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A B S T R A C T

Tree crown geometry and height, especially when coupled with remotely sensed data, can aid in the char-
acterization of tree and forest structure. In this study, we develop mixed-effects model allometric equations for
tree height, crown radius, and crown depth using data collected on 374 trees across 14 species within the extent
of the joint Center for Tropical Forest Science (CTFS) and Smithsonian Institute’s Forest Global Earth
Observatory (ForestGEO) MegaPlot on Prospect Hill at Harvard Forest, Massachusetts. We applied allometry to a
census of the 35-ha plot on Prospect Hill to evaluate tree height and crown radius estimates using a lidar canopy
height model. We found significant relationships using stem diameter-at-breast-height (DBH) and species to
estimate tree height (ρr2 = 0.70, RMSE = 2.96 m), crown depth (ρr2 = 0.35, RMSE = 3.24 m) and crown ra-
dius (ρr2 = 0.43, RMSE = 1.22 m). Using Fast Fourier Transforms (FFTs), we compared the power spectra of a
lidar canopy height model to five synthetic canopy height models derived from allometric estimates of height
and crown radius. The FFTs showed good agreement between lidar and synthetic canopy height models (CHMs)
at spatial wavelengths longer than 64 m, or about the distance across 3–4 dominant tree crowns, and poorer
agreement at shorter spatial wavelengths, which we attribute to the simple crown shape applied to modeled
crowns and a lack of crown overlap in the synthetic CHMs compared to the lidar CHM. At the tree level, some
species exhibited tight links between lidar-measured height and estimated tree height (e.g., Quercus rubra,
Quercus velutina, Pinus strobus), suggesting height allometry provided reasonable estimates of tree height for
some species despite a negative bias in the synthetic canopy height models relative to the lidar canopy height
model.

1. Introduction

The structural status of forests is driven by processes of carbon
uptake, disturbance regimes, and their historical trajectories (Frolking
et al., 2009, Espirito-Santo et al., 2014), and is influenced by complex
interrelationships of architectural components of trees. Understanding
relationships among different characteristics of tree and forest structure
(e.g., stem diameter, canopy height, crown geometry, species assem-
blages, aboveground biomass) is critical to assessing and extrapolating
field measurements to inaccessible sites using remote sensing data (e.g.,
Spies, 1998; Xie et al., 2008; Frolking et al., 2009; Saatchi et al., 2011;
Homolova et al., 2013, Meyer et al., 2013; Mauya et al., 2015; Palace
et al., 2015). To best utilize the advances in remote sensing technolo-
gies for forest demography and biomass research, it is necessary that

site-specific field-data driven allometric models are developed and
tested (Hunter et al., 2013). In particular, estimation of stand biomass
using remote sensing tools, e.g. light detection and ranging (lidar),
could greatly benefit from tree-level allometry, such as height and
crown geometry (Dalponte and Coomes, 2016), as well as automated
tree crown detection tools (Palace et al., 2008; Duncanson et al., 2015;
Ferraz et al., 2016). If such characteristics of trees can be statistically
linked to bole biomass predictors, such as stem diameter at breast
height (DBH), stand biomass estimation can theoretically be scale-in-
variant using commonly used allometric equations to estimate biomass
at the tree-level (Zhao et al., 2009).

Many studies have used remote sensing data, specifically lidar, to
characterize and monitor forest structure. Approaches to characterizing
biomass across large areas at large spatial scales (ranging from hectares
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to square kilometers) using relationships developed between field data
and lidar metrics are common (Dubayah et al., 2010; Ni-Meister et al.,
2010; Saatchi et al., 2011; Yao et al., 2011; Asner et al., 2012; Palace
et al., 2015; Manuri et al., 2017). Typically, biomass allometry for es-
timation using lidar data use a range of modeling approaches to relate
field-estimated biomass (i.e. calculated by DBH allometry) to lidar-de-
rived metrics like mean canopy height at the plot level, lidar maximum
height, energy or return percentiles, and more complex metrics like
entropy (Lefsky et al., 1999; Dubayah et al., 2010; Saatchi et al., 2011;
Treuhaft et al., 2014; Sullivan et al., 2014; Palace et al., 2015; Palace
et al., 2016). Recent applications have used lidar for mapping logging
roads and skid trails in order to estimate the carbon impact of logging
operations (e.g. Anderson et al., 2014; Ellis et al., 2016). These ap-
proaches to biomass estimation and carbon impacts of logging, how-
ever, have mostly been successful at scales ranging from hectares to
kilometers, and estimates are generally mapped across landscapes and
regions, as opposed to the individual tree-level, which theoretically
could be aggregated for plot and regional estimates of biomass (van
Leeuwen and Nieuwenhuis, 2010).

For tree- and plot-level field based biomass estimates, allometric
equations have been developed predominantly using DBH, though some
have been established with height modifiers (e.g. Chave et al., 2005).
The allometric uncertainty associated with DBH-only models typically
impacts the first significant digit of ensuing estimates, especially when
models are applied outside the population within which they were
developed (Kershaw et al., 2016), and as it represents a form of bias it
does not vanish with increasing sample size. Hunter et al. (2013) de-
monstrated, however, that plot-level field biomass estimates that also
incorporate height are subject to 5–6% error due to imprecise tree
height measurements in dense forests. To that end, site-specific height
allometry or accurate height measurements using lidar to retrieve tree-
level heights could serve to reduce measurement error and improve
biomass estimation uncertainty. Furthermore, DBH-height allometric
equations have been developed for individual sites and globally (e.g.
Feldspauch et al., 2011), which when used out-of-population or (in the
case of regional or global equations) at specific sites can result in even
greater uncertainty in biomass estimates (Hunter et al., 2013). For a
thorough treatment of DBH, height, and tree volume or biomass allo-
metry, see Kershaw et al. (2016, ch. 6).

It is possible that remote sensing estimates of biomass could stand to
be improved further by including crown size variables in models.
Indeed, Goodman et al. (2014) showed significant improvement in
aboveground biomass estimates when accounting for tree crown radius.
Other studies have also shown that tree crown variability is useful for
estimating biomass. Jucker et al. (2017) developed a global database of
stem diameter, height, and crown diameter, and go on to show that
crown diameter and tree height can be used to estimate both stem
diameter and aboveground biomass of individual trees. Ferraz et al.
(2016) applied crown detection techniques to estimate tree and crown
shape characteristics, then developed biomass equations which they
assessed at multiple scales. Approaches to remote biomass estimation
using crown geometry characteristics will prove most useful when
combined with rapid and accurate tree crown delineation (Swetnam
and Falk, 2014; Ferraz et al., 2016), but even given success, there are
challenges to linking crown geometry and biomass at the tree-level
caused by crown plasticity.

