Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 1

Brew: A Security Policy Analysis Framework for
Distributed SDN-Based Cloud Environments

Sandeep Pisharody, Student Member, IEEE,
Janakarajan Natarajan, Ankur Chowdhary, Abdullah Alshalan, Student Member, IEEE,
and Dijiang Huang, Senior Member, IEEE

Abstract—The ease of programmability in Software-Defined Networking (SDN) makes it a great platform implementation of various
initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant
data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and
consistency issues with the hardness of this problem being affected by the distribution scheme for the SDN controllers. In this paper we
present Brew, a security policy analysis framework implemented on an OpenDaylight SDN controller, that has comprehensive conflict
detection and resolution modules to ensure that no two flow rules in a distributed SDN-based cloud environment have conflicts at any
layer; thereby assuring consistent conflict-free security policy implementation and preventing information leakage. We present
techniques for global prioritization of flow rules in a decentralized environment, extend firewall rule conflict classification from a
traditional environment to SDN flow rule conflicts by recognizing and classifying conflicts stemming from cross-layer conflicts and
provide strategies for unassisted resolution of these conflicts. Alternately, if administrator input is desired to resolve conflicts, a novel
visualization scheme is implemented to help the administrators view the conflicts graphically. We demonstrate the correctness,
feasibility and scalability of our framework through a proof-of-concept prototype.

Index Terms—Software-Defined Networks, Network security, Flow rule conflicts, Distributed environments, Data center network.

1 INTRODUCTION

OFTWARE Defined Networking (SDN) is a transforma-
Stive approach to network design and implementation,
based on the premise of separating the control of network
functions from the network devices themselves (switches,
routers, firewalls, load balances, etc.). Using the OpenFlow
[1] protocol, SDN switches can leverage the flexibility af-
forded by the ability to access header information from sev-
eral layers of the Open Systems Interconnection (OSI) stack,
allowing it to satisfy functionalities traditionally fulfilled
by a multitude of physical devices. Along with the SDN
support of programmable network interfaces, this flexibility
makes SDN an ideal platform for multi-tenant data center
deployments that require flexibility and dynamism. This is
especially true in an Infrastructure-as-a-service (IaaS) cloud
where Virtual Machines (VMs) are managed by tenants
seeking technological and financial flexibility.

The decoupling of data and control planes in SDN brings
about scalability concerns owing to potential bottlenecks at
the controller. Studies suggest that although a centralized
controller can scale for a respectable enterprise network,
it would fail for a data center deployment [2], [3]. While
researchers have explored architectures for decentralizing
the SDN architecture [4], [5] they do not address flow rule
management across this environment.

The flexibility and programmability of SDN allows for
the ability to respond rapidly to changing user and secu-

e S. Pisharody,]. Natarajan, A. Chowdhary, A. Alshalan and D. Huang
are with the School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, AZ 85287.

E-mail: {spisharl, jnataral, achaud16, aalshala, dhuang8}@asu.edu

o A. Alshalan is with King Saud University.

rity requirements and empowers users in a shared tenant
environment to secure their own logical infrastructure in a
perceivably private manner. Any security implementation
by the tenant such as Intrusion Detection Systems (IDS),
Intrusion Prevention Systems (IPS), Deep Packet Inspec-
tion (DPI), Virtual Private Networks (VPN), Moving Target
Defense (MTD) etc.; would be accomplished by installing
new flow rules in the SDN-based cloud environment. How-
ever, the shared control plane leaves open the potential for
conflicts between flow rules from different tenants. Unlike
traditional environments where new rules can get added
only through an administrator, abstraction of the data plane
from the control plane leads to applications being able to
introduce new flow rules into the controller through an
API. When done without understanding existing flow rules,
the desired security policy or in an adversarial manner, this
could result in potential conflicts as well. In a decentralized
SDN-based cloud environment with multiple controllers,
the policy conflict issue is amplified since conflicts could
arise due to different controllers not being in sync, and not
having the same view of the environment. To complicate
matters further, a dynamically changing network topology
adds its own wrinkles.

Just as firewall conflicts in a traditional network limits
effectiveness of a security infrastructure [6], conflicts be-
tween flow rules on the controller limits the effectiveness
and impact of a security implementation in an SDN-based
cloud environment. Amongst issues that are heightened in
an SDN-based cloud environment are issues caused by flow
rule chaining, cross-layer policy conflicts, partial matches
and by set-field actions.

Substantial research has attempted to address the prob-

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 2

lems brought forth above, significant amongst which are
FortNOX [7] and the FlowGuard [8] framework. While
they deal effectively with direct flow violations, they do
not tackle conflicts across addresses over multiple layers.
Consider a multi-tenant SDN-based environment. Often,
tenants use flat layer-2 topologies due to latency concerns,
and the ability to conduct inline promiscuous monitoring
using layer-2 devices [9]. A natural extension would be to
implement layer-2 flow rule policies. The data center itself
might operate with flow rules based on layer-3 addresses.
If different policy enforcement points enforce policies based
on different layers, inconsistent actions could result. Cloud
environments deployed on an OpenStack environment use
OpenFlow based vSwitches on each of the compute nodes
for networking. The OpenStack interface that handles all
networking br-tun uses purely layer-2 addresses, while
the gateway that connects the environments externally
br-ex uses layer-3 addresses, once again causing potential
issues. Conflicts across multiple layer addresses or cross-
layer conflicts become severe in an SDN setup where each
SDN switch, both physical and virtual, can be considered to
be a distributed firewall instance, each with a different local
view of the environment and policy.

In our work, we classify all potential conflicts in an
SDN-based cloud environment and including cross-layer
conflicts [10]. We develop a methodology and implement
a controller-based algorithm for extracting flow rules in a
distributed controller environment, and detect intra- and
inter-table flow rule conflicts utilizing cross-layer conflict
checking. Further, we address automatic and assisted con-
flict resolution mechanisms and present a novel visualiza-
tion scheme for conflict representation. This work is im-
plemented in a security policy analysis framework named
Brew, built on a OpenDaylight (ODL) based SDN controller,
that effectively scrubs the flow table in a distributed SDN-
based cloud environment, highlights and resolves potential
conflicts. To summarize, Brew

e Includes techniques for global prioritization of flow
rules in a decentralized environment depending on the
decentralization strategy.

o Extends firewall rule conflict classification in a tradi-
tional environment to SDN flow rule conflicts by iden-
tifying cross-layer conflicts, (which tend to be temporal
in nature).

e Detects flow rule conflicts in a multiple, decentralized
controller based SDN-based cloud environments in-
cluding conflicts between flow rules implementing QoS
requirements.

 Provides strategies for unassisted resolution of these
conflicts.

o Presents a novel visualization scheme, implemented to
help the administrators view flow rule conflicts graph-
ically.

This paper is organized as follows. In Section 2, we
present some related work. In Section 3 we produce real-
world motivating scenarios for our framework and present
the formalism for flow rule conflicts and classification. Next,
we present our system design in Section 4. The implemen-
tation specifics are discussed in Section 5, and evaluation
information is shared in Section 6. Finally, we show our

conclusions and our future research tasks in Section 7.

2 RELATED WORK

While advances in SDN have made it central to deployment
of a cloud environment, security mechanisms in SDN trail
its applications. Javid et al. [11] built a layer-2 firewall, and
Suh et al. [12] illustrated a proof-of-concept version of a
traditional layer-3 firewall over an SDN controller. But these
works do not address the problem of conflicting flow rules.

VeriFlow [13] is a proposed layer between the controller
and switches which conducts real time verification of rules
being inserted. It verifies that flow rules being implemented
have no errors due to faulty switch firmware, control plane
communication, reachability issues, configuration updates
on the network, routing loops, etc. Pyretic [14] deals effec-
tively with direct policy conflicts, by placing them in a pri-
oritized rule set much like the OpenFlow flow table. How-
ever, indirect security violations or inconsistencies caused
by cross-layer conflicts in a distributed SDN-based cloud
environment cannot be handled by Pyretic without a flow
tracking mechanism. FRESCO [15] introduces a Security
Enforcement Kernel (SEK) and allows security services to
provide reusable modules accessible through a Python APL
While the SEK prioritizes rules from security applications
to address conflicts, it does not tackle indirect security
violations, partial violations or cross-layer conflicts.

FortNOX [7] is an extension to the NOX controller
that implements role-based and signature based enforce-
ment to ensure applications do not circumvent the exist-
ing security policy, thereby enforcing policy compliance
and protecting the flow installation mechanism against ad-
versaries. Conflict analysis in FortNOX doesn’t consider
inter-dependencies within flow tables, and decision making
seems to follow a least permissive strategy instead of decid-
ing keeping the holistic nature of the environment in mind.
Moreover, it uses only layer-3 and layer-4 information for
conflict detection, which is incomplete since SDN flow rules
could use purely layer-2 addresses. In addition, FortNOX
doesn’t appear to be able to handle partial flow rule conflicts
or cross-layer conflicts.

FlowGuard [8] is a security tool specifically designed to
resolve security policy violations in an OpenFlow network.
FlowGuard examines incoming policy updates and deter-
mines flow violations in addition to performing stateful
monitoring. It uses several strategies to refine anomalous
policies, most of which include rejecting a violating flow.

