
Noname manuscript No.
(will be inserted by the editor)

Scoring Bayesian Networks of Mixed Variables

Bryan Andrews · Joseph Ramsey · Greg Cooper

Received: date / Accepted: date

Abstract In this paper we outline two novel scoring
methods for learning Bayesian networks in the pres-

ence of both continuous and discrete variables, that is,
mixed variables. While much work has been done in
the domain of automated Bayesian network learning,

few studies have investigated this task in the presence
of both continuous and discrete variables while focusing
on scalability. Our goal is to provide two novel and scal-
able scoring function capable of handling mixed vari-

ables. The first method, the Conditional Gaussian (CG)
score, provides a highly efficient option. The second
method, the Mixed Variable Polynomial (MVP) score,

allows for a wider range of relationships, including non-
linearity, but is noticeably slower than CG. Both scores

Research reported in this publication was supported by grant
U54HG008540 awarded by the National Human Genome Re-
search Institute through funds provided by the trans-NIH
Big Data to Knowledge (BD2K) initiative. The content is
solely the responsibility of the authors and does not nec-
essarily represent the official views of the National Insti-
tutes of Health. This research was also supported by grant
#4100070287 from the Pennsylvania Department of Health.
The Department specifically disclaims responsibility for any
analyses, interpretations, or conclusions. This research was
also supported by the National Library of Medicine, Award
Number R01LM012087. The content is solely the responsi-
bility of the author and does not necessarily represent the
official views of the granting agencies. This work has been
completed without any conflicts of interest.

B. Andrews
University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: bja43@pitt.edu

J. Ramsey
Carnegie Mellon University, Pittsburgh, PA 15213, USA
E-mail: jdramsey@andrew.cmu.edu

G. Cooper
University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: gfc@pitt.edu

calculate log likelihood and degrees of freedom terms,
which are incorporated into a Bayesian Information Cri-

terion (BIC) score. Additionally, we introduce a struc-
ture prior for efficient learning of large networks and
a simplification in scoring the discrete case which per-

forms well empirically. While the core of this work fo-
cuses on applications in the search and score paradigm,
we also show how the introduced scoring functions may

be readily adapted as conditional independence tests
for constraint-based Bayesian network learning meth-
ods. Lastly, we describe ways to simulate mixed vari-
able networks and apply the simulations to derive per-

formance results for the proposed methods.

Keywords Bayesian network learning · mixed

variables · hybrid Bayesian network learning · causal
search

1 Introduction

Bayesian networks are a widely used graphical frame-
work for representing probabilistic relationships among
a set of variables. Under assumptions, we can inter-
pret such a network as a causal model [19]. In gen-
eral, a Bayesian network consists of two components,
a structure component and a distribution component.
The structure component encodes conditional indepen-
dence relationships between variables allowing for ef-
ficient factorization, while the distribution component
parameterizes the probabilistic relationships among the
variables. In this paper, our interests lie in learning
the structure component of Bayesian networks, repre-
sented by a Directed Acyclic Graph (DAG). Automated

Bayesian network learning from data is an important
and active area of research. However, few researchers

2 Bryan Andrews et al.

have investigated this task in the presence of both con-
tinuous and discrete variables [2,7–9,13,16,18]. In the
limited work that has been done, researchers either ig-
nore the case where continuous variables are parents
of a discrete variable. or do not provide solutions that
scale much beyond 100 variables. The goal of this pa-
per is to provide solutions for researchers working with
datasets of hundreds of variables.

Most methods for learning Bayesian networks fall
into one of two categories: search and score or constraint-
based. Search and score methods heuristically search
the space of structures using an objective function to
evaluate fitness. Constraint-based methods use condi-
tional independence tests to systematically assess the
fit of each edge in a DAG. While the core of this pa-
per focuses on the search and score paradigm, we also
show how our proposed scoring functions may be read-
ily adapted as a conditional independence test for constraint-
based methods. For additional background information
on Bayesian networks and learning their structures, see

[5]. The remainder of this paper is organized as follows.
Section 2 discusses scoring functions and the Bayesian
Information Criterion (BIC). Sections 3 and 4 introduce
the Conditional Gaussian (CG) score and the Mixed

Variable Polynomial (MVP) score respectively. Section
5 details several adaptations of the introduced methods.
Section 6 reports empirical results of the CG and MVP

methods on data generated using simulation. Section 7
provides discussion and conclusions.

2 Scoring Bayesian Networks

Search and score methods utilize an objective function
to evaluate the fitness of DAGs on a given dataset D.
Let S be a score function and G be a DAG contain-
ing m variables. Let Yi be the ith variable with parents
Pai for i ∈ {1, 2, . . . ,m}. When scoring G, most search
algorithms require that S decomposes into local compo-
nents involving only Yi and Pai. This property is known

as decomposability. Given a score is decomposable, we
need only compare the differing local components when
deciding between two DAGs. To solidify this concept,
we say a score S is decomposable if it can be repre-
sented as a sum of local components. We score DAG G
on dataset D using score S as,

S(G,D) =
m∑
i=1

s(Yi|Pai),

where s(Yi|Pai) is the score of the current local com-
ponent.

Note that several DAGs can encode the same set of
conditional independence relationships. A set of DAGs

which encodes the same independencies is known as a
Markov Equivalence Class (MEC). If a scoring function
S scores all DAGs in the same MEC equally, then S is
score equivalent. To clarify, let G and G′ be DAGs over
dataset D. If DAGs G and G′ encode the same condi-
tional independence relationships and S is score equiv-
alent, then S(G,D) = S(G′,D). This is a desirable trait
because it allows search algorithms, such as Greedy
Equivalent Search (GES) [4], to search over MECs di-
rectly.

Another favorable trait for scores, which algorithms
such as GES require for optimality in the sample limit,
is consistency. Consistency, in terms of a search and
score procedure, states that a DAG G containing all
the conditional independence relationships in the data
D will score higher than a DAG G′ which does not con-
tain all such relationships, S(G,D) > S(G′,D). Further-
more, if two DAGs G and G′ both contain all the condi-
tional independence relationships in D, but G contains
fewer parameters, then G will score higher, S(G,D) >
S(G′,D).

2.1 The Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a widely
used scoring measure for model selection. Let M be a

model we wish to score given a dataset D. We can write
the probability of model M given D using Bayes’ rule
as,

p(M |D) =
p(D|M)p(M)

p(D)
.

However, since p(D) does not depend onM and remains
constant across different models, we only consider,

p(M |D) ∝ p(D|M)p(M). (1)

BIC aims to approximate p(M |D) in (1). For now, we
assume p(M) is distributed uniformly and thus drop it.
Later in section 5.1, we introduce an alternative distri-
bution for p(M), which we find performs well in prac-
tice. Reference [10] shows, when allowing for a prior

over the parameters, the logarithm of p(D|M) can be
approximated as:

log p(D|M) ≈ −2`(θ) + df log n, (2)

where `(θ) is the maximum log likelihood of the data,
df are the degrees of freedom, and n is the sample size.
The approximation on the right hand side of (2) char-
acterizes the BIC, introduced by [15]. BIC is decom-
posable and can be readily applied to score Bayesian
networks. In sections 3 and 4, we detail how to calcu-
late the log likelihood and degrees of freedom terms for

Scoring Bayesian Networks of Mixed Variables 3

BIC using our proposed scoring methods. We score a
DAG G by calculating and summing over BIC values
for each variable Yi and its parents Pai in G.

