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A novel mesh-free Monte-Carlo method for two-dimensional transient heat conduction in composite
media with temperature dependent thermal properties is presented. The proposed approach is based
on expressing the solution of the transient conductive heat transfer equation, in domains with
temperature-dependent material properties, as a combination of two solutions: Bessel functions and
integrals of peripheral temperature. The proposed approach is used to solve transient conduction in com-
posite layered materials with temperature dependent thermal diffusivity. Results are compared against
others obtained using a conventional finite element approach. Experimental results for heat transfer in
a nonhomogeneous domain (composite layered material) are presented to demonstrate the performance
of the proposed approach.
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1. Introduction

As a numerical technique to simulate physical problems based
on statistical methods, the Monte Carlo method has been used
for solving complex boundary value problems since 1940. The
Monte Carlo approach was used in the late 1940s by Ulam and
Von Neuman to solve neutron diffusion problems. Metropolis and
Ulam [1] published a seminal paper on the basics of this method
in 1949. Since then, the Monte Carlo method (MCM) has been used
to solve various heat transfer problems, such as radiative heat
transfer [2–4]. The comprehensive simulation of the thermal
behavior of different materials, particularly in the nanoscale [5–
9] is another application of this method. [10] describes the floating
randomwalk Monte Carlo method as a mesh free approach to solve
conduction in domains with complex geometries, providing com-
putational advantage over finite element or finite difference meth-
ods. Another attractive feature of MCM is that it is very well suited
to parallel computing. In [11], performance of the random walk
method and floating randomwalk method are compared in solving
heat conduction in a domain with homogenous diffusivity, and the
ability of using parallel computing and MCM to solve this problem
is shown. Haji Sheikh and Sparrow [10] introduced the Monte-
Carlo solution of transient heat conduction based on Bessel func-
tions relating time and step length for each particle’s floating ran-
dom walk. Their method calculates the temperature of each point
by simply averaging the particles’ temperature receiving by the
respective point, and is applicable to homogenous media. Burmeis-
ter [12] reported the floating random walk Monte-Carlo approach
to tackle steady state heat conduction problems in composite
media with temperature dependent material properties. The study
presented in this paper introduced modifications in both methods
and combine them to address transient heat conduction in com-
posite media with nonlinear (temperature dependent) thermal dif-
fusivities, such as composite structures with insulation layers that
lead to abrupt changes of diffusivity between layers, as found
when modeling superconducting coils.

2. Conductive heat transfer in non-homogeneous media

Phonon heat transfer is described as the emission of energy par-
ticles (phonons) from the heat sources to the sinks - the step length
from source to sink being therefore a critical parameter to calculate
heat transfer. There are some methods [13,14] that have simulated
the direct process of phonon transfer (source to sink) using the
source’s thermal properties. It is possible to use the sink’s known

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2017.07.071&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.071
mailto:rbahadori2013@my.fit.edu
mailto:hgutier@fit.edu
mailto:smanikonda@amlsm.com
mailto:rbmeinke@amlsm.com
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.071
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db


R. Bahadori et al. / International Journal of Heat and Mass Transfer 115 (2017) 570–580 571
thermal properties to estimate the location of the sources that can
transfer the phonon in the defined time span to the sink. In this
paper, the latter approach is used.

The concept of heat transfer between source and sink follows
the potential theory and consequently can be solved using polar
coordinate system. Therefore, an infinite cylinder with radius r
and initially kept at the zero temperature is set as initial version
of problem [15]. For s > 0, the temperature of the boundary is
set to Tðr; h; sÞ. The temperature at the centerline of a cylinder
can be obtained by solving the convolution integral [10,16]:

Tðx; y; tÞ ¼
Z t

s¼0

Z 1

F¼0
Tðr; h; t � sÞdFdHð2Þ ð1Þ

FðhÞ ¼ h
2p

;Hð2Þ as
r2

� �
¼ 1� 2

X1
k¼0

exp � K2
kas
r2

� �
KkJ1ðKkÞ ð2Þ

where Kk is root of the Bessel function J0ðKÞ and a the thermal dif-
fusivity of the material. As described in [10], the step length (or
radius) is the minimum distance to the boundary and the elapsed
time s is accordingly calculated; therefore, the time step is floating
in this algorithm. The time step s needed for each spatial step can
be calculated using probability function Hð2Þ. Inverse distribution
functions for 2D case are [16]:

as
r2

¼ D1 þ D2ðRNÞ þ D3ðRNÞ þ . . . RN < 0:6

as
r2

¼ �0:17292 ln½0:62423ð1� RNÞ� RN P 0:6
ð3Þ
Table 1
Inverse probability functions for floating random walk.

