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Abstract

CrossMark

In this paper, a physical platform is proposed to change the properties of phononic crystals in
space and time in order to achieve nonreciprocal wave transmission. The utilization of
magnetoelastic materials in elastic phononic systems is studied. Material properties of

magnetoelastic materials change significantly with an external magnetic field. This property is
used to design systems with a desired wave propagation pattern. The properties of the
magnetoelastic medium are changed in a traveling wave pattern, which changes in both space
and time. A phononic crystal with such a modulation exhibits one-way wave propagation
behavior. An extended transfer matrix method (TMM) is developed to model a system with time
varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are
found using this method. The TMM is used to find the transfer function of a magnetoelastic bar.
The obtained results match those obtained via the theoretical Floquet—Bloch approach and
numerical simulations. It is shown that the stop band in the transfer function of a system with
temporal varying property for the forward wave propagation is different from the same in the
backward wave propagation. The proposed configuration enables the physical realization of a

class of smart structures that incorporates nonreciprocal wave propagation.

Keywords: phononic crystals, nonreciprocal wave propagation, magnetoelastic materials,
transfer matrix, stop bands, pass bands, spatiotemporal modulation

(Some figures may appear in colour only in the online journal)

1. Introduction

By nature, acoustic and elastic waves tend to propagate
symmetrically in all spatial directions, a phenomenon that is
attributed to elastodynamic reciprocity. In other words, wave
transmission between two points is not a function of direction.
If sound can be transmitted from point A to point B in a given
medium, we expect it to be transmittable from point B to point
A as well under the same conditions. While we frequently
experience this phenomenon in our daily life, reciprocity
might not be always desirable. As a result, there has been a
recent spurt of activity addressing the design of non-reci-
procal material systems where waves are engineered to
propagate in only one direction. For example, Liang [1]

0964-1726/18,/015030+-09$33.00

utilized a superlattice with a nonlinear medium to synthesize a
one-dimensional acoustic diode. Boechler [2] studied a
mechanism for tunable rectification that uses bifurcations and
chaos. Fleury [3] showed acoustic isolation and nonreciprocal
sound transmission using a resonant ring cavity biased by a
circulating fluid. Nonreciprocity has also been demonstrated
in the context of static loading where Coulais [4] utilized
large nonlinearities and geometrical asymmetries to achieve
static nonreciprocal mechanical metamaterials.

Achieving one-way wave propagation motivated the
design of acoustic diodes, analogous to their electric coun-
terparts. It has been shown, however, that the transmission-
reflection symmetry is not broken in such linear systems [5].
Systems comprising time-varying material fields, however,

© 2017 I0OP Publishing Ltd  Printed in the UK
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have been shown to break the elastic reciprocity of the pro-
pagating waves in linear systems because of the induced
parametric pumping [6, 7]. Combined with stop bands
resulting from material variations in space, such spatio-
temporally modulated systems have been recently introduced
as a way to achieve one-way phonon isolation [8]. Among
such efforts, Nassar [9] investigated wave propagation in
periodic laminates where the modulus of elasticity and mass
density are modulated in space and time. Chaunsali [7]
showed that nonreciprocal behavior of 1D space-time
dependent systems can be linked to topological nature of stop
band. Croenne et al [10] studied the application of spatio-
temporal modulation of electrical boundaries in 1D phononic
crystals to achieve nonreciprocal behavior and showed its
effects are analogous to the classical acousto-optic Brillouin
scattering. Although wave propagations in both reciprocal
and nonreciprocal phononic crystals have been investigated
by several groups [1-3, 7, 11, 12], to the best of our
knowledge, a realizable physical configuration for imposing
the spatiotemporal property variations in the modulated
phononic systems has not yet been proposed.

