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Abstract

One of the key advantages of visual analytics is its capa-
bility to leverage both humans’s visual perception and the
power of computing. A big obstacle in integrating machine
learning with visual analytics is its high computing cost. To
tackle this problem, this paper presents PIVE (Per-Iteration
Visualization Environment) that supports real-time interac-
tive visualization with machine learning. By immediately vi-
sualizing the intermediate results from algorithm iterations,
PIVE enables users to quickly grasp insights and interact with
the intermediate output, which then affects subsequent algo-
rithm iterations. In addition, we propose a widely-applicable
interaction methodology that allows efficient incorporation
of user feedback into virtually any iterative computational
method without introducing additional computational cost.
We demonstrate the application of PIVE for various dimen-
sion reduction algorithms such as multidimensional scaling
and t-SNE and clustering and topic modeling algorithms such
as k-means and latent Dirichlet allocation.

1 Introduction

The innate ability of humans to quickly acquire insights
through visualization has been a key factor in the growth
in visual analytics (Keim 2002; Thomas and Cook 2005).
To leverage humans’ visual perception in data analytics, an
increasing amount of effort has been made to utilize vari-
ous computational methods in visual analytics (Buja, Cook,
and Swayne 1996; Seo and Shneiderman 2002). However,
the significant amount of computing time required to run
these methods has been a critical hurdle against the effec-
tive integration of machine learning in visual analytics. Even
worse, as machine learning becomes more advanced and ca-
pable, they often require more computations, making it vir-
tually impossible to perform real-time interactive visualiza-
tions with them. Therefore, even the state-of-the-art in visual
analytics adopts only a few standard techniques and does
not properly leverage the advantages of advanced machine
learning methods.

However, several important aspects have been largely
overlooked in previous studies. Specifically, this paper fo-
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cuses on the following aspects: (1) humans’ perceptual pre-
cision and (2) the iterative behavior of machine learning.
First, we notice that visual perception does not require
highly precise outputs from machine learning methods. For
example, when perceiving the value of 7, most people think
of its approximate value, e.g., 3.14, and knowing it more ac-
curately, e.g., 3.1415926, does not make much difference in
practice. Second, modern machine learning methods usually
obtain the solution via iterative processes. Their important
characteristic is that a major improvement of the solution
typically occurs in early iterations while only minor changes
occur in the later iterations. It indicates that the approximate,
low-precision outputs can be obtained much earlier before
the full iterations finish. Motivated by these two crucial ob-
servations, we postulate that, in visual analytics, there is no
need for users to wait utill the algorithms are completely fin-
ished and get the final precise result.

In response, we propose a novel approach called PIVE
(Per-Iteration Visualization Environment), which visualizes
the intermediate results from algorithm iterations as soon as
they become available, achieving an efficient real-time in-
teractive visualization with machine learning. Unlike many
previous approaches that treat a machine learning method
as a black box, PIVE breaks it down to an iteration level
and tightly integrates them with visual analytics so that a
user can check and interact with the visualization of ma-
chine learning outputs. To avoid any delays in this process,
PIVE parallelizes computation and visualization via multi-
threading.

With PIVE, a user can efficiently perform multiple inter-
actions with machine learning in real time since it drastically
reduces the turn-around time of a single interaction from full
iterations to a few. The main idea of our interaction method-
ology is to allow a user to interact with the intermediate
output, which then affects subsequent algorithm iterations.
Since such a methodology does not require any major al-
gorithmic modifications nor computational overhead, a user
can efficiently perform multiple interactions with machine
learning in real time.

