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Abstract—This paper proposes an algorithm for optimal decen-
tralized traffic engineering in communication networks. We aim
at distributing the traffic among the available routes such that
the network utility is maximized. In some practical applications,
modeling network utility using non-concave functions is of
particular interest, e.g., video streaming. Therefore, we tackle the
problem of optimizing a generalized class of non-concave utility
functions. The approach used to solve the resulting non-convex
network utility maximization (NUM) problem relies on designing
a sequence of convex relaxations whose solutions converge to that
of the original problem. A distributed algorithm is proposed for
the solution of the convex relaxation. Each user independently
controls its traffic in a way that drives the overall network
traffic allocation to an optimal operating point subject to network
capacity constraints. All computations required by the algorithm
are performed independently and locally at each user using local
information and minimal communication overhead. The only
non-local information needed is binary feedback from congested
links. The robustness of the algorithm is demonstrated, where
the traffic is shown to be automatically rerouted in case of a
link failure or having new users joining the network. Numerical
simulation results are presented to validate our findings.

Index Terms—Distributed optimization, non-concave utility
maximization, traffic engineering.

I. INTRODUCTION

Modern communication networks simultaneously support
multiple users, services, and applications, each of which
requires diverse demands. Therefore, optimum resource al-
location among users and/or applications is of paramount
importance to assure high quality of service (QoS). Since
Kelly et al. introduced the Network Utility Maximization
(NUM) problem in [1], the NUM framework has found many
applications in the development of rate allocation algorithms
and internet congestion control protocols.

This paper considers the NUM problem in a connection-
oriented network where multiple paths are available for the
data of each user. The utility of a user is modeled as a
non-concave function and hence, the NUM is a non-convex
optimization problem. The objective is to develop a dis-
tributed control protocol which steers the traffic away from
congested links so that congestion is avoided and network
resource utilization is maximized. In particular, the protocol
runs independently in parallel at each source node using local
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information to allow fully distributed traffic control. The only
non-local information needed is whether the forwarding path
is congested or not, which is binary feedback from link nodes.

Applications including FTP and HTTP used to generate the
majority of the internet traffic which is considered elastic traf-
fic. Utility functions for elastic traffic are modeled as strictly
concave functions. Resource allocation algorithms for this
type of traffic have been well developed, e.g., [2]. However,
modern internet flows are dominated by real-time applications,
e.g., video and audio streaming, that are considered inelastic.
Users’ satisfaction for various inelastic applications cannot be
accurately modeled using concave functions. For example, the
video quality perceived by users on a mobile device is a non-
decreasing and step-like function with respect to data rate,
because users have almost similar quality of experience on
3 Mbps and 1 Mbps [3]. In addition, the utility for voice
applications is better described as a sigmoidal function [4].

Traffic flows with non-concave utilities have received little
attention although they represent important application needs
in practice. Researchers usually model the user-perceived qual-
ity of experience (QoE) as a logarithmic function by adopting
the proportional fairness criterion [5]-[7]. The advantage of
elasticity assumptions on rate demands is that the resulting
optimization problem is tractable, while the disadvantage is
that the associated rate allocation may not always favor flows
with small buffers [8]. When rate demands are not perfectly
elastic, the utility may not be modeled as a concave function.
The main challenge that faces resource allocation in networks
shared by inelastic applications is that non-convex optimiza-
tion problems are hard to be analyzed and solved, even by
centralized computational methods. The lack of convexity due
to the existence of inelastic traffic makes standard distributive
algorithms, such as TCP, operate inefficiently [9].

There have been some publications on centralized algo-
rithms [4] and distributed algorithms [10], [11] for non-
concave utility maximization. Reference [4] proposes a cen-
tralized algorithm based on sum-of-squares (SoS) relaxations
and positivstellensatz theorem in real algebraic geometry to
calculate approximations of the optimal solution along with
some performance bounds to evaluate the approximation error.
This efficient but centralized numerical method is suitable
for optimizing utilities that can be transformed to polynomial
utilities. In [10], the authors propose distributed but suboptimal
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heuristics for sigmoidal utilities. Reference [11] determines
the optimality conditions for the canonical distributed algo-
rithm to converge globally for nonlinear utilities. These two
approaches illustrate the choice between admission control
and capacity planning to deal with non-convexity. However,
neither approach provides a theoretically polynomial-time and
practically efficient algorithm (centralized or distributed) for
non-concave utility maximization. The lack of a comprehen-
sive distributed algorithm that allows network optimization for
inelastic applications is the main motivation behind our work.

The contributions of this work are summarized as follows.

o We propose a generic framework for the solution of the
NUM problem with non-concave user utility functions.
We design a sequence of convex relaxations whose solu-
tions converge to that of the original problem.

o We develop the distributed traffic allocation algorithm
(DTAA) that allows users to independently adjust their
traffic sending rates and/or redistribute traffic load among
multiple routes solely based on available local informa-
tion and binary feedback from the congested link nodes.

o The DTAA is shown to be robust to link failures and it
is scalable, where the traffic is automatically rerouted in
case of a link failure or when new users join the network.

