Heracles: Scalable, Fine-Grained Access Control for
Internet-of-Things in Enterprise Environments

Qian Zhou*, Mohammed Elbadry’, Fan Ye* and Yuanyuan Yang*
*Department of Electrical and Computer Engineering, Stony Brook University
TDepartment of Computer Science, Stony Brook University
Email: {gian.zhou, mohammed.salah, fan.ye, yuanyuan.yang} @stonybrook.edu

Abstract—Scalable, fine-grained access control for Internet-of-
Things are needed in enterprise environments, where thousands
of subjects need to access possibly one to two orders of magnitude
more objects. Existing solutions offer all-or-nothing access, or
require all access to go through a cloud backend, greatly
impeding access granularity, robustness and scale. In this paper,
we propose Heracles, an IoT access control system that achieves
robust, fine-grained access control at enterprise scale. Heracles
adopts a capability-based approach using secure, unforgeable
tokens that describe the authorizations of subjects, to either
individual or collections of objects in single or bulk opera-
tions. It has a 3-tier architecture to provide centralized policy
and distributed execution desired in enterprise environments,
and delegated operations for responsiveness of more resource-
constrained objects. Extensive security analysis and performance
evaluation on a testbed prove that Heracles achieves robust,
responsive, fine-grained access control in large scale enterprise
environments.

I. INTRODUCTION

Access control is a fundamental requirement on Internet-
of-Things, critical for not only convenience (e.g., lights), but
also safety of people and physical assets (e.g., door locks).
Most existing smart home products offer coarse-grained all-
or-nothing access: the home owner has full access rights while
others have nothing. This is far from sufficient, especially in
an enterprise environment where tens of thousands of subjects
(i.e., employees) need to access one to two orders of magnitude
more smart objects (e.g., a university campus with 100+
buildings each embedded with hundreds of IoT devices).

The access control in such enterprise environments must be
fine-grained. Given the same object, different subjects may
have different access rights, even different degrees of freedom
invoking the same function of the object. The available access
rights may also depend on the context (e.g., time of the day).
Only executives may access the door lock, lights, projectors
in a VIP meeting room; managers may occupy a conference
room for up to half a day, while non-managers can use it for
at most two hours. A janitor may enter all these rooms for
cleaning before 9 AM, but no access to IT equipment.

To ease management, many existing solutions (xx cite) use a
fully centralized strategy, at the expense of weaker availability
and responsiveness. To operate an object, a subject sends a
command to the cloud first. The cloud will authenticate the
subject and check that he has sufficient rights, then notify the
object to execute the command. This strategy places the cloud
in the center of the access control loop. It ensures security

since the cloud is well protected. However, upon loss of
connectivity, nothing is accessible. The back-and-forth travel
to the cloud may add significant latency, adversely impacting
responsiveness thus user experience.

What is truly desirable is centralized policy while distributed
execution. The policy regarding which subjects have what
access rights, to what degrees, under what contexts, should
be centrally managed. Thus it is convenient to add/remove
an employee by changing a few records in a database at
the (well-protected) backend, without making changes at tens
of thousands of objects one by one. The access to objects,
however, should be distributed. When invoking a permitted
function on an object, a subject should be able do so via direct
connectivity to the object, without detouring to other entities
including the backend. This will ensure both the availability
and responsiveness of command execution.

Unfortunately, such access control for enterprise environ-
ments has not been studied in existing work. In this paper,
we propose Heracles, an access control system that achieves
fine-grained access control, centralized policy, distributed ex-
ecution at enterprise scale. Heracles adopts a capability-based
approach where a subject requests secure, unforgeable tokens
depicting his access rights to certain objects from the backend.
Once the token is obtained, the access no longer involves the
backend. The subject includes the token in his commands to
the target object, which authenticates the token and command,
then executes invoked functions. We make the following
contributions in this work:

e We design a 3-layer IoT access control architecture
for enterprise environments, consisting of the backend,
resource-rich objects and resource-constrained objects.
It supports fine-grained degrees of function invocation
on objects, convenient centralized policy management
and robust, responsive distributed execution at enterprise
scale.

e We compare with an alternative approach of ACL-
based distributed exeuction, and prove that capability is
preferable in enterprise environments due to its higher
efficiency and stronger security.

« We offer solutions to two desirable features in enterprise
IoT: 1) an attribute-based access strategy for efficient
bulk operations that control a group of objects using one
command; 2) a delegation-based strategy to improve the
responsiveness of resource-constrained objects.



o We implement our design, conduct real experiments in a
testbed and thoroughly analyze its security to demonstrate
its efficiency, scalability and security.

II. MODELS AND ASSUMPTIONS

Node categories. The network consists of three categories
of nodes: backend servers, subject devices, and objects. The
backend is well protected and run by human administrators.
It maintains the profiles of registered subjects (possibly their
devices) and objects; it also stores and updates access rights.

A subject is a person and he uses a subject device (e.g.,
a smartphone) to interact with objects. We assume the sub-
ject device has communication interfaces (e.g., WiFi radios),
Internet connectivity to the backend, and reasonable comput-
ing/storage resources (e.g., 2.7 GHz quad-core processor and
tens of GB of storage are common among smartphones). An
object is an IoT device, or a “Thing.” Objects have different
amounts of resources: many are small ones with constrained
hardware (e.g., Mica2 and Arduino class: smoke/presence/fire
detectors, light bulbs), while medium or large ones have space
and power for moderate hardware (e.g., Raspberry Pi class:
surveillance cameras, coffer makers, air conditioners, wall out-
lets). In the 3-tier architecture, small ones are member objects
while medium/large ones leader objects, and are assigned
different responsibilities. Besides, a target is the object that
a subject wants to operate, and it can be either a leader or a
member one. Subject devices and objects constitute a ground
network.

We assume the backend, subject devices and objects are
roughly time synchronized (e.g., within tens of seconds).
We also assume the backend is well protected, and subject
devices are reasonably protected (e.g., with OS security mech-
anisms). The backend, subject devices and leader objects have
enough computing resources to run public key cryptography
algorithms, while member objects may be able to run them
only occasionally. Objects may have diverse communication
interfaces, e.g., besides WiFi, Bluetooth, many IoT devices
use Zigbee, Z-wave. We focus on security design above the
network layer, and assume network connectivity exists among
all nodes (e.g., via bridging devices with multiple radios).

