QAGU

Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE

10.1002/2017JG003949

Key Points:

« The trend in spring phenology on the
Tibetan Plateau varied among the five
NDVI data sets and between the two
phenology retrieval methods

« There was no consistent evidence for
advancing or delaying trends in spring
phenology on the Tibetan Plateau

+ The debate on the trends of spring
phenology could be largely attributed
to the use of different NDVI data sets
and/or different methods

Supporting Information:

« Supporting Information S1
- Figure S1

- Figure S2

Figure S3

- Figure S4

- Figure S5

- Figure S6

Figure S7

- Figure S8

Correspondence to:
X. Wang and J. Xiao,
wangxufeng@lzb.ac.cn;
jxiao@unh.edu

Citation:

Wang, X, Xiao, J., Li, X,, Cheng, G.,

Ma, M., Che, T., ... Wu, J. (2017). No
consistent evidence for advancing or
delaying trends in spring phenology on
the Tibetan Plateau. Journal of
Geophysical Research: Biogeosciences,
122. https://doi.org/10.1002/
2017JG003949

Received 18 MAY 2017
Accepted 5 DEC 2017
Accepted article online 12 DEC 2017

©2017. American Geophysical Union.
All Rights Reserved.

No Consistent Evidence for Advancing or Delaying Trends
in Spring Phenology on the Tibetan Plateau

Xufeng Wang™2 (%), Jingfeng Xiao® (), Xin Li"* (), Guodong Cheng" (), Mingguo Ma*, Tao Che' ("),

Liyun Dai', Shaoying Wang®, and Jinkui Wu®

Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid
Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China, 2Earth
Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH,
USA, 3CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China, 4School
of Geographical Sciences, Southwest University, Chongging, China, *Key Laboratory of Land Surface and Climate Change in
Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of
Sciences, Lanzhou, China, ®State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and
Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Abstract Vegetation phenology is a sensitive indicator of climate change and has significant effects on
the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The
Tibetan Plateau, the Earth's “third pole,” is a unique region for studying the long-term trends in vegetation
phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its
low-level human disturbance. There has been a debate whether the trends in spring phenology over the
Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we
examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global
Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set
(1982-2014), the GIMMS NDVI data set (1982-2006), the Moderate Resolution Imaging Spectroradiometer
(MODIS) NDVI data set (2001-2014), the Satellite Pour I'Observation de la Terre Vegetation (SPOT-VEG)
NDVI data set (1999-2013), and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) NDVI data set
(1998-2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI
data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both
the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS
trends among the different NDVI data sets and between the two different retrieval methods. There is no
consistent evidence that spring phenology (“green-up” dates) has been advancing or delaying over the
Tibetan Plateau during the last two to three decades. Ground-based budburst data also indicate no
consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature,
precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval
methods. The increases in winter and spring temperature had offsetting effects on spring phenology.

1. Introduction

Vegetation phenology is the timing of seasonal growth stages in vegetation life cycles, such as budburst, leaf
unfolding, flowering, and senescence. Plant phenology is controlled by a suite of climatic and biotic factors,
and the changes of phenology have significant effects on the exchange of carbon, water, and energy
between ecosystems and the atmosphere (Penuelas et al., 2009). Vegetation phenology has received grow-
ing attention in global change research because of its sensitivity to climate change and effects on carbon,
water, and energy cycling (Badeck et al., 2004; Richardson et al,, 2013). In the recent two decades, the
satellite-derived normalized difference vegetation index (NDVI) has been widely used to estimate the timing
of start of growing season (SOS) at regional scales (Zhang et al., 2003). It has been reported that spring phe-
nology has been advancing in some parts of the Northern Hemisphere because of climatic warming (Menzel
et al,, 2006), while this trend is decreasing as a result of warming-related reduction in chilling (Fu et al., 2015).

The Tibetan Plateau, the Earth’s “third pole” has witnessed rapid warming during the last several decades
(Duan & Xiao, 2015; Zhong et al., 2011). The Tibetan Plateau is a unique region for studying the responses
of vegetation phenology to climate change and their feedbacks to the climate because of the high sensitivity
of alpine vegetation to climate and the low-level human disturbance. Quantifying the trends in spring

WANG ET AL.



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017JG003949

phenology on the Tibetan Plateau is important for understanding the carbon, water, and energy cycling of
the plateau and the interactions between the alpine ecosystems and the regional climate. The trends in
spring phenology over the Tibetan Plateau have been highly controversial. By using the Moderate
Resolution Imaging Spectroradiometer (MODIS), Satellite Pour 'Observation de la Terre (SPOT) Vegetation
(SPOT-VEG), and Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data sets and the polyno-
mial fitting and NDVI threshold method, Zhang et al. (2013) argued that the SOS of the Tibetan Plateau
had been continuously advancing with a rate of 1.04 d/yr from 1982 to 2011 and an even greater rate during
the period from 2000 to 2011 than the period from 1982 to 2000. Yu et al. (2010) reported that the SOS of the
Tibetan Plateau derived from the GIMMS NDVI data set using the polynomial fitting and NDVI threshold
method advanced from 1982 to the mid-1990s and retreated after the mid-1990s because of the increasing
winter temperature and spring temperature. By contrast, some other studies reported that no significant SOS
trend was found from 1982 to 2013 (Ding et al., 2016; Liu et al., 2016). Ding et al. (2016) used the polynomial
method and the GIMMS3g (version 0) and SPOT-VEG data, while Liu et al. (2016) used the logistic method
(logistic fitting and NDVI inflection detecting) and the advanced very high resolution radiometer (AVHRR)
and MODIS data. T. Wang et al. (2013) found that the continuously advancing trend in SOS derived from
MODIS and SPOT-VEG NDVI was significantly correlated with the increasing NDVI in January-April induced
by the deceasing snow cover fraction. Shen et al. (2013) removed the NDVI increasing effect during the
nongrowing season and found no trend in the SOS retrieved from the SPOT-VEG NDVI data set using the
same method as used by Zhang et al. (2013). The use of different NDVI data sets and/or phenology retrieval
methods could lead to the discrepancies in the SOS trends among these studies. Field phenological observa-
tions showed that only one of 11 plant species exhibited a significant advancing trend in SOS from 1990 to
2006, and no species had a delaying SOS trend (Zhou et al.,, 2014). Settling the debate on the trends in spring
phenology on the Tibetan Plateau will improve our understanding of the responses of alpine ecosystems to
climate change and their feedbacks to the climate.

