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ABSTRACT

Truck platooning is emerging as a promising solution with
many economic incentives. However, securely admitting a
new vehicle into a platoon is an extremely important yet
difficult task. There is no adequate method today for ver-
ifying physical arrangements of vehicles within a platoon
formation. Specifically, we address the problem of a platoon
ghost attack wherein an attacker spoofs presence within a
platoon to gain admission and subsequently execute mali-
cious attacks. To address such concerns, we present Convoy,
a novel autonomous platoon admission scheme which binds
the vehicles’ digital certificates to their physical context (i.e.,
locality). Convoy exploits the findings that vehicles trav-
eling together experience similar context to prove to each
other over time that they are co-present. Specifically, they
experience similar road (e.g., bumps and cracks) and traffic
(e.g., acceleration and steering) conditions. Our approach
is based on the ability for vehicles to capture this context,
generate fingerprints to establish shared keys, and later bind
these symmetric keys to their public keys. We design and
implement the Convoy protocol and evaluate it with real-
world driving data. Our implementation demonstrates that
vehicles traveling in adjacent lanes can be sufficiently distin-
guished by their context and this can be utilized to thwart
platoon ghost attacks and similar misbehavior.
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1. INTRODUCTION
Amongst the advances in smart vehicles [20, 1] platooning

is an emerging one that is achieving considerable traction.
Vehicle platooning is a system of coordinated driving, where
participating vehicles drive in a single file or platoon; each
vehicle strictly follows the preceding vehicle, with the fore-
most vehicle in the formation as the platoon leader. Truck
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platooning, in particular, is beneficial in increasing driving
safety, convenience, and fuel and road efficiency (due to re-
duced aerodynamic drags) [14, 22]. These economic incen-
tives are causing platooning to emerge as a real-world so-
lution adopted by many in the commercial trucking indus-
try [5, 4, 7]. To further exploit these benefits, trucks (of
different companies) are envisioned to freely join and leave
a platoon on the road in an ad-hoc fashion as all members
(including the leader vehicle) enjoy the benefits.

Platooning vehicles send control messages containing in-
formation about their acceleration, braking and steering to
each other for coordinated driving. Specifically, they use
Dedicated Short-Range Communications (DSRC) and Wire-
less Access in Vehicular Environments (WAVE) as the de
facto standards for vehicle-to-vehicle (V2V) communications [16,
13]. Because the control messages need to be secured, au-
thenticating each others’ public keys is an important step
while a new member is joining a platoon. The current DSRC/
WAVE model assumes Public Key Infrastructure (PKI) to
authenticate using certificates signed by a trusted third party,
such as a Certificate Authority (CA).

Unfortunately, this solution is insufficient in a platoon set-
ting. A platooning system that does not account for the
verification of relative positions of the vehicles during admis-
sion (to ensure that it is indeed in line with the platoon) is
critically flawed. The expected single file formation is fun-
damental to platooning, and any accidental or intentional
misbehaviour that tampers with this property can have sig-
nificant repercussions. The platooning vehicles hence be-
come susceptible to various attacks such as impersonating
as non-existing “ghost vehicles” [15, 8] such that the at-
tacker may forge the control messages to induce a collision
without physically being in the platoon thereby avoiding the
collision. Such attacks are detrimental as they could cause
life-threatening accidents, damage to high-value vehicles and
cargo, and loss of business.

The root cause of the aforementioned problems is that the
vehicles have no way of binding their locality information
together with the corresponding physical identity and pub-
lic key. Verifying the certificate is limited as the certificate
merely binds a vehicle’s physical identity (e.g., license plate)
to a digital public key, but cannot associate this with the
relative physical presence of the vehicle. This is exemplified
in Figure 1, where Cars A and B are vehicles in an existing
platoon. Car C is a vehicle that wishes to join the platoon
that has a valid certificate from a trusted CA, and Car M
is an attacker’s car driving in an adjacent lane, also with a
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valid certificate from a trusted CA. In this example, Cars A
and B receive certificates of Car C and Car M, but are not
able to associate each certificate with the correct car to the
extent of determining that Car C is in valid formation and
can be admitted to the platoon, while Car M is not.