RN 0.0–0.1 0.1–0.3 0.3–0.6

D1 0.013120 0.052654 0.051155
D2 3.3082 0.36498 0.35391
D3 �91.011 �0.45109 �0.33104
D4 1348.1 0.66164 0.44125
D5 �9524.2 – –
D6 25594 – –

Fig. 1. Floating random walk (FRW) with fixed step l
Ds are coefficients presented in Table 1 and RN is replaced by ran-
dom numbers generated from 0 to 1.

Having fixed radius, minimum distance to the boundary, ther-
mal diffusivity a and as

r2 from (3), floating time step s can be
calculated.

The first proposed modification to the method presented above
is fixing the time step and using Hð2Þ to obtain the radius of each
circle for the next step. This is necessary to calculate the tempera-
ture at the desired time step for all points - in other words, it is not
mandatory for the generated circle to touch the closest boundary.
The next step is the generation of a random number to use in the
angular distribution function FðhÞ, and pass the particles from the
source aligning the generated angle and as far as the calculated
step length. Figs. 1 and 2 depict the particle propagation after
one iteration using the floating random walk method from [10]
before and after the modification.

The second proposed modification allows consideration of non-
homogenous thermal diffusivity in the calculations. Although a,
the thermal diffusivity of the sink in Eq. (2) affects the step length
directly, it cannot consider the change of diffusivity along the path
that the particle follows from source to sink. In [17–20], modifica-
tions to the original random walk Monte Carlo method have been
proposed to account for the change of thermal properties in the
medium; however, meshing is required in these approaches. In
[21,22], the random walk Monte-Carlo method for diffusion in spa-
tially non-homogenous medium is studied – this can be adapted
and used in a floating randomwalk method proposed in this paper.
This is possible provided that the function describing the spatially
dependent thermal diffusivity is available. For a linear change in
thermal diffusivity and knowing the positions of both source and
sink, this function can be calculated; however, in media with
non-linear thermal diffusivity, it may be difficult to extract the dif-
fusivity function in each time step. In composite materials consist-
ing of thermal insulators, the diffusivity function is similar to a step
function. Modification methods for step length that use derivatives
to calculate the rate of change of diffusivity can introduce signifi-
cant errors in the numerical calculation of step function slopes.
Hence, a new algorithm is required to adjust the step length.
ength for each iteration and floating time steps.
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Fig. 2. Modified FRW with floating step length for each iteration and fixed time step.
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As an example, consider a square shape copper plate with side
length 0:2 and initial (uniform) temperature of 27 K at time t ¼ 0.
The middle of the plate experiences a change in temperature of
77 K in a rectangular area with side length = 0:06 m. For > 0, the
borders of the plate are kept at the fixed temperature of 27 K.
Fig. 3 shows the diffusivity of the copper plate in the initial condi-
tion, where the diffusivity of each point has been interpolated
based on the diffusivity of copper as function of temperature

shown in Fig. 4. The yellow dot near the hotter spot is the kth point
out of K points distributed in the domain, in this case K ¼ 10;000.
The diffusivity around point k is not homogenous and experiences
a step function change. This effect shall be included in the compu-
tation of step length to obtain accurate temperature distribution.

The probability distribution function Hð2Þ can be acquired from
the fit functions in [16]. The result is:

as
r2

¼ C ð4Þ
Fig. 3. The thermal diffusivity of the copper plate the initial condition.