Onix [4] facilitates distributed control in SDN by provid-
ing each instance of the distributed controller access to holis-
tic network state information through an API. HyperFlow
[5] synchronizes the network state among the distributed
controller instances while making them believe that they
have control over the entire network. Kandoo [2] is a frame-
work tailored for a hierarchical controller setup. It separates
out local applications that can operate using the local state
of a switch; and lets the root controller handle applications
that require network-wide state. DISCO [16] is a distributed
control plane that relies on a per domain organization, and
contains an east-west interface that manages communica-
tion with other DISCO controllers. It is highly suitable for
a hierarchically decentralized SDN controller environment.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 3

ONOS [17] is an OS that runs on multiple servers, each of
which acts as the exclusive controller for a subset of switches
and is responsible for propagating state changes between
the switches it controls. Several of these works serve as
essential groundwork for the controller decentralization
strategy that is employed in the Brew framework.

The works discussed above do not tackle cross-layer
policy conflicts in distributed environments, or address
administrator assistance free conflict resolution, which is
very important in dynamic SDN-based cloud environments.
To that end, our previous work [10] proposed a new clas-
sification type to describe cross-layer conflicts. Using the
formalism provided by this new type of flow rule conflict,
we detect and introduce mechanisms to resolve the conflicts
without administrator assistance.

One of the earliest work in visualization of rule conflicts
has been done by Mayer et al. [18] in Fang, where the admin-
istrator can view firewall rules in simple text format, devoid
of any graphics. Similarly, in Firewall Policy Advisor [6], Al-
Shaer and Hamed display simplified versions of complex
firewall rules, and show firewall rule conflicts in tabular
format. PolicyVis [19] used overlapping bars to represent
conflict types, and colors to represent the action. However,
the conflicts are visible only when a certain scope is defined.
In FAME [20], Hu et al. used a matrix to represent conflicting
and non-conflicting address segments; but fails while trying
to represent larger rule sets. A sunburst visualization is used
by Mansmann et al. [21] to visualize the rule set, but does
not provide any visualization for flow rule conflicts. None
of these works, however provide scalable rule conflict visu-
alization to the administrator, providing high level conflict
categorization, with granular information provided upon
need.

3 BACKGROUND & MODELS

In this section, we cover some underlying information in-
cluding formal definitions of a flow rule, flow rule manage-
ment challenges and discuss scenarios motivating this work.

3.1 Motivating Scenario

One of the major benefits of using SDN to implement
a cloud environment is the ability to have multiple ap-
plications run on the SDN controller, each of which has
complete knowledge of the cloud environment. This can be
leveraged by the cloud provider to provide Security-as-a-
Service (SaaS). A few potential examples of services in a
Saa$S suite are Firewalls, VPN, IDS, IPS, MTD etc. Imple-
menting a management system that only specifies security
policies without tackling topological interaction amongst
constituent members has always been a recipe for conflicts
[22].

With the SDN controller having visibility into the entire
system topology along with the policies being implemented,
several of the conflict causing scenarios in traditional net-
works were handled. However, there are several instances
where conflicts can creep into the flow table such as policy
inconsistencies caused by a) service chain processing where
multiple flow tables that handle the same flow might have
conflicting actions; b) VPN implementations that modify

header content could result in flow rules being inadvertently
being applied to a certain flow; c) flow rule injection by dif-
ferent modules (using the northbound API provided by the
controller) could have conflicting actions for the same flow;
d) matching on different OSI layer addresses resulting in
different actions; and ¢) administrator error. This list, while
incomplete, goes to show how prevalent policy conflicts in
SDN-based cloud environments could be.

We discuss three distinct case studies in an SDN-based
cloud environment where the security of the environment
is put at risk due to flow rule conflicts. The first scenario
serves as an example where rules from different applications
conflict with each other, and the second scenario serves as
an example where rules from a single module might cause
conflicts due to the dynamism in the environment.

3.1.1 Case Study 1: VPN Services

In a multi-tenant hosted data center, the provider could
have layer-3 rules in place to prevent certain tenants from
sending traffic to one another for monetization, compliance
or regulatory reasons. Hosts in two different tenant envi-
ronments, Tenant A and Tenant B, can establish a layer-
2 tunnel (either as a host-to-host tunnel or a site-to-site
tunnel) between themselves to do single hop computation
or to encrypt communication between them as shown in
Figure 1. If an application on a different controller inserts
policies to implement DPI on all packets exiting Tenant
A, all traffic from Tenant A to Tenant B will be dropped,
since they are encrypted and fail the DPI standards. Clearly
there is an inherent conflict between flow rules inserted by
different modules that are running on the SDN controller,
leading to a shoddy user experience. Given such a scenario,
our work detects and determines the flow rule conflicts and
helps resolve them to keep the flow table manageable and
up-to-date.

Tenant B

Controller

Fig. 1. Policy conflicts caused by different applications in an SDN-based
cloud.

3.1.2 Case Study 2: Moving Target Defense (MTD)

Moving Target Defense (MTD) techniques have been de-
vised as a tactic wherein security of a cloud environment
is enhanced by having a rapidly evolving system with a
variable attack surface; giving defenders an inherent infor-
mation advantage [23]. An effective countermeasure used
in MTD is network address switching, which can be accom-
plished in SDN with great ease. Since an MTD application

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 4

could dynamically and rapidly inject new flow rules into
an environment, it could lead to the very problem we are
trying to address.

In the data center network shown in Figure 2, we have
Tenant A hosting a web farm. Being security conscious, only
traffic on TCP port 443 is allowed into the IP addresses that
belong to the web servers. When an attack directed against
host A2 has been detected, the MTD application responds
with countermeasures and takes two actions: a) a new
webserver (host A3) is spawned to handle the load of host
A2; and b) the IP for host A2 is migrated to the Honeypot
network and assigned to host Z.

In order to run forensics, isolate and incapacitate the
attacker, the HoneyPot network permits all inbound traffic,
but no traffic outward to other sections of the data center.
These actions result in new flow rules being injected into the
flow table that a) permits all traffic inbound to the IP that
originally belonged to host A2, but now belongs to host Z;
b) modifies an incoming packet’s destination address from
host A2 to host A3 if the source is non-adversarial; ¢) stops
all outbound traffic from the IP that originally belonged to
host A2, but now belongs to host Z to the rest of the data
center; and d) permits traffic on port 443 to host A3 (not of
great importance to our case). The original policy allowing
only port 443 to the IP of host A2, and the new policy
allowing all traffic to the IP address of host Z are now in
conflict. Our earlier work [23] uses effective policy checking
in SDN-based MTD solutions in cloud deployments.

HoneyPot

—
Quarantine
A2's IP

Fig. 2. Policy conflicts in SDN-based cloud caused by MTD.

3.1.3 Case Study 3: Load Balancing & Intrusion Detection

Like the scenario in Case Study #1, consider an SDN-based
data center environment where a load balancing application
as well as an IDS application run on the SDN controller.
Upon detecting intrusions, the IDS could implement a
countermeasure that offloads traffic from the compromised
node. However, the load balancing application which routes
new connections based on their active load might start
redirecting new traffic to the compromised node, since the
system would infer that the compromised node has the least
amount of load.

3.2 Flow Rule Model

To formally create a model that describes flow rules in an
SDN-based cloud environment, we first define an address

n.

Definition 1. An address n is a 6-tuple representing the address
space (€, €d, CsyCd,NsyNd), Where € represents the OSI layer-
2, ¢ represents layer-3, and n represents layer-4 addresses; with
subscript s denoting source and d denoting destination addresses.

If we let N be the entire range of addresses in the 6-tuple
address space, then we have:

Definition 2. A flow rule r is a transform function f : N — N
that transforms n to n', where n' is (€}, €, C., C;, nl, n);) together
with an associated action set a. Thus,

r:=f(n)~a

Definition 3. An action set a is the set of all associated actions
taken by the controller on a flow match. Atomic actions include:
a) forwarding to specific ports on the switch; b) flooding the packet
on all ports; c) changing QoS; d) encapsulating e) encrypting;
f) rate limiting; g) drop the packet; and h) customizable actions
using various set-field actions.

The set-field capabilities in the action fields of the
rules ensures that any, all or none of the fields in n may be
modified as a result of the transform function r. Considering
cases where the action set a is a pointer to a different flow
table, we can apply the transform function on the result of
the original transform function n'. Formally, if r := f(n) ~
a; f(n) =n' and a := g(n’) ~ a’ then,

ri=g(f(n)) ~d

Thus, multiple rules applied in succession to the same
input address space can simply be modeled as a composite
function. It must be noted that the complexity of the flow
rule composition function would be exponential in nature,
since each flow rule could have multiple actions, each of
which themselves could recursively lead to multiple atomic
actions.

