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Figure 2: Recording of single geophone, accelerometer, gy-

roscope, andmicrophone of the word “one” each sampled at

8 KHz.

activity sensors (such as accelerometers and gyroscopes) deployed

in smart TV remotes and gaming controllers (e.g., Wii remote, PS4

and Xbox controllers) [17, 45]. Many of these sensors are widely

deployed in experimental and generic wireless sensor boards for

multi-purpose sensing [27, 28, 48], and we expect their deployment

and inclusion in commercial services to increase dramatically based

on the market projections mentioned above.

With such wide deployment of sensors in IoT devices, we �nd

that a large portion of research community has concentrated on

�nding and defending against vulnerabilities of individual sensors

or devices, and what the posed risks are for the users. However, we

are more interested in exploring new vulnerabilities if an a�acker

compromises data collected from multiple devices. Speci�cally, we

pose the question – what unforeseen information can one extract

from fusion of these sensors across networked devices?

In search for the answer to the above question, we present

PitchIn to demonstrate the feasibility of achieving the seemingly

unrealizable goal of reconstructing an intelligible speech signal by

fusing non-acoustic sensor data collected from a network of nodes.

Speci�cally, we consider scenarios of potential security breaches

of a smart home/o�ce’s gateway or in service provider’s database,

which has logs of sensor data from victim’s IoT devices. Such

breaches have been witnessed in many real-world examples re-

cently [7, 9]. Hence, the a�acker does not have to compromise

individual devices equipped with sensors in victim’s home or o�ce

to gain access to the sensor data. We illustrate an example scenario

depicted in Figure 1.

Traditionally, non-acoustic sensors such as geophones, accelerom-

eters, and gyroscopes are thought to be unresponsive to acoustic

signals, as they are designed to capture motion signals (vibrations,

movements, and tilt angles, respectively). However, we �nd from

our experiments and from relatedwork, that when exposed to sound

waves, the sensors vibrate to output minuscule signals, su�cient

to be processed to reconstruct intelligible acoustic signals [32, 50].

Figure 2 depicts the time series plots of non-acoustic sensors such

as a geophone, an accelerometer (x-axis), and a gyroscope (x-axis),

when sampled at 8 KHz1. We also show microphone data for com-

parison.

Unfortunately, a sampling frequency of 8 KHz is much higher

than the typical rate at which these motion sensors are con�gured

to be sampled at in commercial devices (further discussed in detail

in Section 2.1.2). Obtaining intelligible speech signals, however,

require a high sampling frequency, with a minimum of 5 KHz [37],

while telephones and CDs are sampled at 8 KHz and 44.1 KHz,

respectively [29] for higher quality audio. Hence, an a�acker cannot

recover an intelligible speech from sensor data of a single device.

Hence, to increase the overall system sampling frequency, PitchIn

builds upon the idea of Time InterleavedAnalog-Digital-Conversion

(TI-ADCs) [23], which is a method to parallelize the sampling task

with multiple ADCs with temporal o�set. PitchIn extends this idea

to create Distributed TI-ADCs so that the reconstructed signal,

which we refer to as the Amalgam signal, has an overall e�ect of

being sampled at a high sampling frequency. In reality, however,

each node is sampled at a much lower sampling frequency. Hence,

each node is “pitching in” to contribute to the Amalgam signal.

Even with the high overall Amalgam signal sampling frequency

thanks to PitchIn’s Distributed TI-ADC, achieving intelligibility

from the reconstructed Amalgam signal is extremely challenging

because fusion of sensor data creates mismatches in amplitude

alignments and causes distortions. Hence, we transform the signals

using di�erent signal processing techniques (e.g., normalization

and denoising) to reconstruct a �nal speech signal that can be

interpreted by humans.

We evaluate the intelligibility of PitchIn via a user study (ap-

proved by our Institutional Review Board (IRB)) by reconstructing

two sets of Amalgam signals constructed of varying number sen-

sors sampled with per node sampling frequency of 500 Hz and 1

KHz.

In summary, we present the following contributions.

• We present an eavesdropping a�ack by enabling intelligi-

ble speech signal reconstruction by fusing seemingly

innocuous non-acoustic sensory data across networked sen-

sor devices: the reconstructed signal has a high sampling

frequency despite low per-node sampling frequency by lever-

aging the distributed TI-ADC. We highlight that PitchIn

is an eavesdropping a�ack, and is not a substitute of an

Automated Speech Recognition (ASR) engines, although

PitchIn can be complemented with ASRs to increase the

e�ciency of the a�ack (Discussed in Section 6.4).

• We demonstrate a feasibility study and evaluation of

PitchIn and resulting Amalgam signals: we study the feasi-

bility of speech recognition via proof-of-concept implemen-

tation and evaluation of human recognition of the resulting

signals. We demonstrate that PitchIn’s reconstructed sig-

nals yield highest recognition accuracy of 79%, 53%, and

35% for varying sensor modalities, sampling frequencies,

and number of nodes.