The spring phenology of the Tibetan Plateau is controlled by a variety of environmental factors (e.g., air tem-
perature, precipitation, soil temperature, and snow cover). The mechanisms of the trends in the SOS of the
Tibetan Plateau have also been debated. Yu et al. (2010) reported that increasing spring temperature resulted
in the advance of SOS, while increasing winter temperature led to the delay of SOS because of failure of chil-
ling. Zhang et al. (2013) showed that both spring and winter temperature was negatively correlated with SOS,
indicating that increasing winter temperature also led to the advance of SOS. A recent study based on field
phenology observations did not find evidence for delaying SOS induced by warming winter (Chen et al,,
2015). Precipitation at near half of the meteorological stations on the Tibetan Plateau was significantly corre-
lated with SOS (Shen et al,, 2011). The discrepancies on the relationships between SOS and environmental
factors could be partly attributed to the scarcity of meteorological data and the quality of remote sensing
data. The relative contributions of the environmental factors (e.g., air temperature, precipitation, and snow
cover) on spring phenology on the Tibetan Plateau still remain unclear.

In this study, we assessed the consistency of the trends in SOS on the Tibetan Plateau using different satellite-
derived NDVI records and SOS retrieval methods. We used the five long-term NDVI records that are currently
available: the GIMMS NDVI data set (1982-2006), the GIMMS 3g NDVI data set (GIMMS3g, 1982-2015), the
SPOT-VEG NDVI data set (1999-2013), the MODIS NDVI data set (MODIS, 2001-2014), and the Sea-viewing
Wide Field-of-View Sensor (SeaWiFS) land NDVI data set (SeaWiFS, 1998-2007). For each NDVI record, two
widely used SOS retrieval methods were used in this study. We also examined the effects of environmental
factors (air temperature, precipitation, soil temperature, and snow cover) on SOS. The specific objectives of
this study are to (1) assess the consistency of the trends in SOS on the Tibetan Plateau using different
satellite-derived NDVI records and SOS retrieval methods, (2) evaluate the accuracy and trends of SOS derived
from different data sets and methods on the Tibetan Plateau using eddy covariance gross primary productiv-
ity (GPP) and field phenological data, and (3) examine the relationships between satellite-derived SOS and a
variety of environmental factors.

2. Data and Methods
2.1. Study Region

Our study region is the Tibetan Plateau (aka the Qinghai-Tibetan Plateau). The Tibetan Plateau covers
~24 x 10° km of land area, accounting for approximately one fourth of China’s land territory. It is the
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Figure 1. Distribution of the alpine meadow and steppe on the Tibetan Plateau and the location of phenology observing
sites, eddy covariance flux towers, and meteorological stations (AMS).

highest plateau in the world with the average elevation over 4,500 m. The terrestrial ecosystems on the
plateau are dominated by alpine meadow/steppe (Figure 1). Alpine meadow and steppe cover over 56%
of the entire plateau area (Hou, 2001). Based on meteorological observations from weather stations, the
multiyear mean annual precipitation and temperature of the plateau are 480 mm and 3.7°C, respectively.

The alpine meadow and steppe over the Tibetan Plateau are sensitive to climate change (Ganjurjav et al.,
2015; Zhou et al., 2006). In this study, SOS of the Tibetan Plateau was estimated for alpine meadow and alpine
steppe with remotely sensed NDVI data sets and then evaluated with in situ observations. We also examined
the SOS trend and its relationship with meteorological factors. The grassland distribution and observation
sites are shown in Figure 1.

2.2. Remote Sensing NDVI Data Sets

2.2.1. MODIS NDVI

The Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI product (MOD13A2) is available at
16 day intervals and 1 km spatial resolution (Huete et al., 2002; Justice et al., 1998). This product is generated
from atmospherically corrected bidirectional surface reflectance that had been masked for water, clouds,
heavy aerosols, and cloud shadows. The Collection 6 of MOD13A2 from 2001 to 2014 for the Tibetan
Plateau was obtained in this study. Precomposited surface reflectance data were used in Collection 6 vegeta-
tion index algorithm (Didan et al., 2015).

2.2.2. SPOT Vegetation NDVI

The Satellite Pour I'Observation de la Terre Vegetation (SPOT-VEG) NDVI product is available from 1999 to
2013 with a 1 km spatial resolution. SPOT-VEG was produced by merging 10 day segments using the
maximum value composite method (Deronde et al., 2014). This data set is processed and distributed by
the Flemish Institute for Technological Research (VITO) in Belgium. The data set was processed by
atmospheric correction, radiometric correction, and geometric correction.

2.2.3. SeaWiFS NDVI

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) land NDVI data (McClain et al., 2004) are available at
15 day intervals and 4 km spatial resolution. The SeaWiFS NDVI data from 1998 to 2007 were obtained for
the Tibetan Plateau. This data set is processed and distributed by the Ocean Biology Processing Group.
After mid-2008, the SeaWiFS sensor experienced malfunctions that lasted until the end of the mission.
Therefore, the SeaWiFS NDVI data since 2008 were not used in this study.

2.2.4. GIMMS and GIMMS3g NDVI

The GIMMS NDVI data were derived from the advanced very high resolution radiometer (AVHRR) instruments
on board the National Oceanic and Atmospheric Administration’s polar-orbiting meteorological satellites.
The GIMMS NDVI data set that extends from 1981 (July) to 2006 (Tucker et al., 2005) has been widely used
in ecological studies. The GIMMS NDVI data set is available at half-monthly interval and 8 km spatial
resolution. Various corrections such as cloud contamination, sensor calibration, view geometry, and volcanic
aerosols were performed to this data set before its release (Holben, 1986).
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The GIMMS NDVI3g (GIMMS3g) NDVI data set is the latest version of the GIMMS NDVI data set and has been
recently extended to the year of 2015 (Pinzon & Tucker, 2014). This data set was processed for minimizing
various deleterious effects including calibration loss, orbital drift, intersensor inconsistency, and volcanic
eruptions. It has the same spatial and temporal resolution as GIMMS. In this study, we used both GIMMS
and GIMMS3g.