In a flow table R containing rule set {ry, 73, ..., 7, }, with
each flow rule r; € R being a 6-tuple (p;, o, V4, 0, pi, Gi),
we have a) p as the priority of the rule defined in the range
[1,65535]; b) «v is the ingress port; ¢) v is a VLAN ID; d) n is
the 6-tuple address space defined earlier; ¢) p as the layer-4
protocol; and f) a as the action set for the rule. Flow rules
also contain packet counters and timeout values, but they
are not relevant match or action fields in rule processing.
Match fields o and v, representing ingress port and VLAN
ID merely eliminate and not add to potential conflicts.
Hence, we do not include them in further discussion. Of
these fields, we focus on just priority, match fields and
instructions to build the flow rule conflict problem. Table 1
shows sample flow table rules. Note that the action field
in the table has been modified to a simplistic forward and
drop, as opposed to their implementation in OpenFlow,
which specifies which the egress port is, and whether the
packet is to be broadcast etc.

3.3 Security Policies using Flow Rules

Due to the ability to alter headers from multiple layers
of the OSI stack, flow rules in the OpenFlow protocol can
inherently be used for traffic forwarding, routing and traffic
shaping. Research has shown that, in addition to traffic

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 5

manipulation functionalities, most security policies can be
transferred into flow entries and deployed on OpenFlow
devices [24].

While several security mechanisms implemented in tra-
ditional environments depend on routing traffic through
middleboxes [25], it has been demonstrated that integrating
processing into the network is just as effective [26]. The cen-
tralized control in the SDN paradigm makes can make this
integration simple and elegant. Models to implement tra-
ditional security functions such as firewall rules, Intrusion
Detection System (IDS) and Network Address Translation
(NAT) rules in software have been demonstrated to be suc-
cessful [27]. SIMPLE, a framework that achieves OpenFlow
based enforcement of middlebox policies has been demon-
strated in [28]. Further, a multi-level security system using
OpenFlow that implements desired security policies using
flow rules to accomplish network traffic monitoring as well
as verification of packet contents has also been successfully
implemented [29]. Authors in [30] survey these and several
other security implementations using OpenFlow.

A typical firewall rule, that blocks all Telnet traffic can
be specified in OpenFlow as (ignoring all irrelevant fields):

Protocol = TCP
TCP destination port = 23
actions: DROP

Similarly, a load balancer policy, IPS/IDS policy or a NAT
policy could be implemented by modifying the layer-3
source or destination address to send the flow to a specific
device as follows:

SRC IP = 10.5.50.5
DST IP = 10.211.1.1
actions: DST IP = 10.211.1.63, FORWARD

In this paper, we assume that security policies being imple-
mented, such as packet filtering rules, IDS and IPS rules use
the flow rule tuples detailed in Section 3.2.

3.4 Flow Rule Management Challenges

Switches in an SDN-based cloud environment maintain at
least one flow table, consisting of match conditions and
associated actions. An ingress packet is matched against
the flow table entries to select the entry that best matches
the ingress packet, and the associated instruction set is
executed. Such an instruction may explicitly direct the
packet to another flow table, where the same process is
repeated. When processing stops, the packet is processed
with its associated action set. Unlike traditional firewalls
which process matches based on a first match approach,
which selects the first rule that matches the address space
of the incoming packet, SDN generally uses a Most Specific
Take Precedence (MSTP) approach, where the rule with the
most specific match for the incoming flow is preferred [1].
Since flow rules can match more than just layer-3 and
layer-4 headers as in a traditional network, they are inher-
ently more complex by having additional variables to con-
sider for a match. Since cross-layer interaction is bolstered in
SDN by virtue of having flow rules that permit set-field
actions, several packet headers can be dynamically changed.
And lastly, since wildcard rules are allowed, a partial con-
flict of a flow policy could occur, thereby adding complexity

to the resolution of conflicting flow rules.

As opposed to a traditional network, flow rules in SDN,
could have the same priorities as well as matches on multi-
ple header fields, thereby resulting in indirect dependencies.
For example, consider traffic originating from host A des-
tined to host C' in Figure 9. This flow would clearly match
rule 8 in Table 1 based off a layer-2 address match; and rule
1 based off a layer-3 address match. A flawed approach to
tackle this problem would be to expand the header space
and determine rule conflicts as in a traditional environ-
ment since there exists an indirect dependency between the
layer-2 and layer-3 addresses. Moreover, flow rules could
exist that do not include all the header fields making an
apples-to-apples comparison impossible. We take a different
approach to detecting and solving indirect conflicts (dis-
cussed in Section 3.5). Since these conflicts arise because of
addressing across different OSI layers, we categorize them
differently.

Security implementations using SDN leverage the abil-
ity to make dynamic changes to the network and system
configurations to have a lean, agile and secure environment.
Since this usually results in environments that are constantly
in flux, ensuring synchronization of the flow rules on all the
distributed controllers is challenging. Additionally, ensuring
that the changing flow rules are always in line with the
security policy of the organization is not trivial.

3.5 Flow Rule Conflict Classification

We first formally define the set operations on address
spaces. Let £ be a 2-tuple address space (&s,&q), with
subscript s denoting the source address set and d denoting
the destination address set. Then the following definitions

apply.
Definition 4. An address space &; C &; if and only if they refer
to the same OSI layer, and &s; C &s; N &a; C &aj-

Definition 5. An address space & € &; if and only if they refer
to the same OSI layer, and &s; L &s; V §a; € Eaj-

Definition 6. An address space & C &; if and only if they refer
to the same OSI layer, and (§s; C &sj AN &a; C &ay) V (§s; C
§s; N&a; C &zj).

Definition 7. Address space intersection §; NE; produces a tuple

(Esi M&sjs€ai N&a) if and only if &; and &; refer to the same
OSI layer.

Definition 8. Conflict detection problem [31] seeks to find rules
i, 7 such that ri,r; € Rand (n;Nn; # 0)A(pi = pj) N(a; #
a; V pi # pj)-

Since flow rules in an SDN-based cloud environment
are clearly a super-set of rules in a traditional firewall
environment, work on flow rule conflicts are an extension of
the work on firewall rule conflicts. While several works have
classified firewall rule conflicts [31], [32], [33]; the seminal
work by Al-Shaer and Hamed [6] is often used to classify
firewall rule conflicts in a single firewall environment. Our
previous work [10] built on that work and introduced a
new classification of conflicts that better describes conflicts
between address space overlap over multiple OSI layers.

Knowing that OpenFlow specifications clarify that if a

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X

Rule # | Priority Source Dest Source Dest Protocol | Source | Dest | Action
MAC MAC P P Port Port
1 51 * * 10.5.50.0/24 10.211.1.63 tcp * * forward
2 50 * * 10.5.50.5 10.211.1.63 tep * 80 forward
3 52 * * 10.5.50.5 10.211.1.0/24 tcp * * forward
4 53 * * 10.5.50.0/24 10.211.1.63 tcp * * drop
5 54 * * 10.5.50.5 10.211.1.63 tcp * * drop
6 51 * * 10.5.50.0/16 10.211.1.63 tep * * drop
7 55 * * 10.5.50.5 10.211.1.0/24 tep * 80-90 drop
8 57 11:11:11:11:11:ab | 11:1l:aa:aa:11:11 * * * * * forward
9 58 * * * * tep * 80 drop
TABLE 1

Flow table example.

packet matches two flow rules, only the flow rule with the
highest priority is invoked, conflicts in SDN flow rules can
be classified into:

e Redundancy: A rule r; is redundant to rule r; iff
a) address space ¢; C €; A (; € (5 An; € ny; b) protocol
pi = pj; and c) action a; = a;. For example, rule 2
in Table 1 has a address space that is a subset to the
address space of rule 1, with matching protocol and ac-
tions. Hence, rule 2 is redundant to rule 1. Redundancy
is more of an optimization and efficiency problem.

o Shadowing: A rule r; is shadowed by rule r; iff a) pri-
ority p; < p;; b) address space ¢; C €;A(; C (AN C nj;
c) protocol p; = pj; and d) action a; # a;. In such a
situation, rule 7; is never invoked since incoming pack-
ets always get processed using rule r;, given its higher
priority. Shadowing is a potentially serious issue since it
shows a conflicted security policy implementation [6].
For example, rule 4 in Table 1 has the same address
space as rule 1, with the same protocol, but conflicting
actions. Hence, rule 1 is shadowed by rule 4.

o Generalization: A rule r; is a generalization of rule 7;
iff a) priority p; < p;; b) address space (¢; D €; A (; 2
GAm 2n) V(e 26 AGDGAN 2n) V(e 2
€; ACi 2 ¢ Am; D my);c) protocol p; = p;; and d) action
a; # a;. In this case, the entire address space of rule
r; is matched by rule r; [6]. As shown in Table 1, rule
1 is a generalization of rule 5, since the address space
of rule 5 is a subset of the address space of rule 1, and
the actions are different. Note that if the priorities of the
rules are swapped, it will result in a shadowing conflict.

o Correlation: Classically, a rule r; is correlated to rule
r; iff a) address space€; € €; NG L (AN L njANep D
GANG2CGAM2niA(aNeg #DVENG#0DV
n; Nn; # 0); b) protocol p; = pj; and ¢) action a; # a;.
As shown in Table 1, rule 3 is correlated to rule 4. Since
multiple SDN flow rules can have the same priority, the
following condition also leads to a correlation conflict
[10]: a) priority p; = p;; b) address space €; N€; #
OveGngG # 0vnnny # 0;c) protocol p; = pj;
and d) action a; # a;. Thus the correlation conflict now
encompasses all policies that have the different actions,
overlapping address spaces and the same priority. For
example, in Table 1, rule 6 is correlated to rule 1.