2 Related Work

Efficient Interactive Visualization Numerous studies fo-
cused on the efficient interactive visualization of large-
scale data. A straightforward approach is to use sampled
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Figure 1: Comparison of the standard and PIVE workflows. In (a), a machine learning method is treated as a black box, which
gives the output only after its iterations finish. In contrast, PIVE (b) splits a machine learning method into iterations, visualizing

and interacting with intermediate results during iterations.

data (Fisher et al. 2012; Ellis and Dix 2006). Another type of
popular approaches relied upon multi-threading techniques
to separate data processing and computation from visualiza-
tion and rendering (Ma 2009; Yu et al. 2010; Tu et al. 2006;
Piringer et al. 2009). However, none of these approaches
have exploited the nature of the iterative processes in most
machine learning methods, which makes a clear distinction
of PIVE.

User Interaction with Machine Learning There have
been significant efforts to provide a general framework to vi-
sualize machine learning results (Johnston 2001; Thearling
et al. 2001) and to improve the interactivity with them (Mul-
der, van Wijk, and van Liere 1999). Several studies added
interaction capabilities to dimension reduction (Williams
and Munzner 2004; Brown et al. 2012; Kim et al. 2016;
Kwon et al. 2017), clustering (Seo and Shneiderman 2002;
Lee et al. 2012; Schreck et al. 2009), classification (Bosch
et al. 2013; van den Elzen and van Wijk 2011), and topic
modeling (Choo et al. 2013a; Kuang, Choo, and Park 2015).
However, most of them do not efficiently support their in-
teractions at an iteration level. In this sense, PIVE, which
leverages the iteration-wise behavior of machine learning,
potentially bears a great impact in achieving this goal.

Progressive Visual Analytics Similar to our work, the
concept of progressive visual analytics, which generates
meaningful partial results of an algorithm and interacts with
it, was recently introduced (Stolper, Perer, and Gotz 2014;
Miilbacher et al. 2014). PIVE realizes the idea to tightly in-
tegrate machine learning with visual analytics at an iteration
level by customizing various well-known machine learning
methods in established visual analytics systems.

3 Per-Iteration Visualization Environment

In this work, we focus on iterative methods, which refine
approximate solutions over iterations. As summarized in Al-
gorithm 1, given a set of data items X and parameter vector
«a, at t-th iteration, iterative methods refine previous solution
Y*~1linto Y. The iterations continue until a stopping crite-
rion is satisfied, say, at t = T'. We note that the intermediate
output Y'* has the same form throughout the iterations as the

Algorithm 1 Iterative methods

1: Input: X = {x1, --- , x,} and parameter «
2: OUtPUt: Y = {yla R} yn}

3.t 0

4: Initialize Y* = {yt, ---, yL}

5: repeat

6: t+—t+1

7:  [* Per-iteration routine */

8 fori<«1,--- ,ndo

9: Yl f{X, Y0, - YT a)
10 Yt%{yivvyz}

11: until a stopping criterion is satisfied

/* Final iteration index */
/* Final output */

—
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Y« YT
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final output Y7, and PIVE directly utilizes an intermediate
output Y'! for real-time interactive visualization.

3.1 Overall Workflow

In Fig. 1(a), a machine learning method is run, and it gives
outputs to a visualization module only after finishing its iter-
ations. Subsequently, each user interaction goes through an-
other entire set of iterations. On the contrary, PIVE immedi-
ately delivers intermediate results from algorithm iterations
to the visualization module, as shown in Fig. 1(b). Accord-
ingly, users can immediately initiate their interactions with
machine learning, which then affects its subsequent itera-
tions. In this manner, user interactions are performed at an
iteration level, which is the key to support real-time user in-
teractions.

3.2 Interaction Methodology

The basic types of interactions with machine learning in-
cludes changing its parameters and selecting/removing data
subsets of interest. PIVE allows users to immediately check
the effect of parameter changes in real time.

In addition, we consider more sophisticated interactions
that allow users to manipulate the intermediate output by re-
placing part of them with user-specified values. Depending
on whether a user wants to fix these new values over the



Algorithm 2 Soft and hard replacement interactions

1: Input: an iteration index ¢ at which a user interac-
tion was performed, interacted data item indices I =
{1, ---, 41}, their new values {@;,, -+, U}, and a
new parameter &

2: a4«

3: for¢ < i1, --- ,i; do

&y i

5: if Hard replacement then

6 Replace the per-iteration routine in Algorithm 1 as

follows:
7:  [* Per-iteration routine*/
8: fori+1,--- ,ndo
9: ifi ¢ I then
10: Y fU{X, Y0 - Y1) a)
11: else
12: gl yl!