In this paper, we envision creating a traveling wave
like magnetic field through a mechanism similar to linear
induction motors (LIM) that will yield any desired property
variation in a magnetoelastic medium. Mechanical properties
of magnetoelastic materials have been shown to change
significantly when subjected to an external magnetic field
[13-15]. Terfenol-D (Tb;Dy,Fe,) is a good candidate of
magnetoelastic materials that can be utilized to build a bar with a
varying modulus of elasticity. The modulus of elasticity of
Terfenol-D can be changed to a desired value by changing the
magnetic field surrounding the material [13—15], which in turn
provides a physical mechanism to change the modulus of
elasticity of a bar simultaneously in space and time. The key
thrust of this approach is in the real-time configurability of the
magnetoelastic medium. Magnetoelastic materials have been of
interest as building blocks for periodic structures due to the
degree of flexibility they can introduce in stop band control.
Among others, Wang et al [16] studied wave propagation in
magnetoelectroelastic phononic crystals by assuming quasi-static
approximations of magnetoelectric field. In the current approach,
however, since material property modulations in both space and
time are induced by an externally imposed traveling wave-like
magnetic field, they are no longer restrained. This paradigm
change opens up the possibility of near-instantaneous control of
material properties leading up to intriguing wave dispersion
characteristics such as, in this case, one-way propagation.
Such capabilities can find potential applications in targeted
signal conditioning, back-scattering elimination, and achieving
unprecedented noise rejection standards in elastic periodic
structures, also known as phononic crystals.

The magnetoelastic system studied here is a periodic
structure. Periodic structures comprise a number of identical
sub-structure components, also known as cells, connected in a
periodic fashion to form an artificial discrete or continuous
structure. These structures exhibit a unique wave propagation
behavior [17]. At specific frequencies, referred to ‘pass band’,
waves are able to freely propagate along these periodic

structures while they will be blocked and rapidly attenuated at
other frequency ranges, referred to ‘stop band’. Extensive
studies on wave propagation in periodic structures were first
conducted by Brillouin [17], and a plethora of studies have
since then been extended to different aspects of these mate-
rials. For instance, Mead [18] studied the free wave propa-
gation in periodically supported infinite beams for isolating
the vibration transmitted from sea waves to offshore platform.
Roy [19] studied the attenuation behavior of periodic struc-
tures specifically the attenuation of bending waves in a dis-
sipation-free beam with flexible ribs attached to it. Ponge er al
[20] investigated controlling of elastic wave propagation in
piezomagnetic phononic crystals. Their results showed that
the stop band of the 1D phononic crystals could be tuned and
controlled by connected external impedances. Bou Matar et al
[21] studied the tuning of stop band in phononic crystals
made of magnetoelastic materials by applying an external
magnetic field. They showed that some elastic constants of
Terfenol-D could vary more than fifty percent by changing
the applied magnetic field. Wright [22] developed a closed-
form solution to the acoustic wave transmission through a 1D
time-varying phononic crystal.

The transfer matrix method (TMM) is a mathematical
tool that is widely adopted to analyze the vibrations of peri-
odic bar and beam-type systems [23-25]. Nouh [26] and Yu
[27] used the TMM to study the vibration characteristics of
Euler—Bernoulli beams with periodic resonators. The
approach has been also used to study several other config-
urations of beams [28, 29] and plates [30, 31] with periodic
elements, and locally resonant metamaterials [32, 33].
Recently, Trainiti [11] employed a Floquet-Bloch form
solution [34] accompanied by a Fourier series expansion to
conduct the dispersion analysis of nonreciprocal wave pro-
pagation in elastic structures. However, the directional
transfer function of the structure was not addressed. Fur-
thermore, while suitable for certain modulation waveforms,
the truncated Fourier series is an optimistic approximation for
square-wave modulations especially when higher frequency
stop bands are of interest. Here, we propose an approximate
analytical procedure based on an extended adaptation of the
TMM approach to (1) extract dispersion curves and (2) find
the directional transfer functions for a nonreciprocal structure.
The method proves to be highly computationally efficient and
is shown to stay reasonably accurate in terms of dispersion
analysis for sufficiently slow temporal modulation, regardless
of the dispersion band of interest. Through this approach, we
investigate creating a traveling-wave form variation of mat-
erial properties through use of Terfenol-D bar and an external
magnetic field that breaks the symmetry of wave dispersion
spectrum and onsets one-way propagation behavior in the
phononic crystal. The goal is to have, within a certain
mathematically predictable frequency range, waves that can
travel in a given direction but not in the opposing one. We
show that the dispersion relations parity in such systems has
been broken and that the transfer functions for forward and
backward traveling waves in a finite realization of the
modulated system have become inherently different.
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Magnetoelastic bar

Linear induction
motor mechanism

Figure 1. Physical platform for generating traveling waves for a
magnetoelastic bar.