e Overlap: A rule r; overlaps rule r; iff a) address space
€6 L eGNG L GAn LnjNhe D egNG 2 GA
m2nAenNeg #0VGNgG #0Vnnn #0);
b) protocol p; = p;; and c) action a; = a;. An overlap
rule is the complementary conflict to a correlation; but
with the flow rules in question having matching action
sets instead of opposing actions. This overlap can be
seen between rule 6 and rule 7 in Table 1.

o Imbrication: Flow rules where not all OSI addresses
layers have match conditions could result in cases
where, a) only layer-3 header is used as a condition
(rule 1-7); b) only layer-2 header is used as a condition
for decision (rule 8); and c) only layer-4 header is used
as a condition (rule 9). Address space overlaps between
such rules are classified as imbrication [10]. Imbrication
conflicts are more complex than the other conflict clas-
sifications, since they are temporal in nature. For exam-
ple, the mapping between a layer-2 MAC address and
layer-3 IP addresses might result in a conflict between
two flow rules at time t; in the layer-3 address space.
But if the IP-MAC address mapping changes, there may
not be an address space overlap between the two rules
at time t5. This makes imbrication conflicts hard to find
and resolve [10]. Using the topology shown in Figure 9
and the flow rules in Table 1, it can be seen that flow
rule 4, which denies traffic from host A to host C and
flow rule 8, which permits traffic from host A to host C
are clearly imbricates.

3.6 Controller Decentralization Model

Centralizing the control plane in SDN is fraught with
scalability challenges associated with the SDN controller
being a bottleneck [2]. While benchmarking tests on an
SDN indicate that successful processing of about 30,000
requests per second [34], it does not scale well enough to
be deployed in a cloud environment [3]. Distributing the
controller responsibilities to multiple devices is an obvious
solution.

Choosing a decentralized control architecture is not triv-
ial. There are several controller placement solutions, and
factors such as the number of controllers, their location,
and communication topology impact network performance.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 7

No Conflict

OO
()&

Same

Action B

Redundancy

p@) < p@)

— i Generalization
Different Action

—

p() = p(),
Different Action

P <p(),

Different Action

[—

Shadowing

p@) = p@),

Different Action

Different Correlati

Action > orrelation
‘ Same Overl

Action > veriap

DO D@D
O @ @

Legend: Address Space Address Space
of Rule i of Rule

Fig. 3. Venn Diagram showing address space overlap and flow rule
conflicts.

— Imbrication

Three major issues need to be addressed in determining
the decentralization architecture: a) efficient east and west-
bound APIs need to be developed for communication be-
tween SDN controllers; b) the latency increase introduced
due to network information exchange between the con-
trollers need to be kept to a minimum; and c) the size and
operation of the controller back-end database needs to be
evaluated.

Since the key piece of information required for accurate
flow rule conflict detection and resolution is the priority
value p, the key challenge in extending flow rule conflict
resolution from a single controller to a distributed SDN-
based cloud environment lies in associating global priority
values to flow rules. The strategies to associate these global
priority numbers to flow rules in different decentralization
scenarios differ drastically. We classify four different multi-
ple controller scenarios, and the global priority assignment
logic followed by our framework for each of them.

3.6.1 Host Partitioning

This partitioning method is most like a traditional layered
network architecture, where an SDN controller now handles
the functionalities of an access level switch, combined with
the intelligence of a router and access control server. The
SDN-based cloud environment is separated into domains,
where each domain is controlled by a single controller. The
controllers then communicate with each other using east-
west communication APIs. Running on the assumption that

the controller knows best about the nodes it is responsi-
ble for, flow rules which contain match conditions with
addresses local to the controller are preferred. Flow rule
conflict resolution in this scenario doesn’t need to consider
every flow rule in the environment, but only ones for the
local domain. While host partitioning is the most intuitive
decentralization strategy, it eliminates some of the flexibility
provided by the network topology dynamicity in SDN.

3.6.2 Hierarchical Controllers

Hierarchical controller architecture is a variant of host par-
titioning. The difference lies in assigning the priority of
the flow rules. Instead of the local flow rules having the
highest priority, in a hierarchical controller architecture, the
local (or leaf) controllers have the lowest priority. Moreover,
the partitioning is not strictly host based, as administrators
could decide to run certain applications at a leaf level, and
certain applications at higher level controllers. For example,
a DHCP application could reside on the leaf controller;
while a NAT application could reside on the root controller.
In case of conflicts, the flow rules originating from applica-
tions on the root controller are preferred.

3.6.3 Application Partitioning

For a multiple SDN controller environment where each con-
troller handles specific applications or application groups,
associating a priority values is straightforward. By assigning
a weight to each application [7] the global priorities of
flow rules generated by all applications can be determined.
For example, consider Controller A has security applica-
tions running on it, and Controller B has QoS and traffic
shaping applications running on it. If security applications
are prioritized with a higher weight than traffic shaping
applications, two flow rules with the same priority gener-
ated by applications on Controller A and Controller B will
end up with the rule generated by Controller B having a
lower global priority. An alternate strategy to assign global
priority values would be to allocate ranges for flow rules
created by applications. For example, it could be decided
that any NAT rule generated by the NAT application on the
controller must be within a priority of 40,000 and 42, 000.
Thus a global priority for a NAT rule would be generated
by mapping the priority originally in the range [1, 65535] to
a global priority in the range [40000, 42000].

3.6.4 Heterogeneous Partitioning

In heterogeneous decentralized environment, appealing as-
pects of each of the above decentralization scenarios are
combined to obtain the optimal situation for meeting the
requirements. Careful consideration needs to be taken to
identify the priorities of applications and controllers before
deployment, to have a conflict resolution strategy. Alter-
nately, the conflict resolution could be reverted to a manual
process where administrators provide the conflict resolution
decision.

3.7 Conflict Resolution Model

The different flow rule conflicts can be broadly categorized
into Intelligible and Interpretative conflicts. The resolution
strategies for each of these two categories are markedly
different, and are detailed in the remainder of this Section.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 8
3.7.1 Intelligible conflicts Application Precedence | CRC
Flow rules that conflict with each other in the Redundancy, Deen Packet I ;) 250
Shadowing and Overlap classifications all have the same eep acke’ mspecion
. . . Network Address Translation 3 200
action they can be resolved without the loss of any infor-) .
. . . Virtual Private Network 1 255
mation. In other words, any packet that is permitted by the . .
. . . : . Quality of Service 4 100
controller prior to resolving the conflict will continue to be ; .
Domain Name Service 5 1

permitted after conflict resolution.

Intelligible conflicts are resolved easily by eliminating
the rules that are not applied, or by combining and opti-
mizing the address spaces in the rules so as to avoid the
conflict. It could be argued that creative design of rules by
administrators result in flow rules that deliberately conflict
to optimize the number of rules in the flow table, especially
when it comes to traffic shaping policies. However, such
optimization strategies stem out of legacy network manage-
ment techniques, and do not hold true in dynamic, large-
scale cloud environments where the flow table enforcing the
policies in the environment could have millions of rules.

3.72

Conflicts that fall into Generalization, Correlation and Im-
brication classification cannot be intuitively resolved with-
out any loss of information, and are interpretative in nature.
As opposed to intelligible conflicts, it is not guaranteed that
any packet permitted by the controller prior to resolving
the conflict will be permitted after conflict resolution. Since
interpretative conflict resolution is lossy in nature, the res-
olution strategies are not a one size fits all and need to be
adapted per the cloud environment in question. Removing
these conflicts is a complex problem [35]. We discuss a
few resolution strategies that could be applied to resolving
these conflicts below. We use a generic quantifier called the
Conlflict Resolution Criteria (CRC) which is dependent on
the resolution criteria in use. A data structure to be used as
a concomitant to the flow rules refers to this CRC metric, as
shown in Figure 5.

o Least privilege - In case of any conflict, flow rules that
have a deny action are prioritized over a QoS or a
forward action. If conflicts exist between a higher and
lower bandwidth QoS policy, the lower QoS policy is
enforced. The least privilege strategy is traditionally the
most popular strategies in conflict resolution.

e Module security precedence - Since flow rules in an
SDN-based cloud environment can be generated by
any number of modules that run on the controller, an
effective strategy that can be put in place is to have a
security precedence for the origin of the flow rule [7].
Thus, a flow rule originating from a security module
is prioritized over flow rule from an application or
optimization module. Table 2 shows sample precedence
and associated CRC values for a few generic applica-
tions that might run in an SDN-based cloud.

o Environment calibrated - This strategy incorporates
learning strategies in the environment to make an edu-
cated decision on which conflicting flow rule needs to
be prioritized. Over time, if a picture can be formed
about the type of data that a certain tenant usually
creates/retrieves, or of the applications and vulnera-
bilities that exist in the tenant environment, or of the
reliability of the software modules inserting the flow

Interpretative conflicts

TABLE 2
Example security precedence.

rule; the conflict resolution module may be able to
prioritize certain flow rules over others. However, these
techniques falter while dealing with a dynamic cloud.
An alternate environment calibrated approach might
involve quantitative security analysis of the environ-
ment with each of the conflicting rules, and picking the
safest option.

o Administrator assistance - Administrators that are will-
ing to give up automatic conflict resolution have the
option to be able to use their infinite wisdom to resolve
conflicts. Visual assistance tools incorporated as part of
the Brew framework assist the administrator decide.