Fig. 4. Thermal diffusivity of copper as function of temperature.
where C is a generated random number substituted into the fit
functions. The steplength r can be calculated as:

r ¼
ffiffiffiffiffiffiffiffi
adt
C

r
ð5Þ

This solution is accurate for media with homogenous diffusivity. To
model domains with nonlinear diffusivity such as copper (Fig. 3),
the generated path r is divided in M smaller steps, and the total
modified step length can be calculated as:

rj ¼
XM
m¼1

rm ¼
XM
m¼1

ffiffiffiffiffiffiffiffiffiffiffi
amdt

CM2

s
ð6Þ

where the index 1 6 m 6 M denotes the location of the jth particle
after passing each sub step length:

xmþ1 ¼ xm þ rm cosðhjÞ
ymþ1 ¼ ym þ rm sinðhjÞ

ð7Þ
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Form ¼ 1, the diffusivity of the center point kwill be used in Eq. (6),
a1 ¼ ak; and x1 ¼ xk, y1 ¼ yk represent the particle location at t ¼ 0.
For m > 1, the thermal diffusivity is extracted by interpolation from
Fig. 4, relative to the temperature at the particle location .The final
location of the particles after each time step can be calculated as:

xj ¼ xk þ rj cosðhjÞ
yj ¼ yk þ rj sinðhjÞ

ð8Þ

The j index accounts for the particle number (out of J particles emit-
ted from points denoted by the k index), and t is the corresponding
time index. Figs. 5, 6 show all sub-step length locations of J ¼ 1000

particles emitting from the kth point shown in Fig. 3 as a yellow
spot, when M is equal to 10 at time step t = 1, before and after
applying the step length modification. The initial temperature of
the mentioned point is 77 K. The length and width shown in Figs. 5
and 6 are the copper plate dimensions. The effect of the change in
thermal diffusivity along the path can be seen in Fig. 6 as longer
step lengths for particles moving towards the area with lower tem-
perature (27 K), where points have higher thermal diffusivity. The
color bar shows the thermal diffusivity at each sub step length.

Using modified step lengths, each particle adopts the tempera-
ture of the domain at the particle’s location. The following bound-
Fig. 5. Step length with the central diffusivity of the sink.

Fig. 6. Modified step length with path diffusivity.
ary conditions apply to particles falling in or out of the boundary in
each time step:

1. Fixed temperature boundary condition: the particles adopt the
pre-assigned fixed temperature of the boundary.

2. Insulation boundary condition: the particles adopt the temper-
ature of the sink.

The third kind of boundary condition (convection boundary
condition) has not been addressed in this paper. The calculation
of temperature at each point follows the same procedure as in
homogenous medium:

Ttþ1
ðxk ;ykÞ ¼

1
J

XJ

j¼1

Tt
ðxj ;yjÞ ð9Þ
3. Composite-layered materials with non-homogeneous
thermal properties

The formulation presented above can tackle the problem of a
single media with non-homogenous material properties. When
the media consists of composite layers where each layer has
non-homogenous temperature dependent material properties, fur-
ther modifications in Eq. (9) are required to calculate the temper-
ature of the centerline in cylindrical coordinates. The third
modification here proposed takes the thermal diffusivity of periph-
eral particles into account to calculate the centerline temperature
of the cylinder; or in other words, the temperature at the point.
Ref. [12] proposed a method to solve this problem as a steady state
heat conduction problem. The steady state equation of heat con-
duction for infinite cylinder with non-homogenous thermal con-
ductivity can be written as:

1
r

@ kðr; hÞr @Tðr;hÞ
@r

� �
@r

þ 1
r2

@ kðr; hÞ @Tðr;hÞ
@h

� �
@h

¼ 0 ð10Þ

Since the same conditions apply at the beginning and end of the tra-
verse, integration of this equation with respect to h from 0 to 2p,
makes the second expression equal to zero.Z 2p

