GOVERNOR: Smoother Stream Processing
Through Smarter Backpressure

Xin Chenf, Ymir Vigfusson’, Douglas M. Blough!, Fang Zheng!, Kun-Lung Wuf, Liting Hu®
fGeorgia Tech, fIBM T. J. Watson Research Center, "Emory University, $Florida International University

Abstract—Distributed micro-batch streaming systems, such as
Spark Streaming, employ backpressure mechanisms to maintain
a stable, high throughput stream of results that is robust to
runtime dynamics. Checkpointing in stream processing systems is
a process that creates periodic snapshots of the data flow for fault
tolerance. These checkpoints can be expensive to produce and
add significant delay to the data processing. The checkpointing
latencies are also variable at runtime, which in turn compounds
the challenges for the backpressure mechanism to maintain
stable performance. Consequently, the interferences caused by
the checkpointing may degrade system performance significantly,
even leading to exhaustion of resources or system crash.

This paper describes GOVERNOR, a controller that factors
the checkpointing costs into the backpressure mechanism. It not
only guarantees a smooth execution of the stream processing
but also reduces the throughput loss caused by interferences
of the checkpointing. Our experimental results on four stateful
streaming operators with real-world data sources demonstrate
that Governor implemented in Spark Streaming can achieve 26 %
throughput improvement, and lower the risk of system crash,
with negligible overhead.

I. INTRODUCTION

Big data systems have evolved beyond scalable storage and
rudimentary processing to supporting complex data analytics
in near real-time, such as Apache Spark Streaming [31],
Comet [14], Incremental Hadoop [17], MapReduce Online [7],
Apache Storm [28], StreamScope [19], and IBM Streams [1].
These systems are particularly challenging to build owing to
two requirements: low latency and fault tolerance. Many of
the above systems evolved from a batch processing design
and are thus architected to break down a steady stream of
input events into a series of micro-batches and then perform
batch-like computations on each successive micro-batch as a
micro-batch job. In terms of latency, the systems are expected
to respond to each micro-batch in seconds with an output
The constant operation further entails that the systems must
be robust to hardware, software and network-level failures.
To incorporate fault-tolerance, the common approach is to
use checkpointing and rollback recovery, whereby a streaming
application periodically saves its in-memory state to persistent
storage.

These two primary requirements, however, can interfere
with one another and consequently harm the system per-
formance. Specifically, note that many real-world streaming
applications maintain large state in memory, such as sliding
windows. The large in-memory state in turn produces large
checkpoints, which leads to long checkpointing time owing to

Most of the work was done while the first author was an intern at IBM.

4. Backpressure

Low throughput,
) Stream ; o e data loss,
) jobs — —P{ Streaming processmg| 5 P exhaustion of
\ resource
3 2
job delay (. . \

Checkpointing:
data written to both memory + disk

Fig. 1: Motivating scenario. Large checkpoint (3) slows down
processing (4), causing throughput degradation (5).

greater data serialization/deserialization times and other I/O.
The protracted checkpointing time delays the blocking time
for processing, which affects and potentially violates the low
latency and throughput requirements. Figure 1 illustrates how
a checkpointing delay of one job cascades to subsequent jobs,
causing the streaming system to slash throughput to prevent
enduring delays.

One natural approach to overcome the problem of system
slowdown due to checkpointing is to reduce the cost of taking
checkpoints [2, 13, 18? , 21, 22]. However, checkpoints tend to
touch disk and do other I/O-bound operations for persistence
and thus complicate such an approach. Another alternative is to
perform checkpointing asynchronously with data processing.
This, however, complicates the scheduling of checkpointing
and normal execution and may cause resource contention.
Besides, it is difficult to guarantee the consistency of the global
snapshot, which requires management of the separation of
dirty state and state consolidation [11] that need to modify
low-level state structure. As a result, most current streaming
systems only implement synchronous checkpointing, such as
Spark Streaming [31], Naiad[20], Flink [12] , and Storm [28].

These micro-batch systems, such as Apache Spark Stream-
ing [9], deploy backpressure mechanisms to dynamically ad-
just the input rate of topics. For example, in Spark Stream-
ing, the mechanism follows the classic Proportional-Integral-
Derivative (PID) controller model in which the PID controller
responds to delays introduced by checkpointing reactively, and
then passively adjusts the input ingestion rate in the same way
as when delays are caused by slow processing. Consequently,
the backpressure controller causes the input size of jobs to
fluctuate, which can degrade the system stability, lower the
throughput, and in some cases even cause resource exhaustion
or a system crash.

In this paper, we propose GOVERNOR: a smarter con-

troller that can achieve high stability and high throughput
simultaneously, rather than sacrificing throughput for stabil-
ity as PID controller does. It estimates future checkpoint-
ing costs and then factors these costs into a backpressure
mechanism to minimize checkpointing interference on the
system performance. In contrast to approaches that focus on
how checkpointing costs can be reduced, GOVERNOR is a
complementary approach that can achieve a stable execution
and a high throughput. Under the hood, GOVERNOR exposes
a new channel between the controller and receiver that can
configure the input size of a specific job, allowing granular
adjustment of job processing times to quickly mitigate delays
due to checkpointing. For instance, if the predictions foresee
that a large snapshot will need to be taken, GOVERNOR would
give a small input size to mitigate the checkpointing effects
and help the follow-up jobs to experience shorter delays, thus
improving the throughput as well as lowering the risk of a
system crash.

Note that GOVERNOR is a set of backpressure techniques
that can be applied to general micro-batch streaming systems
with little code changes. GOVERNOR is expected to work in all
other micro-batch streaming systems, since our backpressure
controller is completely transparent to any specifics of the
processing component and checkpointing data structure in
streaming systems.