Figure 1: Overview diagram depicting the vulnerabilities of
current platooning system to impersonation attacks.

One might posit that relative physical presence can be
asserted by GPS information. However, simply leveraging
GPS will not help because a remote vehicle cannot verify
the validity of the coordinates as GPS information is known
to be susceptible to spoofing attacks, in addition to a non-
negligible error margin (up to 10 meters) [19, 11].

To address the above problem, we present Convoy, an au-
tonomous authentication and verification scheme of platoon-
ing vehicles. Convoy is based on the findings that vehicles
wishing to form a platoon can prove to each other that they
are indeed traveling together using context information cap-
tured from their sensor data. Convoy leverages road and
traffic conditions that the platoon is subject to at any time
as sources of entropy to establish pairwise symmetric cryp-
tographic key between vehicles, binding to the physical con-
text. The symmetric key is then used to authenticate the
vehicles’ digital certificates.

We face several challenges in designing the proposed Con-
voy mechanism. First, different vehicles wishing to join a
platoon (e.g., Cars A, B and C ) would experience similar
but different context, leading to numerically unequal sig-
nals. To account for the subtle differences in the signals be-
tween the vehicles, Convoy makes use of an emerging crypto-
graphic primitive called the Fuzzy Commitment [12, 18, 17]
that relies on error-correcting codes to establish a shared
symmetric key from similar-but-unequal signals. Second, a
fundamental requirement in designing Convoy is that the
context experienced by vehicles in adjacent lanes is suffi-
ciently distinct. This is a factor of the inherent road and
traffic conditions. Hence, Convoy requires vehicles to re-
peat the protocol for multiple iterations over time, thereby
increasing the probability that vehicles traveling together
experience more similar context. We evaluate Convoy by
mounting an accelerometer on two different cars to capture
real-world driving data and demonstrate that we can suffi-
ciently distinguish two cars driving on the same lane (even
with different cars) as opposed to driving on an adjacent lane
(even with a same car).

We summarize the following contributions:

• We present Convoy to build trust relationships among
vehicles wishing to form a platoon by verifying phys-
ical context and co-presence. Our approach protects

the platoon admission process against potential imper-
sonation attacks.

• We design the Convoy protocol to leverage inherently
random road and traffic conditions, making it extremely
challenging for an attacker to consistently mimic or
predict the conditions.

• We implement and evaluate Convoy by instrumenting
two different cars on a highway to demonstrate the
feasibility of distinguishing cars in two adjacent lanes
using only accelerometer data.

2. SYSTEM MODELS
In this section, we present our models and assumptions

for vehicle platooning and the attacker of interest.
Platoon Model. Platoons are typically set up with a

manually-driven lead vehicle with semi-autonomous follow-
ers [22]. In our work, assume that a candidate vehicle is only
admitted to the platoon after the rear-most platoon vehicle
validates the position and identity of the candidate. We
suppose that the candidate will initially follow the platoon
using Adaptive Cruise Control (ACC) [21] without explicit
coordination, until it can be verified and admitted to the
platoon. Once admitted, members are declared to be trust-
worthy and thereby earn the benefits of efficiency and safety
offered by platooning [6]. To enable the coordinated acceler-
ation among vehicles, vehicle-to-vehilcle (V2V) communica-
tion is employed. As platoons travel amongst other traffic,
it is critical for them to communicate securely. We thus
assume that all control messages (e.g., acceleration, brake,
and steering messages) are encrypted with a group symmet-
ric key known only to the platoon members, though we do
not address group key management in this work.