0

1
r2

@

@h
kðr; hÞ @Tðr; hÞ

@h

� �
dh ¼

1
r2

kðr;2pÞ @Tðr;2pÞ
@h

� kðr;0Þ @Tðr;0Þ
@h

� �
¼ 0 ð11Þ

Integration from 0 to r yields:Z r

0

@ðR 2p
0 kðr; hÞr @Tðr;hÞ

@r dhÞ
@r

dr ¼

Z 2p

0
kðr; hÞr @Tðr; hÞ

@r
dh ¼ 0 ð12Þ

In the steady state, time is not a variable in the partial differential
equation and therefore particles have a perfect circular distribution
around the center point. However, in the transient case there is a
nonlinear relationship between the time step and step length (2),
so the distribution of particles does not follow a perfect circle
and, unlike [12], r cannot be omitted from (12). Introducing the
coordinate transformation in (13) and (14), Tðr; hÞ will be defined
in terms of Tðg; f Þ.

g ¼
R r
0

dr0
kðr0 ;hÞrR R

0
dr0

kðr0 ;hÞr
ð13Þ
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Fig. 7. Participating variables in TC before modification, Eq. (9).

Fig. 8. Participating variables in TC after Modification, equation (22).

Fig. 9. Comparison of floating random walk simulation (before and after modifi-
cation) with FEM, for peak temperature during a 1-s simulation of a copper plate
considering non-homogenous diffusivity.
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f ¼

R h
0

dh0R R

0
dr0=kðr0 ;h0 ÞrR 2p

0
dhR R

0
dr0=kðr0 ;hÞr

ð14Þ

It should satisfy the total differential relationship:

dTðr; hÞ ¼ dTðg; f Þ ) @Tðr; hÞ
@r

dr þ @Tðr; hÞ
@h

dh

¼ @Tðg; f Þ
@g

dgþ @Tðg; f Þ
@f

df ð15Þ

This implies:

@Tðr; hÞ
@r

dr ¼ @Tðg; f Þ
@g

dg ð16Þ

Using (13), dg can be defined as shown in (17). A, B, I2pB and IRA are
used to simplify the representation of numerator and denominator
in the next steps.

dg ¼
1

kðr0 ;hÞrR R
0

dr0
kðr0 ;hÞr

dr0 ¼ A
IRA

dr0

) @Tðr; hÞ
@r

¼ @Tðg; f Þ
@g

A
IRA

ð17Þ

In the next step, dh is calculated as:

df ¼
1R R

0
dr0

kðr0 ;h0 ÞrR 2p
0

dhR R

0
dr0

kðr0 ;h0 Þr

dh0 ¼ B
I2pB

dh0

) dh ¼ I2pB
B

df

ð18Þ

Substituting (17) and (18) in Eq. (12) yields:Z 2p

0

1
A
@Tðg; f Þ

@g
A
IRA

I2pB
B

df ¼ 0 ð19Þ

Note that, kðr; hÞr ¼ 1
A, IRA ¼ 1

B and I2pB ¼ Constant. Eq. (12) can be
written after transformation as:Z 1

0

@Tðg; f Þ
@g

df ¼ 0 ð20Þ

After integrating with respect to g from 0 to the outer radius for
each particle, Eq. (20) can be written as (21). Tc is centerline tem-
perature and TR is the peripheral temperatures:Z 1

0
ðTR � TCÞdf ¼ 0 ð21Þ

Substituting Eqs. (18) in (21) yields the centerline temperature as
presented in (22).

TC ¼

R 2p
0

rTðR;hÞR R

0
dr0=aðr0 ;hÞ

dh

R 2p
0

rR R

0
dr0=aðr0 ;hÞ

dh
ð22Þ

Discretizing the problem numerically allows the use of the method
proposed in [12] for the transient case by the estimate of using ther-
mal diffusivity instead of thermal conductivity. It should be noted
that radius r for each angle h is constant and can come out of inter-
nal integral and result in (22). Figs. 7 and 8 depict the participating
variables in the centerline temperature before and after the pro-
posed modification, respectively. Due to the transient effect, there
will be a contour shape of particles around the centerline instead
of a perfect circular shape as seen in the steady state. Eq. (22) holds
for both non-homogenous and composite media. It can be used
instead of equation (9) for single non-homogenous media as well.
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Fig. 10. Test setup using a thermal imager.

Fig. 12. MCM Simulation vs measurements for copper plate.

R. Bahadori et al. / International Journal of Heat and Mass Transfer 115 (2017) 570–580 575
The number of particles J in Figs. 7 and 8 emanated from the
sink is 10, and each particle path has been divided in ten sub-
steplengths in Fig. 8 (M ¼ 10).