Contributions. Our paper has the following contributions.

o« We empirically study and demonstrate the impact of
checkpointing and backpressure mechanisms on through-
put and delays in streaming systems.

o We design and implement GOVERNOR: a backpressure
controller which predicts the future cost of checkpoint-
ing and dynamically adjusts the flow rate to accurately
control the input sizes.

o We experimentally evaluate our implementation of GOV-
ERNOR within Apache Spark Streaming using representa-
tive streaming window operators. Our results on a realistic
financial workload [26] using different kinds of operators
demonstrate that compared to a standard PID controller,
GOVERNOR can improve the throughput of the system
for some continuous queries by up to 26%. Moreover,
GOVERNOR can reduce delays which further improves
the stability of the streaming system.

Roadmap. The rest of the paper is organized as fol-
lows. We next present background and an empirical study
to demonstrate the need to coordinate checkpointing and
backpressure handling. Section 3 presents a naive approach
that predicts the checkpointing. Section 4 presents the design
of our GOVERNOR backpressure algorithm, and discusses both
important implementation specifics of our algorithm within
Spark Streaming and surveys our experimental results. Finally,
Section 6 summarizes related work before we conclude the
paper in Section 7.

II. BACKGROUND AND MOTIVATION

Although backpressure mechanisms are critical to finding
the optimal flow rate in feedback controllers, they can cause

Receiver —»| Buffer — Processing - Controller

Fig. 2: Typical back pressure in streaming systems.

performance degradation or even lead to system crash if
handled inappropriately. Before elaborating on this point, we
begin with background on back pressure mechanisms and
checkpointing processes in streaming systems.

A. Backpressure Mechanisms

Backpressure is a feedback mechanism for rate limiting
input based on characteristics of the output that allows a
dynamic system to gracefully respond to variations in its input
workload in order to achieve smoother execution and better
performance. On one hand, when a system is heavily loaded,
the backpressure mechanism signals that the input sizes of
future jobs should be reduced. Without such provision, a
system under stress may begin to drop messages in an uncon-
trolled way or fail catastrophically, which is unacceptable in
practice. On the other hand, when system is lightly loaded, the
backpressure mechanism lets the input sizes grow accordingly
to prevent resources to be needlessly wasted.

As with all dynamical systems based on control theory, the
responsibility of the backpressure is to maintain the system in a
stable state: neither heavily loaded nor lightly loaded. To make
this precise, we introduce some quantifiable metrics. High
loads are reflected by a high delayTime, whereas light loads
are reflected by a short processingTime. Streaming applications
require that streaming systems should return results to users in
a specified interval, also called a deadline. Rate is the number
of tuples per second. For instance, every 1 second users
expect to receive a result, so the interval is 1 second. A high
delayTime implies that processingTime of micro-batch jobs is
larger than the inferval, indicating that the user is not receiving
the results by the set deadlines. Note that the delayTime is
cumulative metric as presented in equation 1. If the delayTime
increases to a certain extent, system would trigger some signal
to indicate data loss, possibly leading to the exhaustion of
resources or system crash. A short processingTime means the
system could have ingested more tuples for processing, while
also meeting the required deadlines. If we think of these
metrics as equations over jobs 1,2, ...,5,5 4+ 1,..., they are
related as follows.

delayTime(j+1) = delayTime(j) + (processingTime(jH) — interval) (D

The underlying architecture of a back pressure mechanism is
illustrated in Figure 2. The processing component is normally
considered a black box which receives tuples from a buffer
and sends the feedback signal to adjust future input size. The
buffer component takes in the tuples from the external world
and emits tuples for the processing based on the feedback

1000 i |

L
| HE ol
0 1 AR ARAREAV A 0

0 20 40 60 80 100 120 140 0
Job Id

delayTime

o
=3
=3

500

processingTime (ms)

20 40 60 80 100 120 140
Job Id

(b) The processingTime on
the window size 40.

(a) The delayTime on the win-
dow size 40.

16000,

2500
14000 m
@ 12000 - E 2000
£ [}
< 10000 £ 1500
£ 8000 i =) |4
= 2 100011l . Bl
> 6000 @ v v
3 @
9 4000 500
© g
2000 a
0
% 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Job Id Job Id

) The processingTime on
the window size 120.

(¢) The delayTime on the win-
dow size 120.

Fig. 3: Demonstration of Checkpointing Interference. Here, jobs arrive at 1 second intervals in succession on a financial workload (Section
V-C) and checkpointing is done every 10 seconds. The red lines denote averages.

signal. A key component of the backpressure mechanism is
the controller that can adjust the size of the buffer in terms of
rate according to runtime dynamics.

The Proportional-Integral-Derivative (PID) controller is a
well-known and one of the most-used feedback design in
control theory [3, 4]. The idea of how PID controllers
work in streaming systems can be related back to the two
metrics mentioned earlier: processingRate and delayTime.
When the processingRate increases or decreases, the rate
output increases or decreases proportionally based on the
processingRate of the previous job. Upon detecting delayTime
to have grown, the controller also needs to cut the rate
proportionally. PID controllers do not seek to make control
decisions based on swift or sudden transitions, which is an
appropriate choice for checkpointing interference due to their
periodicity. This gradual effect stems from PID controllers
maintaining a continuous function that estimates the state of
the world, and the model makes minimal adjustments to the
model based on changes from the previous state. We use
PID controllers as the underlying backpressure mechanism
throughout this paper.

B. Checkpointing in Stream Processing

Following a normal execution, checkpointing may produce
delayTime that can cause jobs to miss their deadlines. Due
to the cumulative characteristics of delayTime 1, system per-
formance may in turn degrade significantly if the delayTime
component is not handled carefully. To quantify the impact of
the checkpointing on delays, we conducted an empirical study
within Apache Spark Streaming[31], using PID controller for
backpressure. Spark Streaming is a streaming system built on
top of Spark engine. A Spark streaming application receives
input data streams from external sources, partitions the streams
into batches based on a time interval, and submits the batches
to a processing engine.