4 SYSTEM ARCHITECTURE
4.1 System Modules

Our framework Brew, as shown in Figure 4 is an intuitive
model to help resolve conflicts in flow rules in a dis-
tributed SDN-based cloud environment. It consists of two
inter-related modules, OFAnalyzer and OFProcessor, that
together achieve a conflict free flow table. These modules
all operate at the control plane level i.e. their operations are
uninhibited by either the physical topology or the logical
topology as seen by the different tenants. Brew runs as an
application on the controller that listens for new/modified
flow rules being introduced into the system as part of the
OFAnalyzer module. The processing is broadly compart-
mentalized to sanitization, conflict detection and conflict
resolution, as part of the OFProcessor module. The modules
that accomplish these tasks are detailed in the remainder of
this Section.

4.1.1 Flow Extraction Engine

The flow extraction engine functions as part of the OFAna-
lyzer module in Brew. It intercepts any new or updated flow
rule that is being injected into the controller from different
modules. These rules, which we call candidate flow rules, can
be generated by any module running on the controller or by
the administrator. A candidate flow rule is not completely
processed and vetted, and hence is not eligible to be sent
to any of the devices. In a distributed controller scenario,
candidate flow rules into every controller is obtained, in an
effort to have complete knowledge of all possible flow rules
that are present in the environment. The priority of the rules
from the controller are modified to a global priority, based
on the decentralization strategy that has been employed as
discussed in Section 3.6. Thus, the priority assigned by the
flow extraction engine may differ from the priority of the

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 9

BREW oFProcessar engir}eering actions are not processed any further. There are
po——— — two important considerations we make here.

Resolution o While the actions for a flow rule can include any drop,

L3 forward, flood, set QoS parameters, change several

oot header fields, or redirect to a different flow table; we

K process the actions and generically classify them into

o | OFAnalyzer row Sanitization two categories; permit and deny. For example, im-

A — plementing an IP mapping rule in OpenFlow would

— Toemeememenieeeeeny "] HashMap change the IP address headers and forward onto a

v ESIEIBISAISIR Senges different flow table that forwards the traffic. We process

| ODL Controller such a chain to include the address translation informa-

tion and set the final atomic action to be permit.
[OpenFlow Protocol | o For rules which have multiple actions, we duplicate the
Switeh 1 vSWi;Ch . rules to generate rules with identical priority and match

FlowTable | | FlowTable

Fig. 4. System overview representing different Brew modules.

flow rule present in the flow table. In a redundant controller
setup, only candidate rules from the master controller are
obtained, and in a truly distributed environment, candidate
flow rules are aggregated from all the controllers before
processing.

The default OpenFlow rule specifications do not provide
us all the information we need to detect and resolve flow
rule conflicts. Thus we add a data structure to accompany
the extracted OpenFlow rule using four additional fields
over 32 bits of information as shown in Figure 5. These
fields are: a) One bit identifying if the rule in question
has been tagged as a reconciled rule (required for imbricate
detection); b) seven bits identifying the SDN controller to
which the rule is going to be inserted; c) sixteen bits for
a global priority of the flow rule (to be used for flow rule
conflict resolution); and d) eight bit CRC metric (discussed
in Section 3.7). Armed with these additional bits of informa-
tion, detection of flow rule conflicts using the methodology
shown in Algorithm 1 is now possible.

. Origin Global Conflict Resolution OpenFlow
2
Reconciled? Controller Priority ‘ Criteria Match Fields + Actions
Y — |
v v
il 7 16 8
bit bits bits bits

Fig. 5. Data structure format.

4.1.2 Sanitization Engine

The sanitization engine functions as part of the OFProcessor
module in Brew. Since OpenFlow permits chained flow rules
by having an action for a match redirect to a different flow
table, in order to correctly identify conflicts between flow
rules, we atomize the flow rules by processing the chains
and ensuring that only the atomic actions of permit, deny
and QoS remain. The atomization process itself follows
along the lines of iptables processing in Unix with mod-
ifications based on the formal model described in Section 3.
Since QoS and packet counters can be processed along with
the permit and deny actions, flow rules with QoS and traffic

conditions with a single action.

Flow rules which have only layer-2 address spaces in
its match conditions are next mapped to their layer-3 ad-
dresses using a process we call reconciliation. The mapping
information is obtained using a temporal 1-to-1 mapping by
doing a table lookup. In cases where a mapping is found, we
tag the rule indicating a reconciled address to identify flow
rules which fall into the imbrication conflict. In cases where
a mapping is found, we tag the rule indicating a reconciled
address to identify flow rules which fall into the imbrication
conflict. Rules that have only layer-4 match conditions are
also tagged as such.

4.1.3 Conflict Detection Engine

The conflict detection engine functions as part of the OFPro-
cessor module in Brew. Once the flows present in the system
has been extracted and processed, the conflict detection en-
gine identifies and classifies conflicts based on the categories
described in Section 3.5.

Determining the existence of address space overlap be-
tween flow rules is the first step in deciding if a conflict
exists between two flow rules. The address space overlap is
detected using a Patricia trie lookup [36] based algorithm.
The Patricia trie is an efficient search structure for finding
matching IP strings with a good balance between running
time (lookup and update) and memory space requirement,
and has been used previously with great success [37]. The
layer-3 address space for each rule is stored in eight different
Patricia trie data structures. Each edge in the Patricia trie is
labeled with a bit, with each leaf node corresponding to
the stored string. The semantic information is preserved by
having the leaf nodes store the unique identifier for every
flow rule that has matches that octet. We do an octet wise
Patricia trie lookup to look for IP address range overlap
between the new rules being inserted and existing rules in
the flow table in a fast and efficient manner. An address
space overlap is determined if two rules share the leaf node
on all eight Patricia tries. Wildcard matches are handled
by creating a superset that includes all rules in the child
nodes’ leaves. Once an address space overlap is determined,
evaluating if a conflict exists between the flow rules can
be accomplished in constant time using simple comparison
operations.

4.1.4 Conflict Resolution Engine

Once the flow rule conflicts have been detected, the conflict
resolution module is invoked. Intelligible conflicts are re-

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 10

solved automatically. However, in case of interpretative con-
flicts (Generalization, Correlation and Imbrication) which
cannot be resolved without loss of information, the CRC
metric is used to determine the resolution strategy (dis-
cussed in Section 3.7) to be employed. Note that the CRC
metric is used only while resolving interpretative conflicts.

5 IMPLEMENTATION

Brew was implemented on an OpenDaylight (ODL) SDN
controller. ODL is an open-source project under The Linux
Foundation, and has REST APIs for use by external appli-
cations. Our work extends the stable version (Lithium) of
the ODL controller. By modularizing the functionality of
Brew into the front-end OFAnalyzer interface, and a back-
end OFProcessor, as shown in Figure 4; we hope to have
the same OFProcessor back-end work with multiple SDN
controller specific OFAnalyzer interfaces in the future.

5.1 OFAnalyzer

The OFAnalyzer module acts as the interface between the
SDN controller and the OFProcessor back-end. It performs
two important tasks, a) flow extraction; and b) conflict
visualization. The flow extraction engine in the OFAnalyzer
listens and extracts flow rules from two different datas-
tores maintained by ODL, as shown in Figure 6. Classified
broadly on the type of data maintained in them, they are:
a) configuration datastore; and b) operational datastore. The
configuration datastore on each ODL controller contains
data that describe the changes to be made to the flow
rules on the switches. Candidate flow rules sent by all
applications reside in this tree before they are sent to the
devices. The operational datastore matches the configura-
tion datastore in structure, but contains information that
the controller discovers about the network through periodic
queries. Listening to flow rules from both datastores helps
the OFAnalyzer maintain a complete view of the flow rules
present in the environment, especially in a distributed con-
troller scenario. The source of the rules is noted to eliminate
duplication.

OFAnalyzer listens for changes in the flows present in

ODL Controller

Configuration Operational
V.
. —
Vil ~ o
- e ~
_ - A ~

s - vSwitch n
vSwitch 1 IrFGwEbe“' FlowTable 2 | i’FEwﬁbEn'i

|
(N
J

Rule 1

| Rule 2
| Rulen

Fig. 6. ODL datastores.

the operational datastore by registering itself as a listener
using a DataBroker Document Object Model (DOM) tree
to be informed of any addition or modification to flows.
The flow rules and the associated conflict information (if
any) are obtained using a REST Request. In addition, the

flow extraction engine also listens for candidate flow rules
from different applications running on the controllers. The
results, obtained as a list of J[SON objects are prepared for
visualization using JavaScript conversion routines. Multiple
visualization schemes then display this information to the
administrator in a manner of his/her choosing.

The configuration datastore is handled simply by placing
OFAnalyzer as sort of a redirect - extracting candidate flow
rules and piping it through the OFProcessor prior to any
new flow rules being placed in the configuration datastore.
The required data is received using a Java Data Transfer
Object (DTO). OFAnalyzer extracts the flows from the DTOs
and stores it in a local HashMap. Once the flows have been
extracted, each flow is given a unique identifier, making it
easier to track the flow when analyzing conflicts, and for
visualization purposes. The HashMap is then passed to the
OFProcessor.

