

troller that can achieve high stability and high throughput

simultaneously, rather than sacrificing throughput for stabil-

ity as PID controller does. It estimates future checkpoint-

ing costs and then factors these costs into a backpressure

mechanism to minimize checkpointing interference on the

system performance. In contrast to approaches that focus on

how checkpointing costs can be reduced, GOVERNOR is a

complementary approach that can achieve a stable execution

and a high throughput. Under the hood, GOVERNOR exposes

a new channel between the controller and receiver that can

configure the input size of a specific job, allowing granular

adjustment of job processing times to quickly mitigate delays

due to checkpointing. For instance, if the predictions foresee

that a large snapshot will need to be taken, GOVERNOR would

give a small input size to mitigate the checkpointing effects

and help the follow-up jobs to experience shorter delays, thus

improving the throughput as well as lowering the risk of a

system crash.

Note that GOVERNOR is a set of backpressure techniques

that can be applied to general micro-batch streaming systems

with little code changes. GOVERNOR is expected to work in all

other micro-batch streaming systems, since our backpressure

controller is completely transparent to any specifics of the

processing component and checkpointing data structure in

streaming systems.

Contributions. Our paper has the following contributions.

• We empirically study and demonstrate the impact of

checkpointing and backpressure mechanisms on through-

put and delays in streaming systems.

• We design and implement GOVERNOR: a backpressure

controller which predicts the future cost of checkpoint-

ing and dynamically adjusts the flow rate to accurately

control the input sizes.

• We experimentally evaluate our implementation of GOV-

ERNOR within Apache Spark Streaming using representa-

tive streaming window operators. Our results on a realistic

financial workload [26] using different kinds of operators

demonstrate that compared to a standard PID controller,

GOVERNOR can improve the throughput of the system

for some continuous queries by up to 26%. Moreover,

GOVERNOR can reduce delays which further improves

the stability of the streaming system.

Roadmap. The rest of the paper is organized as fol-

lows. We next present background and an empirical study

to demonstrate the need to coordinate checkpointing and

backpressure handling. Section 3 presents a naïve approach

that predicts the checkpointing. Section 4 presents the design

of our GOVERNOR backpressure algorithm, and discusses both

important implementation specifics of our algorithm within

Spark Streaming and surveys our experimental results. Finally,

Section 6 summarizes related work before we conclude the

paper in Section 7.

II. BACKGROUND AND MOTIVATION

Although backpressure mechanisms are critical to finding

the optimal flow rate in feedback controllers, they can cause

Receiver ProcessingBuffer Controller

Signal

Fig. 2: Typical back pressure in streaming systems.

performance degradation or even lead to system crash if

handled inappropriately. Before elaborating on this point, we

begin with background on back pressure mechanisms and

checkpointing processes in streaming systems.

A. Backpressure Mechanisms

Backpressure is a feedback mechanism for rate limiting

input based on characteristics of the output that allows a

dynamic system to gracefully respond to variations in its input

workload in order to achieve smoother execution and better

performance. On one hand, when a system is heavily loaded,

the backpressure mechanism signals that the input sizes of

future jobs should be reduced. Without such provision, a

system under stress may begin to drop messages in an uncon-

trolled way or fail catastrophically, which is unacceptable in

practice. On the other hand, when system is lightly loaded, the

backpressure mechanism lets the input sizes grow accordingly

to prevent resources to be needlessly wasted.

As with all dynamical systems based on control theory, the

responsibility of the backpressure is to maintain the system in a

stable state: neither heavily loaded nor lightly loaded. To make

this precise, we introduce some quantifiable metrics. High

loads are reflected by a high delayTime, whereas light loads

are reflected by a short processingTime. Streaming applications

require that streaming systems should return results to users in

a specified interval, also called a deadline. Rate is the number

of tuples per second. For instance, every 1 second users

expect to receive a result, so the interval is 1 second. A high

delayTime implies that processingTime of micro-batch jobs is

larger than the interval, indicating that the user is not receiving

the results by the set deadlines. Note that the delayTime is

cumulative metric as presented in equation 1. If the delayTime

increases to a certain extent, system would trigger some signal

to indicate data loss, possibly leading to the exhaustion of

resources or system crash. A short processingTime means the

system could have ingested more tuples for processing, while

also meeting the required deadlines. If we think of these

metrics as equations over jobs 1, 2, . . . , j, j + 1, . . . , they are

related as follows.

delayTime(j+1) = delayTime(j) + (processingTime(j+1) − interval) (1)

The underlying architecture of a back pressure mechanism is

illustrated in Figure 2. The processing component is normally

considered a black box which receives tuples from a buffer

and sends the feedback signal to adjust future input size. The

buffer component takes in the tuples from the external world

and emits tuples for the processing based on the feedback

Receiver ProcessingBuffer

Fetcher Controller

Governor

Rate

PID Controller

rate

<timestamp, #tuples>

Fig. 5: GOVERNOR Architecture.

is mainly responsible for retrieving the tuples from the queue

buffer as the input, generating a job, and then submitting it to

the processing engine.