In our experiments, the streaming application is computing
the average of numbers across a window, where the size
of the window is therefore a proxy for the cost of doing
checkpointing: a large window size indicates that a large
volume of data needs to be written from memory to storage.
The interval after which users expect the results to be complete

is 1 second, and the checkpointing interval is set to 10 seconds,
meaning that a checkpointing job should be launched on
average once between every 10 regular jobs. In the following
we report the stable executions of 150 seconds, on both a small
window size 40 and a large window size 120. Window size is
the number of tuples stored in window.

We study the delayTime under the configuration of window
size 40 and window size 120, shown in figure 3a and figure
3c. We can see that the pattern of the delayTime matches
the interval of the checkpointing very well in 10 seconds.
Although the delayTime emerges once every checkpointing
interval, the system is stable at low latency throughout the
run since the built-up delay can be eliminated before the
next checkpoint. However, in figure 3c, delayTime increases
constantly out of control: the system is unable to keep up
with an increasing number of jobs, which are being delayed
and being buffered in memory. The situation is likely to trigger
an exception due to a buffer overrun or possible crash due to
exhaustion of memory if the delayTime keeps on increasing.

Another way to investigate the causes of delayTime is to
study the processingTime. Figure 3b and figure 3d shows the
processingTime of the window size 40 and 120. In the case
of size 40, all of the following normal jobs have a shorter
processing time than 1 second to counteract the delayTime,
whereas in the case of size 120 most normal jobs reach the
deadline 1 second on the processingTime, without giving much
time to reduce the delayTime, resulting in an ever-increasing
built-up delay.

From these tests, we can see that the backpressure would
reduce the input size of jobs whenever signaled with a delay-
Time, resulting in the degradation of overall performance. The
backpressure behavior directly determines the performance
and even influences the system stability. It is evident from
these observations that the backpressure mechanism plays a
critical role in the health and efficiency of a stream processing
system.

Our challenge lies in how we can reduce the delayTime
accrued by the checkpointing in the backpressure, thus mitigat-
ing the interference of the checkpointing, to improve stability
and increase throughput. GOVERNOR is a new backpressure
mechanism aiming to address this problem. To the best of our

lower rate raise rate 80000 T job i1 80000 = Job i1
rate signal signal 70000 || mmm Job i 70000 |{mmm job i
A i i g 60000 3 Job i+1 $ 60000 3 Job i+l
high rate : ; : i 2 50000 2 50000
| u— Y=
| i i © 20000 S 40000
' { 1
| : : £ 30000 2 30000
i f | 1 1
: i | 5 20000 3 20000
.
low rate ; i ! 10000 10000 | u u ﬂ u ﬂ
' |
! o | 1 u
! : | . % 20 % 20 40 60 80 100
time

i-1 i i+1

(a) The area is the input size determined by

both rate and time. before deadline.

(b) The signal for rate reduction arrives

Job Id

(c) The signal for rate increase arrives after
deadline.

Fig. 4: Naive approach using a small rate signal in backpressure to configure the input size of job i.

knowledge, this is the first paper that considers the influences
of the checkpointing in backpressure for streaming systems.

III. A NAIVE APPROACH TO PREDICT CHECKPOINTING

Since the checkpointing jobs in stream processing are
periodic, it is easy to accurately predict which job is the
checkpointing job. Instead of doing the PID estimation, we
can proactively cut the input size of checkpointing job in an
attempt to reduce the delayTime accrued by the checkpointing
mechanisms. A basic algorithm is to modify the rate signal
to configure a small input size for the checkpointing job.
Specifically, the key logic is to seek to reduce the input size
of the checkpointing job before its execution using the rate
signal, and then raise the rate signal after its completion.

In our experience, we discovered that controlling the input
size of a specific job using the rate signal is difficult to do as
the parameters depend on precise prediction for when a new
rate arrives. Note that new signals being received is determined
by the time of completion of a job, since rate signals are
always sent out after the jobs have executed. However, the start
of generating input tuples for a job is in a constant interval
regardless of the arrival of the rate signal.

Figure 4a presents how the rate and the time work to
determine the input size of job. The horizontal axis represents
the time and the vertical axis represents the rate; the area is
the number of tuples collected during 1 second. Job i is a job
for which we are trying to set to a small input size with a low
rate signal. However, the input size of job i is larger than what
is expected , because the high rate signal arrives earlier than
the deadline. Similarly, because the lower rate signal arrives
before the deadline, the input size of job ¢ — 1 is smaller than
the high rate.

We ran experiments to determine whether we can configure
a specific job with a small input size using the rate signal
without influencing other jobs. We expect to be able to set
the input size of a job ¢ to a small number, by sending a low
rate signal. In the following two experiments, the low rate we
configure are 60 tuples/sec for one job ¢ and 60,000 tuples/sec
for the others. The checkpointing interval is 10 seconds. We

report the measured numbers of tuples received by the jobs
over the 100 seconds in Figures 4b and 4c.

As Figure 4b shows, although the rate is constant on 60,
the number of the tuples of job ¢ is highly variable, denoted
with the middle red rectangle. The input size of job ¢ — 1
also fluctuates because the low rate signal arrives before the
deadline presented in yellow area in Figure 4a. In the next
experiment, shown in the Figure 4c, the number of tuples for
job ¢ is more stable than in the previous experiment. However,
we observed that the number of tuples for both jobs 7 — 1 and
1 become unstable due to the influences from the small rate
signal.