13: Continue from the iteration index ¢ + 1 until a stopping
criterion is satisfied in Algorithm 1

subsequent iterations, we categorize our interaction method-
ology into soft and hard replacements.

As summarized in Algorithm 2, the main difference be-
tween the soft and hard replacements is that the latter skips
the updating step for user-selected data items and uses the re-
placed outputs throughout the iterations. Unlike the filtering
interaction, these replaced and fixed outputs stillaffect the
updated outputs for the rest of the data items. In this sense,
the hard replacement interaction converts the original ma-
chine learning method into a constrained or semi-supervised
method. In addition, this interaction has an advantage of sav-
ing computational time in the subsequent iterations by skip-
ping the updating steps for the fixed data items. This can
be useful when a user wants to focus the computational re-
source on the remaining data items.

On the other hand, a soft replacement interaction re-
places the outputs of selected data items at a particular it-
eration, but the later iterations continue updating them just
as they update the rest of the data items. In this respect, soft
replacement interactions can be viewed as user-driven re-
initialization of the algorithm. This can be useful in finding
a better local optimum for non-convex problems or finding
a good initialization in a user’s own manner.

3.3 Further Considerations

Stability and Convergence! PIVE poses a challenge as
the difficulty in deciding when to start interactions with ma-
chine learning. First, a visual stability issue exists. Because
PIVE continuously updates the visualization, if intermediate
outputs change significantly and frequently, the correspond-
ing visualizations become inconsistent, thus preventing a
user from analyzing and interacting with them. The second
issue is whether intermediate outputs from machine learning
are close enough to the final solution for users to start ana-

'We define ‘stability’ and ‘convergence’ as visual stability and
visual convergence throughout this paper.

lyzing and interacting with them. To help determine whether
the intermediate result is sufficiently stable and close to the
final solution, we provide users with separate charts show-
ing the corresponding measures as well as visual encoding
within existing visualizations.

Computational Overhead Since PIVE has to repetitively
process intermediate outputs, additional computations are
incurred. We use a multi-threading approach to handle them.
We separate the entire process into two concurrent pro-
cesses/threads (blue ellipses in Fig. 1(b)). The computa-
tional thread deals with the computations within algorithm
iterations while the visualization thread works on post-
processing and rendering. These two threads communicate
via a message queue (Fig. 1(b)). Since modern commod-
ity computers are usually equipped with a multi-core CPU,
these two threads can be executed in parallel without much
performance loss compared to the standard approach.

4 Applications to Machine Learning

In this section, we present the applications of PIVE to
several dimension reduction and clustering methods. For
demonstration, we altered existing visual analytics systems.

For the two dimension reduction methods, we have im-
proved FodavaTestbed visual analytics system (Choo et al.
2013b),> which supports various dimension reduction meth-
ods in high-dimensional data analysis. For k-means cluster-
ing, we have customized a well-known visual analytics sys-
tem for document analysis, Jigsaw (Stasko, Gorg, and Liu
2008).3 Finally, for latent Dirichlet allocation, we have mod-
ified an interactive document clustering system called iVis-
Clustering (Lee et al. 2012).

4.1 Dimension Reduction

Given n data items, X = {z1, - -, z,} € R™*", di-
mension reduction generates their 2D coordinates, ¥ =
{y1, -++, Yyn} € R?*"™ that will be used in a scatter plot.