1We note that we only use x-axis of accelerometer and gyroscope throughout this
paper for simplicity, but the axis can be interchanged or combined with other axes.
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2 BACKGROUND

In this section, we �rst present information on sensor device physics

and where these sensors are used today in di�erent IoT applications.

Following that, we discuss the main idea of interleaved ADC and

how it increases the overall sampling frequency. We then present

relevant information on speech intelligibility. We then present the

related work.

2.1 Sensors

We now introduce a brief discussion about how each sensor cap-

tures physical signals and transform them into electrical signals, as

depicted in Figure 3, and present their real-world use cases in IoT

applications.

2.1.1 Sensor Device Physics.

Geophone capturesmechanical vibrations that travel through solid

media [13]. As mechanical waves reach the base of a geophone,

small vibrations cause the base magnet to vibrate. Subsequently,

an electrical coil a�ached to the proof mass experiences changes

in magnetic �ux, which in turn translate the mechanical signal to

voltage induction, which is output as analog signal. As geophones

are tuned to capture longitudinal mechanical waves, it is no surprise

that vibrations from sound waves induce small vibrations of the

sensory mechanism, so acoustic waves are registered as small but

detectable signals in the analog output.

Accelerometer similarly capturesmechanical vibrations through

its sensing axes [16] (Figure 3(b)). As the MEMS sensor accelerates

along the axis of interest, a �ctitious inertial force shi�s the proof

mass to swing between springs. �e change in the distance between

the metal plates results in the change in capacitance, yielding the

analog signal change which can bemapped to the acceleration value

using a predetermined conversion factor. Since acoustic waves ex-

ert a force on the proof mass, small vibrations occur and yield

an analog signal output that would otherwise be interpreted as

acceleration.

GyroscopeMEMS gyroscopes also have a similar structure to

that of MEMS accelerometers [44]. Ass a gyroscope is rotated, the

proof mass rotates as a result of the �ctitious Coriolis force. �is

force is analogous to that of inertial force in translation. As metal

plates rotate as a response, the capacitance change is registered as

an analog signal. As acoustic waves come in contact with a MEMS

gyroscope, small vibrations that reach the proof mass also create

vibration along the rotating axis, translating to electrical signals

through capacitance.
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Figure 3: Illustration of how mechanical sensors translate

physical movements into voltages.
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Figure 4: Illustration of how TI-ADC increases the overall

sampling frequency by leveragingmultipleADCs in parallel

with temporal o�set.
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Figure 5: System overview diagram of PitchIn speech signal

reconstruction.

2.1.2 Sensors Embedded in IoT Devices.

Di�erent IoT devices have various sensors depending on their appli-

cations. We highlight example IoT devices that include geophone,

accelerometer, or gyroscope. Di�erent devices sample these sen-

sors at varying frequencies depending on the application. Higher

sampling frequency captures more information resulting in more

accurate representation of the signal, but at a cost of higher com-

putational and energy costs. Table 1 depicts some of the IoT appli-

cations and the corresponding sensor modalities.

Structural and building monitoring solutions leverage (o�en

an array of) sensors such as geophones, accelerometers, and gy-

roscopes. Device-free user occupancy identi�cation and moni-

toring solutions are proposed for smart buildings [35]. Structural

healthmonitoring devicesmonitor the condition of buildings and/or

bridges [26, 46]. Earthquake detection devices and indoor foot-

step monitoring systems also leverage geophones to measure and

analyze seismic vibrations, and perform occupancy monitoring,

respectively [36]. �ese devices sample on the order of 1 KHz.

Furthermore, mobile devices such as smartphones, smart watches,

and tablets embed a large number of sensors, including accelerom-

eters and gyroscopes, used for various applications (e.g., activ-

ity/gesture recognition, gaming, etc). Mobile OSes such as iOS and

Android restrict the sampling frequencies of these sensors to a max-

imum of 200 Hz. Controllers for gaming consoles (e.g., Wii Remote,

PS4 Dualshock4 Controller, Xbox Controller) embed accelerometers

and gyroscopes to detect user motion for dynamic gaming expe-

riences [45]. Similarly, smart TV remotes embed sensors for user

gesture recognition and identi�cation [17]. �ese devices sample

sensors on the order of 100 Hz.