Because vertical and horizontal accuracies of commercial airborne
lidar systems are generally around±15 cm and±50 cm, it is a valu-
able tool that can be used for assessing field-based allometric models. At
tropical forest sites and some low complexity temperate sites, crown
geometry has been assessed and compared from both field-based and
remote sensing measurements (e.g. Asner et al., 2002; Broadbent et al.,
2008; Palace et al., 2008). Although it would be useful for directly
assessing tree-level height and crown geometry allometry, efforts to
compare lidar remote sensing measurements to field-based estimates
are relatively uncommon in mixed deciduous temperate forests. Here,

we examine the potential to assess height and crown allometry using
lidar data at Harvard Forest, a temperate forest site in Petersham,
Massachusetts. The motivation for this study was to demonstrate the
development of mixed effects allometric models for tree height and
crown geometry, which we apply to census data of a 35-ha plot to
develop a simple canopy height model (CHM). Using multiple error
correction approaches for the allometry, we estimate the power spectra
of their 2-dimensional Fast Fourier Transforms which we use to com-
pare CHMs at the site level and at finer spatial scales. To assess allo-
metric equations for tree height, we compared the synthetic allometric
canopy height models to the lidar canopy height model at the species-
level. Lastly, we leverage our comparison between lidar and allometric
CHMs to evaluate allometric relationships in the context of plant
functional traits, crown plasticity and structural variation, and tree
form models.

2. Methods

2.1. Field census

Between June 2010 and March 2014, a census of a 35-ha plot on the
Prospect Hill Tract in Harvard Forest, Massachusetts was conducted in a
joint effort by the Center for Tropical Forest Science (CTFS) and the
Smithsonian Institute’s Forest Global Earth Observatory (ForetGEO) as
part of the MegaPlot network (Anderson-Teixeira et al., 2015). Within
the extent of the plot (Fig. 1), all woody stems ≥1 cm stem DBH were
identified by species and tagged, and stem diameter was measured
using a diameter tape. The census was completed by numerous field
technicians, with quality control and quality assurance completed ac-
cording to CTFS ForestGEO protocol and methodology (http://www.
ctfs.si.edu/). In total, approximately 116,000 woody stems were re-
corded during the census with 51 unique species identified (Orwig
et al., 2015).

2.2. Field-based measurements of canopy geometry

In September and October 2013, variable radius plot sampling
(Bitterlich, 1984) was completed within the extent of the ForestGEO
plot. Thirty-nine randomly selected plots were located approximately
using a handheld Garmin GPSmap 76CSx handheld GPS unit (error±
approx. 5 m). Actual plot centers were recalculated post hoc by calcu-
lating the centroid of the UTMx,y locations of tagged trees in the Pro-
spect Hill Tract plot space relative to the x,y locations of the same trees
in the local coordinates of the variable radius plot. At each plot, a
4.59 m2/ha basal area factor prism was used to sample trees 5 cm and
greater DBH; the sample trees thus represent a size-weighted sample of
the full population of the trees over 5 cm DBH on the tract (Kershaw
et al., 2016, ch. 9). At each sampled tree, we recorded species and tag
number (except where they had fallen off or not been measured for
census yet), as well as measured the distance and bearing from plot
center, DBH, tree height, crown base height, and crown radius toward
and away from plot center. This pair of crown radii can be used to
estimate crown area without bias, irrespective of crown shape (Gregoire
and Valentine, 1995). Crown radii and tree height measurements were
made using a laser range finder with a viewfinder and integrated tilt
sensor (DISTO D5, Leica Geosystems). Crown radii were measured by
using the viewfinder to determine when the observer was under the
dripline of the tree crown toward and away from plot center, and by
measuring the distance to the stem using a laser range finder which was
subsequently adjusted for the distance between stem face and stem
center.

2.3. Allometry and canopy height models

2.3.1. Mixed effects modeling

Allometric equations were developed in R (version 3.0.1) using a
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mixed effects modeling approach in the lme4 package. In this study, we
used mixed effects models in order to account for the random effects of
plot (i.e. unmeasured site quality and past competition effects) and
species to assess the extent to which variation in the data were linked to
either or both, and to ensure models were efficiently fit. For all models
DBH was used as the fixed effect. For modeling tree height, DBH was
inverse-transformed and height was log-transformed, i.e.

= + + + + + +H β γ δ β γ δ DBH σln( ) ( )/I s i p i l l s i l p i i i0 0, ( ) 0, ( ) , ( ) , ( )

where β0 and β1 are fixed effect parameters, γ0,s(i) and γ1,s(i) are random
effects associated with the species of tree i, δ0,p(i) and δ1,p(i) are random
effects associated with the plot on which tree i occurs, and σi is the
residual. This model is a mixed-effects version of the Schumacher and
Hall (1933) regression, which is among the most widely used models
for height-diameter relationships in forestry. For crown radius and
crown depth, we used untransformed linear models with the same base
structure, i.e.,

= + + + + + ∗ +y β γ δ β γ δ DBH σ( )i s i p i l l s i l p i i i0 0, ( ) 0, ( ) , ( ) , ( )

where yi is crown radius or crown depth as appropriate. Final predictive
models were determined using Akaike Information Criterion (AIC) to
compare model strength. We also calculated a pseudo coefficient of
determination (ρr2), which we used to assess the added predictive
power of the plot and species effects, as:

− ∑ −
∑ − ∑( )

M ME

M M
1

( )est

n

2

1 2

where the numerator is the sum of squared residuals, and the de-
nominator is the sum of squares; M is the measured value of the vari-
able and MEest is the mixed effects model estimate.

2.3.2. Transformation bias correction and error imputation

For two of the modeled variables, the naive application of a re-
gression model would entail bias. In the case of tree height, because tree
height is log-transformed in the regression a well-studied form of bias
occurs (e.g. Finney, 1941; Zar, 1968; Baskerville, 1972): the regression
prediction is the mean of log height, rather than height, conditional on
the predictor variables, so a systematic underprediction occurs. This
type of error is particularly well understood in allometric modeling of

biomass, where log-transformation is commonly applied both to line-
arize the relationship and to eliminate heteroscedasticity (Kershaw
et al., 2016, ch. 5 and 6). As an alternative to linear regression using
log-transformed height, we might have applied nonlinear mixed-effects
modeling to predict height directly, while simultaneously modeling
heteroscedasticity through maximum likelihood; however, such models
are not guaranteed to be bias-free and can present computational
challenges such as lack of convergence (e.g. Fast et al., 2011). Dealing
with the bias in a log-transformed regression thus represents an at-
tractive option. In the case of crown radius, there is appreciable error in
the field measurement of crown area; although crown area is estimated
without bias for individual trees, crown radius is a nonlinear function of
crown area so its estimate is attended by a slight bias. We applied four
error accounting strategies, from each of which we developed a syn-
thetic CHM derived from the census data to compare to the lidar CHM.
In total, we calculated five estimates of combinations of tree height and
crown geometry: 1. uncorrected, 2. height retransformation bias cor-
rection, 3. height errors imputed, 4. crown radius errors imputed, 5.
height and crown radius errors imputed. We calculated retransforma-
tion bias corrected estimates of tree height, Hbc, as:

=H H σexp /2bc
2

where H is the uncorrected height estimate and σ2 is the variance of the
residuals (computed in the log-transformed space). This approach is
used to account for the disproportionate underestimation of the heights
of tall trees resulting from the log transformation in allometric models
(Baskerville, 1972; Czaplewski and Bruce, 1990). As an alternative, we
imputed errors into height and crown geometry estimates. To do this,
for each tree we added residual errors of height and crown geometry for
a randomly selected measured tree to the height and crown geometry
estimates for each tree. These approaches combined with a comparison
of CHMs were intended to inform this analysis of any bias and errors in
allometric models, and specifically whether systematic over- or under-
estimates associated with either the tree height or crown radius models
had an appreciable impact on the resulting synthetic CHMs.