Multidimensional Scaling (MDS) MDS (Cox and Cox
2000) attempts to preserve the distances/relationships of
data items in a lower-dimensional space. MDS solves

min >3 (df - dY)?, (1)

Y1y Y
" 1<i<n1<j<n

where d7; and dﬁ’j are the given pairwise distances between
the ¢-th and j-th data items in the original m-dimensional
and the reduced 2-dimensional spaces, respectively.

t-Distributed Stochastic Neighbor Embedding (t-SNE)
t-SNE (van der Maaten and Hinton 2008) tries to minimize
the difference between pairwise probability distribution P*
over X and PYover Y by solving

min KL(P®||PY) = min
Y1y -3 Yn Y1y -3 Yn

SO plos s,
bi;

1<i<n 1<j<n
2)

“http://fodava.gatech.edu/fodava-testbed-software
3http://www.cc.gatech.edu/gvu/ii/jigsaw/



where K L(P*||PY) is the Kullback-Leibler (KL) diver-
gence between P* and PY.

User Interaction Capabilities Typically, the dimension
reduction outputs are visualized in a scatter plot. Other than
basic interactions such as changing parameters and select-
ing/filtering data items, a natural user interaction is to move
data points on a scatter plot. We achieve this “point-moving”
interaction by utilizing the soft and hard replacement inter-
actions described in Algorithm 2. That is, once a user selects
and moves [ points to new positions in a scatter plot, their
current intermediate output {y! , -- -, y! } gets updated as
their new positions{g;,, --- , 9;, } (line 4 in Algorithm 2).
As discussed in Section 3.2, the soft replacement interac-
tion can be thought of as restarting the dimension reduc-
tion method with new initial points. On the other hand, the
hard replacement interaction skips the updating step for the
user-selected data items, while their fixed coordinates still
affect the rest of the data items in later iterations. For in-
stance, those data items with close relationships to the fixed
data items may be pulled towards them while those with re-
mote relationships may be pushed away from them. These
interactions can reveal interesting knowledge about high-
dimensional data relationships without additional computa-
tions.

Stability and Convergence To show the stability of in-
termediate outputs, we propose a quantitative measure at it-
eration ¢ as an average number of the k nearest neighbor
changes from the previous iteration ¢t — 1, i.e.,

1
Shr(®)=— > [Ne(v)) = Ne (i), @)

1<i<n

where Ny, (y?) is the set of the k nearest neighbor data items
of y! at the iteration ¢. We also compute an average num-
ber of the original k& nearest neighbors preserved in a low-
dimensional space as

1
Shr(®)=— > [N (u)) N (=), @

1<i<n

where Ny, (x;) is the set of the original k nearest neighbor
data items of z;. A lower value of Eq. (3) indicates a more
stable visualization, and a higher value of Eq. (4) indicates a
better preservation of given neighborhood relationships.

Second, we visually encode the actual changes of data
items during iterations in a scatter plot by drawing the poly-
line showing the trajectory of each data point over the past
few iterations. We also draw a transparent circle whose ra-
dius is equal to the total length of the polyline, i.e., the to-
tal amount of coordinate changes of the data item, at the
same position of the data item. This visual encoding tells us
which data points are more stable/unstable than the others.
See Figs. 3 and 6 for an example.

4.2 Clustering

Given n data items, X = {z1, -+, z,} € R™*", and
the number of clusters c, a clustering method generates
their cluster indices, Y = {y1, -+, yn} € R*", where

yi €{1, -, c}h

k-means k-means repeats (1) minimizing the sum of
squared distances between data items and their correspond-
ing cluster centroids and (2) updating cluster assignments.

Latent Dirichlet Allocation (LDA) LDA (Blei, Ng, and
Jordan 2003) computes two outputs: the distribution of each
topic over words and the distribution of each document over
topics. From a clustering viewpoint, the former corresponds
to a cluster representative vector u; for topic cluster j, and
the latter corresponds to a soft-clustering coefficient, which
is used to determine y; by taking the topic index with the
maximum value. LDA updates these two sets of outputs al-
ternately, similar to k-means iterations.