The paper is organized as follows: first, the device con-
figuration and governing equation of the wave propagation in
a magnetoelastic bar are discussed. Then, an approximate
solution for the governing equation is provided, followed by
the development of extended TMM for dispersion analysis
and finding the transfer function in the proposed medium
where material properties oscillate in both space and time.
Two case studies are solved using the extended TMM and the
results are validated with the Fourier expansion method and
real-time simulations by a commercial finite element code,
COMSOL multi-physics. A future experimental work is dis-
cussed and the transfer function for an under construction
prototype is calculated. At the end, the accuracy of results are
examined in comparison with the Fourier-expansion method
at various temporal modulation velocities.

2. Device configuration and governing equations

Figure 1 shows a configuration similar to three phase linear
induction motors to generate traveling magnetic wave along a
bar made of magnetoelastic materials. The linear induction
mechanism provides the required magnetic field for variation
in the modulus of elasticity of the bar. LIM consists of Pri-
mary (equivalent to stator) and Secondary (equivalent to
rotor). For our application, motion of the secondary (the
moving plate) is not required and only the primary part of the
motor is used to generate a traveling-wave magnetic field. The
primary consists of a three-phase coil assembly. These coil
windings are shown by the colors blue, green, and red in
figure 1. The three-phase coil windings are inserted into a
steel lamination stack. When three-phase AC power is applied
to the LIM primary, a traveling-wave magnetic flux is
induced along the motor. The wave length of the traveling-
wave is the same as the pole pitch. Pole pitch of the motor is
the distance between the centers of two adjacent poles. The
speed of the traveling-wave is adjusted by the frequency of
the drive and the amplitude of the wave, which is controlled
by the drive [35]. The proposed configuration generates a
traveling-wave transverse magnetic field along the length of
the bar which results in the desired variation of modulus of
elasticity of the bar along its length. A closed loop controller
is utilized to control the generated magnetic field to ensure
that the magnitude of the field is not affected by the magneto-
electric couplings in the system. The Lagrangian of the
magnetoelastic bar is, hence, defined as L = T — U, where T
is the total kinetic energy and U is the total strain energy in

the bar:

A fLta oulx,0)\2
T =2 o, (2L dr,

_ A Lo Ou(x,t)
Ufzfo o(x, 1) =Eldx,

ey

where Lty is the length of the bar, A is the cross section of
the bar, p is the density, u is the axial deformation, o is the
normal stress, x is the spatial coordinate, and 7 is time. Under
the assumption of linear elasticity, small displacements, and
Kelvin—Voigt damping, the stress at the cross section x and
time ¢ in the bar is given by [36]

Ou(x, t) O%u(x, 1)
G
ax P avar
—E(.X, t) )‘(x’ t)’ (2)

ox,t)=Ex, 1)

where E is the modulus of elasticity, Cp is Kelvin—Voigt
damping coefficient, A is the magnetostriction due to the
applied magnetic field. Therefore, Lagrangian of the system is

an integral of function f (x, t, u, %, %) over the length of
the bar.
Lot Ou Ou
L:f x, t, u, —, — |dx, 3
0 f( Ox 8t) ©)

The governing equation of longitudinal vibration for an
unforced bar is, thus, calculated using Hamilton’s principle
for a continuous system [37]:

o ofar) o ar)_, “
ou  O0t\Ou Ox\ Ocu '

Using equations (1) and (2) to substitute for f in equation (4)
yields the governing equation of motion for the magnetoe-
lastic bar.

0
a—x (E(.X, [)

C O%u(x, 1)
Ox0Ot

X A(x, 1)) = %(p(x, t)%).