There are two signals: the rate and (timestamp, #tuples). The

first signal, rate, is sent by GOVERNOR to notify the receiver

of the number of tuples per second ingested from the external

input sources. The second signal tells the Fetcher the input

size for a specific job. Overall, rate represents the maximal

achieveable throughput of the system that it could obtain.

The extended signal provides a fine-grained control over the

input size of jobs, which aims to reduce the delayTime by

configuring a small input size. We believe that GOVERNOR can

achieve a high rate for the throughput improvement through

fine-grained adjustment of input sizes of certain jobs using

(timestamp, #tuples).
Example. We illustrate the idea of our algorithm with an

example. Normally, there is a minimum input size provided by

streaming application, indicating that every interval at least

the minimum input size should be processed regardless of

anything. In this example, the checkpointing interval is 10 sec-

onds, and every 1 second there is a micro-batch job submitted

for processing. The checkpointing job takes 2 seconds with a

large input size, and takes 1.3 seconds with the minimum size.

Normal jobs take 1 second to process the large size, and take

0.6 second to process the minimum size. One sudden normal

job consumes 1.5 seconds. The main logic of our algorithm

contains three parts: Region Partition, Reducing Delay and

Estimation of region rate.

B. Region Partition

To capture the dynamic nature of the execution, we use

the checkpointing as a marker to partition the job flows into

regions. Here, a region is defined as a sequence of jobs that

always begins with a checkpointing job, and ends before the

next checkpointing job. This is feasible because we can predict

accurately when the checkpointing happens since the check-

pointing is assumed to be explicit and periodic. Following the

completion of the normal jobs, the checkpointing has a wide

variability on its time cost, and thus our approach considers

the delayTime caused by the checkpointing explicitly for the

purpose of minimizing the interferences. The duration of the

region is supposed to equal the interval of checkpointing. In

the simple example, the region contains 10 jobs, including 1

checkpointing job and 9 normal jobs.

C. Collection of historical records

Our approach collects the historical records to predict the

future executions. Given an estimated execution time, we

need to determine an input size to let the job finish on time

roughly, so an expected processingTime can be converted to a

reasonable input size.

There are several types of jobs our approach maintains with

the historical information: the checkpointing jobs, the normal

jobs specified with the minimum input size, called as the

small job and the normal jobs with the full interval time.

The checkpointing job is the main source that produces the

delayTime, so we can know the delayTime for the next region

in advance. The jobs specified with the minimal input size are

the jobs following the checkpointing jobs, used to reduce the

delayTime by proactively configuring the minimum input size.

With the collection of this information, we can predict how

much delay can be reduced for each small job. Collecting the

information of the normal jobs with full time is used to predict

the input size for the normal jobs, in order to further estimate

the overall rate of one region.

As the streaming application runs for a long time, runtime

and the workload may vary widely over time. Our online

algorithm maintains timeliness by only storing the records

within certain past duration. For example, the duration is

1 minute, which means that the historical information only

includes the records of the past 1 minute. Any records older

than 1 minute would be popped out when the latest record

gets memorized.

Note that we are not guaranteeing any precise accuracy of

the prediction on specific jobs, because there are too many fac-

tors that might influence the results, or even some executions

are virtually unpredictable because of content-dependence.

However, we believe that for most streaming applications,

the cost of the executions may not vary dramatically during

a certain amount of time. Thus the prediction is simply

implemented as doing an average on the collected records.

In the simple example, 1.3 second of the checkpointing job

and 0.6 second of the normal job with the minimum input

size are predicted based on the collected historical records.

D. Reducing Delay

The backpressure mechanism needs to entail that the delay-

Time does not constantly increase. It is crucial to make sure the

delayTime is controllable, otherwise the system would suffer

from data loss, exhaustion of resources, or system crash. Our

approach tends to reduce the delayTime by configuring the

minimum input size.

For each region, the delayTime we need to predict for the

next region is of two types: the delay inherited from the current

region and the delay produced by the checkpointing job in

the next region. Both checkpointing jobs and normal jobs can

produce delayTime. The first delay is the time the whole region

gets delayed. The sum of the two delays would be converted

[28], and Twitter Heron [16], employ a topology backpressure

mechanism relying on the TCP windowing mechanism to

detect any slowing down. While piggybacking on TCP is

straightforward and simple, it leaves most of the complexity

of backpressure configuration to the users, such as buffer size

of the buffer and the “watermark”. These parameters directly

determine the number of messages that the system maintains

in flight during the runtime, which are tricky for the users to

tune as they are application-dependent. GOVERNOR controller

frees the users from manually tweaking these parameters.

VII. CONCLUSION

Stream processing systems have become the backbone

of big data analytics. Here, we described how the need

for persistence drives periodic checkpointing, and how this

checkpointing process can affect performance of the stream

processing systems.