Attacker Model. We consider a Platooning Ghost At-
tack, where the attacker’s goal is to impersonate a non-
existing “ghost” vehicle in the platoon. By pretending to
be in the platoon formation, and hence gaining admittance
to the platoon, the attacker gains knowledge of the control
commands (i.e., acceleration, braking, and steering infor-
mation) from the preceding vehicles relative to the position
of the ghost vehicle. The attacker further has control over
transmission of the control messages to its succeeding vehi-
cles. Hence, the attacker effectively controls certain aspects
of the platoon. The attacker is now capable of launching
a variety of attacks as a platoon insider, including man-in-
the-middle, denial-of-service, and collision induction attacks.
More specifically, it may send malicious control messages to
its succeeding vehicles to cause it to crash into the rest of the
platoon in front. It may prevent admissions of newer mem-
bers of the platoon, or cause existing succeeding vehicles to
brake away from the rest of the platoon.

3. DESIGN AND IMPLEMENTATION
In this section, we first discuss the how Convoy lever-

ages entropy sources for its protocol. We then present an
overview of the Convoy protocol design and implementation.

3.1 Overview
The goal of Convoy is to allow a vehicle in a platoon to

securely verify that a public key indeed belongs to a vehicle
following the platoon instead of an attacking car in another
lane. We achieve this goal by binding the public key to the
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physical context experienced by the vehicles. Specifically,
Convoy binds keys to the shared context using observations
of highly-variable road and traffic conditions, as seen by em-
bedded accelerometers. The measurements form the basis of
a symmetric key established between pairs of vehicles that
is then bound to the logical vehicle identity carried by the
public key. Given this setup, the simplified goal of Convoy
is to map sensor measurements to a shared symmetric key
that can be verified by the two vehicles.

Sources of Entropy. Since the problem reduces to sym-
metric key establishment, an important preliminary question
points to the entropy that can be extracted from sensors em-
bedded in neighboring vehicles. The key source of entropy
that Convoy leverages for key agreement is the unique and
highly variable road and traffic conditions, as observed by
the vehicle’s sensors. Road conditions observed by a sensor
are dynamic and very difficult to predict at the millisecond
scale of observation. Road materials and conditions such
as patches, bumps, and cracks provide useful data for com-
parison across vehicle. In addition, traffic conditions are
inherently random as they vary when different vehicles on
the road travel together, causing the platoon to accelerate,
brake, and steer differently. Moreover, traffic often varies
across lanes, especially during periods of heavy congestion.
Varying traffic patterns further introduce temporal varia-
tion in how road conditions are measured, so these two fac-
tors combine to increase the resulting measurement entropy.
Such variations from road an traffic conditions can be cap-
tured by a single axis of an accelerometer.

Cryptographic Protocol using Commitments. From
the example illustrated in Figure 1, in order for Car C to
prove to Car B that it is traveling close behind the pla-
toon, it leverages a fuzzy commitment scheme. This scheme
translates sensor measurements, represented by an extracted
fingerprint F , and a secret K into a commitment and de-
commitment (or opening) pair (µ, o). This is analogous to
one-time pad encryption, where F is used as an encryption
key, and K is used as the plaintext to be encrypted. µ can
only be opened if one has a fingerprint, F̂ that is within a
few bit errors of F . The fingerprints FB and FC extracted
by B and C traveling on the same lane would ideally be
within a small margin of error, while FM extracted by M
on a different lane would be more error-prone. By applying
an error-correcting code operation, vehicle pairs can verify
fingerprint similarity, resulting in a shared key. This can
be repeated to build confidence over time, ultimately yield-
ing a key with sufficient entropy and corresponding platoon
admission. In this work, we rely on a fuzzy commitment
scheme similar to that of previous work [12, 18, 17].

3.2 Protocol Design
Convoy protocol consists of five phases – (1) Initialization,

(2) Key Agreement, (3) Key Confirmation, (4) Public Key
Verification, and (5) Confidence Score Check phases. We
describe each phase in detail with the platoon example de-
picted in Figure 1. The protocol is summarized in Figure 2.