3 The Conditional Gaussian Score

The Conditional Gaussian (CG) score calculates condi-
tional Gaussian mixtures using ratios of joint distribu-
tions. We make the following assumptions for the CG
sore.

Assumption 1 The data were generated from a
Gaussian mixture where each Gaussian is defined for
a setting of the discrete variables.

Assuming the data are generated from such a model
inherently biases the score towards favoring discrete
parents of continuous children since the discrete vari-
ables define how the Gaussians in the mixture are formed.
However, this assumption allows for very efficient cal-
culations of the models to be computed by the score.
In section 6, we see that even with such an assumption,

CG performs quite well.

Assumption 2 The instances in the data are inde-
pendent and identically distributed.

The data are assumed to be i.i.d. so that we can
calculate the log likelihood as a sum over the marginal
log probabilities for each instance in the data.

Since CG uses BIC as a framework to evaluate its

approximations, the score is decomposable into a sum
of parent-child relationships. In order to outline such a
relationship, we introduce continuous variables C1, C2

and discrete variables D1, D2. Below we detail how CG
forms approximations using these four variables with
both a continuous and discrete child, however this pro-

cedure can easily be completed with any number of
variables. We approximate the conditional distribution
where C1 is a child with parents C2, D1, and D2 as,

p(C1|C2, D1, D2) =
p(C1, C2, D1, D2)

p(C2, D1, D2)

=
p(C1, C2|D1, D2)p(D1, D2)

p(C2|D1, D2)p(D1, D2)

(3)

and the conditional distribution where D1 is a child
with parents C1, C2, and D2 as,

p(D1|C1, C2, D2) =
p(C1, C2, D1, D2)

p(C1, C2, D2)

=
p(C1, C2|D1, D2)p(D1, D2)

p(C1, C2|D2)p(D2)
.

(4)

In (3) and (4), we can straightforwardly calculate
p(C1, C2|D1, D2) and p(C1, C2|D2) using Gaussian dis-
tributions partitioned on the discrete variables and
p(D1, D2) and p(D2) using multinomial distributions. It

is important to note that if we treat p(C1, C2, D1, D2)
as Gaussian for each setting of D1 and D2, then to
calculate p(C1, C2, D2) correctly, we must treat each
setting of D2 as a mixture of Gaussians. We approxi-
mate this mixtures with single Gaussian since, by the
central limit theorem, we expect these distributions to
converge to a Gaussian. In section 6.1 we validate this
approximation experimentally.

CG performs the above approximations in log space
as differences of log distributions. The score of a DAG
G given a dataset D is calculated as the sum across
all BIC measures of similar parent-child relationships.
Additionally, because of how CG computes each parent-
child relation, the score is score equivalent and, assum-
ing the denominator is a single Gaussian, CG is consis-
tent. See the supplementary materials for proof.

In the remainder of the section introduction we pro-
vide a high-level overview of the CG method; Sections
3.1 - 3.2 provide details. Let Yi be the ith variable in G
with the set Pai containing the parents of Yi. Further-
more, let Pai consist of two mutually exclusive subsets

Pci and Pdi such that Pci and Pdi hold the continuous
and discrete parents of Yi respectively. To evaluate the
parent-child relationships between a variable Yi and its

parents Pai, CG calculates the log likelihood and de-
grees of freedom for two sets of variables, {Yi ∪ Pai}
and Pai. The log likelihood of Yi given its parents Pai
is computed as the difference between the log likelihood

terms for {Yi ∪ Pai} and Pai. Similarly, the degrees of
freedom are calculated as the count difference in param-
eters used to fit {Yi ∪ Pai} and Pai. When evaluating

one of the two sets of variables, the data D for the vari-
ables in that set are first partitioned according to the
discrete values. That is, we divide the data using a par-
titioning set Πi with a partition for each combination

assignment of the discrete variables. Further, we form a
design matrix Xp for each partition p ∈ Πi. Xp holds
the values of the continuous variables in the set for par-
tition p and is used to fit a Gaussian. We additionally
fit a multinomial according to counts. Lastly, BIC com-
putes the score using the log likelihood and degrees of
freedom.

3.1 Modeling a Set of Variables

When using CG, we have three different kinds of sets
to model: {Yi∪Pai} where Yi is continuous, {Yi∪Pai}
where Yi is discrete, and Pai. They all follow the same
generic format so we will describe the process in gen-

eral while pointing out the subtle differences where they
apply.

First we partition the data with respect to a par-
titioning set Πi generated according to the discrete

4 Bryan Andrews et al.

variables Pdi. Note that if our set includes a discrete
child Yi, then the discrete variables are comprised of
{Yi ∪ Pdi} and we partition according to these vari-
ables. Πi contains a partition for every combination
values in the discrete variables Pdi. We define the par-
titioning set Πi using a Cartesian product of the dis-
crete variables. Let |Pdi| = d, then partitioning set
Πi = (Yi) × Pdi(1) × Pdi(2) × · · · × Pdi(d) where Yi
is the set of values for the child (included only if Yi is
discrete), Pdi(1) is the set of values for the first dis-
crete parent, Pdi(2) is the set of values for the second
discrete parent, and so forth.

Let |Pci| = c, then for each partition p ∈ Πi we
define a design matrix Xp with np observations and c
variables corresponding to the variables in Pci. Here, if
our set includes a continuous child Yi, then we instead
define Xp with c + 1 variables corresponding to the
variables in {Yi ∪ Pci}. That is,

Xp =

x11 x12 . . . x1c (y1)

x21 x22 . . . x2c (y2)
...

...
. . .

... (
...)

xnp1 xnp2 . . . xnpc (ynp
)

 ,
where xjk is the jth value of the kth variable in Pci and
yj is the jth value of the child Yi (included only if Yi is
continuous) for j ∈ {1, 2, . . . , np} and k ∈ {1, 2, . . . , c}.
In the definition of Xp above, we drop the subscript p
on the elements in the matrix for a less cramped for-
mulation.