We assume objects are largely static once installed. Thus
the topology of the object network is stable except occasional
deployment changes such as addition/removal of objects. A
subject device is with its owner, thus mobile, but the movement
speed is usually slow (e.g., a person walking around). We
assume many objects, especially leaders, have enough energy
(e.g., main-powered like light bulbs, wall outlets, surveillance
cameras, coffee makers). Although we do not study duty
cycling techniques [1] in this paper, they can be applied
orthogonally to save energy for battery powered Things.

Scale. The network has an enterprise scale, which has three
properties that home environments do not have:

e Heterogeneous Node Property: subjects/objects may be
classified into many (e.g., ~ 10%) groups due to their
different attributes thus access rights.

e Huge Node Amount Property: the subject/object amount

is large (e.g., 103 ~ 10* subjects, 10* ~ 10° objects).

o Huge Operation Amount Property: the operation amount

is large (e.g., 10° ~ 10° operations per day).

Data caching & discovery. We assume a data
caching/discovery mechanism like PDS [2] exists. Independent
data entities, those (e.g., certificates) protected by public key
signatures, are widely propagated and cached in the network.
Due to multiple copies cached in different nodes, its discovery
becomes faster and more robust compared to always retrieved
from the backend.

III. DESIGN GOALS

Fine-grained access control. The system should be able to
specify under what contexts, a subject is allowed to invoke
on an object which functions with what parameters. This
comes from Heterogeneous Node Property. Coarse-grained all-
or-nothing access control works fine for homes, where family
members have full access rights and strangers have nothing. In
enterprise environments, however, subjects are quite heteroge-
neous in positions, thus responsibilities and access rights. This
makes fine access control granularity necessary.

Three security goals should be achieved. Authenticity is to
ensure a party is indeed the claimed one. This is necessary
such that it is indeed the subject that is authorized to invoke
respective functions, and indeed on targeted objects. Integrity
is to ensure messages are not forged or altered by adversaries.
It is critical such that only legitimate parties can create
valid messages to operate objects. Freshness is that messages
received are generated recently; this prevents replay attacks
where adversaries simply record and send again a previously
transmitted legitimate message, easy to perform in wireless
networks.

Centralized management. Editing of node profile and
access right information should be conducted at a single
point, which includes adding/removing a subject/object, cre-
ating/deleting a subject/object group in which subjects/objects
share certain characteristics, and adding/removing/changing an
access right. This centralized strategy makes the system easy
to manage: one does not need to make changes in a huge
amount of nodes one by one.

Execution availability and responsiveness. If the backend
is needed during command execution, a total loss of access
can happen when there are machine/network failures in/to the
backend. Despite dedicated maintenance, such failures can still
occur occasionally in enterprise environments. Therefore, we
need distributed execution such that access is still available
upon such failures. Also, the latency from command issuing
by subjects to execution by objects should be small for positive
user experience.

Non-goals. We discuss strategies to alleviate the harm of
denial-of-service attacks and node compromise, but complete
solutions are out of the scope. Neither are attacks targeting
routing or confidentiality/privacy, or trust management. Be-
sides, “scene” operations, which invoke a different command
to each object in a collection simultaneously, is not among the



goals. [xx wonder we may discuss how we can support scene
easily if needed - I think that’s true. then we can remove this
sentence. |

IV. SYSTEM OVERVIEW

There are mainly four interactions in the system (Fig. 1).
We first present the design concerning leader objects only, and
present that for member objects in Section VII.

- * Subject info
[=—=]+ Object info
Backend (=—%1+ Access rights

© commission

Object 1 Object 3 '
qj] - Y
‘Subject

... Object2 .-
o tiscover ) ’
Fig. 1. The backend run by the administrator maintains the profiles and access

© execute §99§
rights of registered subjects/objects. A subject discovers objects around him
(e.g., within 2 hops), requests a ticket covering the needed access rights, and
sends a command to operate the target (e.g., the air conditioner).

1) Commission. To join the system, a subject/object must
be registered at the backend out-of-band (e.g., manually by a
human administrator), which signs and issues it a private key,
a public key certificate (CERT) and a profile (PROF). The
subject/object makes its CERT/PROF propagated and cached
by nearby objects in the ground network.

2) Discover. The subject device proactively discovers [2]
nearby objects by querying their CERTs/PROFs. PROFs con-
tain human-readable descriptions so the subject gains knowl-
edge of which objects provide what functions.

3) Request. The subject sends a signed request (REQ) to the
backend, asking for tokens he may use later to invoke certain
functions on certain objects. The backend authenticates his
REQ, examines the access right database, and issues a signed
ticket (TKT) carrying requested capabilities.

4) Execute. The subject sends a signed command (CMD)
for operating the target. The CMD carries a TKT containing
required capabilities. It may be forwarded towards the target by
multiple objects. The target verifies the CMD is legitimate and
executes the invoked function; otherwise it rejects the CMD.
In both cases a response (RES) is sent back to the subject.

------------ connectivity
+«— interaction
Admin

V. INTERACTIONS AMONG NODES

Before presenting the details in the four interactions, we
comment a bit more on the backend. It maintains profiles
stating the attributes of every registered subject/object, and
subjects’ access rights to objects. An access right is fine-
grained in constraints on legitimate functions, parameters,
contexts, etc. (xx wonder havent we talked about this in those
4 steps, what’s new?)

Fine-grained access constraints. Typical constraints be-
tween a subject/object pair include valid functions, parameters,
time ranges, invocation counts, etc. Given the same object,
different subjects may be allowed for different functions, or

different parameters, time ranges etc. for the same function.
A regular employee can set the thermostat within a normal
temperature range, but a repair technician may set extreme
temperatures for testing. A janitor may open all door locks
before 8 AM for cleaning, but loses access during business
hours. An external UPS driver may get a one-time access token
to raise the storage door once to slip in packages. Formally, a
constraint is expressed as (type : Uitem), with type indicating
what to constrain (e.g. parameters) and a union of items
together specifying allowed values. An item here is either
a set (denoted as {z,y, ...}, e.g., parameter set {“on”, “off”})
or an interval (denoted as [z y], e.g., time range [9 17]).