2.3. Snow Depth Data

A long-term snow depth product in China derived from passive microwave remote sensing data was used in
this study to assess the snow effects on SOS. This snow depth product was generated by accounting for the
intersensor calibration and was evaluated using field snow measurements and other independent data sets
(Dai et al., 2015). The spatial and temporal resolutions of this data set are 0.25° and 1 day, respectively. The
winter and spring snow depth was calculated as the average daily snow depth from November of the pre-
vious year to March and from April to May, respectively.

2.4. Meteorological Data

The monthly temperature and precipitation data from 1982 to 2014 were obtained from 95 meteorological
stations across the Tibetan Plateau (Figure 1). These data sets were provided by the Climatic Data Center,
National Meteorological Information Center, China Meteorological Administration. A total of 74 stations is
located in meadow and steppe areas. Winter and spring temperatures for the vegetated regions were calcu-
lated as the average monthly temperature from November of the previous year to March and from April to
May, respectively. Winter and spring precipitation for the vegetated regions was calculated as the cumulative
precipitation from November of the previous year to March and from April to May, respectively.

2.5. Carbon Flux Data and Field Phenology Observations

Gross primary productivity (GPP) data from six eddy covariance flux sites (Figure 1) on the Tibetan plateau
were used to evaluate the SOS derived from remote sensing data. Because the seasonal carbon uptake curves
show the seasonal cycles of the ecosystems, carbon flux data can be used to evaluate the SOS derived from
remote sensed NDVI (Balzarolo et al., 2016). Carbon flux of the Arou (Li et al., 2009; Li et al., 2013), Maqu (Wang
et al, 2016), and Suli sites (Wu et al., 2015) were processed using the gap filling and partitioning tool in
the statistics package-R provided by FLUXNET (https://www.bgc-jena.mpg.de/bgi/index.php/Services
/REddyProcWebRPackage/) (Lasslop et al., 2010), and carbon flux data of other three sites were provided
by FLUXNET (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The HaM (Zhao et al., 2006), Dan (Shi
et al., 2006), Suli, Maqu, and Arou sites are grasslands, and Ha2 (Zhao et al., 2005) is a shrubland site. The daily
GPP was smoothed by averaging with a 15 day moving window. The date when daily GPP exceeds 1 gC/m?%/d
during spring was determined as the field-based land surface SOS (Richardson et al., 2010).

Field phenology observations (Guo et al., 2011; Xu et al.,, 2014) were used to evaluate the SOS trend. This data
set consists of observed budburst and senescence dates and starts from 1992. For grassland sites, a
50 m x 50 m plot in homogeneous area was selected as permanent plot to observe phenology date, and
grazing is forbidden during grass growth and development period. Observers were trained according to
the measuring criterion. The onset of the growing season was determined as the date when 50% grass in
the sample plot became green by the observer's eyes (China Meteorological Administration, 1993). The
observers were trained by the China Meteorological Administration (CMA). Field phenology observation sites
are shown in Figure 1.

2.6. Data Analysis

2.6.1. Processing of NDVI Data

To further reduce the noise in NDVI, the Savizky-Golay filter was performed to all the NDVI data sets. NDVI
usually changes slowly with the development of vegetation canopy, and an abrupt change point in the
NDVI time series is considered as noise. The Savizky-Golay filter can remove this noise by smoothing the
NDVI time series curve. The formula and parameters of the Savizky-Golay filter for alpine vegetation have
been described in a previous paper (X. F. Wang et al., 2013). To minimize the effects of soil background on
NDVI in sparsely vegetated areas, the pixels with multiyear mean NDVI < 0.1 were masked out. The growing
season average NDVI (NDVI_gs) was calculated as the average NDVI from April to October for each data set.
The annual average NDVI (NDVI_year) was calculated as the average NDVI from January to December for each
data set. The seasonal average NDVI for winter (NDVI_wit), spring (NDVI_spr), summer (NDVI_smr), and
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autumn (NDVI_aut) was calculated as the average NDVI from November of previous year to March, from April
to May, from June to August, and from September to October, respectively. The NDVI for different vegetation
types was calculated based on the Vegetation Type Map of China (Zhang et al., 2007).

2.6.2. SOS Retrieval, Trend Analysis, and Evaluation

SOS can be derived from the inflections in the curvature of the NDVI time series. Vegetation phenology can
be represented using a series of double logistic functions which are built by fitting satellite-derived NDVI data
to time (Julien & Sobrino, 2009; Zhang et al., 2003). The temporal variation in NDVI for a single growth or
senescence cycle can be modeled using a logistic function as follows:

y(t):a+b( ! 1 ) (1

1+ ect—d) T e

where t is time in days; y(t) is the NDVI value at time t; ¢, d, e, and b are fitting parameters; a + b is the
maximum NDVI value, and a is the initial background NDVI value. The inflections in the change rate curve
of the smoothed NDVI are used to determine the phenological dates. Specifically, the transition dates
correspond to the times at which the second-order derivative of the smoothed NDVI time series exhibits local
minima or maxima. During the growth period, these dates corresponding to the two local maxima points are
the start of growing season (SOS) and the onset of maturity.

Another method of SOS estimation is to detect the NDVI change to a threshold NDVI value which is deter-
mined from the rate of seasonal changes in the multiyear mean NDVI seasonal curves. Specifically, the first
step is to calculate the multiyear mean NDVI seasonal curve. The second step is to determine the change rate
(NDVl,4ti0) of multiyear mean NDVI seasonal curve using the following equation:

NDVI(t 4+ 1) — NDVI(t)

NDVlratio = NDV|(t) (2)

where NDVI(t + 1) and NDVI(t) are NDVI value at time t + 1 and t, respectively; the third step is to obtain the
NDVI value in multiyear average NDVI seasonal curve corresponding to the time of maximum change rate
(NDVl,4ti0) as the threshold SOS NDVI value. The fourth step is to fit the NDVI from January to September
in each year to Julian Day using a polynomial function as follows:

NDVI = a + alxt + a2xt* + ... + anxt" n==6 (3)

where t is Julian day in a year and g, al ... a6 are fitting parameters. The final step is to determine the SOS
date, when fitted NDVI is greater than threshold NDVI value (Reed et al., 1994; Zhang et al., 2013).