In summary, this approach does not work as the input size
is uncontrollable. The input size of the jobs is determined
not only by the rate signal, but also by when jobs finish,
which has proven to be difficult to predict precisely owing to
various complex dynamic factors. Nevertheless, the rate is still
an essential signal in the backpressure controller of streaming
systems. Using the rate signal indicates that the systems keep
digesting the data streams at the previous rate if not adjusted,
which plays an important role for streaming applications that
require results to be returned to users at an specified interval
in a smooth and predictable fashion despite any uncertainty.
This only poses a higher requirement for the management of
the rate signal.

IV. DESIGN OF GOVERNOR

Instead of relying only on a rate signal for feedback,
GOVERNOR introduces a new signal: (timestamp, #tuples),
which offers the fine-grain control over the input sizes of jobs.
We now describe the architecture and the main algorithm of
GOVERNOR.

A. System Architecture

Figure 5 shows the high-level architecture of GOVERNOR
within a streaming system. There are two key components: the
feedback calculation component (controller), and the Fetcher.
The feedback calculation component implements the main
logic of our algorithm, such as how to calculate the rate and
how many tuples are contained in a specific job. The Fetcher

¢
SparK® streaming

|
A4 1
| Receiver |—>| Buffer |—>| Processing |—>| PID Controller
A A /
|
]
| -
. Fetcher |4 rate Controller
1

— - <timestamp, #tuples> — — - -1
Governor

Fig. 5: GOVERNOR Architecture.

is mainly responsible for retrieving the tuples from the queue
buffer as the input, generating a job, and then submitting it to
the processing engine.

There are two signals: the rate and (timestamp, #tuples). The
first signal, rate, is sent by GOVERNOR to notify the receiver
of the number of tuples per second ingested from the external
input sources. The second signal tells the Fetcher the input
size for a specific job. Overall, rate represents the maximal
achieveable throughput of the system that it could obtain.
The extended signal provides a fine-grained control over the
input size of jobs, which aims to reduce the delayTime by
configuring a small input size. We believe that GOVERNOR can
achieve a high rate for the throughput improvement through
fine-grained adjustment of input sizes of certain jobs using
(timestamp, #tuples).

Example. We illustrate the idea of our algorithm with an
example. Normally, there is a minimum input size provided by
streaming application, indicating that every interval at least
the minimum input size should be processed regardless of
anything. In this example, the checkpointing interval is 10 sec-
onds, and every 1 second there is a micro-batch job submitted
for processing. The checkpointing job takes 2 seconds with a
large input size, and takes 1.3 seconds with the minimum size.
Normal jobs take 1 second to process the large size, and take
0.6 second to process the minimum size. One sudden normal
job consumes 1.5 seconds. The main logic of our algorithm
contains three parts: Region Partition, Reducing Delay and
Estimation of region rate.

B. Region Partition

To capture the dynamic nature of the execution, we use
the checkpointing as a marker to partition the job flows into
regions. Here, a region is defined as a sequence of jobs that
always begins with a checkpointing job, and ends before the
next checkpointing job. This is feasible because we can predict
accurately when the checkpointing happens since the check-
pointing is assumed to be explicit and periodic. Following the
completion of the normal jobs, the checkpointing has a wide
variability on its time cost, and thus our approach considers
the delayTime caused by the checkpointing explicitly for the
purpose of minimizing the interferences. The duration of the
region is supposed to equal the interval of checkpointing. In

the simple example, the region contains 10 jobs, including 1
checkpointing job and 9 normal jobs.

C. Collection of historical records

Our approach collects the historical records to predict the
future executions. Given an estimated execution time, we
need to determine an input size to let the job finish on time
roughly, so an expected processingTime can be converted to a
reasonable input size.

There are several types of jobs our approach maintains with
the historical information: the checkpointing jobs, the normal
jobs specified with the minimum input size, called as the
small job and the normal jobs with the full interval time.
The checkpointing job is the main source that produces the
delayTime, so we can know the delayTime for the next region
in advance. The jobs specified with the minimal input size are
the jobs following the checkpointing jobs, used to reduce the
delayTime by proactively configuring the minimum input size.
With the collection of this information, we can predict how
much delay can be reduced for each small job. Collecting the
information of the normal jobs with full time is used to predict
the input size for the normal jobs, in order to further estimate
the overall rate of one region.

As the streaming application runs for a long time, runtime
and the workload may vary widely over time. Our online
algorithm maintains timeliness by only storing the records
within certain past duration. For example, the duration is
1 minute, which means that the historical information only
includes the records of the past 1 minute. Any records older
than 1 minute would be popped out when the latest record
gets memorized.

Note that we are not guaranteeing any precise accuracy of
the prediction on specific jobs, because there are too many fac-
tors that might influence the results, or even some executions
are virtually unpredictable because of content-dependence.
However, we believe that for most streaming applications,
the cost of the executions may not vary dramatically during
a certain amount of time. Thus the prediction is simply
implemented as doing an average on the collected records.
In the simple example, 1.3 second of the checkpointing job
and 0.6 second of the normal job with the minimum input
size are predicted based on the collected historical records.

D. Reducing Delay

The backpressure mechanism needs to entail that the delay-
Time does not constantly increase. It is crucial to make sure the
delayTime is controllable, otherwise the system would suffer
from data loss, exhaustion of resources, or system crash. Our
approach tends to reduce the delayTime by configuring the
minimum input size.

For each region, the delayTime we need to predict for the
next region is of two types: the delay inherited from the current
region and the delay produced by the checkpointing job in
the next region. Both checkpointing jobs and normal jobs can
produce delayTime. The first delay is the time the whole region
gets delayed. The sum of the two delays would be converted

Current Region Next Region
A I <timestamp, #tuples>
| | |, ==
I I R IR il; L |
L _—+-
155 1 Ts it EE 13si]]]
0.5s 0.3s 0.6s

B accumulated job delay from current region
checkpointing job delay of next region
a series of small jobs to reduce delayTime

(a) Reduce the delay based on the execution
of current region.