2.2 Time Interleaved ADC

Time Interleaved Analog-Digital Conversion (TI-ADC) has been

shown to acquire high sampled data on resource-constrained sys-

tems. �e main idea behind TI-ADC is that while each ADC is

bounded by a relatively low sampling frequency, it is possible to
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IoT Devices for

Di�erent

Applications

Structural Health

Monitoring

Device

Earthquake

Detection

Device

Footstep

Monitoring

Device

Smartphones/

Smartwatches/

Tablets

Gaming

Controller

(Wii Remote)

Smart TV

Remote

Sensors

Geophone/

Accelerometer/

Gyroscope
Geophone Geophone

Accelerometer/

Gyroscope

Accelerometer/

Gyroscope

Accelerometer/

Gyroscope

Table 1: IoT devices used for di�erent applications and the corresponding sensors embedded in the devices.

increase the e�ective sampling rate by using multiple ADCs in

parallel. Speci�cally, a set of multiple ADCs are placed at di�erent

temporal points to sample at a low frequency [23]. Subsequently,

so�ware recombines the pieces of sampled data. Assuming time

synchronization, TI-ADC allows e�ective sampling frequency to

increase by a factor of the number of ADCs. �is is depicted in Fig-

ure 4. PitchIn builds upon this idea, but rather than using multiple

ADCs on a single physical system, we treat distributed devices in a

network as “virtual” ADCs.

2.3 Speech Intelligibility

Two of themain factors contribute to achieving speech intelligibility

– (1) sampling frequency and (2) contextual information. Human

auditory systems process acoustic signals up to 20 KHz. Due to

the Nyquist sampling theorem – which de�nes minimum required

sampling rate for the signal [41] – audio �les on CDs are created

using a sampling rate of 44.1 KHz to avoid distortion [29]. We also

note that minimum sampling frequency of 5 KHz is required for

intelligibility of human speech signals [37].

Another factor to consider is the context within speech. Speech

recognition by humans is known to be a complex experience that

subconsciously perceives words that make best sense within the

given context. When a distorted signal is presented to human

perceptual system, it is known to perform much be�er when the

context of the information is also presented [47]. Inspired by the hu-

man speech recognition, automatic speech recognition (ASR) tools

also use language models to increase the recognition accuracy [25].

In this paper, we take into consideration how sampling frequency

from each sensor a�ects reconstruction of speech signals. Further-

more, we also take into consideration of contextual information

when designing our user study to re�ect the reality of speech recog-

nition performed by humans.

2.4 Related Work

We now present related work relevant to PitchIn. We �rst present

papers that exploit a non-acoustic sensors to capture sound sig-

nals. We then present related work exploring methods to leak

side-channel information via sensor data.

2.4.1 Sensors Capturing Acoustic Signals.

Sensors in Smartphones. Recent research has demonstrated key-

word detection using an accelerometer [50] and a gyroscope [32]

in smartphones. Gyrophone demonstrates that commercial gyro-

scopes that are implemented in smartphones are capable of cap-

turing acoustic signal even at low sampling frequency [32]. With

proper signal processing and machine learning algorithms, this is

enough to show speaker identi�cation and speech �nger printing.

AccelWord demonstrates hot word detection using accelerome-

ter, while achieving low energy consumption [50]. In addition to

demonstrating high accuracy in hot word detection, this work also

demonstrates the feasibility of an accelerometer capturing rich data

more so than conventionally expected.

However, both of these approaches rely on machine learning to

train a classi�er on a small, prede�ned group of keyword �nger-

prints (on the order of tens of words) and later test whether the

spoken words’ �ngerprints match the trained �ngerprints, neither

reconstructing intelligible speech signals. While these are promis-

ing �rst steps, each work mainly focuses on recovering �ngerprints

of a small prede�ned word group. Furthermore, we �nd that Gy-

rophone is limited as a practical eavesdropping tool because of

the low recognition accuracy when evaluating speaker-independent

experiments, which resembles a more realistic a�ack scenario than

speaker-dependent experiment, yet only yielding 7% to 17% on dif-

ferent phones. Gyrophone also provides a preliminary evaluation

of interleaving two gyroscope signals from di�erent smartphones

to increase the overall sampling frequency. However, Gyrophone

neglects to evaluate the results of speaker-independent experiments.

We imply that the results must be less accurate than that of the

single sensor experiment which yielded a best case of 17% because

the recognition accuracy from the interleaved signals would not be

higher than that of a single sensor experiment.

In this paper, we are rather interested in reconstructing intelli-

gible speech signals without restriction of prede�ned keywords nor

any prior training. Instead of prede�ned keywords, we can lever-

age any additional context information relevant to the deployment

scenario to infer a restricted language model that is independent of

the Amalgam signal, which aids in speech intelligibility. Hence, the

problem we are tackling is necessarily more challenging than the

previous approaches because there is no prior restriction on possi-

ble �ngerprints when the Amalgam signal is constructed, requiring

much more information to be extracted from the Amalgam signal.