3.2 Calculating the Log Likelihood and Degrees of
Freedom

The calculations for the three aforementioned sets are
identical in formulation, so without loss of generality,
we demonstrate the log likelihood and degrees of free-
dom calculations for the set {Yi ∪ Pai}. The log likeli-

hood for a set is calculated component-wise over each
partition and summed together as follows,

`{Yi∪Pai}(θ|X) =
∑
p∈Πi

`p(θp|Xp). (5)

The degrees of freedom are calculated in a similar man-
ner,

df{Yi∪Pai}(θ) =
∑
p∈Πi

dfp(θp)− 1, (6)

where the minus 1 term accounts for the redundant
mixing component. Let N be the number of observa-
tions in the unpartitioned dataset. For each partition
p ∈ Πi, let k be the number of variables in Xp and

xj be the jth observation in Xp. Additionally, assume
the subscript p is implicit on xj for the remainder of
this section. From [1], we calculate the Gaussian log
likelihood for partition p ∈ Πi as,

`(µp,Σp|Xp) =− npk

2
log 2π − np

2
log |Σp|

− 1

2

np∑
j=1

(xj − µp)TΣ
−1
p (xj − µp),

(7)

where µp,Σp are the vector valued mean and variance
of the Gaussian distribution respectively. The maxi-
mum likelihood estimate Σ̂p is computed as,

Σ̂p =
1

np

np∑
j=1

(xj − x̄p)(xj − x̄p)T . (8)

Let µp = x̄p. We note that while x̄p converges quickly

to µp. Using the estimate in (8), the log likelihood in
(7) simplifies to,

`(Σ̂p|Xp) = −np
2

(log |Σ̂p|+ k log 2π + 1). (9)

We use (9) to compute the log likelihood of a Gaus-

sian conditioned on discrete variables. However, we still
must add the log probability of an instance being from
partition p ∈ Πi to each instance in partition p to calcu-

late the desired joint log likelihood. These probabilities
are computed using the maximum likelihood estimate
from variables distributed according to a multinomial
distribution. This is the count of instances in p denoted

np over the total count N of all instances:
np

N . Thus, we
calculate the log likelihood for partition p ∈ Πi as,

`p(θ̂p|Xp) = −np
2

(log |Σ̂p|+ k log 2π + 1) + np log
np
N
.

(10)

We use (10) to calculate `p(θp|Xp) in (5). To find the
number of parameters in partition p ∈ Πi, we count the
number of unique terms in Σ̂p plus one for the mixing
component in (10). Therefore,

dfp(θ̂p) =
k(k + 1)

2
+ 1. (11)

We use (11) to calculate dfp(θp) in (6).
Using the form of (3) and (4), we calculate the log

likelihood and degrees of freedom terms as,

`i(θ̂|X) = `{Yi∪Pai}(θ̂|X)− `Pai(θ̂|X), (12)

dfi(θ̂) = df{Yi∪Pai}(θ̂)− dfPai(θ̂). (13)

BIC uses (12) and (13) to compute the score for the
parent-child relationship of Yi given Pai.

Scoring Bayesian Networks of Mixed Variables 5

4 The Mixed Variable Polynomial Score

The Mixed Variable Polynomial (MVP) score uses higher
order polynomial functions to approximate relationships
between any number of continuous and discrete vari-
ables. Since MVP uses BIC as a framework to evalu-
ate its approximations, the score is decomposable into
a sum of parent-child relationships. The MVP method
scores the decomposed local components of a DAG G
using the approximating polynomial functions. To mo-
tivate the ideas underlying this approach, we note the
implications of Weierstrass’s approximation theorem.

Weierstrass Approximation Theorem. Suppose
f is a continuous real-valued function defined on the
real interval [a, b]. For every ε > 0, there exists a poly-
nomial p such that for all x ∈ [a, b], we have |f(x) −
p(x)| < ε.

In short, as long as a function f is continuous and
the contributing variables exist within a bounded inter-
val, then there exists a polynomial function which ap-

proximates f to an arbitrary degree of accuracy. This
brings us to our first two assumptions.

Assumption 1 The sample space of each variable
is finite.

To shed some light on this assumption, we note

that MVP’s approximations are functions of the con-
tinuous variables. Thus, the motivation for assumption
1 becomes apparent as a prerequisite of the previously

stated theorem; finite sample spaces are bounded. Addi-
tionally, we note that MVP forms partitions according
to values of discrete variables. Therefore, to enforce a

finite number of partitions, we require that the discrete
variables have finite support.

Assumption 2 Each continuous variable is a con-
tinuous function of its continuous parents plus additive
Gaussian noise. The probability mass functions of each
discrete variable are described by continuous nonzero
functions of the variable’s continuous parents.

The motivation for this assumption follows from
Weierstrass’s approximation theorem since f , the func-
tion to be approximated, must be continuous. However,
along with assuming continuity, we restrict the model
class in the continuous child case to those with addi-
tive Gaussian noise. This assumption allows us to use
least squares regression in order to obtain maximum
likelihood estimates efficiently for continuous variables.

Additionally, we assume nonzero probability in the dis-
crete case so that, in the sample limit, our approxima-
tion will be non-negative. It is worth noting that we
do not assume linearity unlike other commonly used
scores.

Assumption 3 There are no interaction terms be-
tween continuous parents when defining a child variable
in the network.

We make this assumption for tractability. Modeling
interactions among the continuous parents is a com-
binatorial problem. Thus, we forgo these interaction
terms.

Assumption 4 The instances in the data are inde-
pendent and identically distributed.

The data are assumed to be i.i.d. so that we can
calculate the log likelihood as a sum over the marginal
log probabilities for each instance in the data.

Under these assumptions, the MVP score is consis-
tent in the large sample limit with the correct choice of
maximum polynomial degree. See the supplementary
materials for proof. However, due to the use of non-
linear functions, it is not score equivalent. In section 6,
we see that even without this property, the MVP score
still performs quite well. Additionally, there has been
work suggesting that asymmetric scores can be benefi-

cial in inferring causation, most notably [17].

4.1 Partitioned Regression

Let Yi be the ith variable in G and Pai be the set con-
taining the parents of Yi. Furthermore, let Pai consist
of two mutually exclusive subsets Pci and Pdi such

that Pci and Pdi hold the continuous and discrete par-
ents of Yi respectively. In general, to evaluate the local
score component between Yi and its parents Pai, MVP

first partitions the data with respect to the discrete par-
ents Pdi and performs least squares regression using the
continuous parents Pci. The log likelihood and degrees
of freedom for the model are calculated depending on
the variable type of Yi. Lastly, BIC computes the local
score component using the log likelihood and degrees of
freedom.

The partitioning set Πi with respect to the discrete
parents Pdi contains a partition for every combination
of values in the discrete parents. We define the par-
titioning set Πi using a Cartesian product of the dis-
crete parents Pdi. Let |Pdi| = d, then partitioning set
Πi = Pdi(1) × Pdi(2) × · · · × Pdi(d) where Pdi(1) is
the set of values for the first discrete parent, Pdi(2) is
the set of values for the second discrete parent, and so
forth.