II. PRELIMINARIES

For the ease of exposition, we briefly recall some mathe-
matical results that play a key role in establishing our findings.

Definition 1. A relation R C R™ x R™ is strongly monotone
if there exists v > 0 such that

(z1—22)T (y1—y2) > || w1—22|* V(21,91), (T2, 52) € R. (1)

Theorem 1. Let [ be a real-valued function, F be a compact
set, not necessarily convex, and |1 be a probability measure
with support supp(i). Then,

inf{f(ac):xef}:inf{/fdu:supp(,u)C]:}. ()
x 1
Proof. The proof can be found in [12]. L]

Theorem 1 has been used to convert polynomial opti-
mization problems into a sequence of convex semidefinite
programming problems with increasing size via optimizing
over moments of probability measures [12]. The problem of
moments bridges the gap between the optimization over a
space of probability measures whose support is contained in
a certain set and the optimization over the moments of such
measures. More precisely, given a sequence of scalars {¢; }?zl,
the problem of moments is to determine whether there exists
a representing Borel measure that has {tj}ﬁzl as its first
¢ moments. The following theorem provides necessary and
sufficient conditions for the existence of Borel measures whose
support is included in bounded symmetric intervals of the real
line [13].

Theorem 2. Given a sequence of scalars {t; }5:1, there exists

a Borel measure [i(.) with support contained in T = [—e, €|
such that i(Z) = 1 and t; = [y’ dp if and only if

o when [ is even, the following holds

M(0,6) = 0 3)
EM(1,0—1) = M(2,0), 4
o when l is odd, the following holds
eM(0, £ — 1) = M(1,£) (5)
M(1,¢) = —eM(0,¢ — 1), (6)
where M(k, k + 2h) € ROHDX(HY) s the Hankel matrix
ty  Tryt Litn
M(k, k +2h) = |+ K NG
thtn tiion
and tg = 1.
Proof. Theorems 111.2.3 and I11.2.4 in [14]. L]

IIT. PROBLEM FORMULATION

This section introduces the notation used throughout the
paper. Furthermore, it presents the NUM problem formulation,
and highlights the challenges associated with its solution.

A. Notation

Consider a communication network represented by a set
L = {l1,...,L} of directed links with finite capacities
¢ = [¢1]ie, shared by a set of sources S = {1,..., N}. Each
source i € S transmits data at rate ! along a predetermined
route p € P;, where each route p C L is a directed path
consisting of a set of links that connect the source to its
destination, and P; is the set of all routes that can be used
simultaneously by source ¢. Each source ¢ € S has a utility
function U; : Ry — Ry. The utility of source i, U;(r;),
is a function of the aggregate data rate transmitted over all

possible routes, where r; = Epepi a:f . Let the vector of

source ¢ data rates over P; be x; = [2¥],ep, € lei‘, where
|P;| denotes the cardinality of P;, and r = [r;]ics € Rf )
Define the matrix A; = [af Jiccper, € REXIP such that
its (I,p)th entry aj; = 1 if route p € P; uses link | € L,
and is 0 otherwise. Let P! = {p € P; : | € p} be the set
of routes for the data of source ¢ that use link [ € £, and
S ={ieS:3peP;st. Il p} be the set of sources using
link [ € L.

B. Problem Statement

This work considers network utility functions that can be
expressed as a sum of local user utilities, i.e., we maximize
U(r) = > ;cs Ui(r:) subject to network resource constraints
and QoS guarantees. The traffic is allocated so that no single
link in the network is congested. A link [ € L is said to
be congested if the sum data rate of all sources using that
link exceeds its capacity. The network capacity constraints are
D ies 2apep! z? < ¢, VI € L. Furthermore, minimum QoS
guarantees are considered at each source i € S in the form of
a lower bound on its aggregate data rate. Nevertheless, we take
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into account the existence of an upper bound on the data rate
of each source for practical reasons. Thus, b; < r; < B; for
some b;, B; > 0 and all ¢ € S. That said, the optimal traffic
allocation that maximizes the network utility is obtained by
solving the following optimization problem

maximize U; (r;

(xi,73), 1€S ; ( )

subject to ZAin' e, ®
€S

(Xi,’l"i) € Xiv 1€ 87

where Xi:{<XZ‘,TZ‘) LTy = ZpePi xf, bi S r; S Bl} .

Most approaches developed in the literature for optimal
decentralized traffic allocation allow only for concave dimin-
ishing reward utility functions. However, in real-time applica-
tions, concave utility functions are not the best measure of user
satisfaction. This paper aims at developing a low-complexity
distributed algorithm that optimizes a generalized class of
non-concave user utility functions. The challenge of solving
the optimization problem (8) is two-fold. First, the problem
iS non-convex since we aim at maximizing a non-concave
objective function. Second, global network information is not
available; a fact that stimulates the necessity of developing a
decentralized algorithm that converges to the solution of (8).