3ué};, ) T

&)

Magnetostriction of the bar (\) is proportional to the applied
magnetic field [36]. Figure 2(a) shows the variation of A in
Terfenol-D with applied magnetic field and therefore, mag-
netostriction is a nonlinear function of the magnetic field. In
order to simplify the governing equation, the applied magn-
etic field is assumed to stay within the range corresponding to
region II in figure 2(a), where a linear correlation between the
magnetostriction of the bar and the applied magnetic field can
be expected [38, 39]. Figure 2(b) shows the effect of applied
magnetic field on the elastic modulus of Terfenol-D. This
effect is called AE effect. For a wide range (less than
100 Gpa), the relation is a linear and in this paper, the non-
reciprocal magnetoelastic phononic crystal is designed and
studied under this assumption.
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Figure 2. (a) Magnetostriction of Terfenol-D with respect to the applied magnetic field [36]. (b) Effect of applied magnetic field on the

modulus of elasticity of Terfenol-D, AE effect [40].

3. Approximate solution to the governing equation

In this section, an approximate solution is provided to study
the wave propagation in a bar with periodic modulus of
elasticity in space and time. Trainiti [11] used a free wave
Floquet—Bloch solution with appropriately modulated ampl-
itude for wave propagation given by,

+00
u(x’ l) — ei(wtka) Z ﬁnein(wmtfkmx), (6)

n=-—00

where, wy,, k;;, i, are the temporal modulation frequency,
spatial modulation frequency and nth Fourier expansion
coefficient for the modulated amplitude respectively. Also, w
and k are the temporal and spatial frequencies of assumed free
wave. This solution can be rewritten as u = chlen (x)eln’,

where U, (x) is the spatial and e'“»’ is the temporal part of the
solution. w, = w + nw,, is the corresponding nth frequency
of the temporal part that consists of both frequency of the
external excitation and multiples of the temporal modulation
frequency. If the material properties only change in space, the
temporal part consists of only one frequency, which is the
frequency of the input excitation (e™’). Since this way, we
exclude the effect of temporal modulation from the assumed
solution, it can provide an approximate solution when the
modulus of elasticity of the bar also changes in time. This
approximation, however, allows us to extend TMM and
provides the possibility to approximately calculate directional
transfer functions for wave propagation in a nonreciprocal
bar. The transfer functions can be effectively used for
designing nonreciprocal elastic structures. Therefore, if only
the first dominant temporal term (e“") is considered, then we
can write equation (5) as:

. U GEdU . ap)
E+iwCp)— + —— + |w?p — iw—|U
E ) o a (“}p “or
OE o\ )
—|=—=)\+E—|e ¥ =0. 7
(6x 8x) ™

4. Extended TMM

The TMM can effectively be used to find the ratio between
the deformation of one end of the bar to the other end [25], or
the transfer function (TF). In this paper, the conventional
TMM is extended to solve for cases in which the modulus of
elasticity varies in both space and time. Two cases are studied
in this section. In the first case, the modulus of elasticity of
the bar is only a function of space. In the second case, the
modulus of elasticity varies both in space and time. In order to
extend the TMM, a new variable is introduced as the traveling
time, 7 (x). The traveling time is the time taken by the wave to
get to point x in the bar. We can write % = Cavg, Where cyyg
is the average of the wave speed in the bar from x = 0 to x
and t = 0 to ¢t = 7. For an infinitesimal section, the variation
of the traveling time with respect to the spatial coordinate is
written as

= 8)

where, ¢ = . E(x, 7)/p. Appending this differential
equation to the equation of motion in (7), allows us to use the

TMM for structures with spatiotemporal modulation. There-
fore, by adding a new state to the conventional state-space
form of equation (7), we have:

U 0 1 Olfu
dlav |=| — 2 i S A &
e e p/(E + iwCp) —- (E + iwCp) o
T 0 0 0"
0
1 OE 0N\ —iwr
i | (A + ER)e | ®