Update rate
A

I
1 1s 25 3s 4s 10s
I
[| N A N B B |
e :‘:m]
- i
regionDelay smallJobTime |
i Checkpointing i
i job time i
4

+«———— CPInterval ———
delays = regionDelay + CPTime + smalJobTime ;
avgRate = [(CPInterval - delays)/CPInterval] * fulllnputSize ;

(b) Update the rate at the end of each
region.

Fig. 6: GOVERNOR Design.

into the first delay of the next region if not eliminated before
the arrival of the next checkpointing. Both delays are equally
important due to the characteristic of accumulation 1.

The two types of delays have different characteristics:
the checkpointing delay is more predictable than the delay
accumulated from the current region. Thus we deal with the
two types of delay differently: The checkpointing delay is
predicted based on the historical records. The accumulated
delay from current region is calculated as the following. At
the point of issuing the signal (timestamp,#tuples), all
small jobs used to reduce delayTime in current region have
completed and all other jobs in the current region should have
a processingTime roughly equal to or larger than interval. If
any of the other jobs produces delay, this delayTime would
remain for the rest of current region until the reduction of
delayTime in next region. We use the actual delayTime of the
current job in current region as the accumulated delay of the
next region.

After the value of two delays are predicted, we propose to
specify a small input size for a fast reduction of the delayTime.
Although the two types of delays are predicted differently, the
sum of the two delays is calculated as the delayTime to be
reduced without difference. This approach could not guarantee
that the delayTime would disappear immediately after one
small job with the small input size. This may take a series
of the small jobs to reduce. In short, our approach does not
reduce the time of the checkpointing, but to reduce the delay
time caused by the checkpointing faster, compared to PID.

As the simple example resented in the figure 6a, the
checkpointing job configured with the minimum input size is
predicted to produce 0.3 second delay. There is one sudden
normal job that has a processingTime of 1.5 second, causing
0.5 delay. At the point of the completion of the sudden job,
the delayTime is the sum of the two delays, 0.8 second, which
takes the following 2 small jobs to clear the delayTime, as
each small job can reduce 0.4 (1 — 0.6) second. Therefore,
GOVERNOR needs to send 3 signals (timestamp, miniSize)
to reduce the delayTime.

E. Estimation of Region Rate

The rate is the average input size of all jobs for one
region. All jobs within one region share one rate, whereas
the jobs actually have different input sizes. As shown in
the figure 6b, there are three factors that determine the rate
of a region: smallJobTime, regionDelay, and CPTime. where
smallJobTime is the total time consumed by the jobs specified
with the minimum input size in the procedure of the delay
reduction, regionDelay is the delayTime of the checkpointing
job in the region, and CPTime is the predicted time of the
checkpointing. The regionDelay actually can be calculated
after the completion of the last job in the current region. The
jobs with the minimum input size can only process the minimal
tuples, and the regionDelay is intended to be reduced to
overcome the delayTime from increasing. The rate is updated
when a region ends and next region starts. In the simple
example, the sum of the 3 types of delay is 3 seconds, so
the rate is updated as (10 — 3)/10 of the full input size.

F. Design Comparison

The key difference between GOVERNOR and Spark Stream-
ing’s PID controller lies in that GOVERNOR can achieve low
delayTime and high throughput simultaneously through fine-
grain adjustment of batch sizes, whereas PID controller sac-
rifices throughput for the reduction of delayTime. Therefore,
GOVERNOR has the following benefits.

Lowering the risk of instability (Low latency). GOVER-
NOR proactively copes with the delayTime so as to avoid future
job delay, rather than passively considering how to handle
the delayTime after it has grown, like the PID controller.
Therefore, GOVERNOR can always maintain a low latency,
mitigate interferences from the checkpointing and enhance
system stability. Another different point is the rapid reduction
of the delayTime by giving a small batch size to certain jobs,
leaving other jobs uninfluenced by delayTime in contrast with
what PID controller does to reduce the delayTime proportion-
ally with the delayTime amortized on multiple jobs, leaving
system a high risk of accumulating delayTime.

->

SRR ORI}

et —— :
: i—

tuples

(a) 3 window operators on applications A
(CSW); B (CTW) ad C (TSW).

one tuple

160000

I PID

EE naive

[Governor
25.66 %

19.77 %

TSWT

csw

CcTw TSW

collected in 1s

(b) Overall throughput of the 4 streaming ap-
plications.

Fig. 7: Streaming applications: A. Count-based Sliding Window (CSW); B. Count-based Tumbling Window (CTW); C. Time-based Sliding

Window (TSW); D. Time-based Sliding Window of Top-k (TSWT).

Improving throughput. After the delayTime is cleared,
job can utilize the full interval for processing, leading to
the throughput improvement. We can see that the throughput
improvement of GOVERNOR comes from the uninfluenced
jobs. The high efficiency of micro-batch processing with a
relative long duration is also the main reason why the micro-
batch model was introduced into stream processing. However,
in PID controller, the processingTime of jobs always goes up
and down, and thus wastes the efficiency of batch processing.

V. EVALUATION

We now evaluate the efficacy of GOVERNOR experimentally
and compare the results against a standard PID controller
as well as the naive approach described in Section III. Our
evaluation seeks to answer the following questions:

o Throughput. How does GOVERNOR perform on various
real-world streaming applications?

o Overhead. How large is the overhead of using GOVER-
NOR?