IV. MAIN RESULTS

We consider a general class of non-decreasing non-concave
polynomial-like user utility functions of the form U;(r;) =
Zﬁzopiyjrf/e for some p; ; € R, and some ¢ € Z,. The
motivation behind using this form of utility functions is three-
fold: i) the particular form of this function is flexible to the
extent that it can be used to approximate a wide variety of
utility functions arising in real-world applications, e.g., step-
like functions in the case of video streaming; ii) efficient
approximation techniques can be implemented to calculate
the coefficients p; ;, e.g., regression, SoS, and Chebyshev
polynomial approximation; iii) it leads to a formulation that
can be efficiently solved by decentralized algorithms.

A. NUM Convex Relaxation

We propose a convex relaxation of (8) with polynomial-
like utility functions by leveraging results from the moments
approach to polynomial optimization. Instead of solving (8),
we propose to solve the following semidefinite program:

.. T
maximize S m,;
(m;,x;,73), 1€S ; Pi
subject to mio=1, €S8
M;(0,¢) =0, ieS

mi;<rl/t je{l,... 0}, ieS8

> 5
ZAiXi =c
€S

(Xiari) € Xi7 (S Sa

where p; = [pijljcqo,...p» Mi = [Mijljcqo,... 03, and M; €
R(+Dx(A+1) are Hankel matrices of the form

mi K Mg k+1 M, k+h

M (k, k + 2h) = M k+1 Mikthtl | (10)

M k+h i k+2h

The following proposition constitutes a main result of this
paper; it states that an almost optimal traffic allocation which
maximizes the sum of local non-concave user utility functions
subject to network capacity constraints and QoS guarantees
can be obtained by solving a convex program.

Proposition 1. The solution of the NUM problem (8) with
non-concave polynomial-like user utility functions can be
approximated by solving the convex semidefinite program (9).

Proof. See Appendix A. O

It is worth mentioning that (9) represents a relaxation of (8)
when ¢ is even. Nevertheless, a similar result can be obtained
when £ is odd by slightly modifying the constraints of (9)
based on Theorem 2. In (9), a sum of linear functions is max-
imized subject to convex constraints including linear matrix
inequalities, i.e., (9) is a convex optimization problem. There-
fore, (9) can be readily solved if global network information is
available using an algorithm for solving convex optimization
problems, e.g., gradient-based algorithms. Nonetheless, a main
objective of this paper is to develop a decentralized traffic
allocation algorithm that leverages local information available
at each user and minimal network information exchange.

B. Distributed Traffic Allocation Algorithm

In this section, we develop the DTAA, an iterative algorithm
that converges to the solution of (9) given the absence of global
network information. We move mathematical derivations to
Appendix B to enhance the readability of the paper.

Among the advantages of the proposed convex formulation
(9) for the NUM problem is that it is amenable to decentral-
ization. By examining (9), we notice the following:

e The variables m; and r; are local to the ith source and

need not be broadcasted to any other node.

o The objective function is a sum of local linear functions
of the local variables.

o The constraints M;(0,¢) = 0, BYM;(1,£ — 1) =
M;(2,0), m;; < rf/z, and (x;,7;) € X; are local
constraints to the ¢th source that can be handled locally.

o The only constraint that forces interaction among the
sources is the network capacity constraint.

We introduce some notations that render the formulation of
(9) conveniently compact. Let

o
’Ci{(mmxuﬁ)imi,o =1,m;; Sri/ J=1,...,4,

Mim,e)to,BfMi(u1>tMi<2,6>7<x,¢,meXi}
11
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Algorithm 1: DTAA

(ps{aﬂ’}nez+,{7k}keN, {Ak}keN, 70 = [Z?]iesg u’ = [u?]ies)

1 Initialize z°, u°

2 for k=0,1,... do

3 (my, x;, 1)t eargmax{p?mifg Hxifzf+uﬂ|2:
(mi,xi,ri) c ICl},z cS.

4 Initialize z*! « 2z*

5 forn=1,...,7" — 1 do

6 Each source ¢ € S communicates zf’" to P;.

7 Each link [ € £ sends bf’n to S;.

8 gf’n — zf’n — xf’“ —uf Ak Z bf’nau, ieS.

leL
k,n+1 k,n n __k,n + .

9 z;’ <—(zi’ —a gi’) ,i1€S.