4. Results for single material non-homogeneous media
compared to those obtained by finite element methods

To verify the proposed method (modified floating random walk,
MCM) to model heat conduction in a medium with non-
homogenous thermal diffusivity, the copper plate example
described above has been implemented in commercial FEM soft-
ware (ANSYS) to compare results. The number of nodes in the
FEM model are adjusted to match the number of points used in
MCM. Fig. 9 shows the temperature change of the point at the mid-
dle of the plate starting at T = 77 K during 1 s using three methods:

1. Monte-Carlo method before modification. Step length is calcu-
lated using rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajÞdt=C
p

, and centerline temperature is calcu-
lated as shown in [10].
Fig. 11. The initial condition for the MC simulation w
2. Modified MCM, where Eq. (6) is used for step length calculation
and Eq. (22) is used to estimate centerline temperature.

3. Finite element ANSYS model: nonlinear simulation of transient
heat conduction, taking temperature- dependent material prop-
erties into account.
5. Verification of results for single material non-homogeneous
medium vs measurements

Fig. 10 shows the test setup for measurement of temperature
distribution in a copper plate using a thermal imager. The thermal
imager is KEYSIGHT U5855A, and has a sensitivity of ±0.1 �C and
accuracy of ±2 �C. The resolution of the thermal imager screen is
320 � 240 pixels. The thermal imager was set to capture 8 frames
per second during the test. The copper plate’s length and width are
approximately 262 mm and 109 mm, respectively. The thin copper
plate has a thickness of roughly 0.6 mm, which makes the two
as extracted from a thermal image of the plate.
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Fig. 13. Comparison of MCM simulation vs measurement for the copper plate, close
to the boundary.
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dimensional simulation a reasonable approximation for compar-
ison with this test.

VIEW A shows the painted copper plate resting on plastic hold-
ers. The top surface of the holders is inclined to minimize the con-
duction heat transfer by contact between the copper plate and
holders. Flat black paint is used on both sides of the copper plate
to minimize the reflectivity of the surface – the readings are there-
fore mostly given from emissivity of the copper plate. The emissiv-
ity is set to 0.95 in the thermal imager. The painting not only
increases the measurement accuracy of the thermal imager but
can also reduce the impact of convection heat transfer on the test.
This also makes insulation boundary condition more reasonable
approximation in simulation. Using an inductive heating system,
the center of the copper plate was heated up and then the induc-
tion coil was removed from the top of the plate. The induced heat
transfers through the plate until the entire plate reaches a uniform
temperature. The transient process is captured at 8 frames/s by the
thermal imager. The initial condition for the Monte Carlo simula-
tion comes from the first image after removing the coil. Fig. 11
Fig. 14. Percentage of error v
shows the measurement image used as initial condition for the
MCM simulation (yellow points). The captured image consists of
253� 101 ¼ 25;553 pixels.

The measured temperature has been interpolated by 6000 ran-
domly distributed points throughout the plate represented by yel-
low circles. These points are used as initial condition for the MCM
simulation. One thousand particles are emitting from each point,
and each step length has been divided into M ¼ 10 step lengths.
A transient Monte-Carlo heat conduction simulation was done
for a total time of 20 s. The time step of the simulation was set
to 0.125 s to match the thermal imager’s frame rate (8 frames/s).
Fig. 12 shows the temperature profile of the copper plate’s center-
line drawn along the length of the plate, i.e., a line drawn from
ð0;0:055Þ to ð0:262;0:055Þ relative to the coordinates shown in
Fig. 11. Simulation results are compared to measurements at time
equal to t ¼ 1; t ¼ 5; t ¼ 10; t ¼ 20 seconds.

As shown in Fig. 13, the deviation of the simulation respect to
the measurements is larger near the boundaries of the plate.
Although painting the copper plate alleviates the effect of convec-
tion in the measurements, it cannot be fully eliminated. On the
other hand, the simulation is done with insulation boundary con-
dition, and for this reason the simulated temperature close to the
boundaries is higher than the measurements. Furthermore, this
deviation increases with time, which supports the fact that this
is a convective effect. This test could be performed in a vacuum
chamber, or a third kind of boundary condition (convection) could
be introduced to address this deviation.