We used both methods to retrieve SOS for each year for each long-term NDVI data set on a per pixel basis.
Flux tower GPP data were used to evaluate the SOS retrieved from the NDVI data sets for the pixels in which
the eddy covariance flux towers are located. Daily GPP was smoothed by averaging with a 15 day moving
window. The day when smoothed daily GPP exceeds 1 gC/m?/d was determined as tower SOS for evaluating
the SOS derived from NDVI data sets. We then examined the trends of spatially avearged SOS for alpine mea-
dow, alpine steppe, and the entire plateau using the five data sets and the two retrieval methods. The trends
in SOS were also compared among different data sets and between the two retreival methods for the over-
lapping period of the five NDVI data sets (2001-2006); the entire period of each NDVI data set; the overlap-
ping period of MODIS, SPOT-VEG, and GIMMS3g (2001-2013); and the overlapping period of GIMMS,
GIMMS3g, and SeaWiFS (1998-2006), respectively. We also examined the trends in the SOS based on in situ
phenology observations. For each site, the in situ phenology observations were also used to examine the
trends in SOS at the site level; the observations were also used to evaluate the trends in SOS derived from
the long-term NDVI data sets for the pixel in which the site is located.

The linear trends in SOS were calculated using the Mann-Kendall method. The Mann-Kendall method is a
nonparametric test for monotonic trends. This method does not assume a specific distribution for the data
and is not sensitive to outliers. When a monotonic trend is determined by the Mann-Kendall test, the
Theil-Sen method can be used to calculate the slope of the trend (Sen, 1968). The slope of the trend measures
the SOS change rate with time.

2.6.3. Environmental Controls of SOS Trends

We examined the controls of environmental factors (air temperature, soil temperature at 0 cm, precipitation,
and snow depth) on spring phenology using correlation analysis. We first analyzed the relationship between
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Figure 2. Start of growing season (SOS) of the Tibetan Plateau retrieved from the GIMMS3g, GIMMS, MODIS, SPOT-VEG, and
SeaWiFS NDVI data sets. Dotted lines are the linear fitting lines based on the Theil-Sen method at confidence degree
0.95. The trend slopes and P values are provided in Table S1. TP: the entire Tibetan Plateau including both alpine meadow
and steppe areas, Meadow: alpine meadow areas, Steppe: alpine steppe areas, Polynomial: threshold SOS method using
polynomial function fitting, Logistic: inflection point SOS method using double logistic function fitting.

SOS and each environmental factor using correlation. We also used partial correlation analysis to examine
the relative effects of these factors on SOS. Partial correlation measures the strength and direction
of the relationship between two variables while controlling for the effects of one or more other variables.
The trend analysis was also applied to environmental factors (e.g., air temperature, precipitation, soil
temperature, and snow depth) to determine whether these factors exhibited significant trends.

3. Results
3.1. Long-Term Trends in Spring Phenology on the Tibetan Plateau

We first examined the trends of spatially averaged SOS for alpine meadow, alpine steppe, and the entire
Tibetan Plateau using the GIMMS3g, GIMMS, MODIS, SPOT-VEG, and SeaWiFS NDVI data sets and both poly-
nomial and logistic retrieval methods (Figure 2). For both methods, the SOS based on GIMMS3g was system-
atically lower than that based on other data sets. The SOS retrieved from MODIS, SPOT-VEG, and SeaWiFS was
similar to one another in magnitude for alpine meadow, particularly for the polynomial method. For alpine
steppe, the SOS exhibited larger differences in magnitude particularly for the polynomial method. The SOS
of GIMMS was much larger than that of GIMMS3g and was close to that of MODIS, SPOT-VEG, and SeaWiFS
after 2000. GIMMS-based SOS significantly advanced from 1982 to 1998 and significantly delayed after
1998, which was generally consistent with the results of two previous studies. The trends in SOS were greatly
different between the two retrieval methods. Both MODIS SOS and SPOT-VEG SOS based on the polynomial
method showed statistically significant advancing trends for both the entire Tibetan Plateau and the alpine
meadow area (Table 1). For the logistic method, however, no significant advancing trend in SOS was found
for any NDVI data set; only GIMMS3g SOS for alpine steppe exhibited a significant delaying trend. The
consistency in the trends of SOS among different data sets was higher in the meadow area than in the
steppe area.

3.2. Spatial Patterns of SOS Trends

To compare the spatial patterns of SOS retrieved from different data sets and different methods, we exam-
ined the mean SOS during the same period (from 2001 to 2006) for all five data sets and both methods
(Figure 3). Generally, the mean SOS showed similar spatial patterns among different data sets except
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Table 1
Theil-Sen Slope and P Value for SOS on the Tibetan Plateau Retrieved From Different NDVI Data Sets and Different Methods
Theil-Sen slope P value
GIMMS3g GIMMS MODIS SPOT-VEG SeaWiFs GIMMS3g GIMMS MODIS SPOT-VEG SeaWiFs

TP_polynomial 0.013 —0.051 —0.431 —0.692 —0.008 0.70 0.82 0.05 < 0.01 0.71
Meadow_polynomial —0.018 —0.036 —0.240 —0.551 0.047 0.27 0.87 0.04 < 0.01 0.86
Steppe_polynomial 0.042 0.046 —0.493 —0.933 —0.328 048 0.73 0.10 < 0.01 0.44
TP_logistic 0.092 0.182 —0.141 —0.159 0.079 0.16 043 0.31 0.99 045
Meadow_logistic —0.008 0.130 —0.220 —0.170 —0.106 0.90 0.58 0.22 0.97 0.53
Steppe_logistic 0.249 0.324 —0.098 —0.165 0.402 < 0.01 0.13 0.63 0.89 0.34

GIMMS3g and between the two methods, and the eastern plateau had earlier SOS than the western
counterpart. The GIMMS3g SOS was much earlier than that of other data sets. The mean SOS based on
the logistic method generally followed unimodal distributions, while the mean SOS based on the
polynomial method generally followed multimodal distributions (Figure S1 in the supporting information).
For each retrieval method, the distribution of the mean SOS was similar among different data sets except
for GIMMS3g.