2.3.3. Canopy height model calculation

Coincident lidar data was collected by the Goddard Lidar,
Hyperspectral, and Thermal (G-LiHT) sensor package (Cook et al.,

Fig. 1. A 1993 stand map within the extent of the Prospect Hill census plot showing the primary species within each stand except for within wetland areas with random plot locations

marked as black dots.
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2013) in June 2012 over the Prospect Hill Tract. The lidar 1 m spatial
resolution CHM product was downloaded on November 10, 2014
(gliht.gsfc.nasa.gov/downloads). It was derived by calculating the dif-
ference between a digital surface model and digital terrain model and
clipped to the extents of the Prospect Hill Tract census (501 × 701
pixels). In addition, we generated synthetic CHMs by applying the al-
lometric estimates of tree height and crown shape from the ForestGEO
plot census using each of the five error accounting strategies used. As
described in the previous section, allometric equations were applied to
the census data set using the estimated intercept and slope of the fixed
effect of DBH and the random effect of species to estimate crown depth,
crown width, and tree height. For species that were not sampled, the
mean allometry (i.e. only the fixed effect) was applied to estimated tree
height and crown geometry. From estimated crown geometry, synthetic
CHMs were developed using the surface of an ellipsoid for each tree on
the same grid as the lidar CHM. Canopy surfaces were assumed to have
an ellipsoidal shape in the vertical dimension, and because crown width
was measured along only one axis, trees were assumed to be circular in
the horizontal dimension. For each tree, the footprint of the tree crown
was calculated using the estimated crown radius, r, and the x,y co-
ordinates of the stem, assuming that the coordinate pair also re-
presented the location of the center of the tree crown, xc,yc. Within each
crown footprint, the height, z, at each pixel center was calculated as:

⎜ ⎟⎜ ⎟= ⎛

⎝
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where H is the estimated total height of the tree and D is the estimated
crown depth. In instances where multiple trees overlapped with an
individual pixel, the maximum height assigned to the pixel was used.

2.4. Statistical analysis

2.4.1. Tree- and species-level canopy height model comparison

We compared the lidar and all allometric CHMs at both the in-
dividual tree and species scales. To accomplish this, we identified the
stem ID of the crown represented in each CHM pixel. During generation
of synthetic CHMs, as heights were calculated and assigned to each
pixel the stem ID of the tree canopy surface calculated was assigned to
the same pixel in a second grid, the stem ID map. We calculated a total
of five stem ID maps; one for each of the four error accounting strate-
gies, and one for the uncorrected CHM. Using the set of unique iden-
tifiers in the stem ID maps, we calculated mean and maximum heights
for all individual stems from each of the synthetic CHMs and for the
same set of stem ID footprints for the lidar CHM.

At the tree level, we compared lidar stem heights to all synthetic
CHM stem heights by a correlation analysis in R (v. 3.0.1). At the
species level, we calculated the mean and standard deviation of mean
and maximum canopy heights of each individual tree of a species and
compared lidar and synthetic heights grouped by species using paired
Student’s t-tests in R. For these correlation analyses, individual trees
identified using the stem ID maps were used as the observations.

2.4.2. Whole-image canopy height model comparison

In order to assess overall similarity between CHMs and specific
scales at which synthetic CHMs and the lidar CHM were in agreement
with each other, we compared the power spectra of their Fast Fourier
Transforms (FFT). For each image, we calculated the FFT in Python (v.
2.7) using the numerical computation package NumPy (v. 1.11.3, van
der Walt et al., 2011). Prior to calculating FFTs, in order to minimize
artefacts due to the edge of the original CHM, a larger image was cre-
ated (1503 × 2103 pixels). For each CHM, the larger image had the
same properties of the original image by padding by its mirror on the
four x and y axes and the four diagonals. Recovery of power spectra
from FFTs implies an assumption that the image is periodic, wrapping
seamlessly around each edge. An actual CHM is not periodic, because

the heights on the east edge do not match those on the west, and those
on the north edge do not match those on the south. Reproducing this
sharp discontinuity would require substantial power at short wave-
lengths, and the resulting spectral leakage would mask the actual power
spectrum at those wavelengths. Appropriate padding eliminates the
sharp edge and the resulting artefact in the power spectrum. Using the
x- and y-component frequencies sampled for a 1503 × 2103 pixel
image, we calculated the total frequency for each FFT pixel as:

= +F x y2 2

and the spatial wavelength, ω, for each FFT pixel follows as:

=ω F1/

which we rounded to the nearest 1 meter, the spatial resolution of the
CHM images. In other studies, images have been cropped to square
prior to calculating the FFT in order to estimate an azimuthally aver-
aged power spectrum of a 2-dimensional FFT (e.g. Sinclair and Pegram,
2005). Here, we proceeded to estimate the mean 1-dimensional power
spectra of the 2-dimensional FFTs as the mean FFT magnitude at each
rounded sampled ω ≤ 862 m. As a way to assess agreement at different
spatial scales, we compared mean power of the lidar CHM to each of the
synthetic allometric CHMs using two-sided t-tests at each sampled ω.

3. Results

3.1. Height and crown geometry allometry

Using the variable radius plot sampling approach, we collected stem
measurements for 374 individual trees across 14 species, 342 of which
were live trees, with sampled species representing 97.1% of the total
basal area in the 35-ha tract (Table 1). Significant positive relationships
resulted from modeling crown radius, crown depth, and tree height
using DBH (Fig. 2). By accounting for species in models, we observed
marked improvement in both ρr2 and RMSE for tree height and crown
geometry measures. We observed no significant improvement in models
by including the random effect of plot for tree height, but for crown
radius ρr2 improved from 0.434 to 0.618, with a 0.22 m difference in
RMSE compared to using the mean plot effect, and for crown depth,
accounting for plot resulted in a ρr2 of 0.471 and RMSE of 2.93 m
compared to 0.35 and 2.96 m, respectively, when applying the mean
plot effect (see Table 2). The fixed effect (DBH) coefficients and the
random effect (species) coefficients for 14 species are reported in
Table 3. Height and crown radius, and their respective species effects
were also significant predictors of DBH with the mean plot effect, which
contributed significantly to the model (mean plot effect: ρr2 = 0.60,
RMSE = 8.3 cm, CV (RMSE) = 24.5%; varied plot effect: ρr2 = 0.64,
RMSE = 7.9 cm, CV (RMSE) = 23.3%).