The probabilistic error of MCM has direct relationship with the
number of random walks. A low number of random walk results in
higher error. The required number of random walks is related to
both the number of points needed to describe the geometry and
the number of particles emitting from each point when performing
the integration presented in (22). Fig. 14 (left y-axis) shows the
convergence of MCM to the measured maximum temperature after
1 s as function of the number of points, while the right y-axis
shows the simulation error, also as function of the number of
points. After 10k points there are no significant changes, however,
after 2k points the% error already falls very close to zero. The num-
ber of particles in this study was 1k, and M ¼ 10.

The impact of the number of particles on convergence and error
propagation in the copper plate example is shown in Fig. 15, using
10k points. This study suggests that 50 particles emitting from
ersus number of points.
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Fig. 15. Percentage of error versus number of particles, using 10 k points.

Fig. 16. Composite plate structure ad dimensions. Fig. 17. Scattering of particles in the composite plate assembly using path’s
diffusivity introduced in (6).

R. Bahadori et al. / International Journal of Heat and Mass Transfer 115 (2017) 570–580 577
each point is sufficient to properly describe material properties and
temperature profile, and leads to less than 0.1 percent error in the
integration of (9) for the center point temperature.

6. Verification of results for composite non-homogeneous
medium

To verify the simulation results of the proposed mesh free
Monte-Carlo method for two-dimensional heat conduction in a
composite layered structure with temperature dependent material
properties, a test was designed to capture and measure the tran-
sient temperature distribution due to heat conduction in a com-
posite plate shown in Fig. 16. A frame made of G10 composite
with side length of 207 mm inscribes a rectangular copper plate
with side length of 200 mm, leaving 3.5 mm of G10 as thermal
insulation layer around the copper plate. A second frame made of
aluminum, with side length of 246 mm, surrounds the assembly
of G10 and copper leaving a 19.5 mm strip of aluminum as outer-
most layer of the composite structure.

The experiment using this composite assembly was similar to
the copper plate example, and the setup is the same as shown in
Fig. 10. Using the inductive heating system, the middle of the cop-
per plate in the innermost layer of the assembly was heated up,
and after removing the inductor, the first image captured by the
thermal imager was fed to the MCM simulation as initial condition.
The surface of the assembly shown in Fig. 16 was painted flat black
to improve the emissivity reading of the test specimen and have a
more accurate temperature reading by the thermal imager.

The material properties of copper, aluminum and G10 used in
the MCM simulation are shown in Fig. 4, as extracted from the Cry-
ocomp software and NIST website. Fig. 17 depicts 100 scattered
particles from a point located in copper near the edge of G10. Each
step length has been divided in 10 sub-step lengths using Eq. (6).
The impact of the path’s thermal diffusivity can be seen in the fig-
ure, as longer step lengths are seen in copper (where thermal dif-
fusivity is higher) than in the lower layer made of G10.

The initial condition in the MC simulation of the composite
assembly was obtained from measurement using the thermal ima-
ger. Fig. 18 shows the initial condition captured by the thermal
imager and fed to the simulation.
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Fig. 18. Initial condition for CM simulation captured by thermal imager.

Fig. 19. MCM Simulation vs measurement for the composite plate.
Fig. 20. MCM Simulation vs measurement for the composite plate near the
boundary.
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Time step is set to 0.125 s to match the frame rate of the ther-
mal imager (8 frames/s). The temperature profile of the composite
plate’s centerline is presented for both simulation and measure-
ment in Fig. 19. The comparison is done at time steps
t ¼ 1; t ¼ 5; t ¼ 10; t ¼ 20 s. The agreement between simulation
results and measurements confirms the ability of the proposed
Monte-Carlo method in predicting transient thermal conduction
in a composite layered structure with temperature dependent
material properties.