Let |Pci| = c, then for each partition p ∈ Πi we

define a design matrix Xp with np observations and
c variables corresponding to the variables in Pci. Ad-
ditionally, we add a bias term and higher order poly-
nomial terms for each variable in Pci, stopping at a

6 Bryan Andrews et al.

maximum order specified by the function g(np),

Xp =

1 x11 . . . x1c x

2
11 . . . x

2
1c . . . x

g(n)
11 . . . x

g(n)
1c

1 x21 . . . x2c x
2
21 . . . x

2
2c . . . x

g(n)
21 . . . x

g(n)
2c

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

1 xn1 . . . xnc x
2
n1 . . . x

2
nc . . . x

g(n)
n1 . . . x

g(n)
nc

 .
In this paper, we report two choices for g(np): g(np) =
1, and g(np) = blog npc. We have also tried other choices,
such as g(np) = 3, but found the above options provide
the best solutions. In the definition of Xp above and xj
and yp below, we drop the subscript p on their elements
and on np for a less cramped formulation. Define xj as
the jth observation in Xp and yp, whose values come
from the child Yi, as the target vector for least squares
regression,

xj =
[
1 xj1 . . . xjc x

2
j1 . . . x

2
jc . . . x

g(n)
j1 . . . x

g(n)
jc

]
,

yp =

y1
y2
...
yn

 .
We calculate the log likelihood of a variable Yi given a
set of parents Pai as the sum over the log likelihoods

from each partition p ∈ Πi,

`i(θ|X,y) =
∑
p∈Πi

`p(θp|Xp,yp), (14)

where `p(θp|Xp,yp) is defined depending on whether
Yi is discrete or continuous. Similarly, the degrees of
freedom for Yi are calculated as the sum over parameter
counts in each partition p ∈ Πi,

dfi(θ) =
∑
p∈Πi

dfp(θp). (15)

The BIC computes the local score component using the
log likelihood `i(θ|X,y) and degrees of freedom dfi(θ).
For the remainder of this section, we assume the sub-
script p is implicit on xj and any on β terms where it
is omitted.

4.2 Modeling a Continuous Child

In the case where Yi is continuous, for each partition
p ∈ Πi with design matrix Xp and target vector yp,
we use the maximum likelihood estimate to determine
the log likelihood `p(θp|Xp,yp) and degrees of freedom
dfp(θp). By assumption 2, yj = f(xj) + ε where ε ∼
N(0, σ2) is additive Gaussian noise with variance σ2

and f is an arbitrary continuous function. Given our

assumptions, there exists a polynomial function f̂ which
approximates f such that yj ≈ f̂(xj) + ε. Estimating
the parameters of f̂ using least squares regression, we
have ŷj ∼ N(Xpβp, σ

2
p). Therefore the log likelihood

for each partition p ∈ Πi becomes,

`p(βp, σ
2
p|Xp,yp) =− np

2
log 2π − np

2
log σ2

p

−
(yp −Xpβp)

T (yp −Xpβp)

2σ2
p

,

(16)

where the maximum likelihood estimates are computed
as,

σ̂p
2 =

(yp −Xpβ̂p)
T (yp −Xpβ̂p)

np
, (17)

β̂p = (XT
pXp)

−1XT
p yp. (18)

Using the estimates in (17) and (18), the log likelihood
in (16) simplifies to,

`p(β̂p, σ̂p
2|Xp,yp) = −np

2
(log 2π + log σ̂p

2 + 1), (19)

which we use to calculate `p(θp|Xp,yp) in (14). To find
the number of parameters in each partition p ∈ Πi for

the calculation of dfp(θp) in (15), we count the number
of terms in β̂p,

dfp(θp) = c · g(n) + 1. (20)

The BIC uses (14) and (15) to compute the parent-child
relationship for Yi given Pai.

4.3 Modeling a Discrete Child

In the case where Yi is discrete, for each partition p ∈
Πi with design matrix Xp and target vector yp, we cal-
culate the log likelihood `p(θp|Xp,yp) and degrees of
freedom dfp(θp|Xp,yp) using least squares regression.
Suppose Yi consists of k categories. Let fh calculate the
probability for the hth category in Yi given its continu-

ous parents Pci where h ∈ {1, . . . , k}. By Assumption
2, there exists a polynomial function f̂h which approxi-
mates fh arbitrarily well. With this in mind, we aim to
approximate each fh using the results of least squares
regression Xpβh where β̂h is a vector of coefficients.
Our end goal is to used the approximations of each fh
as a conditional probability mass functions in the log
likelihood calculation.

Define the categories of yp such that each yj ∈
{1, . . . , k}. We expand yp into k binary vectors where
the hth vector represents the hth category and the jth

Scoring Bayesian Networks of Mixed Variables 7

element of vector h asserts whether or not the jth ob-
servation is from category h. To represent these binary
vectors in matrix notation, we define 1{condition} as an
indicator variable which is 1 if condition is true and 0
otherwise. The hth binary vector is then defined as,

1{y=h} =

1{y1=h}
1{y2=h}

...
1{yn=h}

 .
We further define 1 to represent an np×1 vector of ones.
Using the binary vectors as our targets, we calculate the
maximum likelihood estimate of least squares regression
which gives us,

β̂h = (XT
pXp)

−1XT
p 1{y=h}.

If we want to interpret the results of least squares re-
gression Xpβ̂h as probability values, we first must en-
sure that,

1.
∑k
h=1Xpβ̂h = 1

2. xjβ̂h ≥ 0, ∀ j ∈ {1, . . . , np}, h ∈ {1, . . . , k}.
We prove condition 1 is necessarily true and that condi-
tion 2 holds in the sample limit. See the supplementary
materials for proofs.

Unfortunately, there is no such guarantee the val-
ues given by least squares regression will be strictly
non-negative outside of the sample limit. Instead we

define a procedure to map the sets of values calculated
for each j to the domain of valid probability distribu-
tions. This is done by requiring the minimum tentative
probability for each j be at least 1

np
while maintain-

ing the condition that the probabilities sum to one. We
choose to avoid setting values directly to zero in order
to prevent assigning zero probability to any observed

instances. Therefore, we settle for a term which tends
towards zero.

Our procedure as follows:

1. Shift the tentative probabilities such that they are
center about a non-informative center, 1

k , by sub-
tracting 1

k .
2. Shrink the tentative probabilities such that the small-

est value will equal 1
np

after shifting back by 1
k .

3. Shift the scaled values back by 1
k to the original

center.

Since we only want to perform this procedure if we
have an invalid probability distribution, we define mj =
min{ 1

np
,xjβ̂h} so that mj is either the minimum ten-

tative probability for j or 1
np

. We calculate the scaling
factor in step 2 in our procedure, αj as,

αj(mj −
1

k
) +

1

k
=

1

np
,

where (mj − 1
k) is the shifted values. Solving for αj we

find,

αj =

1
np
− 1

k

mj − 1
k

.