Nonnegative Matrix Factorization (NMF) NMF (Lee
and Seung 1999) has been successfully utilized in document
clustering and topic modeling (Kuang and Park 2013). NMF
approximates a nonnegative matrix X as the product of two
low-rank nonnegative matrices W and H, which can be in-
terpreted as cluster representatives and membership coeffi-
cients, respectively, in the clustering context. One can com-
pute y; as the largest element index in the ¢-th column of H.
NMF iteratively updates W and H.

User Interaction Capabilities A straightforward interac-
tion is to change cluster assignments of user-selected items.
By utilizing the cluster-level interactions, we support cluster
splitting and merging in both soft and hard replacement in-
teractions. When merging clusters, the data items in the two
clusters to be merged are assigned the same cluster indices.
Accordingly, we dynamically reduce ¢ by one. When split-
ting a cluster, we randomly select a subset of data items in
the cluster and assign their new cluster indices as ¢ + 1, and
increase c by one. After these steps, the subsequent iterations
are performed.

Stability and Convergence For convergence measure, we
use the relative number of cluster membership changes at a
given iteration ¢ with respect to the previous iteration, i.e.,

Ser (t)=% S I(wi#u). (5)

1<i<n

By monitoring this measure over iterations, a user can check
the stability of the clustering result.

To directly visualize the cluster membership changes, we
draw the line connecting the previous cluster label to the
current position of a particular data item in the visualiza-
tion. A large number of lines indicates that the clustering
result is going through significant changes. See Figs. 7 and
8 for an example. Additionally, in document clustering, we
color-code each keyword in a cluster summary depending
on whether the keyword has an increasing (red-colored) or
decreasing (blue-colored) importance in the corresponding
cluster. See Fig. 10 for an example. In this manner, a user
can have a clear understanding of the topic changes over it-
erations.

5 Experiments

In this section, we present the analyses on the iteration-wise
behaviors of machine learning methods as well as various
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user interaction scenarios in PIVE.

5.1 Iteration-wise Behavior and Visualization

Fig. 2 shows the iteration-wise behavior of MDS along with
its computing times. Both our stability/convergence mea-
sures and the MDS criterion value become stable within
20 iterations out of 93 in total, indicating that a small
number of iterations suffices visual analytics applications
(Figs. 2(a)(b)). This trend can also be found via our vi-
sual stability/convergence encoding schemes (Section 4.1).
That is, as indicated by large circles and long polylines in
Fig. 3(a), the major visual changes occur in early iterations.
On the other hand, the result at around the 30th iteration
(Fig. 3(c)) is virtually the same as the final one at the 93rd
iteration (Fig. 3(d)). Throughout the entire iterations, each
iteration takes roughly the same computing time as seen in
Fig. 2(c). Therefore, instead of performing a large number
of MDS iterations, PIVE quickly provides a user with a suf-
ficiently good visualization. This becomes critical in large-
scale data where each iteration requires a lot of time. A sim-
ilar argument applies to t-SNE. From our measures shown
in Figs. 4(a)(b), a stable result can be found as early as at the
130th iteration out of 1,000 in total.

In clustering, Figs. 5(a)(b) presents the iteration-wise be-
havior of k-means. As seen in Fig. 5(a), significant changes
from early iterations diminish quickly as iterations proceed.
Nonetheless, the computing time per iteration remains al-
most the same (Fig. 5(b)). Finally, LDA shows a different
behavior from the above-discussed methods in Figs. 5(c)(d).
Although the cluster membership changes between itera-
tions generally decrease and the intermediate solutions get

close to the final solutions (Fig. 5(c)), the cluster member-
ships change significantly even after a large number of it-
erations, e.g., 1,200 iterations. In iVisClustering, we con-
firm that the top keywords of each topic remain relatively
unchanged after several hundreds of iterations, but the ran-
domness of the sampling-based algorithm may prevent LDA
from generating consistent outputs for stable visualizations.

5.2 User Interaction Scenarios®

‘We now show interaction scenarios discussed in Section 4.