Fig. 20 is a zoomed plot of the area close to the right boundary
of the composite plate. From left to right on the plot, the temper-
ature profile when transitioning from copper to G10 to aluminum
can be compared for both MC simulation and measurement. The
MC simulation shows steep transitions in the temperature profile
(similar to a step function) while the thermal imager shows a
smoother transition between different layers. The difference in
transitions roots in the limitation of the thermal imager to capture
accurately temperature changes when the temperature experi-
ences a step function profile. G10, acting as insulation layer
between copper and aluminum, prevents heat to transfer from
copper to the aluminum and produces a slump in the temperature
profile. The MC simulation correctly predicts the impact of G10 in
the transient heat conduction, yielding approximately a step func-
tion temperature profile in the respective area. Due to the mixture
of infrared waves from different materials (copper, G10 and alu-
minum) with very different frequencies due to a step temperature
difference, the thermal imager produces an inaccurately smooth
temperature transition profile in this area. Fig. 21 illustrates the
aforementioned limitation of the thermal imager.

To verify this shortcoming on the thermal imager, an experi-
ment was developed to assess the ability of the thermal imager
to accurately measure a known step function temperature change
between two materials. Fig. 22 shows the experimental setup, con-
sisting of two plastic pillars and one copper block in between.
While the plastic pillars are at room temperature, the copper block
is cooled down with ice to approximately T = 0 �C. The thermal
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Fig. 21. Thermal imager artifact: reading a mix of infrared frequencies when trying
to capture a step function temperature profile in a composite assembly.

Fig. 22. Experiment for assessing the accuracy of the thermal imager when reading
a step function temperature profile.

Fig. 23. Experiment for assessing the accuracy of the thermal imager when reading
a step function temperature profile – results.

Fig. 24. MC simulation vs. a finite element simulation for the composite assembly
experiment.

R. Bahadori et al. / International Journal of Heat and Mass Transfer 115 (2017) 570–580 579
imager is logging temperature data from the plastic pillars at
8 frames/s when the copper block is added to the set up immedi-
ately after removing it from an ice container and tightened
between the plastic pillars. The resulting structure has a known
step function in temperature profile.

Fig. 23 shows the result of the thermal imager’s measurement
versus the predicted actual temperature profile at t ¼ 0 s. The
smooth transition at the boundaries of the plastic pillars and cop-
per block shows the measurement artifact due to thermal imager
inability to measure an abrupt change in temperature profile (see
Fig. 24).

Using the same geometry of composite assembly and material
properties presented in Fig. 4, a transient finite element analysis
was performed using ANSYS MAPDL. The results are compared
with those from the MC simulation for the transition area at
t ¼ 20 s. The initial condition is defined as a rectangular area in
the middle of the copper plate with side length = 10 cm at the tem-
perature of 360 K; while rest of the plate is at temperature = 300 K.
Fig. 22 shows the agreement between results of both numerical
methods and verifies the ability of the proposed MC simulation
to predict the temperature profile transition in composite layered
structures.
7. Conclusions

A novel mesh-free Monte-Carlo method for two-dimensional
transient heat conduction in composite media with temperature
dependent thermal properties has been presented. The transient
conductive heat transfer is simulated by finding the temperature
of any test point (sink) by receiving energy packages (particles)
that are randomly arriving from the vicinity (source) of the point.
The thermal diffusivities along the particle’s path from source to
sink are taken into account. It has been shown that even small
numbers of particles emitted from each point yields accurate result
with less than one percent error.

Haji Sheikh and Sparrow [7] introduced the Monte-Carlo solu-
tion of transient heat conduction based on Bessel functions relating
time and step length for each particle’s floating randomwalk. Their
method calculates the temperature of each point by simply averag-
ing the particles’ temperature emitting from the respective point,

http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db
http://cbs.wondershare.com/go.php?pid=2996&m=db


580 R. Bahadori et al. / International Journal of Heat and Mass Transfer 115 (2017) 570–580
and is applicable to homogenous media. Burmeister [16] reported
the floating random walk Monte-Carlo approach to tackle steady
state heat conduction problems in composite media with temper-
ature dependent material properties. The study presented in this
paper proposes modifications in both methods and combines them
to address transient heat conduction in composite media with
temperature dependent thermal diffusivities. Results from the pro-
posed approach have been successfully compared against both
FEM results and measurements acquired in experiments using a
thermal imaging device.
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