Initialization Phase. To start the initialization phase
of Convoy, the platoon leader A broadcasts a beacon mes-
sage BeaconA containing current platoon member IDs, their
(GPS) locations, and a timestamp. When platoon candidate
C receives several beacons, it sends a request JOIN_RQST

Convoy PROTOCOL

Phase 1: Initialization

1. A
bcast
−→All : BeaconA=IDA||IDB ||T S||GP SA||GP SB

2. C → A : JOIN_RQST
3. A → B, C : INIT _V ERIF (IDC , tF )
Phase 2: Key Agreement
4. B : Holds FB , KB , (µB , oB)

C : Holds FC

5. B → C : µB ||H(KB)
6. C : ôB = Open(µB)

: K̂B = RSdec(ôB); H(K̂B)
?
=H(KB)

: K̂BC = KDF (K̂B)
Phase 3: Key Confirmation
7. B ↔ C : Key confirmation messages for KBC

Phase 4: Public Key Verification
8. B → C : mB1

||MKBC
(mB1

), where mB1
= K+

B ||K+

A

9. C → B : mC ||MKBC
(mC), where mC = K+

C

10. B → A : mB2
||MKAB

(mB2
), where mB2

= K+

C

Phase 5: Confidence Score Check
11. B, C : Increment CSBC ; Check if CSBC>T hr

Repeat Steps 4 - 9 until check passes

Figure 2: Convoy protocol overview. Upon successful com-
pletion of this protocol, Car C is securely admitted to the
platoon with existing members Cars A and B.

to join the platoon. Upon receiving the request, A sends a
message INIT _V ERIF to B (the trailing vehicle, in gen-
eral) and C to initialize the verification process; A names C
in this message and includes the measurement duration tF .
At this point, B and C commence the key agreement phase.

Key Agreement Phase. This phase is performed by
the trailing platoon member (B in our example) and the
candidate vehicle C. When A triggers the INIT _V ERIF
messages, B and C collect accelerometer measurements for
a duration of tF seconds. The vehicles then apply a fin-
gerprint extraction function extractF(). B computes fin-
gerprint as FB = extractF (AccB , tF ), where C does the
same for its measurements AccC . We present the details of
our fingerprint extraction algorithm in Section 3.3. Subse-
quently, B generates KB using a key generation algorithm
KGen that outputs keys of length γ (e.g., 128 bits). B’s
commitment and opening pair (µB , oB) is then computed as
oB = RSenc(KB) and µB = FB ⊖ oB , where RSenc and ⊖
denote Reed-Solomon (RS) encoding and subtraction in a
finite field (analogous to an XOR operation), respectively.
Finally, B sends µB and H(KB) to C. The hash is sent so
that C can locally verify the opening of the commitment.
Upon reception of µB , C first tries to open the commitment
(Open(·)) by inverting the operations using its fingerprints
FC in place of B’s commitment, obtaining ôB ≈ FC ⊖ µB .
As long as FB ≈ FC , the resulting ôB will also be simi-
lar to oB . Applying RS decoding operation will yield a key
K̂B = RSdec(ôB) that will be equal to KB if and only if the
input fingerprints FB and FC are within the error-correction
threshold t of the RS code, ‖FB −FC‖1 ≤ t, where ‖·‖1 is the
Hamming distance (or ℓ1 norm), counting the number of bit
errors between FB and FC . Vehicle C then verifies that the
acquired K̂B value matches those computed by B by check-
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ing the original hash received from B as H(K̂B)
?
=H(KB).

Upon successful verification, C computes a shared symmet-
ric key, KBC using a Key Derivation Function as KDF (K̂B).
B and C then continue to the key confirmation phase.

Key Confirmation Phase. C initiates the key confir-
mation phase by leveraging the newly computed KBC to
challenge B to verify the same key KBC was derived by both
parties. To construct the challenge β1, C computes a Mes-
sage Authentication Code (MAC) using KBC over a random
nonce nC such that β1 = nC ||MACKBC

(nC), and sends β1

to B. Upon receiving the challenge, B similarly computes
KBC as KDF (KB) and verifies the received MAC using its
version of KBC . When this verification succeeds, B simi-
larly creates its own challenge α with nonce nB , such that
α = (nB ||nC)||MACKBC

(nB ||nC) and sends α to C, who
similarly verifies α. Upon successful verification, C trans-
mits a final MAC β2 over nB received from B such that
β2 = nB ||MACKBC

(nB). At this point, both B and C have
confirmed mutual agreement upon the symmetric key KBC .