Note, that if mj = 1
np

, then αj = 1 and we do not
perform a shift. We compute the log likelihood in the
discrete case as

`p(θ̂p|Xp,yp) =

np∑
j=1

log
(
αjxjβ̂yj +

1

k
(1− αj)

)
. (21)

We use (21) to calculate `(θp|Xp,yp) in (14). To find
the number of parameters in each partition p ∈ Πi,
we count the number of terms across all β̂j . Each β̂j
has c · g(np) + 1 parameters and j ranges over k val-
ues. However, since Proposition 1 shows the estimated
probabilities sum to one, the number of free parameters
is

dfp(θ̂p) = (k − 1)(c · g(np) + 1). (22)

As before, BIC uses (14) and (15) to compute the parent-
child relationship for Yi given Pai.

5 Implementation Details and Adaptations

In this section we consider various adaptations of the
two proposed scores. In section 5.1, we discuss a bino-
mial structure prior which allows for efficient learning

of large networks. In section 5.2, we discuss a simplifi-
cation for scoring discrete children which performs well
empirically. In section 5.3, we discuss how to adapt our
scores into conditional independence test for constraint-

based methods.

5.1 Binomial Structure Prior

We introduce a structure prior inspired by the bino-
mial distribution. The idea is to give a prior over the
number of parents a node has, so that if the algorithm
is producing graphs that are too sparse, one may, by
adjusting the binomial probability, encourage nodes to
have more parents. Let n be the number of variables in
our dataset. We view the addition of each edge as an
independent event which occurs with probability r

n−1
where r is the expected number of parents for any given
variable, and n− 1 is the total number of possible par-
ents. Then we have,

π(k) =
(r

n− 1

)k(
1− r

n− 1

)n−k−1
,

8 Bryan Andrews et al.

where π(k) is the prior probability that any given vari-
able Yi in DAG G has k parents. Often it is more con-
venient to work in log space. Thus we calculate the log
prior probability as,

log π(k) = k log
(r

n− 1

)
+ (n− k− 1) log

(
1− r

n− 1

)
.

Usually, BIC assumes the prior probability of models in
equation (1) is distributed uniformly. Using the bino-
mial structure prior instead, we are able to adapt BIC
such that it performs better with large networks. We
report these findings in section 6.2.

5.2 Multinomial Scoring with Continuous Parents

Both scores presented in this paper reduce to multi-
nomial scoring in the case of a discrete child with ex-
clusively discrete parents. In this section, we discuss
extending the use of multinomial scoring for discrete
children and discrete parents to include continuous par-
ents. Before starting a search, we create discretized ver-

sions of each continuous variable using equal frequency
binning with a predefined number of bins b. Whenever
scoring a discrete child, we replace any continuous par-

ents with the precomputed discretized versions of those
variables. This allows us to quickly and efficiently per-
form multinomial scoring for all discrete children. We

report our finding when choosing b = 3 as a modifica-
tion to CG in section 6.4.

5.3 As a Conditional Independence Test

To adapt either score into a conditional independence

test, we calculate the log likelihood and degrees of free-
dom as usual, but perform a likelihood ratio test instead
of scoring with BIC. Suppose we wish to test Y0⊥⊥Y1|Z
where Y0 and Y1 are variables and Z is a conditioning
set in a dataset D. Define `0 and df0 respectively as the
log likelihood and degrees of freedom for Y0 given Pa0
where Pa0 = {Y1} ∪ Z. Further, define `′0 and df ′0 re-
spectively as the log likelihood and degrees of freedom
for Y0 given Pa′0 where Pa′0 = Z. Perform a likelihood
ratio test with test statistic 2(`0 − `′0) and df0 − df ′0
degrees of freedom. This tests whether the model en-

coding Y0⊥⊥Y1|Z or the model encoding Y0⊥6⊥Y1|Z fits
the data in D better. If the scoring method used is not
score equivalent, then we must also perform a likelihood
ratio test with test statistic 2(`1− `′1) and df1− df ′1 de-
grees of freedom where Y0 and Y1 are swapped. In this
case we decide the variables are dependent if there is
enough evidence in either test to support that hypoth-
esis.

6 Simulation Studies

To simulate mixed data, we first randomly generate a
DAG G and designate each variable in G as either dis-
crete or continuous. G is generated by randomly defin-
ing a causal order and adding edges between the vari-
ables. Edges are added between randomly chosen pairs
of nodes such that the connections are true to the pre-
specified ordering; they are continually added until the
average degree of the graph reaches a user specified
amount. Variables in the network without parents are
generated according to Gaussian and Multinomial dis-
tributions. We create temporary discretized versions of
each continuous variable using equal frequency binning
with 2 to 5 bins uniformly chosen. In causal order, we
simulate the remaining variables as follows. Continuous
variables are generated by partitioning on the discrete
parents and randomly parameterizing the coefficients of
a linear regression for each partition. Discrete variables
are generated via randomly parameterized Multinomial
distributions of the variable being simulated, the dis-

crete parents, and the discretized versions of the con-
tinuous parents. All temporary variables are removed
after the simulation is complete. For all simulations,

each variable is assigned either continuous or discrete
with equal probability. Additionally, discrete variables
will have a uniformly chosen number of categories be-
tween and including 2 and 5.

In order to prevent the number of multinomial cells
for discrete variables from getting too large, we bound

the maximum degree of any node in the generated graph
to 5. In our experiment, we tested on graphs of average
degree 2 and 4. Figure 1 and 2 show the distribution of

the node degrees for different settings of average degree.

We compare CG with and without the discretization
heuristic and MVP with g(np) = 1, g(np) = blog(np)c
using the following performance measures.

AP - adjacency precision: correctly predicted adjacent /
all predicted adjacent

AR - adjacency recall: correctly predicted adjacent / all
true adjacent

AHP - arrowhead precision: correctly predicted arrowheads
/ all predicted arrowheads

AHR - arrowhead recall: correctly predicted arrowheads
/ all true arrowheads (in found adjacencies)

T - elapsed time (seconds)

All results are averaged over 10 randomly simulated
graphs and were run on a laptop with an Intel(R) Core

I7 @ 3.1 GHz with 16GB of memory. The results in
Tables 1 - 5, used the same simulated dataset and can
be directly compared to each other. The results in Ta-
bles 6 and 7 each required a different set of simulation

Scoring Bayesian Networks of Mixed Variables 9

Fig. 1 Distribution of node degrees in graphs of average de-
gree 2.

Fig. 2 Distribution of node degrees in graphs of average de-
gree 4.

parameters and thus use different simulated datasets.
Prior to running tests on any algorithm, the data were
standardized.

6.1 The Conditional Gaussian Approximation

We empirically validated the choice of approximating a
mixture of Gaussians with a single Gaussian in CG in

Table 1. We denote the use of a single Gaussian as Ap-
prox and the use of the correct mixture calculation as
Exact. Originally the results did not appear compara-
ble as the approximate method output a much denser
graph than the exact method. In the results shown,
we tuned the density of the graphs using the binomial
structure prior proposed in section 5.1. We can see that
the approximation is as good (or better in some cases)
than the exact method. In the comparisons, we sim-
ulate graphs of average degree 2 and 4 with 200 and
1,000 samples and 100 measured variables. Results are
given with the binomial structure prior adjustment set
to 1.