Table 1

Species sampled for allometric equation development and their sample sizes, DBH dis-
tribution, and percent of basal area represented by each in the Prospect Hill Tract census.

Species N DBH mean DBH range Census BA%

Acer rubrum 56 23.75 4.6–45.5 17.1
Betula alleghaniensis 8 22.31 11.3–30.4 2.6
Betula lenta 6 22.08 6.7–36.5 1.3
Betula papyrifera 2 24.75 23–26.5 1.3
Fagus grandifolia 2 24.35 20–28.7 1.5
Fraxinus americana 3 32.9 19.7–41.5 0.3
Kalmia latifolia 1 4.5 4.5 0.2
Picea abies 14 25.93 12.5–49.5 2
Picea rubens 1 29.5 29.5 0.2
Pinus resinosa 28 35.53 22.4–43.4 4.5
Pinus strobus 42 46.21 18–71.1 11.1
Quercus rubra 85 38.95 15–65.8 21.2
Quercus velutina 6 33.95 22.3–46.2 1.2
Tsuga canadensis 88 33.14 9–68.6 32.6
Total 342 33.85 4.5–71.1 97.1
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3.2. Tree- and species-level canopy height model comparison

The CHMs each consisted of a total of 351,201 pixels. Of these, for
the uncorrected, bias corrected, and height error imputation CHMs,
84.6% of the pixels contained height data for species that were sampled
in the variable radius plots. For CHMs using crown radius error im-
putation estimates, 88.9% of the pixels contained height data for

species sampled in the variable radius plots. The within crown pixels
were distributed across an average of 25,112 individual exposed tree
crowns, with a mean of 12.43 pixels per tree. Mean individual-tree
canopy height, calculated by averaging the height of all pixels within
each of the tree crown extents, varied for the lidar and synthetic CHMs
across the five error accounting approaches (Table 4a). Although the
different error accounting approaches do not alter the original lidar
CHM itself, they do impact the assignment of individual pixels in the
CHM to individual trees; thus, changing the treatment of variability
within the allometry impacts the individual-tree estimates of canopy
height. For all stems, regardless of species, lidar-estimated canopy
heights and synthetic CHM canopy heights were moderately to strongly
correlated, regardless of the correction applied, but with some apparent
underestimation of allometry heights when compared to the lidar CHM
(Fig. 3, Table 4b).

Within species sampled in the field, we observed moderate to strong
correlations between lidar and synthetic CHM estimated canopy heights
(Table 4b). Accounting for transformation bias and error imputation did
not significantly improve the correlation for all species, but did mar-
ginally improve the agreement between mean and maximum species
heights based on height comparisons (Tables 5 and 6). Using t-tests, we
observed significant differences in mean individual-tree canopy height
as estimated by lidar and synthetic CHMs for most species. Although
differences remained statistically significant for most species following
bias correction or error imputation, the difference between lidar and
synthetic CHM mean and maximum canopy heights within species were
generally reduced (Tables 5 and 6). Differences in means were reduced

Fig. 2. Positive relationships with varying slope and intercept for 14 unique species and

the mean relationship for crown radius, depth, and tree height at Harvard Forest.

Table 2

Comparison of allometric models with random effects of plot and species both included (A), only plot excluded (B) and plot and species both excluded (C) from model predictions.

A. Varied plot effect B. Mean plot effect C. Mean species effect

ρr2 RMSE CV(RMSE) ρr2 RMSE CV(RMSE) ρr2 RMSE CV(RMSE)

Crown radius 0.618 1 31.80% 0.434 1.22 38.80% 0.204 1.44 45.98%
Crown depth 0.471 2.93 29.60% 0.35 3.24 32.80% 0.133 3.74 37.84%
Total height – – – 0.701 2.96 13.80% 0.601 3.42 15.96%

Table 3

Allometric equations of crown radius, crown depth, and tree height. If a species is not in
the table, the species effect is set to zero for prediction.

Crown radius Crown depth Total height

Intercept Slope Intercept Slope Intercept Slope

Fixed effects

(β β,0 1)

0.937 0.067 3.997 0.180 3.452 −11.059

Species effects
(γ γ,0 1)

Acer rubrum −0.101 0.015 1.561 0.011 −0.057 2.003
Betula

allegha-

niensis

0.075 0.015 1.009 0.007 −0.014 −1.264

Betula lenta 0.621 −0.001 0.790 0.005 −0.005 1.277
Betula

papyrifera

0.015 0.000 0.890 0.006 0.012 1.213

Fagus

grandifolia

0.571 0.018 1.676 0.012 −0.012 −1.718

Fraxinus

americana

−0.012 −0.002 0.027 0.000 0.027 0.722

Kalmia latifolia −0.237 0.004 −0.657 −0.005 −0.005 1.168
Picea abies −0.138 −0.014 −1.061 −0.007 0.021 −1.896
Picea rubens −0.237 −0.015 −0.107 −0.001 0.003 0.212
Pinus resinosa 0.228 −0.037 −2.431 −0.017 0.044 1.769
Pinus strobus −0.678 −0.004 −2.150 −0.015 0.023 −0.932
Quercus rubra −0.449 0.024 −0.143 −0.001 −0.001 0.089
Quercus velutina −0.305 0.018 0.012 0.000 0.000 0.444
Tsuga

canadensis

0.648 −0.021 0.582 0.004 −0.034 −3.086
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further by imputing crown radius and height errors, particularly crown
radius. However, for all species, canopy heights estimated from the
lidar CHM were higher than those from the synthetic CHM (Tables
4–6), with less dramatic, but still significant differences among

dominant canopy species such as Quercus rubra, Pinus strobus, Pinus

resinosa, Acer rubrum, and Betula papyrifera, among others. The most
notable discrepancies occurred for understory species such as Kalmia

latifolia, Vaccinium corymbosum, Hamamelis virginiana, Castanea dentata,

Table 4

Comparisons of mean heights for lidar and synthetic canopy height models for uncorrected and error and bias corrected allometric canopy height models and results of correlation
analysis within and across species.