1

c

By solving the above equation, a matrix is obtained that
relates the value of the states, i.e. [U, dU/dx, 7] at any point
on the bar to the corresponding values at a reference point. As
finding the exact solution for (9) is rather complicated, we
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numerically calculated entries of matrix A [41], hence,

apr dap
AlLto, 0) = [a(Lro) @ (Lro)] = |21 an2|.  (10)
asp dasa

where a! (L) and a? (L) are the solution of the system
(equation (9)) at the end of the bar with the initial conditions
of a'(0) = [1, 0, 0]" and a?(0) = [0, 1, O]" respectively.
In a 1D elastic structure, the stress—strain relationship can be
simplified to U/dx = F/EA. Thus, after finding matrix A, we
can write equation (11) for displacement and force in the bar:
1
ap app
7], = Y 4 B
Lo anAE (Ltor) Clzzfo‘)'l 0

The matrix that relates the displacement and force of one end
of a bar to the other end is called the transfer matrix and

denoted by T
Iy T
T = R
[Tzl Tzz]

where, Tj) = a;, T, =

(12)
T = ayAE (L1o), and

1
alzm,
Ty = 022%‘ The matrix T provides useful information

about wave propagation in the bar. By looking at the eigen-
values of transfer matrix, A; and ),, it is found that they satisfy
M Ay = 1. Therefore, a pass band is defined as the range of
frequency, at which the magnitude of both eigenvalues is one.
Otherwise, the waves gets attenuated along the bar which
defines a stop band condition [25]. The physical meaning of
the eigenvalues of the matrix 7 is better revealed by rewriting
them in a polar form of A = e# = e**, Where y is named as
the wave propagation constant. The real part, & reflects the
logarithmic decay of the states corresponding to a stop band,
while a purely imaginary p indicates a pass band.

Here, we considered a bar with base excitation at one end
and free on the other end, which means F;, = 0. Thus, the
transfer function of the displacement of one end of the bar to
the displacement of the other end is written as:

— 2 =TF =T — Tia Iy T, (13)
The transfer function can provide the natural frequencies, as
well as the stop and pass bands.

4.1. Spatial modulation

First, we assume a bar in which the modulus of elasticity only
varies in space. Modulus of elasticity is defined as a periodic
function E = E[sin (k,,x) + C.], where E| is the amplitude
of the harmonic variation, k,, is the wavenumber, C, is the
coefficient representing constant part of the modulus. To
provide the required magnetic field for varying modulus of
elasticity in the magnetoelastic medium, a magnetic field in
the form of H = H, + H, sin(¢)(x)) is considered to be
applied to the magnetoelastic bar. H. and H, are the amplitude
of the constant and variable parts of the magnetic field, and
1 (x) denotes the phase difference between the coils. The
required magnetic field can be found from figure 2(b) to vary

l LTOt

Figure 3. The elastic bar made from magnetoelastic materials with
varying modulus of elasticity.

modulus of elasticity based on the required characteristics of
the design.

For spatial modulation case, equation (9) is solved just
for a length of the bar that covers a single full cycle of the
harmonic property variation. We call this length an ‘element’.
Figure 3 shows that the bar with the length of Ly, consists of
several elements with the length of /. The T matrix for the
whole bar is calculated by 7 = T)' [25], where T, is the
transfer matrix for the element, and n is the number of ele-
ments in the bar. Matrix T, is found by solving equation (9)
for only one element using solutions of the homogeneous
system for independent initial conditions [42].

To study wave transmission and attenuation inside a bar
with continuously varying properties in space, a finite element
approach can alternatively be used to find the matrix 7, of an
element and therefore, transfer function TF of the bar. In this
method, instead of solving equation (9) for an element to find
the 7, matrix, we discretize each element into finite sections
where the properties can be assumed constant along each
section. The transfer matrix for a bar with constant properties
is already known [18, 43]:

1 .
cos (k;x; — sin (k;x;
(7] = ) (14)
—zjw sin (k;x;)  cos (k;x;)
where, k; = %w is the wave number, z; = A; |[E;p; is

7
the mechanical impedance and A; is the cross section of the

jth section of the element. The total transfer matrix of the
element is found by multiplying the transfer function of each
section as,

Io =TT ... LT, 15)

where T; (j = 1, 2, ..., n) is the transfer function of the jth
section shown in figure 4 and 7 is the total number of dis-
cretized sections per element.