A. Commission

A subject must first register at the backend out-of-band.
Certain proofs (e.g., government/company issued IDs) may
be needed. Then the backend assigns him an ID, a private
key, a signed public key certificate (CERT), and a signed
profile (PROF). The backend’s public key (K f‘l:ll;nm) is also
given. Also, the backend adds the subject’s access rights to its
database. After loading such data into his devices, the subject
publicizes his CERT/PROF in the ground network so they are
widely cached and can be easily retrieved [][] (xx also cite
yaodong’s caching work) by other nodes.

An object follows similar process. Its PROF describes: 1)
who: information like ID, human-readable name, category
(e.g., door lock), make/model, version, etc.; ii) where: infor-
mation about its location, e.g., “Light Engineering Building,
Floor 2, Room 217” would distinguish those devices in a
particular room/building; iii) functions: the allowed operations
and associated parameters. E.g., a lamp’s functions may in-
clude “set_brightness”, with an integer between 1 — 100, and
“set_color”, with three integers each in 0 — 255 for R/G/B.

The content of PROF can be structured (e.g., in JSON,
XML) such that it can be queried. One option for the human-
readable name is a hierarchical one embedding the object’s lo-
cation, e.g., /UniversityX/EngBldg /Floor2/Room217/Lightl.
Such names can optionally be used for routing a command to
the target later (see Section ... xx finish and make this clear,
could cite exiting work).

B. Discover

The subject device discovers nearby objects by querying
their CERTs/PROFs. PROFs contain descriptions so both the
human and his device gain knowledge of which nearby objects
provide what functions. Our design does not enforce any
particular discovery mechanism. Either an IP-based or a data-
centric one works. Data centric caching and discovery [][] can
be chosen for their data acquisition speed and robustness.

C. Request

The subject sends a request (REQ) to the backend, asking
for tokens he can use to invoke certain functions on certain ob-
jects. The backend authenticates his REQ, examines the access
right database to ensure he does have those rights, and issues
a signed ticket (TKT) carrying the requested capabilities.



ID-based and attribute-based ticket. Heracles offers both
ID-based TKTs and attribute-based TKTs, preferred in differ-
ent situations to achieve better flexibility or reduce message
overhead. An ID-based TKT specifies an object by enu-
merating its ID, while an attribute-based one uses attribute
predicates to describe objects sharing certain characteristics
(e.g., all lamps on floor 2).

S — Backend : [IDs, O, {F, C}, LIFE, T]SIGs
Backend — S : [ID1kt,IDar, IDs, O, {F, C}, LIFE1SIG admin

Fig. 2. Subject S sends a REQ to the backend and gets a TKT.

S (Subject) sends a REQ (Fig. 2) including: 1) IDg: a
unique identity number of S; 2) O: the object(s) to which S
requests his access rights, either an object (specified by an
object identity /Do) or an object category (specified by an
attribute predicate Attrp); 3) F: a set of functions on O to
which S requests his access rights; 4) C': a set of constraints
(e.g., parameters) on F'; 5) LIF E: the lifetime by which the
TKT expires; 6) T": a timestamp for the REQ’s freshness.

Note that F', C' and LIF'E can be optional in a REQ. The
backend can decide what functions, constraints and lifetime to
include in the TKT based on certain policy rules (e.g., granting
all allowed access rights).

T is included for defending against replay attacks. The
backend will accept a REQ only if its local clock and T are
within some known maximum time synchronization error (e.g.,
t seconds). The backend needs to remember the timestamps
received within recent time window ¢ to reject those replayed.
[...]SIGx denotes a public-key signature generated by X for
content in brackets. SIGg and STG 4gmin protect the integrity
of REQ and TKT so they cannot be altered or forged.

Every TKT has an identity I Dpxr such that it can be
referenced later in command execution (see Section V-D) or
ticket revocation (see Section V-F) — without presenting the
whole TKT. This improves efficiency and responsiveness.

ID R is the identity of the access right stored in the
backend and based on which this TKT was generated. This ID
is required for an attribute-based TKT but not for an ID-based
one. IDyg is used for referencing and revoking all TKTs
carrying a certain access right (see Section VI) efficiently. (xx
need to explain the format of I D 4p)

D. Execute

The subject sends a command (CMD) to the target to invoke
some function. The CMD might be relayed by multiple objects
towards the target using a routing protocol (xx cite ip/data
centric ones). The target verifies the CMD and if legitimate, it
carries out the invoked function; otherwise it rejects the CMD.
In both cases a response (RES) is sent back.

ID-based and attribute-based command. An ID-based
CMD carries an ID-based TKT and targets a single object,
while an attribute-based one carries an attribute-based TKT
and targets a group of objects. An attribute-based command
is used for a bulk operation (see details in Section VI).

S (Subject) sends a CMD (Fig. 3) including: 1) I D¢y p:
a unique identification number of the CMD; 2) O: the target,

S — Target : [IDcmp, TKT, O, F, P, T]SIGs
Target — S : [IDcmp, State, Data, T1SIGTqarget

Fig. 3. Subject sends a CMD to the target and gets a RES.

expressed as either /Do or Attrp; 3) F, P: functions and
parameters that S attempts to invoke on O; 4) T KT the ticket
(see Fig. 2) proving the authority of S to invoke F', P on O; 5)
T': a timestamp for the CMD’s freshness. The CMD is signed
by S to prove the authenticity.

When an object receives a CMD, it will find out if it is
a target by comparing its ID (if the CMD is ID-based) or
attributes (if the CMD is attribute-based, and recall that an
object knows its attributes from its PROF) with the CMD’s O.
The command execution is asynchronous such that a subject
device does not block on any single CMD. Here the same
IDcyp is used in CMD and RES so the subject device knows
which RES corresponds to which CMD, and may take further
actions for those CMDs getting no RESs (e.g., retransmission).
The operation part (O, F, P) must be a subset of the access
rights granted by T'K'T" to pass authorization check conducted
by the target. SIGs and SIG7qrger protect the integrity of
CMD and RES so they cannot be altered or forged.