To overcome the performance degradation, we sketched our

design for GOVERNOR: a backpressure controller for stream

processing systems that can cope with the dynamically varying

checkpointing overheads. By collecting historical information

of the checkpointing jobs and the normal micro-batch jobs,

GOVERNOR predicts and reduces the processing delay caused

by checkpointing proactively. The feedback from the smarter

controller in turn lowers the risk of system instability and

improves overall throughput. Experiments with an imple-

mentation of GOVERNOR in Apache Spark Streaming have

shown an overall performance improvement of up to 26% for

representative streaming operators and real-world workloads,

with negligible overhead. In our future work, we plan to extend

GOVERNOR to the backpressure mechanism of streaming

systems using continuous operator model.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for constructive feed-

back on the paper. Our work is partially supported by NSF

CAREER award #1553579 and funds from Georgia Institute

of Technology and Emory University.

REFERENCES

[1] IBM Corporation. Streams. http://www-03.ibm.com/software/products/
en/ibm-streams.

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive
incremental checkpointing for massively parallel systems. In 18th SC,
pages 277–286. ACM, 2004.

[3] J. Basilio and S. Matos. Design of pi and pid controllers with transient
performance specification. IEEE Transactions on Education, 45(4):364–
370, 2002.

[4] S. Bennett. Development of the pid controller. IEEE Control Systems,
13(6):58–62, 1993.

[5] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and
W. White. Fast checkpoint recovery algorithms for frequently consistent
applications. In 2011 SIGMOD, pages 265–276. ACM, 2011.

[6] R. L. Collins and L. P. Carloni. Flexible filters: load balancing through
backpressure for stream programs. In The seventh ACM international

conference on Embedded software, pages 205–214. ACM, 2009.

[7] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In Nsdi, volume 10, page 20, 2010.

[8] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream processing
using dynamic batch sizing. In SOCC, pages 1–13. ACM, 2014.

[9] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream processing
using dynamic batch sizing. In SOCC, SOCC ’14, pages 16:1–16:13.
2014.

[10] A. Dvir and A. V. Vasilakos. Backpressure-based routing protocol for
dtns. In ACM SIGCOMM Computer Communication Review, volume 40,
pages 405–406. ACM, 2010.

[11] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Making state explicit for imperative big data processing. In 2014

USENIX ATC), pages 49–60. 2014.

[12] Flink. http://flink.apache.org/.

[13] B. Gedik. Discriminative fine-grained mixing for adaptive compression
of data streams. IEEE Transactions on Computers, 63(9):2228–2244,
2014.

[14] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet:
batched stream processing for data intensive distributed computing. In
SOCC, pages 63–74. ACM, 2010.

[15] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar,
V. Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, et al. Ibm
streams processing language: Analyzing big data in motion. IBM Journal

of Research and Development, 57(3/4):7–1, 2013.

[16] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream
processing at scale. In 2015 SIGMOD, pages 239–250. ACM, 2015.

[17] B. Li, Y. Diao, and P. Shenoy. Supporting scalable analytics with latency
constraints. Proceedings of the VLDB Endowment, 8(11):1166–1177,
2015.

[18] H. Li, L. Pang, and Z. Wang. Two-level incremental checkpoint recovery
scheme for reducing system total overheads. PloS one, 9(8):e104591,
2014.

[19] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou. Streamscope:
continuous reliable distributed processing of big data streams. In NSDI

16, pages 439–453, 2016.

[20] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In SOSP, pages 439–455.
ACM, 2013.

[21] B. Nicolae and F. Cappello. Ai-ckpt: leveraging memory access patterns
for adaptive asynchronous incremental checkpointing. In The 22nd

HPDC, pages 155–166. ACM, 2013.

[22] J. S. Plank, J. Xu, and R. H. Netzer. Compressed differences: An
algorithm for fast incremental checkpointing. Technical report, Citeseer,
1995.

[23] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
and Z. Zhang. Timestream: Reliable stream computation in the cloud.
In Proceedings of the 8th ACM European Conference on Computer

Systems, pages 1–14. ACM, 2013.

[24] S4. http://incubator.apache.org/s4/.

[25] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In PACT 2011

International Conference on, pages 22–32. IEEE, 2011.

[26] P. Selo, Y. Park, S. Parekh, C. Venkatramani, H. K. Pyla, and F. Zheng.
Adding stream processing system flexibility to exploit low-overhead
communication systems. In High Performance Computational Finance

(WHPCF), 2010 IEEE Workshop on, pages 1–8. IEEE, 2010.

[27] L. Shenghui, W. Chenqing, and C. Nan. Research on media stream
transmission based on back-pressure in mobile wireless network. Inter-

national Journal of Future Generation Communication and Networking,
6(5):53–64, 2013.

[28] Storm. http://storm.apache.org/.

[29] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE transactions on automatic control, 37
(12):1936–1948, 1992.

[30] S. Yi, J. Heo, Y. Cho, and J. Hong. Adaptive page-level incremental
checkpointing based on expected recovery time. In The 2006 ACM

symposium on Applied computing, pages 1472–1476. ACM, 2006.

[31] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In
SOSP, pages 423–438. ACM, 2013.