10 2" g

1 uftt uf X g e s,

and C = { [X;ies € R%’ie‘s Il D) s Aixi X c} . Thus, (9)

can be compactly stated as follows:

maximize Z p/m;
(mi,xi,m), €S ics
. . 12
subject to (my,x;,1;) €Ky, 1€S8 (12)
x €C,
where x = [X;];es. For a reason that will become clear in
Appendix B, we introduce a new variable z = [z;]ics €
P . . L
R%les Ll and obtain the equivalent optimization problem
_ T
maximize ‘m
(my,x;,7i,2;), 1€S 1628 P; 1
subject to (mg,x4,7m) €Ki, €S (13)
z; =X;, 1€S8
zecC

Algorithm 1 summarizes the proposed optimal DTAA. The
vector x; stores the desired transmission rates of source ¢ over
‘P;. However, source ¢ transmits with an actual rate vector
z; throughout Algorithm I’s iterations. The constraint z; =
x; is not satisfied for every iteration. Nevertheless, both z;
and x; eventually converge to a consensus as the algorithm
keeps running. We proceed with introducing the parameters
of Algorithm 1 followed by a description of how it works.

In Algorithm 1, p € Ry, and {a"} ez, C Ry is a
diminishing sequence of positive scalars that is not summable
but square summable, i.e., ., o, @ =oc,and >, ., (a")? <
oc. For instance, o™ = 1/n. The sequence {7*}yen C Zy is
an increasing sequence of positive integers, i.e., Thtl > 7k
and {\*}ren C Ry, is a sequence of positive scalars. The
superscripts k£ and n denote iteration indices. For every outer
iteration k, there exist 7% — 1 inner iterations indexed by n.
Each source i € S keeps the vectors p;, m;, X;, z;, and u; €
RIP:l as private information not shared with any other network
entity. Furthermore, source ¢ knows the structure of the matrix
A, that outlines the links used by its own routes, and need not

know any other information about those links. More precisely,
source 7 is oblivious to the capacities of the links used by its
routes and does not know whether other sources are sharing
those same links with it or not. In addition, the structure of the
set IC; is known for every ¢ € S, where (11) indicates that /C;
is fully characterized by local information available at source
1 such as knowing the lower and upper bounds imposed on its
own data rate. The kth outer iteration of Algorithm 1 consists
of the following:

o In step 3, each source i € S updates its desired rates x;
by solving a simple convex semidefinite program. This
step is carried out in parallel locally at each source.

o An inner loop of 7% — 1 iterations is executed in parallel
at each source. In the mth inner iteration, each source
1 € S transmits data over its routes P; at rates zf"
Then, link nodes that is congested sends bf’" to the set
of sources using that link, i.e., S;. The binary feedback
bit b)"" determines the status of link | € £, where b,
equals 1 if link [ is congested, and is O otherwise. This
feedback information is used by each source ¢ € S to
update its actual data rate vector z; as in step 9.

o Each source i € S updates the vector u; locally as in step
11. This step is carried out in parallel and independently
across all sources.

Indeed, Algorithm 1 provides fully distributed optimal traf-
fic allocation, where all the computations are performed in
parallel independently at each source node and need not be
broadcasted. Furthermore, the variable updates done locally at
each source node use local information and the only non-local
information needed is binary feedback from congested links;
hence, the network communication overhead is low.

V. NUMERICAL SIMULATIONS

This section presents an example application of the DTAA
developed in this paper. Numerical simulations of the proposed
algorithm are conducted to validate our findings. In particular,
the main objectives of this section are summarized as follows.

o We numerically show that the global optimal solution of

the non-convex NUM problem (8) can be approximately
obtained via solving the proposed convex relaxation (9).
e We show that the DTAA presented in Algorithm 1
converges to a solution of (9).
o We demonstrate the robustness of the DTAA to link
failures, and show that it automatically scales out to
accommodate new users joining the network.

A. Network Topology

We adopt the network model shown in Fig. 1, which is based
on the one considered in [15]. The network model allows for
multiple routes to be available for the data of each source. Fig.
1 shows the topology of the network considered as well as the
capacity of each link. We consider a total of N = 8 different
combination of source/destination nodes, where the intended
destination of the data sent by source S; is D;, ¢ =1,..., N.
The routes available for the data of each source are described
in Table I.
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Fig. 1. The topology of the network.

TABLE I
ROUTES AVAILABLE FOR THE DATA OF EACH SOURCE

S1 x% eababgbyey Ss Ccé e3bsbgbrbgeg
|P1]=4 2% exbobgbsbses |Ps|=2 a2 e3bsbabsbsbrbges

x% eabobrbgbsbyey

x‘ll eababgbses
Sao a:% eababgbses N Ccé e2bab1brbgeg
|7)2‘ =3 I% 62b2b7b5€5 "PG‘ =3 (E% 6262b8b7b666

x% eababibrbses :cg eababrbgeg
S3 xé e1b1b7bgbsey S7 x% e1b1baea
|P3|=2 x% e1b1babgbyey |P7|=3 CC% e1b1brboes

z? e1b1b7bgbaes

S4 x}l e1b1brbses Ss Ccé e3bsbiey
|Ps|=4 22 e1bibrbsbses |Ps|=2 a2 e3bsbgbsey

xi e1b1babrbses

x7 e1b1babgbses

B. Validation of the Main Results

We propose to optimize a step-like non-decreasing utility
function. As suggested by [3], step-like functions are more
likely to express the video quality perceived by a user in
video streaming applications. For that reason, we show our
simulation results for utility functions given by