Uncorrected Bias-corrected Imputed CR error Imputed Ht error Imputed CR + Ht errors

a. Canopy height models summary data

Number of trees 26,858 26,879 21,907 27,376 22,540
Mean pixels per tree 11.34 11.34 14.78 11.13 14.35
Lidar Mean(Max) Height 18.99(20.17) 18.99(20.17) 19.31(20.69) 19.06(20.25) 19.35(20.75)
Allometric Mean(Max) Height 12.91(13.72) 13.09(13.90) 14.16(14.98) 13.19(14.01) 14.23(15.09)
Difference Mean(Max) 6.08(6.45) 5.9(6.27) 5.15(5.71) 5.87(6.24) 5.12(5.66)

b. Tree height correlations - Pearson's r

All individuals 0.4917 0.4922 0.4941 0.4736 0.4764
All sampled (% of crown area) 0.3568 (84.6) 0.3568 (84.6) 0.3520 (88.9) 0.3424 (84.6) 0.3370 (88.9)

Tsuga canadensis 0.1711 (20.1) 0.1710 (20.1) 0.1774 (19.8) 0.1790 (21.2) 0.1881 (21.2)

Acer rubrum 0.3910 (18.4) 0.3915 (18.4) 0.3742 (20.6) 0.3713 (18.9) 0.3545 (21.3)

Quercus rubra 0.5832 (27.1) 0.5831 (27.1) 0.4965 (28.0) 0.4746 (26.0) 0.3805 (26.7)

Betula alleghaniensis 0.1008 (2.6) 0.1008 (2.6) 0.0819 (2.6) 0.1014 (2.8) 0.0987 (2.8)

Pinus strobus 0.5994 (6.7) 0.6044 (6.7) 0.5811 (7.4) 0.4949 (6.1) 0.4819 (6.6)

Fagus grandifolia -0.0715 (1.2) -0.0726 (1.2) -0.1344 (1.4) -0.0547 (1.2) -0.0702 (1.4)

Betula lenta 0.1038 (2.2) 0.0996 (2.2) 0.0872 (2.1) 0.0996 (2.3) 0.0519 (2.3)

Pinus resinosa 0.4620 (2.5) 0.4613 (2.5) 0.2987 (2.8) 0.1904 (2.4) 0.1230 (2.6)

Kalmia latifolia 0.0876 (0.2) 0.0894 (0.2) 0.1015 (0.2) 0.0673 (0.2) 0.0805 (0.2)

Picea abies -0.0140 (0.7) -0.0156 (0.7) 0.0848 (0.7) 0.0204 (0.8) 0.1004 (0.7)

Betula papyrifera 0.5773 (1.3) 0.5765 (1.3) 0.5350 (1.5) 0.5077 (1.2) 0.4657 (1.4)

Quercus velutina 0.7310 (1.3) 0.7306 (1.3) 0.6607 (1.4) 0.5238 (1.2) 0.4069 (1.2)

Fraxinus americana 0.4318 (0.3) 0.4315 (0.3) 0.4886 (0.3) 0.4523 (0.3) 0.5354 (0.3)

Picea rubens 0.1812 (0.1) 0.1746 (0.1) 0.0468 (0.1) 0.2055 (0.1) 0.1077 (0.1)

Fig. 3. Color density scatter plots of mean canopy height from lidar-

derived and synthetic CHM canopy height models, showing general

agreement at the tree level.
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Acer pennsylvanicum, and Viburnum nudum. These species do not attain
heights exceeding a few meters at most in this forest (or in any known
habitat). Though the synthetic CHM mean canopy heights indicated
lower canopy heights, the lidar CHM indicated canopy heights reaching
that of the dominant trees for this site. Thus, the differences between
the CHM mean canopy heights for these species must be attributed to
species misclassification at the pixel level resulting from dominant ca-
nopy trees overtopping understory trees, rather than error in the allo-
metric predictions.

3.3. Canopy height models and power spectra analysis

The resulting FFT 1-d power spectra showed general whole-image

scale agreement between all synthetic CHMs and the lidar CHM at
longer spatial wavelengths (Figs. 4 and 5). However, at scales smaller
than the whole image, we observed differences between all synthetic
CHMs and the lidar CHM. Using t-tests, there is no significant difference
between the lidar CHM and synthetic CHM at spatial wavelengths
longer than approximately 64 m, or the length of about 3–4 crown
widths of canopy trees. At shorter wavelengths, we found that synthetic
CHMs had significantly higher power (p < .05) than the lidar CHM.
Relative to the other synthetic CHMs, those that accounted for errors in
crown radius by error imputation had lower power at short spatial
wavelengths and were in closer agreement with the lidar CHM, though
they were still significantly different.

Table 5

Comparison of individual-tree mean canopy heights by species as estimated by lidar and synthetic canopy height models using paired t-tests.

Uncorrected Bias-Corrected Imputed CR Imputed height Imputed CR + height

Species Mean N (stems) Lidar Synthetic Lidar Synthetic Lidar Synthetic Lidar Synthetic Lidar Synthetic

Tsuga canadensisa 6761 19.58 11.68 19.58 11.85 19.85 12.92 19.61 11.94 19.86 13.02
Acer rubruma 6013 18.72 14.53 18.72 14.74 18.78 15.36 18.82 14.89 18.89 15.51
Quercus rubraa 3381 21.66 19.68 21.66 19.96 21.86 20.49 21.66 19.94 21.85 20.55
Betula alleghaniensisa 1359 18.03 9.14 18.03 9.27 18.26 9.81 18.06 9.33 18.28 9.95
Pinus strobusa 1217 21.13 20.06 21.12 20.32 21.34 20.54 21.19 20.38 21.41 20.57
Ilex verticillata 781 7.06 0.29 7.05 0.30 7.01 0.27 7.17 0.30 6.86 0.26
Fagus grandifoliaa 734 20.63 7.17 20.63 7.29 20.88 8.08 20.67 7.45 20.92 8.16
Betula lentaa 709 19.81 13.01 19.81 13.18 19.94 14.26 19.94 13.28 20.02 14.30
Pinus resinosaa 730 25.62 23.39 25.62 23.72 25.69 23.99 25.68 23.35 25.76 23.79
Kalmia latifoliaa 392 18.08 1.94 18.07 1.97 18.25 2.07 18.12 1.95 18.28 2.05
Picea abiesa 426 23.11 14.62 23.11 14.81 23.12 15.22 23.15 15.12 23.17 15.48
Vaccinium corymbosum 416 8.53 0.57 8.54 0.58 8.51 0.54 8.37 0.58 8.59 0.55
Betula papyriferaa 408 18.01 15.64 18.00 15.87 18.35 16.82 18.05 15.58 18.37 16.58
Hamamelis virginiana 354 19.67 2.30 19.66 2.35 19.78 2.02 19.70 2.34 19.91 2.09
Quercus velutinaa 190 21.43 19.43 21.43 19.81 21.83 20.61 21.47 19.33 21.78 20.23

Alnus incana 166 4.75 0.87 4.74 0.88 4.82 0.75 4.69 0.82 4.94 0.67
Prunus serotina 135 20.64 14.27 20.66 14.63 21.24 15.39 20.68 14.12 21.24 15.14
Castanea dentata 111 20.49 3.03 20.49 3.10 21.46 3.77 20.47 3.04 21.38 3.41
Fraxinus americanaa 87 19.36 14.68 19.36 14.89 19.34 16.26 19.35 15.28 19.74 16.84

Lyonia ligustrina 91 5.92 0.17 5.99 0.17 7.12 0.13 6.12 0.18 6.53 0.12
Nyssa sylvatica 87 14.89 12.41 14.88 12.66 15.18 14.17 14.99 12.66 14.98 14.08