The freshness is ensured by both T and IDcjrp. Given
the maximum time synchronization error e (xx make symbol
consistent, t was used before?), a leader keeps all I D¢ psps it
has received in recent time window e. A CMD is considered
fresh if the difference between 7" and the local time is less than
e, and its ID was not seen in recent time window. As long as
the time synchronization protocol can achieve a reasonable
e (e.g., a few minutes (xx you said tens of seconds before
- make it consistent)), the number of remembered I D¢y ps
will not be too many. Other mechanisms for freshness include:
challenge-response, which requires two rounds handshake thus
significantly increasing the latency; monotonic counters, which
require a counter for each pair of subject-object, and are much
easier to predict compared to nonces. Thus we choose the
combination of timestamp and random command ID (which
effectively serves as a nonce).

E. Comparison with existing work

Distributed execution. Our design is in contrast to cloud
centric approaches [3] where the backend is needed in com-
mand execution. In such systems a machine/network failure
results in total loss of access, and it has much more serious
impact in enterprise environments than homes due to the for-
mer’s Huge Operation Amount Property. E.g., in a university
campus, even a one-hour network fault in one building would
cause thousands of command executions fail. The tickets carry
requested authorizations, thus a subject can continue to operate
objects until the expiration (e.g., a few hours) of tickets,
hopefully by then the network or server failure has been
resolved. Only the first ticket request involves back-and-forth
communication to the backend. Subsequent commands are sent
directly to object, thus also greatly reducing the latency and
improving responsiveness.



Capability-based. Some existing work [][] adopts dis-
tributed execution but is based on ACL. Others [4], [5]
use capability but lack insights on the tradeoffs with ACL.
Here we prove capability is preferred to ACL in enterprise
environments for its better scalability and security. Many
times, a synchronization message must be sent to each af-
fected object immediately after the administrator changes the
backend database (including add/remove subject/object/access
right). The message may tell the object to add/remove certain
access rights in its ACL (in ACL systems), or to revoke
certain credentials (mostly (xx mostly not only?) in capability
systems), and we define sync overhead as the number of
affected objects, which should be minimized to ensure fast
convergence and compliance after such changes, otherwise
denied or compromised access may happen.

Compared with ACL, capability is able to eliminate sync
overhead in many cases, reduce overhead by one or two
orders of magnitude, or at least keep comparable overhead
in other cases. In contrast, most administrator operations lead
to large sync overhead in an ACL system. Due to space limit,
we briefly summarize that a capability one: 1) eliminates
overhead in subject/object/access right addition. E.g., upon
a subject who has access rights to N (10?2 ~ 10%) objects
is added to the database, all N objects in an ACL system
need to be notified immediately and update their ACLs. While
in a capability system, they do not need to do anything.
The subject will discover available objects and requests only
access rights he does have and is about to use on demand;
2) reduces overhead by one or two orders of magnitude in
subject/ID-based access right removal. In ACL systems all
affected objects must remove respective ACL entries, while
in capability ones, only a small number of objects that have
unexpired TKTs containing removed rights must be notified,
which is usually a small fraction (1072 ~ 1071); 3) keeps
comparable overhead facing object/attribute-based access right
removal.

A capability system is more efficient and secure due to
its remarkably smaller sync overhead. In most cases ACL
needs many more objects to be contacted by the backend
within a short time. This inevitably leads to more failed
or delayed updating, thus denied/compromised access: those
for addition operations make subjects’ authorized operations
rejected, and those for removal operations make subjects’
revoked operations accepted.

Local discovery. Some smart home products [6] rely on the
backend to give the subject a list of all installed objects and
provided functions. Huge Node Amount Property of enterprise
environments makes it infeasible and unnecessary to know all
the objects. Instead, the subject is interested in mostly those
around him. Caching and discovery mechanisms (especially
data-centric ones) are effective to find them out efficiently,
quickly and robustly.

FE. Ticket Revocation

A subject may lose authorization he once had (e.g., being
discharged, moved to different positions). Thus outstanding

tickets carrying unexpired access rights must be revoked.

To this end, the backend must keep all outstanding tickets
it has issued before their expiration times. Given any change
in access rights, it must examine and identify those carrying
invalid but unexpired authorizations. It generates a signed
ticket revocation message (REV), which can have two forms.
The first form includes the IDs and expiration times of all
tickets to be revoked. The REV is publicized and widely
cached among nodes. Objects will add the IDs, expiration
times of revoked tickets to their local ticket revocation lists
(TRL). Upon expiration (actually slightly later, at least e
after expiration) a revoked ticket’s ID will be removed from
the TRL. To avoid whole-network propagation of a REV
affecting only a few tickets and objects, the backend may
send the REV to those objects and their vicinity only. Any
command referencing a ticket whose ID is in the TRL will
become invalid. The second form is for efficiently revoking
all attribute-based tickets carrying a certain access right, which
will be explained in Section VI.

Backend — O : [{ID7xT, LIFE}, T1SIGAdmin

Fig. 4. Revocation message (the Ist form)

VI. BULK OPERATIONS

A bulk operation uses a single command (CMD) to operate
a possibly large group of objects with common characteristics.
It is common in enterprise IoT. E.g., a student uses one CMD
to turn off all devices in his lab when leaving work, or a
manager uses one CMD to trigger all alarms in his building
to notify people to evacuate, or a janitor turns off all lights on
a floor when finishing a night tour. An attribute-based CMD
achieves the goal, using two attribute predicates: 1) In the
ticket (TKT) referred by the CMD, one predicate O specifies
the object category to which the subject has access rights; 2) In
the CMD, the other predicate O specifies the object category
that the subject attempts to operate, i.e., the targets.

A primitive predicate is a triple (attribute, operator,
value), and possible operators in our system include: =
S £, <, >, <,>,€. A complex predicate consists of multiple
primitive ones combined in logic AND A, OR Vv, NOT —, etc.
A simple form is to combine multiple primitive predicates in
logic AND. We implement this design and the support for
other forms can be added if necessary. E.g., “all the windows
in Room 217” can be expressed by {type = window A
room = 217}.

A bulk operation command can be propagated among peer
devices directly. This is suitable when targets are within a
small or medium scope, e.g., one or a few rooms, floors. Such
a CMD is forwarded by an object to its neighbor objects, hop
by hop till the CMD reaches every possible target. This P2P
strategy does not rely on backend connectivity, and achieves
better execution robustness and responsiveness. When targets
objects are spread over large areas (e.g., remote access of
objects in another building), hop-by-hop routing may be slow
or even unavailable. Thus the command can be sent via



the backend directly to the destination or its vicinity, then
propagated among peers.