Sensors embedded inNon-smartphoneDevices. �ere have

been approaches to capture acoustic signals from non-smartphone

environments as well. Son et al. describe how gyroscopes respond

to acoustic signals of certain frequency, enough to malfunction the

�ight control of drones [43]. Visual Microphone leverages a camera

to capture small vibrations on object surfaces due to sound waves,

which recovers the acoustic signal of the sound source [15]. Once

again, while PitchIn has a synonymous initial idea of capturing

sound signals from non-acoustic sensors, we are more interested in
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fusing disparate non-acoustic sensors that inherently are sampled

at low sampling frequencies.

2.4.2 Side-Channel A�acks.

ACComplice presents a side-channel a�ack on an accelerometer

in a smartphone by inferring a driver’s starting location within a

200 meter radius, along with the traveled route [20]. ACCessory

also exploits vulnerabilities of an accelerometer in a smartphone

by inferring tapped keystrokes, and is able to extract six charac-

ter passwords within a median of 4.5 trials [34]. spiPhone uses

accelerometer readings of a smartphone placed close to a com-

puter keyboard to infer text entered on the keyboard [30]. �ese

work look into exploiting sensor side-channel vulnerabilities from

a single device. PitchIn, however, looks into interesting potential

vulnerabilities when fusing sensor signals from di�erent devices.

3 THREAT MODEL

We now present the threat model of PitchIn. Speci�cally, we present

the goals and capabilities of the a�acker as well as the assump-

tions made. �e main goal of the a�acker is to launch a successful

eavesdropping a�ack on victim’s spoken verbal communications

in his/her home, o�ce, conference rooms, etc. Speci�cally, we

consider an o�ine a�ack made possible by potential breaches of

recorded sensor data from a gateway in a smart home or service

provider’s database, o�en encountered in many real-world inci-

dents [7, 9, 19]. However, each of these sensor data are sampled at

low sampling rate, resulting in non-intelligible sound. Furthermore,

we consider a�ackers who does not have the capability of remotely

controlling individual device to modify and increase the sampling

frequency. �e a�acker thus a�empts to interleave multiple signals

o�ine to achieve a Amalgam signal that has an overall e�ect of a

single device with a high sampling rate, increasing the intelligibility.

We note that the a�acker only launches PitchIn a�ack if (s)he does

not gain access to a microphone data (always sampled with high

sampling rate). Otherwise, the a�acker will directly make use of

the microphone data instead of the non-acoustic sensor data, elimi-

nating the need to interleave signals of di�erent devices in the �rst

place. �is is a reasonable assumption because there are not many

homes, o�ces, and conference rooms that are constantly recording

microphone data, as opposed to structural or motion sensors, which

are designed to constantly monitor their environment.

4 DESIGN AND IMPLEMENTATION

We now discuss the implementation details of reconstructing an

intelligible Amalgam signal by fusing data collected from a network

of sensors. We �rst present an overview of the Amalgam signal

generation, and then discuss the details.

4.1 Overview

To construct Amalgam signals from di�erent sensors, PitchIn lever-

ages a distributed form of Time Interleaved Analog-Digital Con-

version (Distributed TI-ADC). �is is to generate an e�ect of high

sampling frequency (FsAmal ) signal from a fusion of multiple sen-

sor data that are sampled at low per-node sampling frequency

(Fssensor ). However, distributed TI-ADC requires addressing di�-

cult challenges to produce an intelligible speech signal. Figure 5

depicts the �ow chart diagram of PitchIn Amalgam generation steps.

First, each sensor data is sampled locally with its low Fssensor . �en

each individual signal is leveled to account for DC o�set mismatches

that occurred during the ADC phase. Subsequently, individual sig-

nals are normalized to be aligned because di�erent physical sensors

lead to gain mismatches. We then leverage distributed TI-ADC

to interleave di�erent signals into one Amalgam signal and then

perform post-processing such as interpolation and denoising.

4.2 Main Challenges of Amalgam Generation

We discuss in detail how PitchIn addresses the following main

challenges: levelling DC o�set, gain normalization, accounting for

temporal o�set mismatches, and post-processing.

4.2.1 Leveling DC O�set.

Data sets from di�erent sensors may have distinct DC o�set, or

average value o�set from 0 volts [11] due to variations in hardware.

With the aggregated data from all the nodes, PitchIn reconstructs

the Amalgam signal by �rst leveling the DC o�set. Leveling the

DC o�set is important to speech intelligibility because the DC

o�set contributes to either a clipping of loudest parts of the signal,

distortions, and/or reduced audio volume.