0, ifo<r; <1
Uz(ﬁ): 1, if1<r<2,
2, if2<r; <3

ies. (14)

)

The optimal traffic allocation is obtained through solving (8),
where the matrices A;, i € S, and the vector c are constructed
using the information shown in Fig. 1 and Table I. The lower
and upper bounds imposed on the aggregate data rate of each
user are b; = 0 and B; = 10, respectively, for all i € S.
Obviously, the utility functions (14) are not in polynomial-
like form. Nevertheless, we approximate these utilities by
polynomial-like functions, i.e., we obtain the coefficient vec-
tors p; that render the polynomial-like functions close enough
to (14) according to some defined metric, where we choose
to show results for £ = 6. We refrain from detailing the
approximation technique used for that purpose since it is not
the main focus of this paper and due to space limitations.

20 T

—— GA optimal value
o ADMM

15F + DTAA 4

Network utility function value

0 . . .

10
Outer iteration index

Fig. 2. Network utility function.

The non-convex NUM problem (8), with the polynomial-
like approximation of (14), is solved using the genetic algo-
rithm (GA) while assuming the availability of global network
information. The traffic allocation obtained through the GA
serves as a benchmark with which we compare the perfor-
mance of the proposed DTAA. However, we emphasize that
the GA is a centralized solution that is prohibitively expensive
to be implemented in practice. All simulation results are shown
for the following parameter choices: p = 1, A\¥ = 10 Vk € N,
7% = 10% Vk € N, and o™ = 1/n. In Fig. 2, we compare
the performance of the DTAA to a centralized algorithm
that solves the NUM problem based on an exact version of
the alternating direction method of multipliers (ADMM) as
well as the GA. The exact ADMM algorithm is presented
in Appendix B-B. Fig. 2 shows that the data rate allocation
obtained by the proposed DTAA results in a utility function
value that is barely indistinguishable from the optimal one
obtained through solving the non-convex NUM problem with
the GA. Fig. 2 also shows that the performance of the DTAA
summarized in Algorithm 1 closely follows that of the exact
ADMM. Although the proposed algorithm is implemented in
a distributed manner that requires no global network informa-
tion, it attains almost the same network utility obtained by a
centralized traffic allocation algorithm. Thus, Fig. 2 validates
the soundness of the proposed convex relaxation of the NUM
problem, and shows the convergence of the proposed DTAA
to the optimal traffic allocation.

For the clarity of exposition, we choose to show the results
for the data rate allocation on the routes available to the data
of sources S5 and Sg in Fig. 3 and 4, respectively, since the
set of available routes to each of them has a cardinality equal
to 2, i.e., |Ps| = |Ps| = 2. The DTAA is shown to converge
to the optimal data rate allocation obtained by the centralized
exact ADMM.

C. Algorithm Robustness

Finally, we show that the proposed DTAA is robust to link
failures and it automatically scales out to accommodate new
users joining the network. This feature is attributed to the
adaptive nature of updating the data rates. When a link failure
is detected, the algorithm reroutes the traffic such that it avoids
the routes using that link. The DTAA handles a link failure by
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Fig. 3. Source S5 data rate allocation.
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Fig. 4. Source Sg data rate allocation.

treating it as congestion, i.e., the source nodes are oblivious
to the failure and require no additional information other than
the usual binary feedback. The robustness of the algorithm is
demonstrated by Fig. 5, where the link connecting the nodes
by-e4 fails after 20 iterations of running the algorithm and
recovers after 50 iterations. This particular link is chosen to
fail since its failure implies that sources S;, S3, and Sg are
disconnected from their destinations. Thus, its failure results
in a considerable degradation to the network utility, and its
recovery enables us to check if the algorithm is capable of
accommodating new users joining the network. The figure
shows that the algorithm quickly reacts to both the failure
and recovery of the link, where the utility function is shown
to converge to its new optimal value. It is worth mentioning
that the optimal value lines shown in this figure are obtained
by a centralized solution to (9) with the assumption of the
availability of global network information and the knowledge
of which link failed and when it fails and recovers.

VI. CONCLUSION

This paper addresses the optimization of network utility
functions that can be expressed as a sum of local user
utilities. The utility of each user is a non-concave function
of its aggregate data rate. In many practical applications, a
non-concave utility function is a better model of the user-
perceived quality. A convex relaxation of the non-convex
NUM problem has been proposed. Furthermore, an optimal
decentralized traffic allocation algorithm has been developed.
All computations are performed in parallel locally at each user.