Toxicodendron vernix 76 5.85 0.58 5.86 0.59 5.75 0.53 5.76 0.58 5.74 0.52
Ilex laevigata 77 9.99 0.90 9.98 0.92 10.75 0.87 9.97 0.89 10.80 0.76
Betula populifolia 64 14.41 10.47 14.41 10.68 14.76 10.80 14.33 10.31 14.18 9.53
Acer pennsylvanicum 53 19.42 5.17 19.55 5.29 19.93 6.00 19.67 4.75 20.31 6.24
Viburnum nudum 48 17.49 0.27 17.43 0.27 17.59 0.26 17.44 0.29 16.73 0.24
Picea rubensa 46 19.29 18.42 19.36 18.72 19.05 18.21 19.52 19.68 19.52 19.52

Amelancheir laevis 33 12.28 2.82 12.28 2.88 14.55 2.42 11.62 2.53 13.55 2.45
Quercus alba 29 19.78 17.87 19.77 18.21 19.46 18.74 19.99 18.05 19.85 18.49

Crataegus spp 16 22.61 1.37 22.61 1.40 21.86 2.81 22.62 1.34 22.06 2.65
Sorbus americana 13 14.91 7.57 15.19 8.20 16.82 6.30 15.07 9.01 16.48 7.09
Viburnum dentatum 9 8.65 0.17 8.78 0.17 8.54 0.18 8.53 0.25 7.38 0.20

Quercus spp 11 19.02 15.27 19.02 15.61 19.47 17.56 18.81 13.71 19.67 15.91

Unknown 12 20.75 9.34 20.70 9.55 20.72 10.66 21.12 10.31 20.78 10.94

Ostrya virginiana 8 18.69 3.75 18.69 3.83 19.72 2.23 18.63 4.20 19.72 2.61

Picea spp 10 18.24 12.33 18.24 12.59 18.62 16.35 19.29 13.07 19.67 16.50

Fraxinus nigra 8 16.40 8.26 16.40 8.44 16.39 8.91 18.14 8.89 16.28 8.55

Prunus pensylvanica 6 14.88 6.87 14.88 7.02 14.87 6.11 14.81 7.30 14.57 5.83

Betula spp 5 15.10 9.80 15.10 10.01 17.13 8.20 15.11 10.57 17.13 7.31

Picea mariana 7 19.74 19.06 19.74 19.44 18.79 19.23 19.22 19.08 18.29 18.91

Rhododendron prinophyllum 6 20.89 0.20 20.30 0.18 18.87 0.14 20.89 0.22 18.90 0.17
Viburnum lantanoides 4 20.97 0.04 20.97 0.04 19.58 0.01 20.97 0.05 – –

Aronia melanocarpa 3 2.62 0.01 2.62 0.01 7.17 0.03 2.62 0.01 7.17 0.02

Lindera benzoin 3 20.95 0.26 20.95 0.27 21.96 0.34 20.95 0.13 21.76 0.17

Pinus spp 2 24.57 10.20 24.57 10.41 22.95 7.93 24.57 10.08 22.95 7.69
Acer saccharum 1 24.10 4.34 24.10 4.44 – – 24.10 4.49 – –

Juniperus communis 1 2.45 0.22 2.45 0.22 1.77 0.17 2.45 0.17 1.53 0.15
Populus grandidentata 1 15.50 15.05 15.50 15.35 14.90 15.79 15.43 16.54 14.84 16.88
Populus tremuloides 1 15.04 12.06 15.04 12.31 14.49 12.34 15.04 12.66 14.49 12.69
Rhamnus frangula 1 3.12 0.00 3.12 0.00 – – 3.12 0.00 – –

Sambucus racemosa 1 – – – – 17.69 0.00 – – – –

Viburnum acerfolium 2 – – – – – – – – 19.58 0.02

p < .001, p < .01, p < .05, not significant.
a Species sampled for crown measurements.
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4. Discussion

4.1. Tree allometry and crown plasticity effects

The general relationships between tree height and DBH that we
observed across species were qualitatively similar to other relationships
that have been reported, with stems between 10–15 m tall at around
15–20 cm DBH, reaching 20–25 m tall by 50 cm DBH (e.g. Ducey,
2012). There was no clear pattern between predictions for angiosperm
vs. gymnosperm or deciduous vs. evergreen species (though these are
nearly identical in the data, with the only evergreen angiosperm being
Kalmia latifolia, which is confined to the low understory; gymnosperm
species are listed in bold font in Tables 5 and 6). By contrast, Ducey
(2012) did identify patterns in height-diameter scaling associated with

species evergreenness and wood specific gravity in this region. How-
ever, that study employed a much larger regional dataset (over 200,000
individual trees) and also identified a strong local effect on scaling,
which was hypothesized to be due to a combination of climate, site
quality (i.e. conditions dictating the type, size, and quality of trees in a
site), and past competition. The latter two factors almost certainly vary
across the Prospect Hill tract and would be expected to obscure inter-
specific variation in a study with a limited sample size. Height-diameter
allometry is not a fixed species attribute, but the outcome of dynamic
and plastic allocation between primary and secondary growth (Niklas,
1995; Oliver and Larson, 1996, ch. 3; Purves et al., 2008; Franklin et al.,
2012).

In comparison with the relationships for tree height and crown
depth, the variability in species-specific relationships between crown

Table 6

Comparison of individual-tree maximum canopy heights by species as estimated by lidar and synthetic canopy height models using paired t-tests.

Uncorrected Bias-corrected Imputed CR Imputed height Imputed CR + height

Species Mean N (stems) Lidar Synthetic Lidar Synthetic Lidar Synthetic Lidar Synthetic Lidar Synthetic

Tsuga canadensisa 6761 20.86 12.47 20.85 12.64 21.29 13.76 20.91 12.77 21.32 13.90
Acer rubruma 6013 20.03 15.49 20.03 15.70 20.23 16.27 20.13 15.85 20.36 16.47
Quercus rubraa 3381 22.88 20.89 22.88 21.16 23.12 21.69 22.88 21.16 23.14 21.80
Betula alleghaniensisa 1359 19.09 9.80 19.09 9.93 19.47 10.47 19.15 9.99 19.52 10.63
Pinus strobusa 1217 23.11 21.09 23.09 21.36 23.41 21.55 23.10 21.39 23.42 21.58
Ilex verticillata 781 7.29 0.34 7.29 0.34 8.00 0.33 7.42 0.35 7.86 0.34
Fagus grandifoliaa 734 21.41 7.64 21.41 7.76 21.88 8.58 21.46 7.93 21.91 8.65
Betula lentaa 709 20.93 13.74 20.93 13.91 21.24 15.04 21.09 14.05 21.37 15.13
Pinus resinosaa 730 27.37 24.30 27.37 24.62 27.38 24.84 27.40 24.27 27.44 24.67
Kalmia latifoliaa 392 18.46 2.07 18.46 2.10 19.10 2.25 18.51 2.07 19.14 2.23
Picea abiesa 426 23.96 15.18 23.96 15.38 24.02 15.77 24.04 15.72 24.03 16.04
Vaccinium corymbosum 416 9.01 0.67 9.03 0.69 9.95 0.68 8.88 0.70 10.03 0.69
Betula papyriferaa 408 19.31 16.59 19.31 16.81 19.68 17.70 19.31 16.52 19.67 17.49
Hamamelis virginiana 354 20.27 2.56 20.26 2.62 20.80 2.28 20.31 2.61 20.93 2.35
Quercus velutinaa 190 22.64 20.69 22.65 21.09 23.12 21.88 22.61 20.60 22.99 21.51