4.2.2 Gain Normalization.

Data sets from di�erent sensors also exhibit di�erent amplitude

levels due to the di�erences in how each sensor captures the vibra-

tions from the sound signal and the di�erences in the ampli�cation

level before going through the ADC. Amplitude normalization is

imperative for PitchIn to reconstruct intelligible speech signal by

fusing di�erent sensor readings. Figure 6 depicts a toy example that

illustrates this concept. Figure 6(a) and 6(b) depict two signals, S1
and S2, respectively, exemplifying noisy sensor readings of a sinu-

soidal signal with non-aligned amplitudes. Figure 6(c) depicts the

resulting interleaved signal, SintS1S2, when no amplitude normal-

ization is performed. (We explain the details of signal interleaving

in Section 4.2.3 and 5.3.) We note that the resulting signal is heavily

distorted.

However, we show the e�ect of normalization with the remain-

ing sub�gures. Figures 6(d) and 6(e) depict ZS1 and ZS2 , which are

output of Z-Score normalization of S1 and S2, respectively. Fig-

ure 6(f) depicts the resulting interleaved signal, SintZS1ZS2 of the

normalized signals, ZS1 and ZS2 . As depicted from this �gure, the

resulting signal has a high resemblance to the original sinusoidal

signal.

While other types of normalization methods may be applied,

we leverage Z-Score because it computes the statistical quanti�-

cation of how much each score is distant from the mean in terms

of standard deviations. Within a sensory modality, the signal to

noise ratio of audio signal is expected to be similar between the

sensors. �is allows usage of Z-scores to project the signals in a

statistically normalized space, where the amplitude of the signals

in all the sensors will be aligned to one another based on signal to

noise ratio. �e normalized value of Z-Score ZSi is computed for

data Si from the ith sensor that has a known mean µi and standard

deviation σi is computed as ZSi = (Si − µi )/σi .

4.2.3 Accounting for Temporal O�set Mismatches.

Di�erent devices start sampling their sensors at di�erent times. We
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Names of

People
Joseph Catherine �omas Je�erson Elizabeth Michelle Anthony Emmanuel Hilary Patrick

Cities Atlanta Los Angeles New York
San

Francisco

Washington

D.C.
Paris London Moscow Tokyo Hong Kong

Companies Apple Microso� Google Facebook Amazon Comcast
Tesla

Motors
Starbucks Walmart

United

Airlines

Numbers One Two �ree Four Five Six Seven Eight Nine Ten

Table 2:WG1,WG2,WG3, andWG4 of names of people, cities, companies, and numbers (1 to 10), respectively.

volume. We measure the average SPL using SkyPaw’s dBMeter app

on an iPhone 6 [42] positioned close to the speaker. �e speaker is

a male and a �uent but non-native English speaker.

User Study Process. �e goal of this study is to determine the

intelligibility of the reconstructed Amalgam signals. Participants

were given instructions to transcribe recordings of di�erent words.

�e participants were given an additional information of the word

group that each recording belongs to. �ere are four word groups

of ten words,WG1 constituting names of people,WG2 constituting

names of cities,WG3 constituting names of companies, andWG4

constituting numbers from one to ten. �e additional information

serve to provide contextual information synonymous to context

within speech (e.g., words in a sentence), re�ecting the reality of

how humans perform speech recognition [47]. �e words are listed

in Table 2.

We recruit a total of 230 participants, and presented randomized

words so that each participant does not listen to the same word

from di�erent signals. Hence, each data point in the �gures of

this section consists of 230 transcriptions. �e participants were

recruited via Amazon Mechanical Turk [8]. We performed the user

study a�er receiving approval from our Institutional Review Board

(IRB) and complied to the IRB’s recommendation.

5.2 Non-Acoustic Sensors

Before presenting the Amalgam construction, we �rst evaluate

how each of the individual non-acoustic sensors respond to hu-

man speech, and how the intelligibility varies corresponding to

their sampling frequencies, Fs . We further investigate these sen-

sors to test the relationship between the recognition accuracy (i.e.,

intelligibility) and the sampling frequency, Fs . Figure 8 depicts the

recognition accuracy of non-acoustic geophone, accelerometer, and

gyroscope sensors each sampled at varying sampling rate (i.e., Fs
= {1KHz, 2KHz, 4KHz, and 8KHz}), compared to the baseline case

of a microphone. �is �gure clearly depicts the fact that the non-

acoustic sensors respond to speech signals, yielding non-negligible

accuracies when sampled at 8 KHz. We note the trend of increasing

recognition accuracy as Fs increases from 1 to 8 KHz. Addition-

ally, the accuracy is extremely low for all sensors when Fs=1 KHz,

including the microphone. Hence, we highlight that intelligibility

decreases signi�cantly as the sampling frequency decreases. We

demonstrate statistical signi�cance of the results with paired t-test

reported in Appendix A (along with t-test results of all following

evaluations in this section).