Upon receiving conflict information back from the OF-
Processor, the visualization engine details and displays this
information in a manner that is both intuitive and con-
cise. The conflict visualization engine is implemented as
a module under the DLUX user interface. A hierarchical
edge bundling [38] is used to represent the rule relationships
using the D3. js JavaScript library. This scheme highlights
the overall relationship between all the flow entries while
simultaneously reducing clutter. Figure 7 shows an example
of the hierarchical edge bundling structure showing con-
flicts in a flow table, with the color of link distinguishing
between the relationship between the rules. Details on the
conflict between the rules are provided using the Reingold-
Tilford tree [39] that presents the details in an aesthetically
pleasing and tidy fashion. Figure 8 shows a screenshot of
an interactive Reingold-Tilford tree showing conflicts for a
single flow rule. Unlike the current rule conflict visualiza-
tion implementations, our approach focuses on providing a
visual interface for the administrator to quickly determine
where the most damage causing conflicts are so he/she can
resolve it.

5.2 OFProcessor

The OFProcessor module handles the back-end logic of
Brew. Its functionalities are compartmentalized as saniti-
zation, conflict detection and conflict resolution. First, the
sanitization process obtains the flow rules from the OFAna-
lyzer and assigns a global priority to the flow based on the
decentralization strategy discussed in Section 3.6. The flow
rules are then atomized and the reconciled bit in the data
structure shown in Figure 5 is determined.

The Patricia trie data structure is then used as shown
in Algorithm 1 to determine and classify conflicts. Since we
know that the layer-3 addresses are fixed length, we can fol-
low along a path from the root to a matching node to obtain
flow entries that match the address space of the flow being
processed. In cases of wildcard matches, all child nodes of
the matching node will represent flow entries conflicting
with the input flow. All detected conflicts are classified as
shown in Figure 3. Since we formally describe any overlaps
involving reconciled rules as imbrication conflict, we pro-
cess those rules separately from non-reconciled rules and
classify them as such. The results are stored in a HashMap,

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 11

_apot®

s
% s
S [A
%, \ f / 5
/
%% \ g «?‘\3
\ W
%-‘f \ / &
~ /
y
#, 7 4 0
gy 5
»_ 4 > '
= _ .
Ruezg _ _ qule®
Rule 29 — = .

Rute 5,
Fule 18—
o1 —

)

Fig. 7. Hierarchical edge bundling.

ule 42

Shadawing Cont

ule 43

/@enera\izaucm Conflicts
/ ule 44
Rule 38 Conflict
xn.@ @rie s

.

“~(correlation Conticts

erlap Conflicts

Fig. 8. Reingold-Tilford tree.

which the OFProcessor sends back to the OFAnalyzer for
visualization purposes. The conflict information sent uses
an encoding scheme using the unique flow rule identifier
thereby ensuring scalability. Next, the conflict resolution
module is invoked.

Once the conflicts between different flow rules have
been detected, the conflict resolution process attempts to
resolve these. The intelligible conflicts are resolved trivially
and the interpretative conflicts are resolved using the CRC
metric. Since resolution of interpretative conflicts is lossy,
Brew has a manual mode, where administrator input using
the conflict visualization functionality offered in the OFAn-
alyzer to help guide an informed decision. Visualization
aids such as Figure 7 and Figure 8 assist administrators
in making an educated decision regarding resolution of
interpretative conflicts. By hovering over the rule numbers

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Algorithm 1: Conflict Detection Engine
Input : Ruler, FlowTable f

Output : Conflict-free FlowTable f'
Procedure ConDet ()

1 r < Sanitize (r)

2 if lr.reconciled then

3 v < SearchPatricia(r.l3addr)

4 if r.protocol | = ~y.protocol then

5 L return AddFlow (f,r)

6 else if r.addr C ~.addr then

7 if r.action == ~.action then

8 L return ConRes (1,7, f, Redundancy)
9 else if r.priority == ~.priority then
10 L return ConRes (1,7, f, Correlation)
1 else if r.priority < ~.priority then

12 | return ConRes (7,7, f, Shadowing)
13 else if v.addr C r.addr then

14 if r.action == ~.action then

15 L return ConRes (1,7, f, Redundancy)
16 else if r.priority == ~.priority then
17 | return ConRes (7,7, f, Correlation)
18 else if r.priority > ~y.priority then

19 L return ConRes (1,7, f, Generalization)
20 else if r.addr N ~.addr ! = () then

21 if r.action == ~.action then

2 | return ConRes (r,~, f, Overlap)

23 else

2 L return ConRes (r,~, f, Correlation)
25 else

26 for Rule vy € f do

27 if r.protocol | = ~y.protocol then

28 | return AddFlow (f,r)

29 else if r.addr N ~.addr ! = () then

30 L return ConRes (1,7, f, Imbrication)
31 else

32 | return AddFlow (f,r)

that populate the perimeter of the circle in Figure 7, all
flow rules that conflict that specific rule are highlighted. The
color schemes indicate the priority of the conflicting rules.
Rules highlighted in green have higher priority than the
selected rule, indicating to the administrator that modifying
this rule would not affect the others. Rules in red have
a lower priority than the selected rule, serving to remind
the administrator that any change to this rule would affect
packet processing. Clicking on the rule number loads the
Reingold-Tilford tree, and hovering over the leaves of the
tree would display more details about the rules, so the
administrator can now make an informed decision by cross
checking with those rules.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 12

Algorithm 2: Conflict Resolution Engine

: Rule r, Rule v, FlowTable f, String
ConflictType

Output : Conflict-free FlowTable f’

Procedure ConRes ()

Input

1 | if ConflictType == Shadowing || ConflictType ==
Redundancy then
2 | return f
3 else if ConflictType == Correlation then
4 if v.CRC > r.CRC then
5 r.addr < r.addr — ~v.addr
6 f' < AddFlow (f,r)
7 else
1’ + RemoveFlow (f,~)
9 ~y.addr < v.addr — r.addr
10 '+ AddFlow (f,r)
1 '+ AddFlow (f,v)
12 else if ConflictType == Generalization then
13 f' + RemoveFlow (f,~)
14 y.addr < ~vy.addr — r.addr
15 ' « AddFlow (f,~)
16 '« AddFlow (f,r)
17 else if ConflictType == Overlap then
18 r.addr < r.addr + ~v.addr
19 f" « RemoveFlow (f,~)
20 '« AddFlow (f,r)
21 else if ConflictType == Imbrication then
2 if v.CRC > r.CRC then
23 r.addr < r.addr — ~v.addr
2 f' « AddFlow (f,r)
25 else
26 1’ + RemoveFlow (f,~)
27 ~y.addr < v.addr — r.addr
28 '+ AddFlow (f,r)
29 f' < AddFlow (f,~)
30 return f’

6 EVALUATION

The modules described in Section 4 were implemented in
JAVA. ODL Lithium was used as the OpenFlow controller
and the L2Switch project was employed to connect to the
Open vSwitch (OVS) switches. OVS and ODL Lithium sup-
port both OpenFlow 1.0 and OpenFlow 1.3. Our implemen-
tation correctly identifies flow rule conflicts and classifies
them, including temporal cross-layer conflicts. Both intelli-
gible and interpretative conflicts are resolved automatically
using least privilege and module precedence resolution
strategy; and manually using administrator input.

A simple network with topology shown in Figure 9
was implemented on Mininet using a python script. ODL
Lithium was used as the OpenFlow controller and the
L2Switch project was employed to connect to the OVS.
OVS and ODL Lithium support both OpenFlow 1.0 and
OpenFlow 1.3.

OFAnalyzer was evaluated for correctness by providing

SO

Controller

A B C D
10.5.50.5 10.6.1.5 10.211.1.63 10.211.1.65
11:11:11:11:11:ab 11:21:11:11:11:ab 11:11:aa:aa:11:11 11:11:aa:aa:11:21

Fig. 9. Verification test topology.

it with a number of rules that were known to have conflicts.
This rule set contained 100 atomic flow rules, extrapolated
from the mininet testbed in Figure 9, with each type of
conflict being present. The conflict frequency was as fol-
lows: a) Shadowing - 10% b) Redundancy - 10% c) Cor-
relation - 20% d) Overlap - 20% e) Generalization - 20%;
and f) Imbrication - 20%. Manual verification showed that
our implementation correctly identified flow rule conflicts
and classified them, including temporal cross-layer conflicts.
While our testing did not detect any false positives, the
temporal nature of the imbrication conflict means that the
detected conflicts have a fixed validity period. The relation-
ship between the different conflicts were displayed using
the visualization techniques discussed. We compared our
framework with closest related works such as FortNox [7]
and FlowGuard [8], and determined that since 20% of the
conflicts were imbrication conflicts, they would not have
been detected by earlier works.