N
o

T T
Optimal value
[ x DTAA
3 x
< 151 4
=
S
©
S
2 x
> 10 F—sxsermxmmspesgmox
= X
s
= x
5
£ st 1
15}
z
0 . . . . . . .
0 10 20 30 40 50 60 70 80

Outer iteration index

Fig. 5. Utility function value in response to link failure and recovery.

The information exchange in the network is minimal, where a
binary link congestion notification bit is fed back to the source
nodes. Numerical simulations demonstrated the robustness of
the algorithm to sudden link failures. Moreover, the algorithm
is shown to scale out automatically to accommodate new users
joining the network.

Future directions include performing numerical simulation
of the DTAA on large scale networks to further assess the
scalability of the algorithm. Moreover, we envision developing
a decentralized rate allocation algorithm that allows each node
to adapt its rate among any given set of next hops solely based
on immediate information from neighboring nodes.

APPENDIX A
PROOF OF PROPOSITION 1

The NUM problem (8) with polynomial-like utility func-
tions is stated as

¢
> puar”

maximize
(xira), 1€5 125500
. 15
subject to Z A;x; <c, (15)
€S

(Xi,’l”i) S Xi7 RS S,

We note that the objective function of (15) is in polynomial
form if one does a change of variables y; = r,’"; consequently,
an equivalent formulation of (15) is

4
ZZPz;yf

i€S j=0
0<y; <r/t, ies

Y Ax; =c,

=

(Xi,Ti) € Xi, 1€ 8.
This equivalent formulation is still a non-convex problem due
to the non-concavity of the objective function. Nevertheless,
the convexity of the feasible set is preserved. Indeed, ril s a
concave function for ¢ € Z ; hence, the constraints y; < r,il /t
are convex constraints. Inspired by the results of Theorems 1
and 2, we transform (16) into an optimization problem over the
space of probability measures of y; whose support is contained

maximize
(%4,75,Y4), 1€S

subject to (16)
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in the feasible set of (16). More precisely, we denote by m; ;
the moment of order j of y; for some probability measure
pis i.e., mi; = [y!dp,. Theorem 1 implies that the objective
function becomes

¢
/Zzpi,jyfdui => p/m,

i€S j=0 i€S

7)

Then, the result of Theorem 2 is used to construct the first
3 constraints of (9). It now remains to handle the constraint
Yy < ril , i.e., represent it in terms of the moments of y;. This
constraint is approximated by the set of constraints

ije .

m;; < rg/ , Je{l,... L}

It is worth mentioning that rf /* is a concave function for all
j € {1,...,¢}; hence, (18) is a set of convex constraints. As ¢
increases, this constraint approximation is enhanced and thus,
the solution of (9) approaches that of (8).

(18)

APPENDIX B
DERIVATION OF THE TRAFFIC ALLOCATION ALGORITHM

This section presents the detailed mathematical derivation of
the DTAA developed in this paper. In other words, we derive
a decentralized algorithm that solves (13). Furthermore, we
provide a concise convergence proof of the algorithm for the
sake of completeness.

A. The Method of Multipliers

Under some mild assumptions, such as the existence of
a strictly feasible point for the convex program (13), strong
duality holds. Thus, instead of solving (13), the method of
multipliers suggests solving the dual problem using a gradient-
based algorithm. Towards this objective, we proceed with the
derivation of the dual problem corresponding to (13).

The Lagrangian function of (13), augmented with a
quadratic penalty on violating the constraint z = x, is given
by

L(m,x,z,v) =Y [p} m; — v{ (x; — 2:) = (p/2) s — 2]*],

€S

19)
where m = [mylics, ¥ = [Vi]ics is the vector of dual
variables associated with the constraint z = x, and p > 0 is
the penalty parameter. The dual function is then obtained via
maximizing the Lagrangian function over all feasible primal

variables (m, x,r,z), i.e.,
g(v)= max. {L(m,x,z,v):(m;,x;,7;,)€K;,i€S,z€C}.

(m,x,r,2)

(20
Next, we minimize the dual function, i.e.,
minimize g(v). (1)

The dual problem (21) is solved using a gradient descent
method with a constant step size p. In particular, the gradient
descent algorithm produces a sequence {v*},en as follows:

VI =k — pVg(v), (22)

such that g(v*¥) — p* as k — oo, and p* is the optimal
value of (13). For any given v, let (m(v),x(v),r(v),z(v))
denote the maximizer of (20). According to this construction,
the gradient of the dual function is given by

Vy(v) = =(x(v) —z(v)).