« Dynamics. How does GOVERNOR handle the delay time,
improve the throughput, and enhance the system stability?

o Versatility. How does GOVERNOR behave under various
configurations?

A. Implementation

We have implemented GOVERNOR algorithm within
Apache Spark Streaming. The changes to connect GOVERNOR
to the underlying codebase were minimal, requiring modifica-
tion of about 20 Scala classes of the over 1000 implemented
by the system. These mainly include the BlockGenerator,
ReceivedBlockTracker, RateController classes to allow for
blocks of a specific size. The GOVERNOR controller is imple-
mented in about 500 LOC of Scala. For a clear comparison,
the GOVERNOR and the baseline approach are implemented
independently. We note that GOVERNOR is expected to work
in all other micro-batch streaming systems as well, since
our backpressure controller is completely transparent to any
specifics of the processing component in streaming systems.

B. Experimental setup

In our experiments, we use 6 nodes, each with 8 cores
Intel(R) Xeon(R) and 8GiB of DRAM. The version of Spark
Streaming we use in our experiments is 1.5, released at
the end of 2015. The latest version (Spark Streaming 2.0)
released during the preparation of this paper uses the same
implementation of the PID controller and so the same changes
should apply seamlessly.

The Hadoop version is 2.6 which we use as the storage
for the checkpointing on HDFS. We make each run last
approximately 10 minutes to ensure a meaningful result. The
data we report in our results are the average value across 10
runs. The throughput is calculated as a fixed number of tuples
divided by the corresponding processing time.

C. Streaming workloads

To assess GOVERNOR comprehensively, we choose several
representative streaming applications, described in Figure 7a.
The first one is the count-based sliding window (CSW). Every
time the window advances by one tuple, with one tuple
dequeued and another tuple enqueued, and then aggregation is
performed on the tuples that remain in the window. The second
one is count-based tumbling window (CTW), which differs
from CSW only in that no overlap can exist between windows.
The third one is a time-based sliding window (TSW), which
is defined by those tuples collected during one time interval.
The last one, time-based sliding window of top-k (TSWT),
uses the same window as TSW, but where the aggregation is
done for top-k. We implemented these applications in Apache
Spark Streaming using stateful operators.

The input is real-world data collected from VWAP(Volume-
Weighted Average Price) application at IBM Streams group
[26]. They are from a trace recorded during a trading day and
there are 46 million trade and quote messages for 3032 stock
symbols.

D. Overall performance of GOVERNOR

We now study the overall performance impact of GOV-
ERNOR with the 4 streaming applications described above.

= processingTime = processingTi
3000 | delayTime 3000 | delayTime 16000 CER]
2500 \\}l'i\ n\ 2500 i \\ gi;ggg
- i = i £ s
g 2000 \\ \' \‘ \\ g 2000 \I’ \\ \ OEJ 10000 " [=="Governor
£ 1500f . B q £ 15004 -)y N\ i sooo [== P controller
£ ool Ll £ ol NN % 6000
LN N T VA R W W WP VWS R
\JBs A C AN AWV VoY X ° :
500 ' : : ‘\ 500 2000k
0 ; [0 oA n N A A
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100
Job Id Job Id Job Id

(a) processingTime and delayTime of PID con-

troller. nor.

(b) processingTime and delayTime of Gover-

(c) delayTime on window size 120.

Fig. 8: Handling delay. delayTime analysis of PID and GOVERNOR.

Given the same size of tuples, the sliding window is more
computationally intensive than the tumbling window, and the
count-based window is more computationally intensive than
the time-based window, because the number of aggregations of
the former is larger than the latter. Figure 7b shows the overall
throughput on the 4 streaming applications, using the three
approaches: the baseline PID controller, naive approach and
GOVERNOR. We can see that GOVERNOR always performs
better than PID with up to 26% improvement in throughput
on CSW.

The variance of the improvement on GOVERNOR is caused
by the intensity of the computation involved. If the application
is more computationally intensive, the processing consumes
more time per tuple, making the result more sensitive to the
delayTime. By adapting the input size in a fine-grained fashion,
GOVERNOR improves the performance of this class of of
streaming applications. The flexible control is also why the
count-based sliding window obtains the highest improvement.

In contrast, the performance of the baseline approach is
less predictable and unstable. On some workload the naive
approach gains 11% improvement; on others it performs worse
than the standard PID controller (-2.3%). As discussed in
Section III, the input size is difficult to control when only
the rate signal is used as feedback.

E. Analysis of delay time

We repeat the previous experiment of count-based sliding
window and collect the delayTime and processingTime for a
comparison between PID controller and GOVERNOR.

Figure 8a shows a gap between the processingTime and the
interval on PID controller, which implies the system could
potentially process more tuples and boost the throughput. The
discrepancy occurs because the rate is forced to decrease
dramatically due to the checkpointing delay. Subsequently,
the adjustment from a low rate to a normal rate requires
many steps because the step-wise updates are conservative
and always based on the previous rate. Figure 8b shows that
our GOVERNOR makes full use of the interval, leaving no
separation between the processingTime and the interval. This

demonstrates how GOVERNOR achieves throughput improve-
ment over the standard PID controller.

Figure 8c presents the delayTime on a large window size
120. We can see that delayTime keeps increasing at the PID
controller. Conceivably, this results in an ever-increasing set
of jobs is buffered in memory, whereas GOVERNOR maintains
a controllable delayTime. For an apples-to-apples comparison,
we configure the minimum input sizes for the two controllers
to be the same: 10 tuples. The PID controller constantly
maintains the minimum input size after a duration of high
delayTime, yet the delayTime still keeps increasing. The reason
is not because the input size is insufficiently small, but
rather because the accumulated delayTime is too large. This
point also motivates our design point for handling delayTime
proactively, rather than considering the metric only after it
has snowballed above a threshold. The throughput of the PID
controller is the minimum input size, 10 tuples/sec on average,
while GOVERNOR processes about 4000 tuples/sec.