Moving Data Points in t-SNE  Fig. 6 shows a sequence of
multiple point-moving interactions in t-SNE (Section 4.1)
for spoken letter data with 26 classes corresponding to
individual alphabet letters. After significant visualization
changes, e.g., Fig. 6(a), a sufficiently stable visualization
(Fig. 6(b)) still contains many overlapping clusters. There-
fore, we move the points representing the letter ‘c’ (red ar-
row in Fig. 6(b)) away from the overlapping clusters. As
a result, the letter cluster ‘z’ (blue arrow in Fig. 6(c)) is
separated out accordingly, which gives an insight that the
letters ‘c’ and ‘z’ are pronounced similarly. Second, we
move some data points in the letter cluster ‘w’ (red arrow
in Fig. 6(d)), but the neighboring letters ‘m’ and ‘n’ (blue
arrow in Fig. 6(e)) are not pulled towards the moved points.
It indicates that the letter ‘w’ does not actually sound similar
to ‘m’ and ‘n’ although the initial visualization did not show
this. Next, we move the letter ‘q’ (red arrow in Fig. 6(e)) out
of the cluttered region. In response, the letter ‘u’ (blue arrow
in Fig. 6(f)) is also separated from the overlapping clusters

*A demo video is at http://tiny.cc/aaail 7pive.
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and pulled towards the moved cluster ‘q’. This makes sense
because these two letters ‘q” and ‘u’ sound similar but quite
different from the other previously overlapping letters, ‘b’,
‘d’, ‘e’, ‘g’, ‘p’, ‘t’, and ‘v’, all of which are pronounced
with the ‘—ee’ sound at the end. Finally, we increase separa-
tions between the two letters ‘I’ and ‘o’, which sound quite
different, by moving parts of them away from each other (red
arrow in Fig. 6(g)). Now, their separation becomes clearer in
the visualization (blue arrow in Fig. 6(h)).

Freezing and Splitting/Merging Clusters in k-means
Using k-means that we customized in Jigsaw (Stasko, Gorg,
and Liu 2008), we first demonstrate an interaction of fix-
ing/freezing cluster assignments for selected data items via
hard replacement (Section 4.2). Fig. 7 shows this interaction
on the CHI conference papers published between 1999 and
2010. At early iterations, the cluster membership changes
are significant (Fig. 7(a)), but the clustering results become
much stable after a few iterations, e.g., the sixth iteration
out of 26 in total (Fig. 7(b)). At this point, we choose three
stable clusters that have clear meaning (green rectangles in
Fig. 7(b)) and fix the cluster indices of data items in these
clusters, which amount to 32% of the total data items. The
final solution due to this interaction (Fig. 7(c)) does not dif-
fer much from that without this interaction (Fig. 7(d)). Fur-
ther analysis shows that less than 10% of the final cluster
memberships differ between the two cases, as seen from the
increasing blue line reaching 90% accuracy with respect to
the final solution without the interaction in Fig. 9(a). The
computing time taken for the subsequent iterations drops
significantly as shown by the blue line in Fig. 9(b). Next,
we merge multiple small, semantically related clusters and

split large, unclear clusters, as shown in Fig. 8. In the sixth
iteration (Fig. 8(a)), we merge two similar clusters (green
rectangles) and split an unclear cluster (purple rectangles).
The subsequent iterations (Figs. 8(b)(c)) form a properly
merged cluster ‘task, performance, models’, and a new clus-
ter ‘mobile, phone, device’ is unveiled from the cluster split,
which would not have been found without this interaction
(Fig. 7(d)).

Filtering Noisy Documents to Improve Topics in LDA
An available interaction with LDA in iVisClustering is to
filter those documents with no strong relationships to any
particular topics. After filtering, the remaining documents
are used to re-run LDA to generate a clearer set of top-
ics. With PIVE, given several mixed topics (black rectan-
gles in Fig. 10(b)), we performed this interaction at around
the 300th iteration out of 1,000 in total. Such an interaction
successfully improves topic quality at around the 700th iter-
ation (Fig. 10(c)), which, without PIVE, would have taken
two full sets of 1,000 iterations of LDA.