To provide a be�er understanding of these signals and deeper

insight into our results, we have posted audio and video clips at

h�p://mews.sv.cmu.edu/research/pitchin/. �e video clips show

spectrogram reconstructions of the spoken word “apple” using the

open source audio editor Audacity. We strongly advise the readers

to view the video clips together with the �gures in this section.
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Figure 8: Recognition accuracy increases as Fs increases for

each sensor.

5.3 Amalgam Evaluation

We evaluate Amalgam signals constructed from fused sensor data.

We �rst present the results of a proof-of-concept where sensor

fusion is performed by interleaving signals with a regular temporal

o�set. We then present the results when we relax this assumption,

more closely resembling the real-world scenarios. We also present

an idea of fusing sensor data across sensor modalities.

5.3.1 Ideal Temporal O�set.

We test the e�ects of achieving a higher Amalgam sampling fre-

quency FsAmal
as we increase the number of nodes that “pitch in”

to constructing the Amalgam signal. We report two sets of exper-

iments as following. In the �rst experiment, we �x the per node

sampling frequency, Fs=500 Hz, and vary the number of nodes to 4,

8, and 16. Similarly, in the second experiment, we �x Fs=1 KHz and

vary the number of nodes to 2, 4, and 8. Both experiments yield

FsAmal
of 2 KHz, 4 KHz, and 8 KHz. Figures 9(a) and 9(b) depict

the two experiments, respectively. We defer the discussion of how

we “simulate” di�erent sensor data from a single physical sensor

readings for each of these sensors in Section 5.3.3.

In both experiments, the trend of increasing recognition accuracy

with increasing FsAmal
is preserved, similar to the non-Amalgam

�ndings depicted in Figure 8. More speci�cally, the accuracy (i.e.,

intelligibility) signi�cantly increases within most sensor modalities,

yielding accuracies as high as 79%, 53%, and 35%, for geophone,
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Figure 9: Amalgam signals constructed with Fs=500 Hz and 1KHz for Figure 9(a) and 9(b), respectively. Recognition accuracy

of each Amalgam signal increases as FsAmal
increases from 2, 4, and 8 KHz by varying number of nodes from 4, 8, and 16 for

Figure 9(a), and 2, 4, and 8 for Figure 9(b), respectively

accelerometer, and gyroscopes, respectively. We note that these

numbers may signi�cantly empower the a�acker, as any additional

information to the a�acker is a gain when launching eavesdropping

a�acks, potentially posing serious threat to the victims. As an

analogy, most people would feel uncomfortable or even threatened

if 79% of their phone conversations are eavesdropped.
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Figure 10: Varying temporal o�sets from worst to best case

sample scenarios for four nodes.
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Figure 11: Comparison of recognition accuracy of four gyro-

scopes (Fs=1KHz each) sampled at di�erent temporal o�set.

5.3.2 Practical Temporal O�set.

Recall that the aforementioned results assume a regular temporal

o�set, which inherently results in the best case scenario for the

PitchIn a�ack. However, in reality, temporal o�set may be randomly

distributed among devices. We investigate this aspect by exploring

how varying temporal o�set a�ects recognition accuracy.

To provide an intuition, we provide �ve di�erent temporal o�sets

of four nodes sampling di�erent gyroscopes. Figure 10 illustrates

pictorial representation of a spectrum of varying temporal o�sets

(i.e., sampling pa�erns) from the worst case to the best case sce-

nario. (a) depicts the situation when all four nodes are sampling

exactly at the same time (hence the worst case scenario). (b) and

(c) depict the situations when two of the nodes are sampling at the

same time. Speci�cally, (b) depicts an example where there is not

too much information gain from the temporal o�set due to samples

being clustered. We note that (c) resembles the situation synony-

mous to when two nodes are sampling at an evenly distributed

interval. (d) depicts the situation when four nodes are sampling at

di�erent times, but are not evenly distributed. Hence, the samples

are more distributed, allowing larger temporal coverage. (e) depicts

the situation when four nodes are sampling at an evenly distributed

time (hence the best case scenario). We denote these as Sample

Scenarios (a) through (e).

Figure 11 depicts the recognition accuracy of (a) through (e) for

four gyroscope sensors with Fs=1 KHz. We chose gyroscope to

demonstrate the lower bound of recognition accuracy among the

sensors (as seen from Figure 8). It is interesting to note that the

recognition accuracy increases from (a) to (e), from 7% to 30%),

which justi�es the spectrum of varying temporal o�sets from worst

to best case scenario. Furthermore, we note that (c) yields roughly

twice the accuracy of (a) and half of (e).

While scenarios (b), (c), and (d) are each single instances of

temporal o�set of these four sensors in between worst and best

case scenarios (i.e., (a) and (e)), this example serves to demonstrate

the trend of increasing recognition accuracy as temporal o�set lies

in between the two extremes.