Note that the delayTime is, as would be expected at full
utilization, always consistent with the throughput: a high
delayTime implies a low throughput and a low delay implies
a high throughput. Both the PID controller and GOVERNOR
force a low processingTime when detecting looming increases
of delayTime by reducing the input size of their jobs — an
essential task of the backpressure controller. Consequently,
for the remainder of the evaluation section, we focus the
discussion around throughput.

E. Robustness to various configurations

In this part, we evaluate the impact of two configuration
parameters: the window size and the degree of parallelism.
These two attributes are important in streaming applications
since the window size indicates the cost of the checkpointing,
and the degree of parallelism represents the resources avail-
able to computation. We use the count-based sliding window
(CSW) to study the impact of the two attributes.

Figure 9a depicts the throughput of the three controllers.
We can see that the throughput always decreases as the
window size grows for each controller. The explanation is
that a large window size means a large workload for the

throughput

throughput

160000 140000 0.14
e 2124 % . PID —_ —)
Y 140000 2257% B naive Y 150000} naive 20119% 2518% 0.12
$ oo [Governor g 1 Governor —
3 120000 - 25.56% ‘2100000 o013ps Ro.10
3 100000 3 2148% .0.04 p
ft:’ t 80000 ©0.08
-, 80000 - 8
g_ 60000 g_ 60000 uc) 0.06
i< < o
%ﬁ 40000 %’1 40000 8-0.04
_’E 20000 _’E 20000 0.02
-~ -

0 40 50 60 70 0 24 28 32 36 0.00 10 20 40 80 160 320
window sizes Parallelisms historical window size

(a) Throughput with various window sizes.
lelism.

(b) Throughput at various levels of paral-

(c) Time overhead of GOVERNOR.

Fig. 9: Robustness. Throughput under two configurations and overhead analysis of GOVERNOR.

checkpointing, which leads to less remaining capacity for the
real computation, thus resulting in throughput degradation. As
the window size grows, the improvement that GOVERNOR
can achieve increases until window size of 70. The reason
behind the improvement is that a greater interference from
the checkpointing processes provides more opportunity for
GOVERNOR. At 70, the improvement stops since the cost the
checkpointing is now high enough that GOVERNOR practically
reaches its limit. For the naive approach, the performance
is still unstable and unpredictable: sometimes it provides a
modest improvement, sometimes it performs worse than PID.

In the next experiment, we study the impact of the resources
in terms of the parallelism. The window size is fixed to 60
in this test, so the checkpointing overhead is predictable.
We can see in Figure 9b that as the parallelism increases,
the throughput also increases for all three controllers. The
throughput improvement of GOVERNOR compared to PID
keeps growing as parallelism increases since more resources
yield more potential for the computation and GOVERNOR
exploits those opportunities for optimization.

G. Overhead analysis

Because the backpressure controller is invoked after each
job completes, it is important to ensure the cost of GOVERNOR
is low. We repeat the previous experiments and collect the time
cost of GOVERNOR by adding two timers to measure the start
and the end times of the algorithm execution. We vary the
historical window size to see how it influences the results,
with the outcomes presented in Figure 9c. Note that for most
streaming applications, GOVERNOR unnecessarily maintains
a large window size as the workload fluctuates over time.
The vertical axis represents the average ratio of GOVERNOR
time to the interval time — as the window size increases from
10 to 320, the ratio increases (less than 0.12%.) We deduce
that the overhead of GOVERNOR is negligible. Note that all
experimental results above have already included the overhead.

VI. RELATED WORK

In this section, we compare and contrast Governor with
related work in the literature.

A. Backpressure algorithms

In network area, backpressure mechanisms [29] [10] [27]
have been used as a scheduling policy that maximizes the
throughput of multi-hop networks. In systems area, backpres-
sure is also an important technique used to indicate perfor-
mance bottleneck to better balance load. Flexible Filter [6]
aims to improve the system throughput by efficient mapping
of the stream tasks and dynamic load balance. Sanchez et
al. [25] present a scheduler for pipeline-parallel programs
that performs fine-grain dynamic load balancing efficiently
based on backpressure. Unlike these backpressure techniques
above, GOVERNOR focuses on the adjustment of ingestion rate
to improve the throughput, and sustain a high stability for
streaming systems.

B. Reducing the cost of checkpointing

Checkpointing optimizations have been an active area of re-
search for several decades. Among the many techniques being
exploited are efficient writing of the checkpointed data, fast
recovery, configuration tuning [13, 22] and to apply various
compression techniques to checkpointing. Incremental check-
pointing is a canonical way to optimize the checkpointing by
only operating on the checkpoint difference [2] [21] [18]. Fast
recovery [5] [18] mechanisms focus on the performance of
reading checkpoints to speed up the recovery. Configuration
tuning includes the checkpoint time interval [30] — the size
of incremental checkpoint [18] [?]. Our approach coordinates
backpressure with checkpointing, which is complementary to
the reduction of checkpointing costs. GOVERNOR can work
synergistically with these techniques.

C. Streaming Systems and extensible backpressure

Dynamic batch sizing [8] achieves a high stability and a
good throughput through the adjustment of batch interval,
which may result in a high user-perceived latency. Instead,
GOVERNOR focuses on the adjustment of input size of jobs
to guarantee a constant latency. Many streaming systems,
including StreamScope [19], Naiad [20], TimeStream [23], S4
[24], IBM Streams [15], Apache Flink [12], Apache Storm

[28], and Twitter Heron [16], employ a topology backpressure
mechanism relying on the TCP windowing mechanism to
detect any slowing down. While piggybacking on TCP is
straightforward and simple, it leaves most of the complexity
of backpressure configuration to the users, such as buffer size
of the buffer and the “watermark”. These parameters directly
determine the number of messages that the system maintains
in flight during the runtime, which are tricky for the users to
tune as they are application-dependent. GOVERNOR controller
frees the users from manually tweaking these parameters.