The method of multipliers can then be summarized as follows:

(23)

k+1

(m,x,r,2) = argmax{L(m,x,z,yk) :z €C,

(m,x,r,z)

(my, x;,7) € Ky, € S} (24)

R =k (xR R, (25)

Although the convergence to the optimal traffic allocation is
guaranteed through the method of multipliers, it does not count
as an algorithm that can be implemented in a decentralized
fashion. In fact, solving the optimization problem involved in
the primal variables update rule (24) requires global informa-
tion about the network due to the presence of the network
capacity constraint z € C. Furthermore, we note that the
Lagrangian function is maximized jointly over the primal
variables; a fact that exacerbates the difficulty of coming up
with a distributed implementation of (24).

B. The Alternating Direction Method of Multipliers

Unlike the method of multipliers, ADMM updates the pri-
mal variables sequentially rather than jointly; hence, ADMM
allows for decomposition when the objective function is sepa-
rable. In particular, we consider two ADMM blocks, namely,
(m, x,r) and z. Then, the ADMM algorithm [16] updates the
primal and dual variables according to the following rules:

(m, x,r)f 1= argmax{L(m,x,zkﬂ/k) H(myx;,r;) €K, i€ S}

(m,x,r)
(26)
2! = argmax {L(mk+1,xk+1, z, V") z € c} 27)
P = DR p(xPTE - R, (28)

Separating the primal variables into the aforementioned two
blocks and updating them sequentially brings us one step
closer towards a decentralized implementation-friendly algo-
rithm that solves (13). To show that, we exploit the separable
structure of the Lagrangian function (19) to decompose the
optimization problem involved in the update rule (26) into
N independent optimization problems that can be solved in
parallel locally at each source node. In particular, simple
algebraic manipulation on (19) and its substitution into (26)
and (27) render ADMM consisting of the following iterations:

(mi,Xi,Ti)kH: argmax {piTmi —(p/2) Hxi—zf"'u?HQ}
(m;,x;,r;)EL;

(29)

2 = e (x4 ut) (30)

ui—“l = uf + xf“ — zf“ (€2))
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where the variable update rules in (29) and (31) are performed
in parallel for every ¢ € S, u is a scaled version of the dual
variables v such that u; = (1/p)v;, u = [u;l;es, and II¢{.}
denotes the Euclidean projection operator over the set C.

In pursuit of solving the NUM problem (13) in a distributed
manner, we examine the update rules (29)-(31) to check the
possibility of their decentralized implementation. By examin-
ing (29)-(31), we note the following:

e The variables m;, x;, r;, z;, and u; are considered local

variables to the ith source.

e The update rules (29) and (31) can be performed in
parallel independently at each source node using local
information only. Moreover, it is assumed that each
source node has the computational capabilities that enable
it to solve a simple convex semidefinite program as the
one in (29).

o The z-update step (30) requires knowing the values of the
transmission rates x; and the dual variables u; for each
source node ¢ € S. Furthermore, it requires global infor-
mation of the network represented by the requirement of
knowing the structure of the set C, specifically, it requires
the knowledge of the matrices A; for each ¢ € S and the
capacity of every link [ € L, i.e., c.

Although ADMM allows the decomposition of (26) into
independent optimization problems (29) solved locally at each
source node, its implementation requires the presence of a
central entity to perform the z-update step (30). A two-way
communication occurs between each source node and this
central entity. In the first phase, each source i € S sends the
values of x; and u;. After the reception of the information
sent by all sources, the central entity performs the projection
operation (30) and sends back the updated values of z; to all
sources ¢ € S. Thus, it is obvious that a direct implementation
of ADMM exemplifies a centralized solution to the NUM
problem with considerable communication overhead. Next, we
propose an inexact ADMM algorithm that can be implemented
in a decentralized fashion, i.e., it resolves the problem of
requiring a centralized solution for (30).

C. The Inexact Alternating Direction Method of Multipliers

The ADMM algorithm updates the primal variables through
solving an optimization problem per ADMM block. Indeed,
(m,x,r) and z are updated by solving the maximization
problems (26) and (27), respectively. Eckstein shows in [17]
that it is possible to obtain a variant of the ADMM algorithm
in which at least one of the optimization problems involved in
the update rules of ADMM blocks merits an iterative solution.
In other words, under some conditions, an approximate inexact
solution of any of the optimization problems in the update
rules of ADMM suffices to retain the overall convergence of
the algorithm. Inspired by this insight, we propose an iterative
solution to (30) that opens room for a distributed implementa-
tion of the optimal traffic allocation algorithm. More precisely,
the proposed iterative solution to (30) requires neither global
information of the network nor high communication overhead
among source nodes.