To compare the differences in the SOS trends among the five NDVI data sets and between the two methods,
we estimated the SOS trend during the entire period of each NDVI data set and the overlapping periods of
these data sets (from 2001 to 2013 for MODIS, SPOT-VEG, and GIMMS3g and from 1998 to 2006 for GIMMS
and SeaWiFS) (Figure 4). The trends exhibited large discrepancies between the two methods and among
the different NDVI data sets for the same period. The pixels with a significant advancing trend in SOS
accounted for a larger land area for the polynomial method than for the logistic method for all the data sets
(Figures 4 and S2 and Table S1). For the polynomial method, the percentage of the pixels with significant
advancing trends in SOS ranged from 5.4% (GIMMS3g: 2001 to 2013) to 34.7% (SPOT-VEG: 2001 to 2013),
and the percentage of pixels with significant delaying trends in SOS ranged from 0.07% (SPOT-VEG: 2001
t0 2013) to 4.1% (GIMMS3g: 2001 to 2013). For the polynomial method, the percentage of the pixels with sig-
nificant advancing trends in SOS ranged from 1.1% (GIMMS3g: 2001 to 2013) to 6.6% (SPOT-VEG: 2001 to
2013). Among the five data sets, SPOT-VEG showed the largest area with advancing trends in SOS and the
smallest area with delaying trends for both meadow and steppe (Table S1). MODIS showed a larger area
for advancing trends in SOS than for delaying trends. Both GIMMS3g (2001 to 2013) and SeaWiFS (1998 to
2006) had similar land areas for pixels with advancing and delaying trends in SOS, while GIMMS (1998 to
2006) had a larger area for pixels with advancing trends than for pixels with delaying trends.

3.3. Evaluating NDVI-Derived SOS With In Situ Measurements

We compared the SOS retrieved from the satellite-derived NDVI records with gross primary productivity
(GPP) data from six eddy covariance flux sites and phenology observations from 15 sites across the plateau.
The GPP data of the eddy covariance flux sites clearly showed the trajectories of plant growth and the phe-
nological stages. The SOS retrieved from the remotely sensed data was generally close to the date when GPP
exceeded 1 gC/m?/d during spring (Figure 5). The symbols above and below the dotted line GPP = 0 stand for
the SOS based on the logistic and polynomial methods, respectively. At the Dan site where GPP was much
lower than that of other three sites, the SOS retrieved from NDVI had larger differences among different data
sets than other sites. The SOS for the five NDVI data sets based on the polynomial method had a larger range
than that based on the logistic method. The root-mean-square error (RMSE) between NDVI-derived SOS and
GPP-derived SOS varied from 9 days to 16 days for different data sets and methods (Figure 6). GIMMS3g and
GIMMS had the largest RMSE, followed by MODIS; SPOT-VEG and SeaWiFS showed the lowest RMSE (Figure 6).
The logistic method led to smaller RMSE than the polynomial method (Figure 6).

Conventional in situ phenology measurements are based on the development stages of plants at the species
level, such as budburst or leaf-unfolding date. In situ phenology is different from the land surface phenology
estimated from remote sensing data. Thus, these ground-based budburst data were used to evaluate the
trends in spring phenology derived from NDVI data rather than to validate the SOS retrieved from NDVI. In
situ phenology measurements were limited, and only 15 sites had data records over 7 years. Seven of the
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Figure 3. Spatial distribution of mean SOS during the period from 2001 to 2006 retrieved from the five NDVI data sets on the Tibetan plateau (only SOS in meadow
and steppe area were retrieved according to the vegetation type data).
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Figure 4. The trends in SOS retrieved from the five NDVI data sets based on both logistic and polynomial methods. The period from 2001 to 2013 was used for the
MODIS, SPOT-VEG, and GIMMS3g data sets, and the period from 1998 to 2006 was used for the SeaWiFs, GIMMS3g, and GIMMS data sets.
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Figure 5. Evaluating the SOS retrieved from the five NDVI data sets based on the two retrieval methods using GPP data
from eddy covariance flux sites. The symbols above the dotted line GPP = 0 stand for the SOS based on the logistic
method, while the symbols below the dotted line GPP = 0 stand for the SOS based on the polynomial method.

15 sites are grassland, and eight of them are cropland sites. Most of the grassland sites are located in the
meadow area, and only two of the seven grassland sites showed significant (P < 0.05) advancing SOS trend
(Figure 7 and Table S2). All cropland sites exhibited insignificant advancing or delaying trends (Figure 7 and
Table S2). The trends in the in situ phenology observations were greatly different from remote sensing
retrieved SOS trends at all the 15 sites (Table S2). At the sites with significant advancing SOS trends from
in situ phenology measurements, no advancing SOS trend was found from any of the five NDVI data set

(Table S2).

3.4. Effects of Environmental Factors on SOS

To examine the environmental controls on spring phenology, we used air temperature, soil temperature at
0 cm, precipitation, and snow depth to analyze their controlling effects on SOS (Figure 8). Air temperature
and soil temperature had the strongest relationships with SOS (R? ranging from 0.24 to 0.49 and from 0.18
to 0.49, respectively) among these environmental factors. Winter air temperature, spring air temperature,
and the difference between spring and winter air temperature were used to analyze the effects of air tem-
perature on SOS (Table S3). For each NDVI data set, the SOS showed different relationships with air tempera-
ture between the two retrieval methods. The SOS based on the polynomial method showed higher R?
(ranging from 0.15 for GIMMS to 0.41 for SeaWiFS) with spring air temperature than with winter air

WANG ET AL.

10



@AG U Journal of Geophysical Research: Biogeosciences

10.1002/2017JG003949

160 SPOT-VEG GIMMS3g .| GIMMS | seawiFs
_ "
g._g __g__o?_l_'.
2 d EO
T 2 130 J r < r
n S . . o0
o ) ~®
» 100 4 R2:0.66 { .~ R2:0.17 4 . R%:0.02 1 7
) RMSE: 9 | RMSE: 15 | -* RMSE: 15 | -*
@ MODIS e .| SPOT-VEGe . | GIMMS3g .| GIMMs B
@ _ 160 - o o o oA
n o 0 o, [\ 4o
0 E ) o®® % -
) qad ® N A o i
Q 2 130 1 1 Tee®® . ~% .
£ S o S e ; oo
o2 ° b g (Y
® 2 100 - R0.13 4 .~ R%0114 4 R%:0379 . R%:0.17 - R?: 0.73
RMSE: 15 | * RMSE: 14 | .* RMSE: 16 | -* RMSE: 15 | - RMSE: 13
T T T T T T T T T T T T T T T
100 130 160 100 130 160 100 130 160 100 130 160 100 130 160

Eddy Covariance SOS (doy)

Figure 6. Comparison between SOS derived from remote sensing data sets and SOS derived from eddy covariance
GPP data.

temperature or temperature difference between spring and winter for each data set. By contrast, the SOS
based on the logistic method showed higher R* (ranging from 0.22 for MODIS to 0.49 for SeaWiFS) with
temperature difference between spring and winter than with spring temperature or winter temperature
for each data set.