Public Key Verification Phase. With a confirmed
symmetric key between the platoon trailer B and candidate
vehicle C, the platoon provides verifiable public keys of all
platoon members. Specifically, B computes a MAC over the
public keys K+

A and K+

B and transmits the public keys and
MAC values to C. C mirrors the process and transmits its
public key and corresponding MAC to B. If desired, B can
share this information internally within the platoon group,
using the shared group key, in case B leaves the platoon
before C completes the final phase.

Confidence Score Check Phase. After key confirma-
tion and verification, B increments its (or the group’s) con-
fidence score CSBC in candidate vehicle C. If CSBC has
surpassed a pre-defined threshold T hr, then C is admitted
to the platoon and given access to the group key. Otherwise,
C remains a candidate and must repeat the process from the
key agreement phase until sufficient confidence is achieved.
Use of the confidence score minimizes false positives and en-
sures that over time, B and C must be traveling together in
the same lane.

3.3 Fingerprint Extraction Algorithm and Im-
plementation

The extractF() function takes raw accelerometer data and
the time duration tF to encode the signal to a fingerprint F
of length lF bits. The algorithm captures abrupt changes in
the data and encodes them into high bits, mapping the re-
maining signal to low bits. The encoding algorithm includes:
(1) pre-processing, (2) moving average and thresholding, and
(3) bit translation. These phases are illustrated in Figure 3,
beginning with the raw sensor data in Figure 3(a).

Pre-processing. In the pre-processing phase, we perform
a noise reduction step to improve signal fidelity. We achieve
this by leveraging spectral subtraction, essentially subtract-
ing the spectral noise amplitude [9]. The result after noise
reduction is shown in Figure 3(b).

Moving Average and Thresholding From the higher
fidelity signal, we compute the absolute value to capture the
magnitude of the samples independent of the sign. We then
apply a moving average filter to remove high frequency noise,
yielding S[t] (Figure 3(c)). We then apply thresholding to
capture sudden changes, where the threshold value T hrDeriv

is indicated by the dotted line. The resulting binary signal,
Sbinary[t] (Figure 3(d)), is computed as

Sbinary[t] =

{

1, if S[t] > T hrDeriv

0, otherwise
(1)
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Figure 3: Fingerprint extraction depicting (a) raw data; (b)
noise reduction phase; (c) absolute value and moving aver-
age; (d) binary signal after thresholding; (e) bit translation
phase(total bit length is 128); and (f) extracted fingerprint.

Bit Translation. To convert the binary signal to a fin-
gerprint F , Sbinary[t] is divided into lF = 128 windows of
size bitW nd (i.e., bitW nd = |Sbinary[t]|/lF ). The translated
signal is attained as the sum of bits of Sbinary[t] in each win-
dow, as illustrated in Figure 3(e). The final step to extract
the fingerprint is to perform an additional thresholding (de-
picted in dotted black line), yielding binary fingerprint F
(Figure 3(f)).

3.4 Entropy Verification
To prevent an attacker from guessing the fingerprint, Con-

voy requires that the fingerprint exceed a certain amount
of randomness. We define the fingerprint weight w(F ) as
the fraction of high bits in a fingerprint F , capturing the
amount of variation in the signal. Hence a fingerprint F
with w(F ) = 0.5 indicates a context that is most unpre-
dictable to guess, as it has equal number of high and low
bits. To capture this idea, we define a fingerprint weight
deviation as dw(F ). The following equations describe how
w(F ) and dw(F ) are computed.

w(F ) =
1

|F |

∑

i

F [i], dw(F ) = 1 − 2

∣

∣

∣

1

2
− w(F )

∣

∣

∣
(2)

Hence a low weight deviation indicates that there are fewer
contextual changes, making it easier for the attacker to guess
the fingerprint. On the other hand, a high weight deviation
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indicates that there are more contextual changes, making it
difficult for the attacker to guess. Note that the maximum
dw(F ) is 1 when half of the bits are high.