Alnus incana 166 5.09 1.01 5.08 1.02 6.22 0.91 5.04 0.96 6.15 0.81
Prunus serotina 135 21.57 15.01 21.59 15.36 22.46 16.14 21.66 14.86 22.45 15.92
Castanea dentata 111 20.88 3.23 20.88 3.30 21.99 4.07 20.86 3.24 21.90 3.69
Fraxinus americanaa 87 20.27 15.43 20.27 15.64 20.59 17.12 20.31 16.02 20.99 17.74

Lyonia ligustrina 91 6.06 0.20 6.15 0.20 7.85 0.18 6.25 0.21 7.38 0.17
Nyssa sylvatica 87 15.81 13.08 15.81 13.33 16.72 14.83 15.85 13.32 16.54 14.74

Toxicodendron vernix 76 6.24 0.66 6.24 0.67 6.87 0.64 6.12 0.68 6.73 0.62
Ilex laevigata 77 10.56 1.04 10.56 1.06 12.32 1.01 10.46 1.02 12.42 0.92
Betula populifolia 64 15.35 11.07 15.35 11.29 16.36 11.35 15.16 10.89 15.71 10.12
Acer pennsylvanicum 53 20.24 5.53 20.36 5.64 21.31 6.36 20.41 5.09 21.75 6.62
Viburnum nudum 48 17.66 0.31 17.60 0.32 18.25 0.31 17.55 0.33 17.34 0.28
Picea rubensa 46 20.67 19.45 20.76 19.77 20.18 19.00 20.77 20.65 20.66 20.38

Amelancheir laevis 33 12.52 2.93 12.52 2.99 15.28 2.62 11.81 2.62 14.24 2.62
Quercus alba 29 21.29 18.83 21.29 19.18 21.28 19.64 21.52 19.09 21.63 19.48

Crataegus spp 16 22.86 1.54 22.86 1.58 22.52 3.04 22.85 1.50 22.46 2.86
Sorbus americana 13 16.14 8.02 16.33 8.62 17.82 6.58 16.50 9.53 17.69 7.46
Viburnum dentatum 9 8.80 0.18 8.92 0.17 9.10 0.30 8.76 0.26 8.03 0.32

Quercus spp 11 19.56 16.22 19.56 16.55 20.30 18.50 19.37 14.55 20.32 16.70

Unknown 12 22.24 9.99 22.24 10.19 22.06 11.23 22.58 11.02 22.18 11.63

Ostrya virginiana 8 18.89 3.95 18.89 4.03 20.35 2.58 18.89 4.47 20.35 3.02
Picea spp 10 18.93 12.87 18.93 13.12 19.73 17.11 19.81 13.51 20.97 17.47

Fraxinus nigra 8 16.74 8.58 16.74 8.75 17.60 9.52 18.64 9.28 17.73 9.10

Prunus pensylvanica 6 15.36 7.18 15.36 7.33 15.56 6.43 15.40 7.77 15.27 6.22

Betula spp 5 17.38 10.44 17.38 10.63 19.55 8.47 17.40 11.22 19.55 7.58

Picea mariana 7 21.84 20.12 21.84 20.50 19.71 20.01 21.45 20.08 19.52 19.75

Rhododendron prinophyllum 6 20.89 0.20 20.30 0.18 19.21 0.18 20.89 0.22 19.11 0.20
Viburnum lantanoides 4 20.97 0.04 20.97 0.04 – – 20.97 0.05 – –

Aronia melanocarpa 3 2.62 0.01 2.62 0.01 7.17 0.03 2.62 0.01 7.17 0.02

Lindera benzoin 3 20.95 0.26 20.95 0.27 22.31 0.55 20.95 0.13 21.91 0.23

Pinus spp 2 25.19 10.61 25.19 10.82 23.18 8.35 25.19 10.49 23.18 8.11
Acer saccharum 1 25.56 4.76 25.56 4.86 – – 25.56 4.92 – –

Juniperus communis 1 2.45 0.22 2.45 0.22 7.80 0.32 2.45 0.17 3.12 0.27
Populus grandidentata 1 17.13 16.11 17.13 16.42 17.13 16.45 17.13 17.63 17.13 17.66
Populus tremuloides 1 16.71 13.05 16.71 13.30 15.10 13.20 16.71 13.65 15.10 13.55
Rhamnus frangula 1 3.12 0.00 3.12 0.00 – – 3.12 0.00 – –

Sambucus racemosa 1 – – – – 17.69 0.00 – – – –

Viburnum acerfolium 2 – – – – 19.58 0.01 – – 19.58 0.02

p < .001, p < .01, p < .05, not significant.
a Species sampled for crown measurements.
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radius and DBH was greater. In general, crown radius slopes were
steeper for deciduous angiosperms than needleleaf gymnosperms. To
some extent, this effect may be influenced by species-specific carbon
allocation strategies that are driven by light availability and competi-
tion (Purves et al., 2008, Dybzinski et al., 2015). For example, Amer-
ican beech (Fagus grandifolia) is a shade-tolerant deciduous species, and
tended to be shorter but with a larger crown radius at a given DBH than
other species. American beech is among a group of shade tolerant
species which typically present with slower vertical growth and sub-
stantial plasticity in branching patterns (Canham, 1988). Other shade
tolerant deciduous species, including red maple (Acer rubrum), red oak
(Quercus rubra), and yellow birch (Betula alleghaniensis) exhibited si-
milar rates of change of crown radius with DBH, while lesser shade
tolerant and shade intolerant deciduous species, such as black birch
(Betula lenta) and paper birch (Betula papyrifera) presented narrower
crowns. Shade tolerance is a key functional trait structuring plant
communities (Valladares and Niinemets, 2008). However, an

alternative hypothesis would tie the crown radius-DBH relationship to
the structural properties of the trees.

Wood specific gravity is a strong proxy for a range of wood prop-
erties that would affect branch load-bearing capacity, longevity, and
hydraulic transport (Chave et al., 2009), and has been successfully used
in models of growing space occupancy and forest stocking in this and
similar regions (Ducey and Knapp, 2010; Ducey et al., 2017). Although
such models are tied to a more abstract concept of resource space (sensu
Oliver and Larson, 1996) than to physical space occupancy, their origin
is in biomechanical models relating stem strength to canopy mass (Dean
and Baldwin, 1996). To further explore these competing hypotheses, we
used average shade tolerance rankings for each species from Niinemets
and Valladares (2006), which range from 1 for very intolerant species
to 5 for very tolerant species, and wood specific gravity values from
Miles and Smith (2009), except Kalmia latifolia which was taken from
USFS FPL (1931). The relationships between the species effects (γ0 and
γ1) between these two sets of functional traits were evaluated using
Spearman’s ρ (Fig. 6). The only statistically significant relationship was
between γ1 and wood specific gravity, and was positive consistent with
the biomechanical approach of Dean and Baldwin (1996) and its use in
mixed-species stand density models (Ducey and Knapp, 2010). This
result suggests that specific gravity as a functional trait may be useful as
a covariate in refining local crown architecture relationships.