Next, we tested a distributed controller scenario using
the application partitioning paradigm. Flows were injected
into the controller with weighted priorities giving flows gen-
erated from a simulated security application highest pref-
erence. The OFAnalyzer extracted flows from the different
controllers, and the OFProcessor used the desired weights
from the CRC to make decisions as expected. Similar tests
were also run using the hierarchical controller paradigm
with results matching expectations. Figure 11 shows the
running times for the conflict detection algorithm over the
same input set of flow rules running on an application
partitioning, host partitioning and hierarchical distribution
strategies. While all scenarios show a near linear growth
in running times, the application partitioning scenario was
noticeably faster. We attribute this to the presence of a
distributed mesh control plane for the application and host
partitioning scenarios while having a hierarchical control
plane in the hierarchical controller scenario.

Next, scalability of Brew was tested by performing ex-
periments on a topology derived from the Stanford network
[40]. The topology consists of fourteen access layer routers
connected using ten distribution switches to two backbone
routers. The snapshot of the routing tables and configura-
tion files was translated into equivalent OpenFlow rules
resulted in approximately 8,900 atomic flow rules, which
were then used to run scalability tests. Both the conflict
detection and resolution algorithms grow in a linear fashion.
The time complexity of a lookup on a Patricia trie depends

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 13

T T T T T
—e— Conflict detection only
m—

Least privilege

» —8— Module security

g

v 1015 | i
£

[_4

80

5

=]

~ 101 [|
E

kS

104 |
10°

Number of Flow Rules

Fig. 10. Brew running time for different conflict resolution strategies.

on the length of the string (constant in our case) and the
number of flow rules; for a worst case runtime of O(n) [36]
and an average case runtime of O(logn), where n is the
number of entries in the flow table. This result was verified
experimentally using a 2.5 GHz Intel Core i7 machine with
16 GB DDR3 memory. With an input file containing about
10,000 atomic flow rules, the processing time was about
6.45 ms. Run times for FortNox are not available and
the algorithm complexity is not discussed, but evaluation
appears to suggest linear growth; albeit considerably slower
(approximately 8 ms per 1,000 flow rules). FlowGuard had
similar running time of approximately 8 ms per 1, 000 rules.
Rules were further replicated and inserted into the system
to observe growth of computation time. Figure 10 shows
results from our experiment runs using different input flow
table sizes. Ten different test runs were conducted on flow
tables of size varying from 10,000 to 100,000 rules, and
the resulting running times were averaged to get the results
in the plot. The results clearly show that Brew effectively
identifies flow rule conflicts and takes corrective action in
spite of the large data sets. The results also clearly show
worst case of O(n) running time.

Once correctness of our work was verified and vali-
dated, we analyzed the performance overhead of conduct-
ing inline rule conflict analysis. Once again, the topology
shown in Figure 9 was used for the experiment. The differ-
ent link bandwidth were enforced using the tc command
on Linux. This setup allows us a fine control on the network.
A very large file (1 GB) was sent from host A to host
D, with a script attempting to add flow rules into the
environment. Figure 12 shows the time taken to transfer the
file in cases where the rules being inserted were a) con-
flict free; b) rules had conflicts that could be automatically
resolved; and c) conflicts were resolved using least privi-
lege resolution strategy. As expected, when interpretative
conflicts were to be resolved, the transfer took longer, due
to additional computational needs on the system. Further
granular introspection into the data showed that shadowing
and redundancy conflicts had the least impact on latency,
only because they were the first to be identified in the

™ T T T T
102 | | —@— Hierarchical Controllers B
| | —#— Application Partitioning i
i | —®— Host Partitioning B
é I -
]
g |
[_{
50 L i
5
=]
~
s
IS 1
= 100 | |
I L |

10*
105 [

Number of Flow Rules

Fig. 11. Brew running time for different decentralization strategies.

50

40 |-

30|
20 |-
10 -

0

Transfer Time (ms)

Native Intelligible Interpretative
(without confhcts conflicts conflicts
conflict
detection)

File transfer test.

Fig. 12. Network performance impact.

chained processing. Implementing our system caused about
5% increase in transfer time (average of 100 test runs). We
contend that this tradeoff is acceptable in an SDN-based
cloud environment since having a conflict free flow table
will not only ensure greater confidence in security, but also
more optimal packet forwarding processing times.

7 CONCLUSION & FUTURE WORK

Recent advances in SDN creates a unique opportunity to
enable complex scientific applications to run on dynamic
and tailored infrastructure that includes compute, stor-
age and network resources. This approach provides the
performance advantages of strong infrastructure support
with little management and deployment costs. However,
with several threat vectors for SDN-based cloud environ-
ments already being identified, and new threats being
developed/discovered every day, comprehensive security

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 14

implementation in an SDN-based cloud is an issue that
needs to be dealt with actively and urgently. Traditional
approaches to addressing security issues in such dynamic
and distributed environments tried to implement security
on individual components, and did not considering se-
curity holistically. In a multi-tenant SDN-based cloud en-
vironment, presence of various such security applications
and network nodes interacting with each other makes it
extremely difficult to manage policies and track policy con-
flicts.

In this work, we augment security enforcement in an
SDN-based cloud environment by introducing a framework
that monitors and maintains a conflict free environment,
including strategies to automatically resolve conflicts. We
first present a formalism for the classification of the different
types of conflicts in SDN. We address indirect conflicts
in flow rules, and present techniques to resolve conflicts
automatically in a distributed SDN-based cloud. Several
approaches that can be used to resolve flow rule conflicts
were presented and their benefits and deficiencies were
analyzed. The run time complexity for the framework is
linear, and hence scalable to large SDN-based clouds. A
novel visualization scheme that assists administrators with
decision making has been implemented.

As with any prototype, Brew is not without limitations.
In its current avatar, it is unsuitable in a highly dynamic
environment because the conflict resolution model that con-
siders temporal nature of the mapping between different
address layers in a dynamic SDN cloud is abecedarian.
Currently, the topology of the environment is not considered
while detecting conflicts. Adding the topology as an input
might be able to make the conflict detection more thorough.
Finally, the processing time is linear in nature, and optimiz-
ing data structures might be able to reduce it further.

Central to the effort to use policy to implement security
is to avoid conflicts. There are two potential ways to handle
this issue: a) eliminate setting up conflicting policies; or
b) make runtime decisions when a conflict is detected. Since
an implementation that has no conflicts would be ideal,
using formal verification methods to set up a conflict-free
policy is highly desirable. Currently, Brew accomplishes run
time decision making for conflicts. Our goal is to use formal
language methodologies to ensure conflicting flow rules do
not get generated. As part of our next steps, we plan to
study using multiple analyzers to share the work load to
parallelize processing. Including role-based and attribute-
based policy conflicts is a natural extension of this work.
Further, we are considering flow rule optimization based
on rule positioning and examine adaptive prioritization of
rules. Incorporating stateful functionality into the current
framework is also being studied. Since a one-size fits all
solution rarely works, we are also considering flavors of the
Brew framework tailored for host based SDN firewalls and
a mobile (lightweight) solution for tactical clouds. Future
visualization work includes upgrades to provide newer
features to assist in scalability. A zoom-in/zoom-out feature
aiding in the visualization process and graphs depicting
the statistical data gathered from the switches using the
OpenFlow protocol could be added. And finally, we plan
on expanding the framework to work in an environment
with diverse controllers so as to enhance adoption of the

framework.

ACKNOWLEDGMENTS

This research is supported by NSF Secure and Resilient
Networking (SRN) Project (1528099) and NATO Science
for Peace & Security Multi-Year Project (MD.SFPP 984425).
S. Pisharody is supported by a scholarship from the NSF
CyberCorps program (NSF-SFS-1129561).

REFERENCES

[1] “OpenFlow V1. 3.1,” Tech. Rep., 2013.

[2] S.H. Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 19-24.

[3] T.Benson, A. Akella, and D. A. Maltz, “Network Traffic Character-
istics of Data Centers in the Wild,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ~ACM, 2010, pp.
267-280.

[4] T. Koponen, M. Casado, N. Gude,]J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and others,
“Onix: A Distributed Control Platform for Large-Scale Production
Networks.” in OSDI, vol. 10, 2010, pp. 1-6.

[5] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Con-
trol Plane for OpenFlow,” in Proceedings of the 2010 internet network
management conference on Research on enterprise networking, 2010, pp.
3-3.

[6] E.S. Al-Shaer and H. H. Hamed, “Firewall Policy Advisor for
Anomaly Discovery and Rule Editing,” in Integrated Network Man-
agement, 2003. IFIP/IEEE Eighth International Symposium on. IEEE,
2003, pp. 17-30.

[7] P.Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A Security Enforcement Kernel for OpenFlow Networks,” in
Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 121-126.

[8] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FlowGuard: Building
Robust Firewalls for Software-Defined Networks,” in Proceedings
of the third workshop on Hot topics in software defined networking.
ACM, 2014, pp. 97-102.

[9] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A Novel
Firewall Management Toolkit,” in Security and Privacy, 1999. Pro-
ceedings of the 1999 IEEE Symposium on. 1EEE, 1999, pp. 17-31.

[10] S. Pisharody, A. Chowdhary, and D. Huang, “Security Policy
Checking in Distributed SDN based Clouds,” in 2016 IEEE Con-
ference on Communications and Network Security (CNS) (IEEE CNS
2016), Philadelphia, USA, Oct. 2016.