6 Discussions

Broad Applicability Our soft and hard replacement in-
teraction methods have fundamental differences from most
of the existing interaction methods, e.g., previous point-
moving interactions in dimension reduction (Endert et al.
2011; Brown et al. 2012). In particular, our methods do not
require any major algorithmic modifications unlike other ex-
isting methods. In this respect, ours have a great potential
to convert almost any iterative machine learning methods to
its interactive version, which would greatly increase their
utility in visual analytics. Furthermore, our replacement-
based methodology directly interprets a user interaction in
the same form as an algorithm output, e.g., low-dimensional
coordinates in dimension reduction and cluster assignments
in clustering. Thus, our methods do not involve any ambigu-
ous inference of such user interactions to a model parame-
ter, e.g., new Bayesian prior parameter values (Endert et al.
2011) and new linear combination coefficients in a weighted
Euclidean distance model (Brown et al. 2012).
Furthermore, PIVE can significantly benefit various ma-
chine learning and data mining tasks including classifica-
tion, regression, anomaly detection, and association rule
mining. In classification and regression, the training process
performed in support vector machines, decision trees, and
deep neural network can significantly benefit from PIVE via
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Figure 10: Filtering interactions with LDA. Documents with unclear cluster memberships are filtered out at the 300th iteration
(out of 1000), and the topics become clearer in the later iterations. 20 newsgroups data was used.

interactively changing parameters, removing noisy features,
and correcting misclassified data items for better prediction
performance. Similarly, in anomaly detection and associa-
tion rule mining, PIVE can also help users steer the algo-
rithm in real time to obtain the results in their own manner.

Degree of Influence The simplicity of PIVE bears a po-
tential limitation that the interaction effect reaches only lo-
cally. In the above-mentioned existing work, even if a user
interaction was performed in a small portion of data, newly
adjusted model parameters affect the entire data. On the
contrary, this rarely happens when using our methods since
our user interactions influence only closely-related data in-
stances and clusters. As a result, a user may have to fre-
quently perform multiple interactions until a satisfactory re-
sult is obtained. Even so, PIVE mitigates this drawback by
allowing a user to fluidly perform multiple interactions and
to easily steer the algorithm output through multiple local
changes. This important aspect makes our PIVE-based in-
teractions truly compelling in many scenarios.

Optimal Frequency of Visualization Update Currently,
the update frequency of visualizing iteration-wise results is
mainly dependent on the speed of algorithm iterations. How-
ever, such a frequency may be too fast to keep track of or too
slow to spend one’s time on. In addition, if the total comput-
ing time of an algorithm is short, users may prefer waiting
for the entire algorithm iterations to visualizing every inter-
mediate result per iteration. Therefore, it would be important
to consider the optimal frequency of visualization update. To
handle this issue, one can update the visualization after mul-
tiple iterations are performed if each iteration is too fast. If
each iteration takes much time, one can further split one iter-
ation into individual data level to provide a faster visualiza-
tion update. For instance, when visualizing k-means results,
each iteration updates the entire set of data items in terms
of their cluster indices, which may take long time to finish.

In this case, PIVE may update the visualization at the level
of an individual (or multiple) data item(s), and accordingly,
interactions can be effectively performed during the visual-
ization update with an optimal frequency.

7 Conclusions

We  present PIVE  (Per-Iteration  Visualization
Environment), a novel framework that supports real-
time interactions with machine learning. PIVE visualizes
intermediate results during algorithm iterations and allows
a user to perform interactions via soft and hard replacement
in real time. We also discussed various issues of PIVE and
their solutions in terms of stability and convergence as well
as computational overheads.

We plan to apply this idea to expand the visual analytic
capabilities using machine learning in various manner (Kim
et al. 2017).
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