4.2. Spatiotemporal modulation

In the second case, the modulus of elasticity of the magne-
toelastic material is considered to be a function of space and
time. A modulus of elasticity is assumed in the form of
E = Ey[sin (k,,x + wy,t) + C.], where w,, is the temporal
modulation frequency. A magnetic field in the form of
H=H,+ H, sin(w,t + ¥(x)) is induced to the
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Figure 4. Dividing an element to finite small sections.

magnetoelastic bar to create such variation in elasticity. Since
the modulus of elasticity is a function of space and time,
finding a periodic element is not as convenient as the spatial
case. In other words, we need to find an element in which the
modulus of elasticity has at least one full harmonic period in
both space and time. Such an element might also be longer
than the length of the bar. Consequently, looking at the
transfer function of the bar (equation (13)) provides a more
convenient way of finding the pass and stop bands.

5. Case studies

Two different cases are studied here. The first one is a
bar with the length of Ly, made from magnetoelastic mate-
rials with a constant density of p = 9200 kg m—3. The mod-
ulus of elasticity is spatially modulated with E =
Eolsin (kyx) + Cl, ky 27

k,, implies that the modulus of elastlclty has 20 full harmonic
cycles along the bar, therefore, rendering a bar with 20 ele-
ments. Equation (9) is solved to find the T matrix

shows the variation

for one element (l = LT"‘) Figure 5

of eigenvalues with the dimensionless frequency €2 = “’c—’\"’,
0

where w is the excitation frequency, A, = Zk—ﬂ, and ¢y =

&% [11]. In the band structure shown in figure 5, frequency

range that corresponds to A = 1 is the pass band and the stop
band exists where A\ = 1. The Frequency range with a non-
zero real part for p indicates wave attenuation in the bar.
Figure 6(a) shows the absolute value of TF calculated from
equation (13). Each peak indicates a natural frequency for the
bar. The low amplitude transfer function for €2 between 0.43
and 0.53 shows that the bar absorbs the waves within that
frequency range and the waves do not propagate to the other
end of the bar. For the case in which the modulus only varies
spatially, there is no difference between the TF of forward and
backward wave propagations and the bar shows a reciprocal
behavior. Figure 6(b) shows the dispersion diagram for this
case obtained both theoretically by Floquet-Bloch theorem
and numerically by COMSOL-Multiphysics. In the time-
domain numerical simulation, the spatially modulated bar
is excited by a Gaussian wave packet that comprises the
same frequency range included in the TF analysis and the
dispersion contours are obtained via a two-dimensional

Fourier transforms [44]. The x-axis is the dimensionless
wavenumber, 3 = k), where K is the wavenumber. No
solution is found for (2 between 0.43 and 0.53, which reflects
a stop band.

Similarly, the second case is a bar with the length of L
made from magnetoelastic materials. In this case, the modulus
of elasticity is considered to be a function of both space and
time with E = Ey[sin (kpx + wpt) + C.l, kpn = 20;’”‘
Wy = Vuky, and C, = 2.5. The transfer functions are fOllI(l)ld
for v, = 0 and v,, = 0.2 ¢,. Figure 7(a) shows three different
transfer functions. The blue solid line is the previously dis-
cussed spatially modulated structure (1, = 0). The peaks
show the natural frequencies of the bar and the region with
the lower amplitude indicates the stop band frequency range.
The dashed green line and the dotted red line are the forward
and backward transfer function for v, = 0.2 ¢y. The differ-
ence between the stop Bands of the forward and the backward
transfer functions signify the nonreciprocal behavior. In other
words, some waves propagate from one side (side A in
figure 3) of the bar to the other side (side B in figure 3).
However, the same waves are attenuated when the source and
receiver are swapped and the bar acts as a one-way stop band
for those frequencies. Figure 7(b) shows the dispersion dia-
grams using an exact solution for a bar with time-varying
properties and is confirmed by the transient COMSOL
simulations [11]. The forward and backward stop bands
match very well with those in figure 7(a).