Spring soil temperature, winter soil temperature, and the difference between spring and winter soil tempera-
ture were used to analyze the effects of soil temperature on SOS (Table S3). The SOS based on the polynomial
method had the strongest relationships with spring soil temperature, with R? ranging from 0.16 (GIMMS) to
0.52 (SPOT-VEG). The SOS based on the logistic method had the strongest relationships with soil temperature
difference between spring and winter for each NDVI data set, ranging from 0.18 (MODIS) to 0.45 (SeaWiFS).

The effects of precipitation on SOS were analyzed using winter precipitation, spring precipitation, and presea-
son precipitation (sum of winter and spring precipitation). Overall, the SOS on the Tibetan Plateau was poorly
explained by precipitation, and the R? value was lower than 0.20 except

for the relationship between spring precipitation and SOS based on the

135 - Grassland sites — é:m logistic method for SeaWiFS (R? = 0.38) (Table S3).
125 1 — GD The effects of snow on SOS were analyzed using spring snow depth,
115 1 — MQ winter snow depth, and preseason snow depth (sum of winter and
105 — REG* spring snow depth). Based on correlation analysis, the SOS on the
> 95 - HN* Tibetan Plateau based on the polynomial method was poorly explained
.g 85 — HB by snow depth with R? values lower than 0.15. The SOS based on the
; — DLH logistic method also had weak relationships with snow depth, and
8 1;2 : —— |MH the R? value was lower than 0.20 for all data sets except for SeaWiFS

— DL and GIMMS with the logistic method (Table S3).

ﬁg 1l i :; To examine the relative effects of environmental variables, we also per-
100 4 EBE formed partial correlation analysis between SOS and environmental
90 4 I factors. The partial correlation coefficients are shown in Table S4. The
80 : : : : — RKZ partial correlation coefficient varied greatly with SOS retrieval method.
1995 2000 2005 2010 Among these environmental factors, soil temperature showed higher
Year partial correlation coefficients than others. Among these data sets,

Figure 7. In situ SOS observations and their trends. The slope of the trend and P
value for each site are shown in Table S2. The 15 sites are as follows: XH: Xinghai,
QML: Qumalai, GD: Gande, MQ: Maqu, REG: Ruoergai, HN: Henan, HB: Haibei,
DLH: Delingha, LMH: Luomuhong, HY: Huangyuan, HZ: Huzhu, GDE: Guide, MH:
Minhe, RKZ: Rikeze. The two sites marked with asterisk (REG and HN) exhibited
significant trends in SOS, while all other sites had insignificant trends.

SOS estimated from MODIS and SeaWiFS showed higher partial corre-
lation than other data sets. Polynomial method-based SOS showed
higher correlation coefficients than logistic method. The partial correla-
tion analysis allowed us to determine the relative effects of multiple
environmental factors on SOS. We also compared the trends of envir-
onmental factors with those of SOS estimated from the remote
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Figure 8. Yearly SOS derived using both polynomial and logistic methods, air
temperature, soil 0 cm temperature, precipitation, and snow depth on the
Tibetan Plateau from 1982 to 2014.

sensing data sets during the same period (Table S5). Soil temperature,
air temperature, and precipitation exhibited significant increasing
trends. Soil temperature increased faster than air temperature, and
winter temperature increased faster than spring temperature. Snow
depth exhibited a significant decreasing trend.

4. Discussion

Our results indicate no consistent trends in spring phenology among
the different long-term satellite-derived NDVI records and between
the two different SOS retrieval methods. The ground-based phenologi-
cal observations demonstrated that only two of the 17 sites exhibited
advancing trends in SOS. A recent study examined the SOS of an alpine
shrub site on the Tibetan Plateau using 10 years of eddy covariance GPP
data and found that there was no significant trend in SOS (Li et al., 2016).
Our analyses revealed that the trends in spring phenology differed with
satellite record and also varied with retrieval method. The debate on the
trends in spring phenology on the Tibetan Plateau could be attributed
to the use of different data sets and/or different SOS retrieval methods.
Yu et al. (2010) reported that the SOS advanced from 1982 to mid-1990s
and retreated after mid-1990s based on GIMMS data set, and this was
not supported by our results based on the GIMMS3g data set. Zhang
et al. (2013) argued that the SOS derived from GIMMS continuously
advanced from 1982 to 1998 and then delayed from 1998 to 2006, while
the SOS from MODIS and SPOT-VEG showed advancing trends from
1998 to 2006. Our results showed that the SOS retrieved from GIMMS
after 2000 showed high consistency with that from MODIS, SPOT, and
SeaWiFS and did not continue the advancing trend found in GIMMS
SOS from 1982 to 1998. The inconsistency between the findings of
Zhang et al. (2013) and our results likely resulted from the differences
in processing the NDVI data. Shen et al. (2014) reported that there was
no significant SOS trend from 2000 to 2011, and the SOS derived from
GIMMS3g data set was greatly different from MODIS and SPOT data sets,
which is consistent with our results. Different fitting methods in remote
sensing phenology retrieving algorithm can lead to significantly
different land surface phenology estimation (Wu et al., 2017).