6.2 Binomial Structure Prior

We tested the usefulness of the binomial structure prior

by simulating 200 and 1,000 samples from graphs of
average degree 2 and 4 with 100 measured variables.
The tests were performed using fGES [11], an optimized
version of GES [4]. We compare our scoring functions

with and without the binomial structure prior. Addi-
tionally we compare against extended BIC (EBIC) [3],
an similar modification to BIC which aims to address

the small-n-large-P situation. In these experiment the
expected number of parents for the binomial structure
prior is set to 1 and EBIC’s gamma parameter is set to
0.5 upon suggestion of the authors. In Tables 2 and 3,

we report our findings when the average degrees of the
graphs are 2 and 4 respectively.

While we set the expected number of parents to 1 for
the experiments presented in this paper, it is important
to note that this parameter can be chosen to be any
value greater than 0. By varying the expected number

parents, we can define how sparse or dense we wish our
output graph to be. The choice of a low value results in
a relatively sparse graph and a high value in a denser
one.

From Table 2 and 3, for both the binomial struc-
ture prior and EBIC, we see boosts in precision with a

reduction in recall. Additionally, we see vast improve-
ments to computation times. In general, EBIC seems to
work better with small sample sizes. This makes sense,
since EBIC is aimed at the small-n-large-P situation.
However, for 1,000 samples, we find the binomial struc-
ture prior favorable over EBIC. In lieu of these results,
we choose to use the binomial structure prior for the
remainder of our score based experiments.

10 Bryan Andrews et al.

Table 1 Compares the approximate method to the exact method for CG on graphs of average degree 2 and 4 with 100
measured variables. Sample size is varied to be 200 or 1,000 and the binomial structure prior is used with the expected number
of parents set to 1. The best results in each cell have been bolded and all reported results are averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2
Exact 0.56 0.56 0.37 0.31 1.03 0.79 0.79 0.65 0.55 2.94

Approx 0.82 0.53 0.75 0.19 0.31 0.91 0.81 0.85 0.49 0.59

Avg Deg 4
Exact 0.59 0.39 0.44 0.26 0.73 0.84 0.64 0.73 0.51 3.73

Approx 0.82 0.36 0.69 0.23 0.17 0.92 0.62 0.84 0.51 0.99

Table 2 Compares the use of different priors for CG, MVP 1, and MVP logn on graphs of average degree 2 with 100 measured
variables. Sample size is varied to be 200 or 1,000. The best results in each cell have been bolded and all reported results are
averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

CG
Uniform 0.54 0.59 0.40 0.38 0.29 0.76 0.83 0.66 0.59 0.63

EBIC 0.85 0.45 0.80 0.12 0.26 0.93 0.78 0.88 0.43 0.53
Binomial 0.82 0.53 0.75 0.19 0.18 0.91 0.81 0.85 0.49 0.55

MVP 1
Uniform 0.36 0.57 0.24 0.35 9.32 0.70 0.81 0.56 0.57 6.43

EBIC 0.84 0.39 0.69 0.17 1.35 0.85 0.71 0.74 0.46 3.53
Binomial 0.53 0.53 0.35 0.31 1.53 0.83 0.77 0.70 0.52 3.93

MVP logn
Uniform 0.37 0.55 0.23 0.31 7.51 0.77 0.79 0.60 0.50 14.47

EBIC 0.84 0.31 0.65 0.09 2.50 0.87 0.65 0.73 0.37 7.25
Binomial 0.52 0.51 0.33 0.28 2.51 0.84 0.76 0.68 0.47 8.54

Table 3 Compares the use of different priors for CG, MVP 1, and MVP logn on graphs of average degree 4 with 100 measured
variables. Sample size is varied to be 200 or 1,000. The best results in each cell have been bolded and all reported results are
averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

CG
Uniform 0.66 0.41 0.52 0.31 0.23 0.87 0.66 0.79 0.57 1.09

EBIC 0.85 0.30 0.70 0.16 0.15 0.94 0.57 0.86 0.43 0.92
Binomial 0.82 0.36 0.69 0.23 0.16 0.92 0.62 0.84 0.51 0.85

MVP 1
Uniform 0.45 0.42 0.34 0.30 16.85 0.85 0.66 0.77 0.56 7.24

EBIC 0.84 0.27 0.69 0.16 0.98 0.92 0.54 0.84 0.43 4.29
Binomial 0.53 0.36 0.39 0.25 6.24 0.90 0.61 0.83 0.51 4.90

MVP logn
Uniform 0.44 0.37 0.30 0.23 20.70 0.89 0.62 0.78 0.49 16.74

EBIC 0.85 0.18 0.64 0.08 2.06 0.94 0.46 0.84 0.34 9.25
Binomial 0.52 0.33 0.36 0.20 6.50 0.93 0.58 0.84 0.46 11.55

6.3 As a Conditional Independence Test

We tested the usefulness of the CG and MVP scores as
conditional independence tests by simulating, 200 and

1,000 samples from graphs of average degree 2 and 4
with 100 measured variables. As a search algorithm, we
used Conservative PC [12], which is a modified version
of PC, with α set 0.001, and treat ambiguous triples as
non-colliders [19]. Here we also use the discretization
heuristic with b = 3 for CG, denoted CGd, however
we do not use a structure prior since we are no longer
scoring a full Bayesian network in this paradigm. We
did not include results for a version of MVP which uses
the discretization heuristic because it had little effect.

The results are shown in Table 4.

In general, we find that our methods perform bet-
ter as scores, but still perform reasonably well as con-
ditional independence tests. This is promising for use

in algorithms, such as FCI, that model the possibility

of latent confounding [19].

6.4 Tests Against Baseline Scores

With little in the literature to compare against which
scales to hundreds of variables, we define two simple
baseline scores. The first of the two, which we denote

MN, uses multinomial scoring for all cases. In order to
do so, we essentially extend the discretization heuristic
to the continuous child case so that we are always scor-
ing with a multinomial. The second of the two, which we
denote as LR, uses partitioned linear regression in the
continuous child case and partitioned logistic regression
in the discrete child case. Note that since logistic regres-
sion requires some sort of fixed point optimization, it
will be slower than methods which have a closed form.