6. Future experimental work

An experimental prototype of the modulated magnetoelastic
device is currently under construction to physically realize
and validate the nonreciprocal wave propagation in practice.
The configuration of the experimental prototype resembles
the system displayed in figure 1. A three-phase linear motor is
designed with 19.05 cm pole pitches and total of eight poles.
The pole size defines the wave length of the traveling wave
(M\n). The total length of the motor is 194.31 cm which is
longer than 152.4 cm (8 poles times 19.05) to account for the
effect of the non-uniform magnetic field around the edges of
the motor. An AC drive is used for this prototype. The drive is
a 480 V three phase AC voltage class and has a maximum
output current of 22 amps. The drive is used to provide a
sinusoidal current to the motor. The frequency of the drive
defines the frequency of the traveling wave (w,,). The max-
imum frequency of the drive is 590 Hz. A rod of Terfenol-D
with the total length of 194.31 cm and the diameter of 1 cm is
used as the magnetoelastic material. The density of Terfenol-
D is 9200 kg m—3 and the average modulus of elasticity is
75 GPa. To give a quick insight into the working frequencies
and the expected operating range of the experimental device,
the forward and backward transfer functions are recalculated
for the stated parameters, as opposed to the dimensionless
analysis presented earlier. Figure 8 shows the simulated
results for the transfer function of the experimental prototype
for the case where w,, is equal to 500 Hz.
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7. Approximation error

When the material properties of the bar are only a function of
space (w,, = 0), the temporal term of u consists of only one
single harmonic. In this case, the results from TMM match
the theoretical Flouet-Bloch approach. However, when the
property of the bar is a function of both space and time, the

temporal part of the solution (e!»") consists of infinite number
of harmonics. In order to use the TMM method, only the
dominant frequency (w) is assumed to exist in the solution.
The comparison of the approximate results and the theoretical
Floquet-Bloch approach are shown in figure 7. In this section,
we study the error between current approach and the theor-
etical Floquet-Bloch approach [11] as a function of 1,,. By
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increasing 14,, the temporal modulation frequency (w,,) is
increased, which in turn increases the effect of w,, in the
frequency components of the temporal part, e, Hence, we
define two errors corresponding to the upper and lower
bounds of the stop bands as:

L _ OL
— |QTheo QTMM' % 100,

er
L
Q Theo

U U
U= |QTheo : QTMMl % 100, (16)
QThEO
where ¢ is the error for the lower bound and ¢;; is the error for
the upper bound of the stop band. Q% and Q% denote the
lower bound dimensionless frequencies of the stop band from
the theoretical solution and the TMM, respectively. QY. and
QY are the upper bound dimensionless frequencies of the
stop band from the theoretical solution and the TMM. Figure 9
shows these two errors for backward wave propagation for the
second case study. As w,, increases, the error between TTM
and theoretical results [11] increases. Thus, a threshold of
vy = 0.4 ¢ is considered reasonable for using extended TMM
when spatiotemporal modulation is present.

8. Conclusion

In this paper, the nonreciprocal behavior of a magnetoelastic
bar was studied by using TMM. A physical platform
inspired by LIM was proposed to change the modulus of
elasticity of a magnetoelastic bar in space and time. The
governing equation of wave propagation in a 1D magne-
toelastic bar in the presence of a magnetic field were studied
and an approximate solution was discussed. Two different
case studies were considered. In the first case, the modulus
of elasticity was assumed to be varying in space only, while
in the second case, the modulus of elasticity was assumed to
be varying in both space and time. An extended TMM was
introduced and employed to find the directional transfer
functions of the bar. For the first case, an alternative solution
utilizing finite element method was proposed to find the
transfer function. The second case exhibited the expected
nonreciprocal wave propagation. The results of both cases
were validated against numerical simulations and the
theoretical Floquet—Bloch method. The transfer function for
a prototype under construction was calculated. At the end,
the error from single harmonic approximation with respect
to the speed of variation of modulus of elasticity in time was
discussed and justified.
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