Message overhead. An ID-based CMD can also be used
for bulk operation if its TKT enumerates all target IDs, but an
attribute-based one has smaller message overhead when the
number of targets is large. ID-based TKTs/CMDs are easy
to implement and TKTs are short when small numbers of
objects are included. However, it cannot handle large numbers
of objects efficiently. Since the size grows linearly as more
object IDs are enumerated, the TKT may become too large,
incurring large overhead and long latency in operation. When a
new object is added, a new TKT must be requested to include
its ID. On the contrary, an attribute-based one has a fixed size
and can be used to access new, previously unknown objects.

Ticket revocation. An attribute-based TKT can be revoked
by both forms of revocation messages (REV): when the
number of TKTs to be revoked is small, we use the first form
(see Section V-F) referencing IDry7s; when an attribute-
based access right is removed from the backend, the number
of affected TKTs may be larger (xx give some figures, how
large?) because the access right may have been requested by
many subjects in a category, thus enumerating [ Drgrs is
inefficient. In this case the ID of the access right (/D 4pg) is
referenced to revoke all TKTs carrying it. (xx as commented
before, how I D 4r works is not clear )

Backend — O : [{IDar, LIFE}, T1SIGadmin
Fig. 5. Revocation message (the 2nd form)

VII. LEADER AND MEMBER BINDING

Due to the abundance of medium or large objects with
sufficient power and resources in enterprise environments,
we leverage them to create a hierarchical structure where
leader objects form the “backbone” while member objects
associate with them as “leaves.” The leaders will handle those
frequent, compute or energy intensive responsibilities (e.g.,
public key cryptography, message forwarding) on behalf of
their members. A member depends on its leader(s) to receive
and verify commands from subjects, and forward responses
back to them. This design allows us to leverage more powerful
Things to serve less capable ones. The interactions among
nodes are as follows:

Commission. A member object follows almost the same
register process at the backend as a leader one, except that its
name in the profile (PROF) may not reflect its location. The
reason is a member object, usually small and free of wired
power supply, has a higher chance of being moved. Thus it
is better not to carry its location in its PROF such that the
backend does not have to issue a new PROF often. Instead,
we obtain its location by checking which leader it is using.

Bind. Each member object must “bind” to at least one leader
object. A member object broadcasts messages seeking leaders
from one-hop neighbors, and leader objects that are willing
to accept more members will respond. The member chooses
one or multiple as its pre-leader(s) (e.g., based on RSSI) and
starts to establish a shared secret key and generate a binding

notification (BIND). The BIND reveals the member object’s
location: it tells which leader(s) the member object associates
with, thus should be used as the destination when sending
commands (CMD) to operate the member. Its format is
[[IDBIND; L, M, LIFE, V]SIGM]SIGL, where IDBIND,
L, M, LIFE, V denote this BIND’s identity, leader identity,
member identity, this BIND’s expiration time and version
number. An unexpired BIND will be overridden by another
BIND with the same L and M but a higher version. It is
generated and signed by the member object, then sent to and
signed by the leader. This nested double signing prevents
a leader or member from unilaterally publicizing a forged
bilateral relationship.

M—L:Ny

L— M :CERT.; EXCH,

M — L : CERTwm; EXCHpMm; BIND

Fig. 6. Member and Leader establish a shared secret and generate a BIND.

Our message flow of shared secret establishment and BIND
generation is given in Fig. 6, and it is inspired by the design of
TLS handshake (xx cite). ECC-based TLS supports multiple
key exchange algorithms, with many parameters configurable,
including elliptic curves, point formats, etc. By fixing the
key exchange algorithm at ephemeral ECDH (ECDHE) and
other parameters (e.g., signature algorithm at ECDSA on curve
secp224rl), we are able to reduce the number of messages to
three, while generating BIND concurrently.

After receiving the member’s nonce Ny, the leader gener-
ates an exchange message (EXCH): [Ny, Ni,, KM ]SIG,
where Ny, KMy denote the leader’s nonce and key ma-
terial (an ECDH public key for computing the shared se-
cret). Then the member sends an EXCH with the format
[N, KMy, IDpinp]SIG)y, delivering the member’s key
material. Both EXCHs are signed for protecting authenticity
and integrity, and the sender’s CERT is attached such that
the receiver can verify the signature. Nj;, Ny are used in
challenge-response, for freshness. (xx you didnt explain how
BIND is created in 3rd step)

Discover & Request. A leader publicizes its members’
CERTSs/PROFs in the ground network. Then discovering a
member object and requesting a TKT for it becomes exactly
the same as dealing with a leader object.

Leader — Member : [IDcmp, F, P, TIMAC,m

Member — Leader : [IDcmp, State, Data, TIMAC.,m

Fig. 7. Leader sends an adapted CMD to the member and gets a RES.

Execute. When a leader receives a CMD, it will find out if
it or its member is a target by comparing their IDs (if the CMD
is ID-based) or attributes (if attribute-based) with the CMD’s
O. If the target is its member, it will check if the CMD is
legitimate and if so, send to the member an adapted CMD
protected by a message authentication code (MAC) generated
from their session key. (xx what’s the relation bw the first
shared secret and session key? how’re session keys generated
and updated? cite existing work if same) This CMD includes
the same I Dcnyp, F', P, T. The MAC ensures authenticity



and integrity, and the freshness check is done similarly. (xx we
assume members have clocks as well?) The leader replaces the
public key signature with a MAC because it has much more
resources to conduct those compute and energy intensive work
(i.e., verifying public-key signatures). The member only needs
to verify MACs, which incurs much less time and energy.

VIII. SECURITY ANALYSIS

We show in this section how our system reacts to possible
attacks in all interactions but commissioning (it is assumed
to be a secure out-of-band process). The system resists well
to attacks from external adversaries that target authenticity,
integrity, freshness. Besides, we discuss strategies to alleviate
the harm of node compromise and availability (e.g., jamming)
attacks, but complete solutions are out of the scope. Attacks
targeting routing or confidentiality/privacy are also out of the
scope.