Scoring Bayesian Networks of Mixed Variables 11

Table 4 Compares the use of CG, CGd, MVP 1, and MVP logn in the constraint-based paradigm with alpha set to 0.001
on graphs of average degree 2 and 4 respectively with 100 measured variables. Sample size is varied to be 200 or 1,000. The
best results in each cell have been bolded and all reported results are averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2

CG 0.91 0.40 0.96 0.04 0.57 0.93 0.68 0.93 0.24 1.26
CGd 0.92 0.42 0.98 0.05 0.46 0.95 0.69 0.94 0.26 1.15

MVP 1 0.77 0.27 0.67 0.01 1.37 0.88 0.60 0.67 0.15 6.63
MVP logn 0.97 0.29 0.75 0.01 2.03 0.92 0.67 0.68 0.23 16.82

Avg Deg 4

CG 0.93 0.26 0.93 0.05 0.44 0.94 0.50 0.93 0.24 4.47
CGd 0.93 0.26 0.89 0.05 0.44 0.95 0.50 0.95 0.24 8.55

MVP 1 0.81 0.14 0.43 0.01 1.28 0.92 0.41 0.65 0.16 11.21
MVP logn 0.98 0.15 0.56 0.01 2.01 0.93 0.48 0.60 0.21 48.73

For this reason, we adapt a widely used toolkit, Lib
Linear [6] to perform logistic regression in hopes that it
will give readers more confidence in our timing results.
As with MVP, the appended term on LR denotes the
maximum degree of the polynomial basis used as the
regressors.

We compared CG, CGd, MVP 1, LR 1, MVP logn,
LR log n, and MN scores by simulating, 200 and 1,000
samples from graphs of average degree 2 and 4 with
100, measured variables. As a search algorithm, we used

fGES. Here we also use the discretization heuristic with
b = 3 for CGd and the binomial structure prior with
the expected number of parents equal to 1 for all scores.

Additionally, boldface text highlights the best perform-
ing score for each statistic in each cell of the table. The
results are shown in Table 5 and 6. Furthermore, for the

results in Table 6 we extend our method of simulating
data. Since MVP is designed to handle non-linearity
while CG is not, we modify the continuous child phase
of data generation to allow for non-linearities. To do

so, we additionally generate second, and third order
polynomial terms. However, because of the nature of
these non-linear functions, the values of the data of-
ten become unmanageably large. To correct for this,
we resample a variable with square-root and cube-root
relationships if the values are too large.

In Tables 5 and 6, we see that both CG and MVP
easily scale to networks consisting of hundreds of vari-
ables while LR struggles to handle large networks. Ad-
ditionally, there is almost not difference in performance
between MVP and LR. This makes sense, since MVP
is using an approximation of logistic regression in the
discrete child case and performing all other cases iden-
tically. Complete discretization with MN is perhaps the

most scalable solution, however due to the information
loss from the discretization process, it takes a rather
large hit in recall. We find the our scores are able to re-
tain reasonable recall with high precision and low com-
putation time. Additionally, we note that MVP per-

forms similarly to CG with a slight advantage in the
non-linear case.

In our final experiment, we aimed to access the scal-
ability of our proposed methods. We simulate data ac-
cording to the linear simulation described at the begin-
ning of this section with 500 measured variables, 200
and 1,000 samples, and average degree 2 and 4. Note

that for average degree 4, we have omitted results for
MVP. This is because, while performing these exper-
iment, we ran into issue with memory management.
Further note that LR is not included at all. This is

because LR (as implemented) cannot feasibly scale to
such a large network due to time complexity.

In Table 7, we see that our methods are capable of
scaling to, albeit sparse, graphs of 500 measured vari-

ables. Additionally, CG was able to scale to a slightly
denser graph of 500 variables. In general, we see the
same performance on these larger networks as before
on the networks of 100 measured variables.

7 Conclusions

In this paper we outline two novel scoring methods for
learning Bayesian networks in the presence of mixed
data types. We provide solutions that are linear in the

number of data instances for scoring and can be scaled
to networks of 500 variables or more using a laptop. Fur-
ther, we introduce a structure prior for learning large
networks and a simplification for scoring discrete vari-
ables. The Conditional Gaussian (CG) score performs
well, even on complex non-linear data, and was quite
fast, returning a DAG on networks of 500 variables in
less than 10 seconds (see Table 7). The Mixed Variable
Polynomial (MVP) score generally had lower precision
statistics than CG, but higher recall. Not surprisingly,
since MVP can model non-linear relationships, it per-
formed somewhat better overall on such data. However,
MVP is considerably slower than CG. MVP performed
similarly to the logistic regression based approach (LR),

but MVP was 10 to 20 times faster. The fully discrete-

12 Bryan Andrews et al.

Table 5 Compares the use of CG, CGd, MVP 1, LR 1, MVP logn, LR logn, and MN using linear data from graphs of average
degree 2 and 4 respectively with 100 measured variables. Sample size is varied to be 200 or 1,000 and the binomial structure
prior is used with the expected number of parents set to 1. The best results in each cell have been bolded and all reported
results are averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2

CG 0.82 0.53 0.75 0.19 0.29 0.91 0.81 0.85 0.49 0.56
CGd 0.90 0.45 0.82 0.17 0.19 0.95 0.77 0.93 0.47 0.53

MVP 1 0.53 0.53 0.35 0.31 1.92 0.83 0.77 0.70 0.52 4.01
LR 1 0.53 0.53 0.36 0.32 18.55 0.84 0.78 0.71 0.51 52.34

MVP logn 0.52 0.51 0.33 0.28 2.63 0.84 0.76 0.68 0.47 8.55
LR logn 0.53 0.51 0.34 0.28 34.86 0.87 0.78 0.71 0.49 165.53

MN 0.93 0.41 0.85 0.07 0.09 0.97 0.72 0.90 0.36 0.48

Avg Deg 4

CG 0.82 0.36 0.69 0.23 0.16 0.92 0.62 0.84 0.51 0.90
CGd 0.92 0.32 0.80 0.18 0.15 0.96 0.58 0.91 0.48 0.73

MVP 1 0.53 0.36 0.39 0.25 8.82 0.90 0.61 0.83 0.51 5.20
LR 1 0.53 0.36 0.39 0.25 27.22 0.91 0.63 0.83 0.52 62.08

MVP logn 0.53 0.33 0.36 0.20 6.25 0.93 0.58 0.84 0.46 12.00
LR logn 0.53 0.33 0.36 0.20 45.97 0.93 0.59 0.84 0.47 215.93

MN 0.93 0.26 0.86 0.07 0.06 0.98 0.51 0.84 0.36 0.19

Table 6 Compares the use of CG, CGd, MVP 1, LR 1, MVP logn, LR logn, and MN using non-linear data from graphs of
average degree 2 and 4 respectively with 100 measured variables. Sample size is varied to be 200 or 1,000 and the binomial
structure prior is used with the expected number of parents set to 1. The best results in each cell have been bolded and all
reported results are averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2

CG 0.53 0.54 0.35 0.33 0.47 0.58 0.67 0.45 0.45 1.91
CGd 0.82 0.52 0.61 0.23 0.23 0.83 0.68 0.67 0.39 1.03

MVP 1 0.67 0.55 0.45 0.32 0.82 0.76 0.69 0.58 0.41 3.37
LR 1 0.67 0.55 0.45 0.31 10.93 0.76 0.68 0.58 0.41 46.03

MVP logn 0.75 0.54 0.51 0.29 1.42 0.87 0.67 0.71 0.42 6.90
LR logn 0.75 0.54 0.51 0.29 22.07 0.87 0.67 0.71 0.42 158.09