VII. CONCLUSION

Stream processing systems have become the backbone
of big data analytics. Here, we described how the need
for persistence drives periodic checkpointing, and how this
checkpointing process can affect performance of the stream
processing systems.

To overcome the performance degradation, we sketched our
design for GOVERNOR: a backpressure controller for stream
processing systems that can cope with the dynamically varying
checkpointing overheads. By collecting historical information
of the checkpointing jobs and the normal micro-batch jobs,
GOVERNOR predicts and reduces the processing delay caused
by checkpointing proactively. The feedback from the smarter
controller in turn lowers the risk of system instability and
improves overall throughput. Experiments with an imple-
mentation of GOVERNOR in Apache Spark Streaming have
shown an overall performance improvement of up to 26% for
representative streaming operators and real-world workloads,
with negligible overhead. In our future work, we plan to extend
GOVERNOR to the backpressure mechanism of streaming
systems using continuous operator model.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for constructive feed-
back on the paper. Our work is partially supported by NSF
CAREER award #1553579 and funds from Georgia Institute
of Technology and Emory University.

REFERENCES

[1] IBM Corporation. Streams. http://www-03.ibm.com/software/products/
en/ibm-streams.

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive
incremental checkpointing for massively parallel systems. In /8th SC,
pages 277-286. ACM, 2004.

[3] J. Basilio and S. Matos. Design of pi and pid controllers with transient
performance specification. IEEE Transactions on Education, 45(4):364—
370, 2002.

[4] S. Bennett. Development of the pid controller. IEEE Control Systems,
13(6):58-62, 1993.

[5] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and
'W. White. Fast checkpoint recovery algorithms for frequently consistent
applications. In 2011 SIGMOD, pages 265-276. ACM, 2011.

[6] R. L. Collins and L. P. Carloni. Flexible filters: load balancing through
backpressure for stream programs. In The seventh ACM international
conference on Embedded software, pages 205-214. ACM, 2009.

[7]1 T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In Nsdi, volume 10, page 20, 2010.

[8] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream processing
using dynamic batch sizing. In SOCC, pages 1-13. ACM, 2014.

[9]

[10]

[11]

(12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

T. Das, Y. Zhong, 1. Stoica, and S. Shenker. Adaptive stream processing
using dynamic batch sizing. In SOCC, SOCC ’14, pages 16:1-16:13.
2014.

A. Dvir and A. V. Vasilakos. Backpressure-based routing protocol for
dtns. In ACM SIGCOMM Computer Communication Review, volume 40,
pages 405-406. ACM, 2010.

R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Making state explicit for imperative big data processing. In 20714
USENIX ATC), pages 49-60. 2014.

Flink. http://flink.apache.org/.

B. Gedik. Discriminative fine-grained mixing for adaptive compression
of data streams. IEEE Transactions on Computers, 63(9):2228-2244,
2014.

B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet:
batched stream processing for data intensive distributed computing. In
SOCC, pages 63-74. ACM, 2010.

M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar,
V. Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, et al. Ibm
streams processing language: Analyzing big data in motion. IBM Journal
of Research and Development, 57(3/4):7-1, 2013.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream
processing at scale. In 2015 SIGMOD, pages 239-250. ACM, 2015.
B. Li, Y. Diao, and P. Shenoy. Supporting scalable analytics with latency
constraints. Proceedings of the VLDB Endowment, 8(11):1166-1177,
2015.

H. Li, L. Pang, and Z. Wang. Two-level incremental checkpoint recovery
scheme for reducing system total overheads. PloS one, 9(8):¢104591,
2014.

W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou. Streamscope:
continuous reliable distributed processing of big data streams. In NSDI
16, pages 439-453, 2016.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In SOSP, pages 439—455.
ACM, 2013.

B. Nicolae and F. Cappello. Ai-ckpt: leveraging memory access patterns
for adaptive asynchronous incremental checkpointing. In The 22nd
HPDC, pages 155-166. ACM, 2013.

J. S. Plank, J. Xu, and R. H. Netzer. Compressed differences: An
algorithm for fast incremental checkpointing. Technical report, Citeseer,
1995.

Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
and Z. Zhang. Timestream: Reliable stream computation in the cloud.
In Proceedings of the S8th ACM European Conference on Computer
Systems, pages 1-14. ACM, 2013.

S4. http://incubator.apache.org/s4/.

D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In PACT 2011
International Conference on, pages 22-32. IEEE, 2011.

P. Selo, Y. Park, S. Parekh, C. Venkatramani, H. K. Pyla, and F. Zheng.
Adding stream processing system flexibility to exploit low-overhead
communication systems. In High Performance Computational Finance
(WHPCF), 2010 IEEE Workshop on, pages 1-8. IEEE, 2010.

L. Shenghui, W. Chenging, and C. Nan. Research on media stream
transmission based on back-pressure in mobile wireless network. Inter-
national Journal of Future Generation Communication and Networking,
6(5):53-64, 2013.

Storm. http://storm.apache.org/.

L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE transactions on automatic control, 37
(12):1936-1948, 1992.

S. Yi, J. Heo, Y. Cho, and J. Hong. Adaptive page-level incremental
checkpointing based on expected recovery time. In The 2006 ACM
symposium on Applied computing, pages 1472-1476. ACM, 2006.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In
SOSP, pages 423-438. ACM, 2013.