IEEE Conference on Computer Communications

The projection operation in (30) entails solving the follow-
ing quadratic program

2

S 1 k+1
minimize — Z; — u;
tinimize 5> |2 +uy)|
€S
subject to Z a?:izi —<0,lel (32)
€S
z; -0, €S8,

where alqji denotes the [th row of the matrix A;. We propose
an alternative formulation of (32) that imposes a penalty on
violating the capacity constraint of any link | € L. More
precisely, for each iteration k, instead of updating z through
solving (32), we solve

*(2)

subject to z > 0,

minimize
z (33)

where the minimand of (33) is defined as

+
:izuzi—xf“—umﬂ@(Zaﬁ-m‘“)

i€s leL \ies
(34

and (.)™ = max(.,0). Problems (32) and (33) are equivalent
for a high enough value of \¥ € R, . Theoretically, it is
not easy to choose \* that guarantees the equivalence of (32)
and (33). Thus, we envision investigating this technical issue
in a future work. For every ADMM iteration k, an inner
iterative subgradient descent algorithm is employed to solve
(33) through generating a sequence {z""},cz, such that
zim = (zf" algh ")Jr, ieS, (35)
with an appropriately chosen diminishing step size sequence
{0} ez, , and gh™ = [gF ]163 € ofF(z"m). Tt follows
from (34) that the pth entry of g; Fm can be chosen as follows:

k, &, k1 p,
glp nG{Zf " p p }+Zﬁ ) '7‘7Di|7
lec
(36)
with the set Blk’" defined as
{0} if Zzes al X z < G
k,
l "t = [O )\kal z] if 2165 al i z =aq (37
k
{)\ al,z}’ if 2765 alz z > Cls
where 2! k, ", z? k+1and uf " denote the pth entry of zf"
ka and u?, respectively. For instance, an obvious construc-
tion of gk ™ is given by
gi"n = Zf’" — Xf—’_l — uf + \F Z bf’"al,i, (38)
leL
where bf’" € {0, 1} is a binary bit that equals 1 if z*" causes

link [/ to be congested, and is 0 otherwise.

Lemma 1. The sequence {z""} generated by (35) converges

to the optimal solution of (33) z**, i.e., z"" — z"* as n— cc.
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Algorithm 2: Approximate ADMM

(p{a" tnez, L hez AN Irenz’ =

0

0

[Z?]ies,u = [u?}ies)

1 Initialize z°, u
2 repeat{for k =0,1,...}

3 (my, x;, ;) ! eargmax{pg‘mi—g ”xi—zf—o—ufHQ:
(mi,xi,ri) S K:Z},Z cS.

4 Initialize z°! « z*

5 repeat{forn =1,2,...}

6 Each source i € S communicates z,"" to P;.

7 Each link [ € £ sends bf’” to S;.

8 gf’n — zf’" - xf“ —uf Ak Z bf’nau, 1€ 8.

leL
k,n+1 k,n n __k,n + .

9 z, """ — 2z —agi’) ,i€S.

10 until ||gh"|| < 1

1 P P

2 wrtt e al X g e s

-

3 until Overall convergence

Proof. This result follows from the convergence of subgradi-
ent methods; see for instance [18]. O]

Let {€"}1ez, C Ry be a summable sequence of positive
scalars, i.e., Zk>1 ek < oo. Then, Algorithm 2 provides an
optimal decentralized traffic allocation algorithm.

Proposition 2. The sequence {(mi,xi,n—,zi, pui)k} gener-
ated by Algorithm 2 converges to a KKT point of (13).

Proof. The proof of this form of approximate version of
ADMM is presented in [17]. Indeed, Algorithm 2 satisfy the
conditions required for [17, Proposition 7] to hold. We briefly
mention the main idea of the proof for the convenience of the
reader. For each iteration k, f*(z) defined in (34) is a strongly
convex function of z with modulus 1. Thus, the subdifferential
map Of* is strongly monotone with modulus v = 1. We have
0 € Of*(z"*) since z¥* is the optimal solution of (33), and
ghm € df*(z*™) by construction. Then, the Cauchy-Schwarz
inequality and the strong monotonicity of Jf* imply that

g2 — 2

‘ > (Zk,n o Zk,*)Tgk,n > ||Zk,n o Zk’* ‘2.
(39)
Therefore, the termination criterion of the inner loop of

Algorithm 2 implies that the distance between the approximate

solution of (33) z**! and the exact minimizer z** is upper
bounded by a summable sequence, i.e.,
||zk+1 _ Zk,*” < €k+1, (40)

and hence, Proposition 2 follows from [19, Theorem 8]. [

The proposed inexact ADMM algorithm overcomes the two
main obstacles encountered by the exact ADMM algorithm;
specifically, the need for a centralized solution to (30) and the
high communication overhead. A distributed implementation
of the traffic allocation algorithm is now possible since the
variables z; are updated in parallel locally at each source
i € S. In a real-world implementation, Algorithm 2 runs
continuously without being terminated. Therefore, Algorithm

1 represents the continuously running version of Algorithm
2. In Algorithm 1, the termination criterion of the inner loop
of Algorithm 2 is replaced with executing the inner loop of
Algorithm 1 for an increasing number of steps as k increases
and hence, ensuring that the approximate solution obtained for
(33) is enhanced as k increases.
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