We classify attacks based on the malicious node’s source,
role and target: 1) source: the malicious node can be from
external, or it is a once benign node in the network but
now compromised (e.g., a smartphone is stolen or its private
key gets leaked), which we call internal attacks; 2) role: the
malicious node may behave as a subject device, leader object,
member object; 3) target: the possible security properties to
attack include authenticity, integrity, freshness, availability.

Discover. External leader, member objects may pose as
benign ones by propagating profiles (PROF), waiting for
subjects to discover and later execute commands (CMD) on
them. Because they do not have properly signed PROFs, it is
easy to detect and drop them. Internal ones, however, are able
to entice subjects to operate them, thus collecting information
about the subjects’ locations, operation behaviors, etc. Such
privacy issues are beyond the scope.

Bind. An external leader object may cajole benign member
objects into choosing it as their leader and then manipulate
them. But it has no private key and public key certificate
(CERT) assigned by the administrator, and will not be able to
accomplish the handshake for shared secret establishment and
binding notification (BIND) generation. For the same reason,
an external member object will fail in finding a leader. To the
contrary, a malicious internal leader object is able to recruit
benign members. A member object can have multiple leaders
(only one is active at a time) and change the active one from
time to time, thus reducing the probability of accepting ma-
licious CMDs. Similarly, a malicious internal member object
can associate with benign leaders, but it cannot cause much
harm beyond itself. Besides, a malicious internal leader object
may publicize fake BINDs, but our double signing strategy
foils that.

Request. An external subject device cannot succeed in
requesting tickets (TKT) due to the lack of valid private
key, thus signatures. A replayed request (REQ) will also fail
because of timestamp’s protection (xx and backend remember
past REQs in e?). A malicious internal subject device can
launch attacks targeting authenticity, integrity, freshness. (xx
exactly what? need to be more concrete) We may use extra

mechanisms (e.g., operation behavior analysis) on the backend
to detect a compromised subject device. Once detected, the
subject device will not be issued new TKTs, and the TKTs it
has obtained will be revoked.

Execute. An external subject device’s forged/altered CMDs
will not get accepted by leader objects due to the protection
of signatures, neither will its replayed ones because we have
timestamp and nonce jointly for resistance. Even so, the
node may keep sending invalid CMDs to waste resources of
benign nodes. To mitigate this harm, we may ask intermediate
relaying nodes to examine CMD integrity/freshness (i.e., the
leader objects forwarding CMDs to the target, originally such
checks are conducted by the target only). Thus an invalid CMD
will be dropped before it travels far, effectively reducing the
attacking scope.

An external node may mimic a leader object. Its CMDs to
member objects will be found illegitimate for either wrong
message authentication codes or being obsolete. As for avail-
ability attacks, the malicious leader object may send a large
number of invalid CMDs to member objects around, attempt-
ing to drain their batteries. A member object may regard being
awakened too often as abnormality and report it to the admin-
istrator, who will take further countermeasures. An external
member object will fail in making its forged/altered/replayed
responses (RES) accepted by a leader object for the same
reason. Note that usually a leader object has sufficient energy
from wired power supply and does not have the dead battery
problem as a member one, but a similar detection strategy can
be applied to notify the administrator.

A malicious internal subject device could get its CMDs
executed, attacking authenticity, integrity successfully. Faced
with such situations, the backend can issue subject devices
TKTs of constrained access rights and short lifetimes to
alleviate the damage to some degree. The attacker, though
having compromised the subject’s identity, can only exert the
access rights offered by the TKTs stored in the device. Thus
the less capable the TKTs are, the less harm the attacker can
do. Of course the attacker may try requesting more TKTs, but
we discussed the countermeasures that hamper it. (xx where?
maybe repeat briefly)

If an leader object gets compromised, all of its member
objects will be indirectly compromised and execute the at-
tacker’s CMDs. But as mentioned, a member object may keep
switching from one leader to another, reducing the amount
of malicious CMDs it receives. As for a malicious internal
member object, it is under control of the attacker. Possibly,
its leader may detect its abnormality, e.g, finding it does not
follow a legitimate CMD, and then inform the administrator.

(xx need to say in general about resource exhaustion attacks:
dumping many message to waster resources, thus DOS legit-
imate ones. also physical level jamming we dont consider.)

IX. EXPERIMENTAL EVALUATION

We have implemented a prototype including three compo-
nents of Heracles: the backend, subject devices, leader objects.
(xx no member?) The backend program runs in a server



machine. We use Google Nexus 6 (2.7 GHz quad-core CPU,
3 GB RAM) as subject devices. Three leader objects are
deployed in a large room, each emulated by a Raspberry Pi
2 (900 MHz quad-core CPU, 1 GB RAM). (xx onlly 3? too
small - can we say more? also need to overview how large
scale aspects evaluated)

Different radios can be used, as long as network connectivity
and routing exist. In the testbed we choose WiFi and connect
every node to the same access point (AP). The subject device
requests tickets (TKT) from the backend over TCP, while
communicating with a one-hop leader object (for object dis-
covery, command execution) over UDP unicast due to its lower
overhead. As for interactions between leader objects, UDP
unicast is used for delivering ID-based commands (CMD)
and broadcast is used for attribute-based CMDs. All responses
(RES) come back over unicast.

We evaluate the following aspects: 1) the time cost of
signature signing/verification in different platforms. 2) the
impact of ID-based strategy and attribute-based strategy on
the efficiency in terms of message overhead in different usage
scenarios. We present two scenarios based on a real building
on our campus. 3) the impact of the two strategies on the
latency from a CMD issuing to the RES reception.

A. Signature Operation Time Cost

40 704 WECC160 8 26.9— [ECC160
m RSA1024 I RSA1024
530 [JECC224 £ 6 [JECC224
5 [CIrRSA2048 = [CIRSA2048)
[« o
020 o4
£ g

0
Sign Verify Sign Verify

(a) Crypto++ on Raspberry Pi (b) JCA on Android Phone

Fig. 8. Signature signing/verification time cost on two platforms

We compare the time cost of RSA/ECDSA signature sign-
ing/verification on both subject devices and leader objects.
Compared with RSA, ECC offers similar security with smaller
key sizes. E.g, ECC160 is close to RSA1024, and ECC224 is
close to RSA2048. First, we use Crypto++ [7] on Pi (Fig. 8
(a)), and each message to be signed is 1KB, a common CMD
length. For both ECC cases, verification consumes about twice
as long as signing. RSA1024 has signing time similar to ECC,
while RSA2048 costs too long. Also, we notice RSA verifies
a signature extremely fast (0.7ms for 1024, 1.5 ms for 2048).
Second, Java Cryptography Architecture (JCA) is used on
Nexus 6 (Fig. 8 (b)). The result of ECC160 is not shown
because the default Android Studio lib (AndroidOpenSSL)
supports elliptic curves at least 224-bit long. We have tried
other libs but they are inefficient, e.g, Spongy Castle (Bouncy
Castle for Android) needs 50.7ms for ECC160 verification.
Again, we find RSA1024 has comparable performance to
ECC224 in signing but an advantage in verification (0.5ms).