[11] T.]Javid, T. Riaz, and A. Rasheed, “A Layer2 Firewall for Software
Defined Network,” in Information Assurance and Cyber Security
(CIACS), 2014 Conference on. 1EEE, 2014, pp. 39—42.

[12] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building Firewall Over
the Software-Defined Network Controller,” in Advanced Commu-
nication Technology (ICACT), 2014 16th International Conference on.
IEEE, 2014, pp. 744-748.

[13] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: Verifying Network-Wide Invariants in Real Time,” in
Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), 2013, pp. 15-27.

[14] C. Monsanto,]J. Reich, N. Foster, J. Rexford, D. Walker, and others,
“Composing Software-Defined Networks,” in NSDI, 2013, pp. 1-
13.

[15] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “FRESCO: Modular Composable Security Services for
Software-Defined Networks.” 2013.

[16] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed SDN
Controllers in a Multi-Domain Environment,” in 2014 IEEE Net-
work Operations and Management Symposium (NOMS), May 2014,
pp- 1-2.

[17] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and others,
“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of
the third workshop on Hot topics in software defined networking. ACM,
2014, pp. 1-6.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 201X 15

[18] A. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis the 9th USENIX Symposium on Networked Systems Design and Imple-
Engine,” in Security and Privacy, 2000. S&P 2000. Proceedings. 2000 mentation (NSDI 12), 2012, pp. 113-126.

IEEE Symposium on. 1EEE, 2000, pp. 177-187.

[19] T. Tran, E. S. Al-Shaer, and R. Boutaba, “PolicyVis: Firewall Secu-
rity Policy Visualization and Inspection,” in LISA, vol. 7, 2007, pp. Sandeep Pls.harody Is a Rh-D- candidate in
1-16. Computer Science (Information Assurance) at

[20] H. Hu, G.-J. Ahn, and K. Kulkarni, “Fame: A Firewall Anomaly Arizona State University, Tempe, AZ, USA un-
Management Environment,” in Proceedings of the 3rd ACM work- der the guidance of Dr. Dijiang Huang. Previ-
shop on Assurable and usable security configuration. ACM, 2010, pp. ously, he earned his B.S. Electrical Engineer-
17-26. ing (distinction) and B.S. Computer Engineer-

[21] F. Mansmann, T. Gbel, and W. Cheswick, “Visual Analysis of ing (distinction) from the University of Nebraska,
Complex Firewall Configurations,” in Proceedings of the ninth inter- Lincoln, NE, USA in 2004; and MS Electrical
national symposium on visualization for cyber security. ACM, 2012, Engineering from the University of Nebraska in
pp. 1-8. 2006. Sandeep has over 8 years experience in

[22] Z. Fu, S. E. Wu, H. Huang, K. Loh, E Gong, 1. Baldine, and _ designing, building and maintaining enterprise
C. Xu, “IPSec/VPN Security Policy: Correctness, Conflict De- and carrier clags networks vyhlle V\{orklng in various capacities for Sprlqt,
tection, and Resolution,” in Policies for Distributed Systems and Iveda, University of Phoenix, Insight and MIT Lincoln Laboratory. His
Networks. Springer, 2001, pp. 39-56. current research interests lie in the areas of secure cloud computing

[23] A. Chowdhary, S. Pisharody, and D. Huang, “SDN Based Scalable and SDN.

MTD Solution in Cloud Network,” in Proceedings of the 2016 ACM
Workshop on Moving Target Defense. - ACM, 2016, pp. 27-36. Janakarajan Natarajan received his M.S. de-

[24] J. Liu, Y. Li, H. Wang, D. Jin, L. Su, L. Zeng, and T. Vasilakos, gree form Arizona State University, Arizona,
“Leveraging Software-Defined Networking for Security Policy USA in 2016 and his B.E. in Computer Sci-
Enforcement,” Information Sciences, vol. 327, pp. 288-299, 2016. ence from Anna university (Velammal Engineer-

[25] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and ing College), Chennai, India. His research inter-
V. Sekar, “Making Middleboxes Someone Else’s Problem: Network ests include SDN, the Linux kernel and network
Processing as a Cloud Service,” ACM SIGCOMM Computer Com- security.
munication Review, vol. 42, no. 4, pp. 13-24, 2012.

[26]]. Lee,]J. Tourrilhes, P. Sharma, and S. Banerjee, “No More Mid-
dlebox: Integrate Processing into Network,” in ACM SIGCOMM
Computer Communication Review, vol. 40. ~ACM, 2010, pp. 459-

460.

[27] 1. Alsmadi and D. Xu, “Security of Software Defined Networks: A Ankur Chowdhary is a Ph.D. Student at Arizona
Survey,” computers & security, vol. 53, pp. 79-108, 2015. State University, Tempe, AZ, USA. He received

[28] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, B.Tech in Information Technology from GGSIPU,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in Delhi, India in 2011 and M.S. in Computer Sci-
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. ence from Arizona State University, Tempe, AZ,
ACM, 2013, pp. 27-38. USA in 2015. He has worked as Information

[29] X.Liu, H. Xue, X. Feng, and Y. Dai, “Design of the Multi-Level Se- Security _Re§eamher for Blackberry Ltd., RSG
curity Network Switch System Which Restricts Covert Channel,” and Application Developer for CSC Pvt. Ltd. His
in Communication Software and Networks (ICCSN), 2011 IEEE 3rd research interests include SDN, Web Security,
International Conference on. IEEE, 2011, pp. 233-237. NetworK Security and Machine Learning in field

[30] J. Franois, L. Dolberg, O. Festor, and T. Engel, “Network Security of security.

Through Software Defined Networking: A Survey,” in Proceedings
z{;ﬁ;ﬁgﬁ:enc;gﬁ’r%clfleg, 2ystems and Applications of IP Telecom- Abdullah Alshalan received the B.S. degree

[31] D. Eppstein and S. Muthukrishnan;, “Internet Packet Filter Man- mm:soigf')F;?yggmpgt:ﬁfﬁ?:;;r,o;nnglr;ﬁf Ell\;ljg
agement and Rectangle G‘eometry,‘ in Proceedmgs of the.twelfth degree in computer science from Indiana Uni-
annual ACM-SIAM symposium on Discrete algorithms. Society for versity, Bloomington, IN, USA, in 2003 and 2009
Industrial and Applied Mat}lllematic.s, 2001, pp. 827-835. respectively. While on leave from the College of

[32] E. Lx_lpu” and M. Sloman, “Conflict Analysis for Management Computer and Information Sciences, King Saud
Policies,” in Integrated Network Management V. Springer, 1997, University, he is pursuing the Ph.D. degree in
pp- 430-443. . computer science at Arizona State University,

[33] E .Yuan, H. Chen,]: Mai, C:—N. Chuabh, Z.'Su, and P. Mohe'iperartr'a, Tempe, AZ, USA. He has 9 years of combined

Flreman: A Tpolklt for Firewall Modehng and Analysis,” in work experience in information security engi-
Security and Privacy, 2006 IEEE Symposium on. IEEE, 2006, pp. neering, programming, web development, and teaching. His research
15-pp. interests include computer networks, mobility, information security, and

[34] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying ¢|oud computing.

NOX to the Datacenter,” in HotNets, 2009.

[35]]J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete
Analysis of Configuration Rules to Guarantee Reliable Network Dijiang Huang received the B.S. degree from
Security Policies,” International Journal of Information Security, Beijing University of Posts and Telecommunica-
vol. 7, no. 2, pp. 103122, 2008. tions, Beijing, China, and the M.S. and Ph.D.

[36] D. R. Morrison, “PATRICIA - Practical Algorithm to Retrieve dggrees from th? University of Missouri - Kansas
Information Coded in Alphanumeric,” Journal of the ACM (JACM), City, Kansas Clty, MO, _USA! 1995’_ 2001, and
vol. 15, no. 4, pp. 514-534, 1968. 2004, respectively. He is an Associate Profes-

[37] S. Natarajan, X. Huang, and T. Wolf, “Efficient Conflict Detection sor with the School of Computing Informat-
in Flow-Based Virtualized Networks,” in Computing, Networking ics and Decision System Engineering, Arizona
and Communications (ICNC), 2012 International Conference on. IEEE, State University, Tempe, AZ, USA. His research
2012, pp. 690-696. interests include computer networking, security,

[38] D.Holten, “Hierarchical Edge Bundles: Visualization of Adjacency and privacy. He is an Associate Editor of the
Relations in Hierarchical Data,” Visualization and Computer Graph- ~ Journal of Network and System Management (JNSM) and an Editor
ics, IEEE Transactions on, vol. 12, no. 5, pp. 741-748, 2006. of the IEEE_ Commumcapons Sl_Jrveys And Tutorials. He has serve_d

[39] E. M. Reingold and J. S. Tilford, “Tidier Drawings of Trees,” as an organizer for many international conferences and workshops..Hls
Software Engineering, IEEE Transactions on, no. 2, pp. 223-228, 1981, research was supported by the NSF, ONR, ARO, NATO, and Consortium

[40] P. Kazemian, G. Varghese, and N. McKeown, “Header Space of Embedded System (CES). He was the recipient of the ONR Young

Analysis: Static Checking for Networks,” in Presented as part of

Investigator Program (YIP) Award.

1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