We also present an example to provide an intuition of how “ran-

dom” temporal o�set still contributes to reasonable recognition
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Figure 12: An example of Distributed TI-ADC and its e�ects when sensors 1, 2, and 3 are sampling the original signal with

random temporal o�set.
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Figure 13: Inherent noise in time series of each sensor and

the corresponding histogram and Gaussian �t. Data are col-

lected from a quiet room.

accuracy by providing an example. �e accuracy of the estimation

depends on many factors including the frequency of the signal to

sample, the number of nodes sampling, and the sampling frequency

per node. �is idea is illustrated in Figure 12.

Figure 12(a) displays a scenario where di�erent sensors sample

a sine wave which varies its frequency from 2 Hz to 10 Hz), with

a constant sampling frequency of 25 Hz across the sensor nodes

(Sensor 1, 2, and 3). �e starting point of the nodes were not

synchronized and were taken at random.

We demonstrate that even without synchronizing the nodes, the

a�acker gains enough information to estimate a sensible signal for

certain portion of the original signal. Figure 12(b) depicts this idea,

where the solid line shows the estimated signal a�er interleaving

the sampled data from the sensors. Speci�cally, the 2 Hz portion

of the sine wave can be estimated more closely than that of the 10

Hz portion, even though the three sensors did not sample with an

evenly distributed temporal o�set. �is is intuitive as more points

are sampled for the slower portion of the signal. However, the 10

Hz portion of the signal is not well estimated as shown from the

same �gure.

5.3.3 Amalgam Signal Simulation.

A realistic simulation of sensor node requires acknowledgment of

the noise that are unique to each physical sensors. Using a Gaussian

�t, wemake an assumption that sensors of the same sensormodality

has similar signal to noise ratio, and therefore, Gaussian noise of

similar variance. In the aforementioned experiments, we sample

ambient noise (in a quiet room) from each sensor to estimate the

inherent noise distribution in each sensor modality. �e values

that are sampled are interpreted as a result of a Gaussian noise

corrupting the audio signal. We create a generative model to model

the noise characteristic of each sensor modality and then estimate

the Gaussian �t of such pro�le. �is pro�le is then used to create

multiple instances of possible noise given a sensor. As we add this

known noise to the signals we acquired, we simulate realistic sensor

data. �is process is repeated for all signals used in the present

study. Figure 13 depicts this process.

6 PRACTICAL CONSIDERATIONS

�is section presents practical considerations of PitchIn.

6.1 Time Synchronization

We note that the assumption of tight time synchronization made in

the paper are only for the purpose of proof-of-concept experimen-

tation but are not required for the general problem at hand for the

a�acker. In the experiment, we assumed the tight synchronization

due to simplicity of fusing the aggregated sensor data collected

from the network. However, in practice, even if the devices are

not tightly synchronized, we are inspired by previous work in time

interleaving ADCs (of local devices) that make use of a known

reference signal to try to detect and correct timing mismatches or

skews among signals sampled by di�erent ADCs [18, 38]. While

it is infeasible for an a�acker in PitchIn to have such a reference

signal, we claim that it is feasible for an a�acker to perform a man-

ual search (in a bruteforce manner) to shi� and �nd optimal results.

While this may be time consuming, it is certainly feasible due to

the nature of o�ine a�acks.

Furthermore, it is quite reasonable to assume a tight time syn-

chronization among IoT devices in the near future due to many

applications requiring high synchronization accuracy (e.g., sen-

sor fusion, precise indoor localization, etc.) Many proposals and

standards already propose sub-millisecond to microsecond accu-

racy [6, 21, 40]. Speci�cally, analogous to how synchronization

using NTP is common today, we carefully speculate that a more

accurate time synchronization protocols such as Precision Time
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Protocol (PTP) may be prevalently used in the near future among

the IoT devices, as we already �nd many open source libraries that

support PTP protocol on even cheap devices like Arduino [6]. �is

range is su�ciently accurate to aid the a�acker because PitchIn

devices require sampling frequencies far less than 8 KHz per node,

which translates to a minimum of 125 microsecond per sample, well

above the sub-microsecond synchronization accuracy ranges.

6.2 Controlled Experiment Setup

Recall from Section 5.1 that the experiments are conducted with

the speaker about a meter away from the co-located sensors. While

the experiments are conducted under such controlled environment,

we claim that such a setup still provides a practical use case as

an exemplary scenario. As depicted in Figure 1, the abundance

of sensors embedded in existing commercial products today (e.g.,

smart TV remote [17] and game controllers [45] depicted in Ta-

ble 1) are o�en found co-located on a co�ee table or sofa in a living

room. It is not di�cult to imagine that the sensor data may be

collected in the near future by the manufacturers for user behavior

analysis, as numerous TV (along with other device) manufacturers

are notoriously known to have been collecting privacy sensitive

information including viewing and searching data as well as speech

from TVs [14, 22, 31]. �is scenario demonstrates a strong yet po-

tential case for the a�acker, speci�cally illustrating the practicality

of close proximity setup of sensors and the speaker. While we

acknoledge that this is a generous scenario for the adversary, it

provides an intuition of how potential a�ack may be carried out

under favorable conditions for the a�acker.