The discrepancies in the SOS trends among different long-term satellite
data sets could be partly attributed to the differences in the magnitude
and trends in NDVI among these data sets. We compared the spatial
patterns (Figure S3), histograms (Figure S4), and trends (Figure S5) of
these five NDVI data sets on the Tibetan Plateau for different timescales
(seasonal, growing season, and annual). For each timescale, the aver-
age NDVI was used for the calculation of the trend. SPOT-VEG showed
significant increasing trends in NDVI for all timescales from 1999 to

2013 (Figure S5 and Table S6). No other data set showed significant increasing NDVI during spring. Guay et al.
(2014) compared these five NDVI data sets in northern high latitudes and found that only 40% of the region
showed similar trends in NDVI among these data sets. In cold regions, a break was detected in the NDVI trend
of GIMMS3g in 2008, and no break was detected in the trends of MODIS and SPOT-VEG data (Tian et al., 2015).
The NDVI correlation analysis among these data sets in different seasons indicated that MODIS, SPOT-VEG,
and SeaWiFS showed high consistence; NDVIin meadow area showed higher consistence than that in steppe
area; and spring NDVI showed lower consistence than winter, summer, and autumn NDVI. These results show
that there was no consistency even for the NDVI trend on the Tibetan Plateau among different long-term
NDVI records. The discrepancies in the NDVI data sets had large impacts on the retrieval of SOS. The substan-
tial discrepancies in the NDVI trend could lead to large differences in the trend of SOS among NDVI data sets.
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Figure 9. NDVI seasonal change curves of the five NDVI data sets on the Tibetan
plateau (using the multiyear average from 2001 to 2006).

SOS, respectively.

The discrepancies in SOS among the NDVI data sets were also partly
caused by the differences in the quality of these data sets. Each NDVI
data set contains noise caused by a variety of factors such as cloud,
snow, aerosol, topography, and sensor calibration. These noise can lead
to large changes in the SOS estimates (Yi & Zhou, 2011). The NDVI of
GIMMS3g was systematically higher than that of other data sets for
both meadow and steppe areas in winter and spring (Figures S5 and 9).
During spring, GIMMS3g NDVI started increasing earlier than other four
data sets and also had an abrupt change. As a result, the SOS retrieved
from GIMMS3g was systematically lower (or earlier) than that from

other data sets.

To test the sensitivity of spring phenology to NDVI noise, a 30% random
noise was added to the regionally averaged MODIS NDVI time series.
The sensitivity of SOS was assessed using the difference between the
SOS results based on NDVI without the addition of random noise and an ensemble (size = 50) average SOS
based on NDVI with 30% random noise (Figure 10). The 3 day error in SOS could be resulted from the addition
of 30% noise in one NDVI value in one year. For the polynomial method, the noise in NDVI around the SOS date
had large impact on the retrieval of SOS. For the logistic method, both NDVI around the SOS date and peak
growing season had large impact on the estimation of SOS. The positive and negative noise around SOS date
would lead to underestimation and overestimation of SOS, respectively. By contrast, the positive and nega-
tive noise around the peak growing season would lead to overestimation and underestimation of

We also analyzed the quality control (QC) flag of the MODIS and SPOT-VEG data sets from 2001 to 2013
(Figure S6). Snow contamination was the main reason for the low quality of NDVI during the nongrowing sea-
son, while other factors such as cloud, topography, and aerosol were mainly responsible for the low quality of
NDVI during the growing season. During spring when SOS was sensitive to noise in NDVI, the number of pix-
els contaminated by snow and other factors were equivalent to each other. GIMMS3g does not separate
snow and other factors in its QC flag. In the meadow area, a large number of pixels between Julian day
100 and 180 for the GIMMS3g were filled using spline interpolation, which is likely responsible for the abrupt
changes in NDVI during spring. Our results indicate that further improving the quality of the long-term NDVI
data sets could lead to better estimates of SOS and better understanding of phenology responses to

environmental change.

SOS Error (Day)

Polynpm|a| i+ 30% noise

Polynpmlal 30% noise :

0 60 120 180 240 300

0 60 120 180 240 300
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Figure 10. Sensitivity analysis of SOS error based on both polynomial and logistic methods to noise in a NDVI value for
each day of the year (DOY). The green bars stand for the mean SOS error of the ensemble, and the error bars stand for
the standard deviation of SOS error. The red line is the SOS (DOY) estimated with NDVI curve without noise.
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Figure 11. Comparison of SOS estimated from the MODIS NDVI Collection 5 (C5) data set and the MODIS NDVI Collection 6
data set (C6).

Our results indicate that SPOT-VEG, MODIS, and SeaWiFS had higher accuracy in phenology estimation and
are more appropriate for examining the trends in SOS on the Tibetan Plateau than GIMMS and GIMMS3g.
Although GIMMS and GIMMS3g data have longer duration than other NDVI data sets, their lower accuracy
in SOS estimation on the Tibetan Plateau could result in larger uncertainties in the SOS trend. The data quality
of the NDVI data sets had significant effects on SOS estimation. For example, GIMMS3g and GIMMS are both
based on AVHRR data but with different processing procedures, and the SOS estimated from these two data
sets exhibited large differences. We also compared the SOS retrieved from MODIS NDVI Collection 5 (C5) and
that from MODIS NDVI Collection 6 (C6). The SOS based on C6 NDVI was systematically higher than that based
on C5 NDVI (Figure 11). The SOS derived from carbon flux data was used to evaluate the SOS derived from
both C5 and C6 MODIS NDVI. The C5 NDVI had slightly higher accuracy in SOS estimation than the C6
NDVI (Figure S7).

We used the flux tower GPP to evaluate the SOS derived from the NDVI data sets and used the field pheno-
logical observations to examine and evaluate the trends in SOS. It should be noted that there is a scale mis-
match between remote sensing pixels and footprints of field sites (e.g., eddy covariance flux towers). The
pixel size of the NDVI data sets, particularly GIMMS and GIMMS (8 km), is typically larger than the footprint
of an eddy covariance flux tower. Moreover, a pixel is of a fixed size for a specific sensor, while the footprint
of an eddy covariance flux tower varies with wind speed, wind direction, tower height, and surface roughness
(Kljun et al., 2015). To examine the representativeness of each flux site and assess the scale mismatch
between its footprint and the NDVI pixels, we calculated the fractional cover of grassland within the
1 km x 1 km and 8 km x 8 km windows surrounding the tower. The fractional cover of grassland was close
to 1.0 for all sites except Maqu. This indicates that using flux tower GPP to evaluate the SOS derived from
the NDVI data sets was reasonable to some extent despite the scale mismatch. The field phenological obser-
vations for a given site were based on a specific species, while the pixel in which the site is located consists of
multiple vegetation types and/or multiple species. Although in situ measurements have been widely used to
evaluate phenology derived from satellite data (Coops et al., 2007; Turner et al., 2003), the scale mismatch can
result in significant discrepancies in spring phenology between in situ measurements and satellite observa-
tions (Chen et al., 2008). In addition, the smoothing of daily GPP using the 15 day moving window could also
introduce uncertainty to the derived SOS.