Consequently, Convoy requires the committing vehicle (B
in the example) to compute the fingerprint weight deviation
and only transmit the commitment if dw(F ) > T hrw for a
given threashold T hrw.

4. EVALUATION
We evaluate Convoy through experimentation with vehi-

cles in real traffic scenarios. We first describe the experiment
setup and then evaluate the effects of road conditions, leav-
ing evaluation of traffic conditions for future work.

4.1 Experiment Setup
We experiment by driving two distinct vehicles (2014 Volk-

swagen Jetta and a 2012 Subaru Impreza) with trial driving
segment spanning over six miles of highway by cruising at 65
mph. We only test the road condition by keeping the traffic
condition consistent and delay the traffic condition analysis
for future work. Each car was driven in two lanes, with two
trials each, yielding a total of 48 miles worth of sensor data.
We deployed a triple-axis MEMS accelerometer [10] (with a
range of -3 to 3 g sampling at 5KHz) on an Arduino Uno
board [3] in the trunk of each car. The z-axis is normal to
the road surface to measure road conditions, while the y-
axis of the accelerometer points in the direction of travel to
measure acceleration due to traffic conditions.
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✵ ✺✵ ✶✵✵ ✶✺✵ ✷✵✵ ✷✺✵
✲✶✵

✵

✶✵
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✵

✶✵ ✭✗✁ ✂�✄☎✍ ✝ ✞�✟✆ ✝ ✠✟✡�☛☞✍

Figure 4: Subsection of accelerometer (Z-Axis) time series
data (≈ 5 minutes of drive at 65 mph) of adjacent lanes with
two independent trials.

4.2 Fingerprint Similarity
We compare extracted fingerprints from the z-axis ac-

celerometer to evaluate the feasibility of distinguishing be-
tween vehicles driving in different lanes, where each finger-
print has a length of 128 bits. Figures 4(a)–(b) and (c)–(d)
exemplify the fingerprint similarities between vehicles trav-
eling on the same lane (measured by two trials of the same
car). However, comparison across the two pairs depict signif-
icant deviance, sufficient to distinguish two adjacent lanes.
We discuss our results in three separate cases: similarity be-
tween different trials of the same vehicle in the same lane,
between different vehicles in the same lane, and between
the same vehicle in different lanes. This last case highlights
the best-case scenario for an attacker, since the hardware is
eliminated as a variable.

Similarity across trials of same vehicle in same

lane. We show that the fingerprint pairs created from the

Comparison Pair p-value

Same Car – Same Lane Different Car – Same Lane p=0.60
Same Car – Same Lane Same Car – Different Lane p=0.0008
Different Car – Same Lane Same Car – Different Lane p=0.003

Table 1: Paired t-test for comparison pairs from Figure 5.

same vehicle traveling on same lanes are consistent. We ex-
tracted fingerprints from accelerometer data which reflects
bumpiness due to imperfection of the road. We repeated
this on total of two vehicle models and report the finger-
print similarity of the aggregate result in Figure 5. As the
figure shows, high fingerprint similarity is observed in differ-
ent driving instances of same road with an average of 92.8%.
We also note that this result would improve further with us-
age of lane control modules (such as the Adaptive Cruise
Control (ACC)) in a real scenario.

Similarity across vehicles in the same lane. As the
same vehicle traveling in the same lane creates consistent
fingerprints, we perform additional evaluation to confirm
whether the fingerprint similarity is retained as we change
vehicles. Again, we use all possible pairs of fingerprints cre-
ated from accelerometer data. We report the resulting aver-
age fingerprint similarity result of 90.6% in the same figure.
While the data trends show slight degradation, the finger-
prints remain fairly consistent.