Exactly which signature algorithm to pick is orthogonal to
our design, but in the testbed we choose RSA1024 for its fast

verification. This feature is beneficial to en-route check, where
a CMD is signed once but verified for multiple times. Though
RSA1024 leads to a 88-byte longer signature than ECC160,
that overhead is not remarkable in 1KB-long messages.

B. Ticket/Command Message Overhead

By comparing the length of TKTs/CMDs which are either
ID- or attribute-based in two real cases (Student Case, Admin
Case), we prove the two are preferable in different scenarios:
ID-based TKTs/CMDs are more efficient in scenarios with
small amounts of objects in various types, while attribute-
based ones work better for bulk operations that target large
amounts of objects in a few types. The types and amounts
of all objects below are from a field study on an engineering
building on our campus. The building has two floors, with
32 offices/labs in the first, and 36 in the second. A medium
office/lab is used as a representative which has 6 lights, 8
lamps, 5 computers, 1 to 2 doors, 3 windows, 1 alarm and
6 other devices. Totally, there are approximately 30 objects
each room, and 2040 objects in this building, excluding those
in restrooms, lobbies or corridors.

Student Case. (xx is it one TKT or one each object? In
design the ID based TKT is for one object only. you may say
he requests one TKT per object) A graduate student requests a
TKT in the morning which covers his access rights to certain
objects installed in his lab, for only the functions he knows
he will probably use this day. There are 8 objects included: 2
lights, 2 lamps, 1 door, window, coffee maker, air conditioner.
This TKT is a representative covering a small amount of
objects which however are in quite different types, and later
the subject will usually use it to operate a single object at a
time.

Admin Case. A building/campus administrator requests a
TKT carrying his access rights to all 408 lights and 68 alarms
in this building. This TKT is a representative covering a great
amount but very limited types of objects and will be used to
invoke bulk operations. For example, the administrator uses
it to trigger all alarms in the building when an emergency
occurs, and also to turn off all lights in rooms to force people
to put their work aside and leave this building for safety.

Fig. 9 (a) (xx see if you can use different patterns in place of
colors so it’s visible when printed b/w) shows the length of ID-
and attribute-based TKT/CMD for Student Case and Admin
Case respectively. (xx the first points should be relative lengths
of overall message, and student for ID, and admin using attr.
Then you go to details like AR parts) Except A-Attr (Admin
Case, attribute-based), the access right (AR) part is always the
largest component in a TKT/CMD and it affects the overhead.
In Student Case, an ID-based TKT/CMD has a shorter AR:
len(AR st )/len(ARrp) = 158% because the objects do not
share characteristics much, thus using attribute predicates to
describe them is less efficient than simply enumerating their
IDs (4 bytes for each object in our implementation). In Admin
Case, however, an attribute-based TKT/CMD is more efficient
due to its much shorter AR: len(AR a4t )/len(AR;p) = 6%.
It is because the administrator attempts to operate two object



3000 == 80 300
° [CITKT access right| — -
£, 2500 [{LJTKT signature — m 250 ;
=) [CITKT others £ 60 -
£ 2000 [[ICMD signature = . %‘| 200
g’ [CICMD others 340 él 150 L1
21500 c T
£ 1000 2 20 100

1
5 == s0f
'; 500 E 0 0 _
= 123 1.2 3

o

SID S-Atrr A-ID  A-Attr Hop (S-ID)

(a) Message Overhead Comparison

Hop (S-Attr)
(b) Execution Latency, Student Case

80 300 -
2 6o ml 250 :
E T 1| 200 H
§4o 7 -
%20 = 100 ﬁ
- 50 L

0 1]
123 1 2 3
Hop (A-ID) Hop (A-Attr)

(c) Execution Latency, Admin Case

Hop

(d) Mean Latency Comparsion

Fig. 9. S-ID: Student Case, ID-based; S-Attr: Student Case, attribute-based; A-ID: Admin Case, ID-based; A-Attr: Admin Case, attribute-based.

types (lights, alarms) only, and each can be specified succinctly
with attribute predicates. An ID-based TKT has to enumerate
the IDs of 476 objects.

C. Command Execution Latency

We test the time difference between a CMD’s sending
and its RES’s receiving, with both strategies on both cases
involved. In our lab environment, the latency mainly results
from the transmission time of CMD/RES in each hop and the
target leader’s signing RES (done only once, 12.2ms). Other
time cost like encoding/decoding a message is negligibly short.

Fig. 9 (b) (d) show the impact of hop counts on the
execution latency of Student Case. The latency of ID-based
CMD increases fairly linearly with hop counts, while that of
attribute-based CMD rises faster (but linearly) after the Ist
hop. This is because UDP broadcast is used for attribute-
based CMD propagation among objects, and it is slower than
unicast, which is used by subject-object communication (the
Ist hop) and ID-based CMD propagation among objects. Also,
note that the time cost of an attribute-based CMD has larger
fluctuation (around 100 ms) than an ID-based one, which is
because a broadcast packet will be hold by the AP till the
current Beacon Interval runs out and then forwarded. The
latency can be reduced by setting the Beacon Interval smaller.
Furthermore, Fig. 9 (c¢) (d) show Admin Case and give similar
results. Its ID-based CMD costs slightly longer because the
message is almost 3 times as large as the one in Student Case.
(xx ¢ shows admin ID is much faster - need to argue why still
attr is prefered)

In Student Case, the access to a target 3-hop away using an
ID-based CMD can be accomplished within 51ms, and 3-hop
covers the objects a subject is likely to operate in most cases.
In Admin Case, an attribute-based bulk operation costs about
200 ms (mainly due to the Beacon Interval) to control 3-hop
targets, which is still reasonable.