6.3 Ampli�cation

Asmentioned in Section 5.1, the sensor output are ampli�ed in hard-

ware using operational ampli�ers (op-amps) before being interfaced

to the Arduino’s ADC. We note, however, that the hardware ampli-

�cation re�ects reality as many IoT devices are manufactured with

circuitry that leverages hardware ampli�ers for sensors [1]. In ad-

dition, many IoT devices use digital MEMS sensors, which already

come equipped with op-amps within the MEMS circuitry [5].

6.4 Automating the Attack

An a�acker may automate PitchIn a�ack by feeding in the results

obtained by PitchIn to an existing Automatic Speech Recognition

(ASR) engine. While we had conducted a preliminary experimenta-

tion with publicly available Speech Recognition Engine [49], the

results were not satisfying, due to the fact that the ASR is trained

with microphone data. From consultations with speech recognition

experts, we are hopeful that if an a�acker trains an ASR with non-

acoustic sensors with varying sampling rate, it would most likely

yield a relatively high accuracies.

7 CONCLUSION AND FUTUREWORK

Wepresent PitchIn to demonstrate a feasibility of fusing non-acoustic

sensors (e.g., geophone, accelerometer, gyroscope) to reconstruct in-

telligible speech signals using various speech processing techniques.

PitchIn minimizes per-node sampling frequency by leveraging a

distributed Time Interleaved Analog-Digital-Converter (TI-ADC)

across network of sensor devices. We conduct user studies to eval-

uate the intelligibility of the reconstructed signals. PitchIn achieves

speech recognition accuracy ranging from 79% to 35% depending

on the sensor modalities, sampling rate, and number of nodes.

We explore the PitchIn signal reconstruction a�ack by exploring

the metrics from the adversaries perspectives. While further the-

oretical and empirical study on the impact of signal quality from

TI-ADC would provide interesting results, we delay this to future

work. We also �nd many potential extensions to PitchIn, including

increasing scalability of PitchIn a�ack by leveraging automated

speech recognition engines to create a fully automated remote

eavesdropping tool. �rough this work, we hope to highlight a

potential problem of pervasive IoT devices that may be densely de-

ployed in our homes and o�ces, surpassing the known and obvious

risks. While other researchers have demonstrated the feasibility of

capturing voice signals for non-acoustic sensors, we illustrate that

a naive solution of merely reducing the sampling rate per node may

be insu�cient to thwart against the above problems. Rather, we

hint at a new paradigm of a room-level security policy to mandate

an upper-bound of a cumulative sampling rate across devices that

is low enough to su�ciently thwart such a�acks.

A T-TEST RESULTS

We show the signi�cance of evaluation results reported in Sec-

tion 5 using paired t-tests. Analysis of Variance (ANOVA) on these

evaluation showed signi�cance.

Fs
KHz

p-value

Geo Acc Gyr Mic

Fig.8

1 2 .86 <0.001 .41 <.001

2 4 <.001 <.001 <.001 <.001

4 8 <.001 <.001 <.001 <.001

1 8 <.001 <.001 <.001 <.001

Fig.9(a)

2 4 <.001 <.001 .43 N/A

4 8 .24 <.001 .43 N/A

2 8 <.001 <.001 .22 N/A

Fig.9(b)

2 4 <.001 <.001 .05 N/A

4 8 <.001 <.001 .28 N/A

2 8 <.001 <.001 <.001 N/A

Table 3: Paired t-test for Figures 8 and 9

Comparison Pair p-value

Pa�ern (a) Pa�ern (b) .006

Pa�ern (c) Pa�ern (b) .52

Pa�ern (e) Pa�ern (b) <.001

Pa�ern (a) Pa�ern (d) <.001

Pa�ern (c) Pa�ern (d) .003

Pa�ern (e) Pa�ern (d) .84

Table 4: Paired t-test for Figure 11



PitchIn: Eavesdropping with Non-Acoustic Sensor Fusion IPSN 2017, April 2017, Pi�sburgh, PA USA

B SPECTROGRAM

We present spectrograms depicting corresponding signals repre-

sented in Figures 8 and 9.
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(b) Spectrogram of signals in Figure 9(a)
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(c) Spectrogram of signals in Figure 9(b)

Figure 14: Spectrogramof signals evaluated in Figure 8 and 9.

We strongly advise the readers to view this �gure in color,

and to watch the corresponding video clips at http://mews.

sv.cmu.edu/research/pitchin/.
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