MN 0.95 0.49 0.96 0.05 0.11 0.96 0.65 0.83 0.31 0.24

Avg Deg 4

CG 0.48 0.34 0.34 0.24 0.57 0.70 0.51 0.60 0.41 1.38
CGd 0.81 0.32 0.64 0.19 0.33 0.86 0.51 0.77 0.39 1.00

MVP 1 0.71 0.35 0.53 0.23 1.03 0.83 0.52 0.73 0.41 3.82
LR 1 0.72 0.35 0.54 0.23 12.50 0.82 0.52 0.72 0.40 48.62

MVP logn 0.81 0.33 0.63 0.23 1.88 0.93 0.52 0.84 0.41 8.29
LR logn 0.81 0.34 0.63 0.23 35.04 0.93 0.53 0.84 0.42 191.39

MN 0.95 0.27 0.85 0.05 0.06 0.95 0.44 0.75 0.29 0.20

Table 7 Compares the use of CG, CGd, MVP 1, MVP logn, and MN using linear data from graphs of average degree 2 and
4 respectively with 500 measured variables. Sample size is varied to be 200 or 1,000 and the binomial structure prior is used
with the expected number of parents set to 1. Scores omitted with average graph degree 4 failed to return a result. The best
results in each cell have been bolded and all reported results are averaged over 10 repetitions.

Sample Size 200 1,000
Statistic AP AR AHP AHR T (s) AP AR AHP AHR T (s)

Avg Deg 2

CG 0.67 0.51 0.48 0.28 2.11 0.88 0.77 0.81 0.50 7.28
CGd 0.86 0.44 0.75 0.19 1.74 0.94 0.71 0.89 0.46 8.42

MVP 1 0.40 0.49 0.24 0.27 56.83 0.81 0.73 0.67 0.51 44.68
MVP logn 0.40 0.46 0.23 0.24 81.20 0.84 0.72 0.68 0.46 96.91

MN 0.93 0.39 0.84 0.07 1.79 0.97 0.67 0.89 0.36 14.74

Avg Deg 4
CG 0.75 0.35 0.59 0.25 2.21 0.91 0.61 0.84 0.51 9.70

CGd 0.88 0.31 0.78 0.19 2.22 0.95 0.58 0.90 0.48 16.59
MN 0.93 0.26 0.77 0.07 1.32 0.98 0.51 0.86 0.37 12.43

Scoring Bayesian Networks of Mixed Variables 13

variable approach (MN) performed surprisingly well in
terms of precision and speed, although its recall was
often lower that that of CG and MVP, and sometimes
greatly lower. We also showed how the CG and MVP
scoring methods can be readily adapted to provide con-
ditional independence tests for constraint-based meth-
ods to support future use in algorithms such as FCI.

All experimental comparisons and simulation were
completed within the Tetrad project [14] and the code
is available in Tetrad’s repository on GitHub1.

There are several directions for future work. First,
we would like to apply the methods to real datasets for
which knowledge of the causal relationships is available.
Second, we would like to expand the CG and MVP
algorithms to model ordinal discrete variables. Third,
we would like to investigate alternative basis functions
for the MVP algorithm.

Acknowledgements We would like to thank Clark Gly-
mour, Peter Spirtes, Takis Benos, Manatakis, Dimitrios, and
Vineet Raghu for stimulating conversions on the topic of
learning mixed variable Bayesian networks. Additionally, we
would like to thank our reviewers for their helpful comments.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learn-
ing. Springer (2006)

2. Bøttcher, S.G.: Learning bayesian networks with mixed
variables. Ph.D. thesis, Citeseer (2004)

3. Chen, J., Chen, Z.: Extended bic for small-n-large-p
sparse glm. Statistica Sinica pp. 555–574 (2012)

4. Chickering, D.M.: Optimal structure identification with
greedy search. Journal of Machine Learning Research
3(Nov), 507–554 (2002)

5. Daly, R., Shen, Q., Aitken, S.: Review: learning bayesian
networks: Approaches and issues. The Knowledge Engi-
neering Review 26(2), 99–157 (2011)

6. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin,
C.J.: LIBLINEAR: A library for large linear classifica-
tion. Journal of Machine Learning Research 9, 1871–1874
(2008)

7. Heckerman, D., Geiger, D.: Learning bayesian networks:
a unification for discrete and gaussian domains. In: Pro-
ceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pp. 274–284. Morgan Kaufmann
Publishers Inc. (1995)

8. McGeachie, M.J., Chang, H.H., Weiss, S.T.: Cgbayesnets:
conditional gaussian bayesian network learning and in-
ference with mixed discrete and continuous data. PLoS
Comput Biol 10(6), e1003,676 (2014)

9. Monti, S., Cooper, G.F.: A multivariate discretization
method for learning bayesian networks from mixed data.
In: Proceedings of the Fourteenth Conference on Un-
certainty in Artificial Intelligence, pp. 404–413. Morgan
Kaufmann Publishers Inc. (1998)

10. Raftery, A.E.: Bayesian model selection in social research.
Sociological Methodology pp. 111–163 (1995)

1 https://github.com/cmu-phil/tetrad

11. Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour,
C.: A million variables and more: the fast greedy equiv-
alence search algorithm for learning high-dimensional
graphical causal models, with an application to func-
tional magnetic resonance images. International Journal
of Data Science and Analytics pp. 1–9 (2016)

12. Ramsey, J., Zhang, J., Spirtes, P.L.: Adjacency-
faithfulness and conservative causal inference. arXiv
preprint arXiv:1206.6843 (2012)

13. Romero, V., Rumı́, R., Salmerón, A.: Learning hybrid
bayesian networks using mixtures of truncated exponen-
tials. International Journal of Approximate Reasoning
42(1-2), 54–68 (2006)

14. Scheines, R., Spirtes, P., Glymour, C., Meek, C., Richard-
son, T.: The tetrad project: Constraint based aids to
causal model specification. Multivariate Behavioral Re-
search 33(1), 65–117 (1998)

15. Schwarz, G., et al.: Estimating the dimension of a model.
The Annals of Statistics 6(2), 461–464 (1978)

16. Sedgewick, A.J., Ramsey, J.D., Spirtes, P., Glymour,
C., Benos, P.V.: Mixed graphical models for causal
analysis of multi-modal variables. arXiv preprint
arXiv:1704.02621 (2017)

17. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.:
A linear non-gaussian acyclic model for causal discovery.
Journal of Machine Learning Research 7(Oct), 2003–2030
(2006)

18. Sokolova, E., Groot, P., Claassen, T., Heskes, T.: Causal
discovery from databases with discrete and continu-
ous variables. In: European Workshop on Probabilistic
Graphical Models, pp. 442–457. Springer (2014)

19. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Pre-
diction, and Search. MIT Press (2000)