The slope for the DBH-crown radius relationship for red pine was
much shallower than other species measured in this study, and it lies
the farthest (in absolute value) from the central trend of the relation-
ship between the slope and wood specific gravity. The red pine stands at
Harvard Forest on Prospect Hill are remnant plantations on which nu-
trient amendment studies have been conducted (Rainey et al., 1999),
and site nutrient status influences allometric relationships in trees
(Albaugh et al., 1998, Niinemets and Lukjanova, 2003; Urban et al.,
2013). The relationships for red pine that we observed in this study
could also be attributed to the spacing, structure and growth of trees in
monolayer canopies, which could have influenced competitive dy-
namics and dictated the extent to which lateral branching would occur
for individual trees (e.g. Oliver and Larson, 1996, ch. 3; Pretzsch and
Rais, 2016). Departure from typical trends may thus result from a

Fig. 4. Canopy height models (top) and their FFTs (bottom) derived from (a) lidar data and (b–e) allometric equations with (b) no error correction, (c) retransformation bias correction,

(d) imputed crown radius errors, (e) imputed height errors, (f) imputed crown radius and height errors. FFT results are plotted on a logarithmic color scale.

Fig. 5. Power spectra of lidar and synthetic CHMs. Points indicate the spatial wavelengths

at which differences between the lidar CHM and the synthetic CHM with the matching

color line are not significant.
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strong local effect (sensu Ducey, 2012) driven by the plantation spacing
and subsequent history of these specific plantations.

4.2. Outcomes of bias correction, error imputation, and FFT analysis

Log-transformation (and other nonlinear transformation) is a
common practice in developing allometric relationships for biomass
and other tree attributes, and it has been long understood that such
transformation can result in prediction bias of practical importance if
no corrective action is taken (Finney, 1941; Zar, 1968; Baskerville,
1972). It is intuitive that biased predictions could lead to corresponding
errors in the development of a fully-synthetic CHM from allometric
predictions, or in the assignment of values from a LiDAR-derived CHM
back to a given population of trees. However, the development of CHMs
and their subsequent segmentation and assignment to individual trees
are both nonlinear processes. Where nonlinearity is present, the pro-
pagation of variance (or lack thereof) may also exert an important in-
fluence, as has been noted in other ecological contexts (e.g. Band et al.,
1991). In our study, closed-form correction of allometric bias in tree
height (e.g. Baskerville, 1972), imputation of residuals from the tree
height model, and imputation of residuals from the crown radius and
tree height models together led to progressive increases in synthetic
CHM canopy heights, and better matches between those and corre-
sponding heights in a LiDAR-derived CHM (where the sole influence of
allometric prediction was in the assignment of individual pixels to
mapped trees). However, none of these techniques could fully correct
evident errors in tree assignment and in the CHM surface itself, espe-
cially at high spatial frequencies.

One challenge for both the synthetic CHMs and the assignment of
pixels to trees in the LiDAR CHM is the inflexible description of tree
form implicit in our use of the allometric models. Tree crowns were
assumed to be centered over the mapped stem location and to be
symmetrical. However, many trees lean for a variety of reasons, and
leaning trees may have crown centers displaced by several meters from
the location of the stem near ground level (Gatziolis et al., 2010).
Crown plasticity is another major challenge for modeling forest canopy

structure (Purves et al., 2007). Changes in shoot-level architecture and
whole-plant resource allocation in response to overhead shade, lateral
competition, and physical crown abrasion can all alter the crown form
of individual trees (Oliver and Larson, 1996, ch. 3). This results in much
more efficient capture of resources and filling of physical space than
would occur in the absence of crown plasticity, and the effect is more
dramatic in mixed-species forests (such as the one studied here) than in
monocultures (Pretzsch, 2014). The rigid application of a “popsicle”
tree form, without regard to neighborhood context, leads to trees in our
synthetic CHMs that have physically impossible crown overlap in three-
dimensional space, while they also fail to exploit space along the pre-
dicted crown perimeters where no such overlap exists. As a result, the
synthetic CHMs show much greater height variation and canopy
roughness at small spatial scales. The elliptical crown form assumption
employed may also fail to capture the umbrella-shaped canopy asso-
ciated with many hardwood trees with decurrent stem form (e.g. Ford,
1985), thus leading to steeper falloff and deeper canyons in the syn-
thetic CHM as compared with the LiDAR-derived CHM. Both sources of
error would contribute to mis-assignment of relatively high-elevation
pixels to understory trees and shrubs, if the tendency of dominant trees
to more fully exploit space at the top of the canopy was underestimated.
The improved ability to represent individual tree crowns and their
plasticity within a tractable framework remains an important area of
work across multiple applications (Purves et al., 2007, 2006). None-
theless, the close correspondence in power between the synthetic and
LiDAR-derived CHMs at spatial wavelengths above ∼60 m does suggest
a good ability to map and simulate canopy properties at moderate re-
solution using this approach.

5. Conclusions

Our mixed effects allometric equations for crown geometry and tree
height provide some insight into variability in crown structure across
species in an eastern deciduous forest. Estimates of height, crown ra-
dius, and crown depth, and how they relate to stem diameter were on
par with previous studies. However, due to challenges related to inter-

Fig. 6. Scatter plots showing relationships between shade

tolerance and specific gravity and species effects from this

study.

F.B. Sullivan et al. Forest Ecology and Management 406 (2017) 83–94

92



and intra-specific competition, crown plasticity, and the use of an
overly simplistic tree form, we observed a general negative bias at the
tree level in synthetic CHM canopy heights relative to lidar CHM ca-
nopy heights. Our tree level canopy height results were marginally
improved by error imputation and bias correction approaches, but these
approaches could not overcome the shortcomings in our synthetic CHM
derivation. However, using an FFT analysis, we determined that an
apparent bias in crown radius estimation could be partially overcome
through error imputation, suggesting that allowing for crown plasticity
or accounting for leaning stems in synthetic CHM development could
make some headway towards improving on this particular application
of our allometric models. Allometric model-based derivation of canopy
height models could be a useful tool for providing contextual in-
formation about forest canopies to researchers using both optical and
lidar remote sensing on airborne and satellite platforms. In conjunction
with improvements to existing crown delineation algorithms, links be-
tween tree crown geometry and DBH like the ones presented in this
paper could have utility for biomass estimation and species and struc-
tural characterization on an individual tree basis with data fusion ap-
proaches that use high spatial resolution lidar and hyperspectral data.
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