(xx need to say a few things: the networking part is very
dependent on which routing connectivity mechanism we use.
thus latency numbers are to be interpreted as magnitude
or range, not exact value; there’re many further network
optimization we can do, e.g., we’re building a peer routing
protocol using dual wifi direct and AP connection, and it will
reduce the latency) We can extend our 3-hop experimental

results to estimate the latency of operating objects further,
e.g., 9-hop should cover a normal building and it needs about
800ms.

(xx also need to say large scale: we only have 3 nodes
and claim enterprise scale, this is odd. can we add some
simulation/calculation numbers?)

X. RELATED WORK

ACL and capability are two common forms of access control
matrix [8], with their differences in computer systems analyzed
in [][]. Access control policies include discretionary, manda-
tory, role based ones. Attribute based access on encrypted data
in cloud [9] is explored using attribute based encryption [10].

Exiting smart home products have mostly coarse grained
all-or-nothing access [11], [3]. Recent work provides access
control based on subject-object pairs using hierarchical data
names [12], or extensions on time by abstracting smart objects
as peripherals to a computer [13]. They intend for traditional
computer systems/cloud, targets small scale homes, or pro-
vides coarse grained, basic ACL based access control.

Many approaches [3], [14], [15] use centralized execu-
tion strategies to secure access, and all access must go
through the cloud server for enforcing authorization policies,
at the expense of weaker availability and responsiveness.
Kerberos [16], which has been widely adopted by industry,
realizes distributed authentication by granting parties tickets
that prove their identities. It does not cover distributed execu-
tion.

Existing capability-based access control solutions [5], [4]
lack deep justification proving capability’s advantage over
ACL in enterprise-scale IoT. Also, they support no efficient
bulk operations. Ye Ning et al. [17] propose an approach
that a command will be accepted iff its subject and target
share enough attributes, which is quite limited compared
with those allowing a subject to specify the target with a
compound attribute predicate. Besides, none of these work
offers thorough design, implementation or evaluation.

XI. DISCUSSION

A bulk operation CMD is usually propagated with a scope
control mechanism than blind flooding, and one solution is to
use filters based on object locations. E.g, a CMD with attribute



predicate {type = light A floor = 2} targets the objects in
Floor 2 only, and an object should not forward the CMD to
objects out of the scope (e.g., Floor 1, 3). This is easy to realize
if an object maintains the location-based hierarchical names of
its neighbors, which is the case in data centric networks.

Our design does not in particular ensure TKT/CMD con-
fidentiality. Though authenticity, integrity, freshness are pro-
tected, the content itself is not encrypted, thus adversaries may
find out one’s access rights, history operations, which may be
sensitive. Given that each subject/object has a public-private
key pair, establishing symmetric keys to encrypt conversations
are feasible. We leave the complete solution as future work.

In the current system, subjects see the same PROF of an
object even though they have very different access rights. If a
PROF contains sensitive information (e.g., functions for VIPs’
exclusive use), it should not be disclosed to the subjects not
of the appropriate level. In the future we will make PROFs
customized such that subjects discover different versions for
the same object and gain only the knowledge allowed.

An attacker may gain physical contact with objects, and
launch attacks such as rebooting the target to purge its records
of IDcpps and replay CMDs whose timestamps are still
within time synchronization error e. To address this problem,
we may require any object not to accept CMDs upon power up
until e time later. Then the replayed CMDs will be rejected for
their obsolete timestamps. A full solution to physical contact
based attacks goes beyond the scope of this paper.

Leader objects can conduct en-route checking to find and
drop invalid CMDs. This alleviates DoS attacks that flood large
numbers of fake messages. Under normal conditions when
attacks do not happen, en-route checking can be disabled to
save computation, energy and time. If a target leader detects
attacks, it may send an alarm message notifying other leaders
in vicinity to switch on en-route checking, with possible hints
on what to check (e.g., TKT/CMD integrity/freshness).

REFERENCES

[1] C. M. Vigorito, D. Ganesan, and A. G. Barto, “Adaptive control of
duty cycling in energy-harvesting wireless sensor networks,” in Sensor,
Mesh and Ad Hoc Communications and Networks, 2007. SECON’07. 4th
Annual IEEE Communications Society Conference on. 1EEE, 2007, pp.
21-30.

[2] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content

centric peer data sharing in pervasive edge computing environments,” in

Distributed Computing Systems (ICDCS), 2017 IEEE 37th International

Conference on. 1EEE, 2017, pp. 287-297.

Smartthings, “SmartThings Developer Documentation,”

https://media.readthedocs.org/pdf/smartthings/latest/smartthings.pdf.

[4] J. L. Hernandez-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed capability-based access control for the internet of things,”
Journal of Internet Services and Information Security (JISIS), vol. 3, no.
3/4, pp. 1-16, 2013.

[5] P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad, “Identity
authentication and capability based access control (iacac) for the internet
of things,” Journal of Cyber Security and Mobility, vol. 1, no. 4, pp.
309-348, 2013.

[6] Apple, “Homekit,” https://developer.apple.com/homekit/.

[71 Crypto++ library, https://www.cryptopp.com.

[8] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 40-48, 1994.

[3

[t}

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Infocom, 2010
proceedings IEEE. leee, 2010, pp. 1-9.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security.
Acm, 2006, pp. 89-98.

B. Ur, J. Jung, and S. Schechter, “The current state of access control
for smart devices in homes,” in Workshop on Home Usable Privacy and
Security (HUPS), 2013.

W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
building management systems using named data networking,” IEEE
Network, vol. 28, no. 3, pp. 50-56, 2014.

C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and
P. Bahl, “An operating system for the home,” in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), 2012, pp. 337-352.

Amazon, “AWS IoT Developer Guide,”
http://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf.
IBM, “Meet Watson: the platform for cognitive business,”

http://www.ibm.com/watson/ .

B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” IEEE Communications magazine, vol. 32, no. 9,
pp- 33-38, 1994.

N. Ye, Y. Zhu, R.-C. Wang, and Q.-m. Lin, “An efficient authentication
and access control scheme for perception layer of internet of things,”
2014.