Similarity across lanes. We next compare fingerprint
similarities for the same vehicle in adjacent lanes. Using the
same vehicle minimizes the effect of mechanical variation and
reflects a benefit for the attacker. We perform the fingerprint
extraction and compare the fingerprint similarity between
two different lanes traveled by the same vehicle and report
the aggregate result of 81.6% in the same figure.

We also present a set of p-values that compares how finger-
print similarity compares between the Same-Car-Same-Lane
(SCSL), Different-Car-Same-Lane (DCSL), and Same-Car-
Different-Lane (SCDL) conditions, as depicted in Table 1.
The comparison between Same-Lane conditions (SCSL vs.
SCDL) yielded p-value of 0.60, showing that these two are
not significantly different. However, the comparison be-
tween any Same-Lane conditions with Same-Car-Different-
Lane condition (SCSL vs. SCDL and DCSL vs. SCDL)
yielded 0.0008 and 0.003 respectively, showing significant
difference in both comparisons.
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Figure 5: Comparison of fingerprint similarity due
to road conditions for Same-Car-Same-Lane (SCSL),
Different-Car-Same-Lane (DCSL), and Same-Car-
Different-Lane (SCDL)
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5. DISCUSSION
We now present two main discussion points of Convoy.
Road conditions in different cities. The experiments

were performed in relatively newer roads in California, which
do not have considerable wear and tear. However, given
that Convoy shows promising performance even with such
conditions, we expect to find higher variations from road
segments of cities subject to more severe weather conditions.

Sensor placement in trucks. While we report experi-
mental results by driving two sedans, we note that the ac-
celerometer readings from trucks will most likely yield simi-
lar results with trivial adjustments such as minor changes to
the signal processing algorithm as well as a more careful sen-
sor placement. We note that platooning trucks could place
their sensors in locations more sensitive to road conditions
and truck movements (e.g., perhaps below the chassis).

Pre-shared keys. One may propose trucks from same
vendors to share keys in advance. However, such solutions
are not sufficient because of two reasons. First, truck pla-
tooning envisions supporting trucks on the road to form a
platoon in an ad-hoc fashion regardless of their vendors. Sec-
ond, even in the extreme case of platoon formation among
trucks from same vendors, key pre-sharing approach is inher-
ently vulnerable to insider attack, where a supposedly valid
truck turns malicious and launches a ghost attack. Con-
voy addresses such problems because it provides the trucks
supplemental guarantee of their physical arrangements.

6. RELATED WORK
We present related work on contextual authentication and

secure vehicular networks.
Contextual authentication. Ambient contextual infor-

mation has been studied for the purpose of authentication.
Researchers study secure pairing of devices via a scheme
that relies on fingerprinting of similar ambient context by co-
present devices. [17, 18]. Convoy also leverages contextual
information but incorporates a novel method of leveraging
traffic and road conditions as sources of entropy.

Secure vehicular networks. Many researchers have
proposed using traditional DSRC/WAVE [13, 2] security
mechanisms in vehicular systems. They leverage the PKI
for authenticating V2V communication, leaving the system
vulnerable to spoofing and forging threats such as the Sybil
attacks. To mitigate such attacks, researchers propose rep-
utation systems [23]. However, none of these mechanisms
consider binding locality information for physical context to
the digital certificate.

7. CONCLUSION AND FUTURE WORK
We propose Convoy to secure trucks admissions into a pla-

toon by verifying physical context. Convoy is novel because
it leverages inherent randomness from road and traffic condi-
tions to autonomously bootstrap a shared cryptographic key
that is used by vehicles to securely bind physical context, or
locality information to digital identifiers, or certificates. We
implement and evaluate the Convoy fingerprint verification
scheme against real-world driving data collected from two
different vehicles, and demonstrate the feasibility of suffi-
ciently differentiating between adjacent lanes using only sin-
gle axis of an accelerometer data. As our future work, we
plan to conduct more rigorous experiments covering longer

segments with varying traffic conditions. We also plan to
provide a robust defense against potential replay attacks on
a targeted vehicles on specific road segments.
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