. Tyson. Fresco: Modular composable
security services for software-defined networks. 2013.

[18] S. G. Vadlamudi, S. Sengupta, S. Kambhampati,
M. Taguinod, Z. Zhao, A. Doupé, and G. Ahn. Moving
target defense for web applications using bayesian
stackelberg games. CoRR, abs/1602.07024, 2016.

58