Our findings have implications for terrestrial biosphere modeling. Phenology representation is an important
part of terrestrial biosphere models and has fundamental impacts on simulated water, carbon, and energy
exchange (Richardson et al.,, 2012; Xin et al,, 2015). The evaluation of multiple long-term NDVI records and
different methods for phenology retrieval can shed light on the reliability of the NDVI records and the result-
ing phenology estimates. Phenology is prescribed in diagnostic terrestrial biosphere models, and the evalua-
tion of remote sensed based phenology can help assess the effects of prescribed phenology on modeled
carbon, water, and energy dynamics and reduce the uncertainty in terrestrial biosphere modeling.
Accurate satellite-derived phenology products can also be used to validate simulated phenology and/or

WANG ET AL.

14



@AG U Journal of Geophysical Research: Biogeosciences

10.1002/2017JG003949

Acknowledgments

This work was supported by China’s
funding agencies (the National Natural
Science Foundation of China grants
91425303 and 41771466, China
Postdoctoral Science Foundation grant
2015T81067, and China Scholarship
Council) and the U.S. funding agencies
(National Aeronautics and Space
Administration (NASA) through the
Carbon Cycle Science Program grant
NNX14AJ18G and National Science
Foundation (NSF) through
MacroSystems Biology grants EF-
1065777 and EF-1638688). We thank
HIWATER, CERN, China Meteorological
Administration (CMA), and FLUXNET for
providing data. We also thank Yongjian
Ding, Jia Qin, and Xiaoyun Wang for
their help with flux data collection.
Summaries of the data used in this
study can be found in the supporting
information. Full data sets and code
used in this study are available at UNH’s
Global Ecology Group website: http://
globalecology.unh.edu/data.html or by
contacting Xufeng Wang (wangxu-
feng@lzb.ac.cn). More details about
accessing the data sets used in this
study are provided in supporting infor-
mation. We thank the two anonymous
reviewers for their constructive com-
ments on the manuscript. X. F. Wang
and J. F. Xiao designed research; X. F.
Wang and J. F. Xiao performed research;
T. Che, L. Y. Dai, S. Y. Wang, and J. K. Wu
contributed data; X. F. Wang and J. F.
Xiao analyzed data; X. F. Wang and J. F.
Xiao wrote the paper; and X. Li, G. D.
Cheng, and M.G. Ma provided com-
ments and suggestions on the
manuscript.

calibrate parameters for prognostic terrestrial biosphere models (Xin, 2016; Xin et al., 2015). In a number of
modeling studies, long-term satellite data from one sensor have been used to evaluate the models or
calibrate the parameters (Forkel et al., 2014; Knorr et al., 2010; Macbean et al,, 2015; Stockli et al., 2011).
Our results indicate that multiple satellite data sets rather than one of them should be used to evaluate or
calibrate models; alternatively, the range of multiple data sets could provide uncertainty estimates that
can be used for model evaluation or parameter estimation.

The SOS was affected by a number of environmental factors, such as air temperature, precipitation, snow, and
soil temperature. Some factors had positive effects, and some had negative effects. Even for a given factor, it
could have opposite effects on SOS in different seasons. Air temperature is one of the most important factors
controlling SOS in alpine ecosystems (Jeong et al.,, 2009; Piao et al., 2011; Zhang et al., 2015), particularly in high
elevation areas of the Tibetan Plateau (Liu et al., 2014). Spring air temperature was considered as the main fac-
tor controlling the spring phenology on the Tibetan Plateau (Shen, 2011). Air temperature increase in spring
could advance SOS, but air temperature increase in winter could delay SOS because of the failure of plants
to fulfill chilling (Zhang et al., 2013). In the last three decades on the Tibetan Plateau, winter air temperature
(0.053°C/yr, P<0.0001) increased slightly faster than spring air temperature (0.046°C/yr, P<0.0001). The air
temperature difference between spring and winter showed a decreasing trend that was not statistically signif-
icant (rate = —0.008°C/yr; P = 0.45). The soil temperature at 0 cm increased at a higher rate than air tempera-
ture, with winter and spring soil temperature increasing at rates of 0.08°C/yr (P<0.0001) and 0.079°C/yr
(P<0.0001), respectively. The offsetting effects of spring temperature and winter temperature could result
insignificant trends in SOS on the plateau. The partial correlation analysis showed that spring and winter tem-
perature had opposite effects on SOS for some data sets (e.g., soil temperature and SOS estimated from
SeaWiFS with polynomial method). Precipitation is another important environmental factor controlling SOS
on the Tibetan Plateau. Cumulative precipitation in spring and preseason increased significantly at rates of
0.38 mm/yr (P=0.003) and 0.04 mm/yr (P = 0.007) from 1982 to 2014, respectively. Increasing evapotranspira-
tion resulting from climate warming will intensify the surface moisture stress on the Tibetan Plateau, while
spring precipitation can relieve this stress (Shen et al., 2014; Zhang et al., 2015). Winter snow had a large impact
on the SOS of grasslands (Yu et al., 2013). Snow melting can amplify or dampen the effect of climate warming
(Suzuki, 2014). During the last three decades, winter snow depth, spring snow depth, and preseason snow
depth (the sum of spring snow depth and winter snow depth) decreased at rates of —0.97 cm/yr
(P=0.051), —0.65 cm/yr (P =0.001), and —1.51 cm/yr (P = 0.016), respectively. The Tibetan Plateau covers a land
area of 2,542.30 x 10° km?, and the effects of the environmental factors on SOS could vary with latitude, long-
itude, and elevation because of different water supply, heat conditions, and soil properties (Liu et al., 2016).

5. Conclusions

There were large discrepancies in the magnitude, spatial patterns, and long-term trends in the SOS among
different satellite-derived NDVI data sets and between different retrieval methods. This finding indicates that
the discrepancies in the trends of spring phenology over the Tibetan Plateau among different studies could
be largely attributed to the use of different NDVI data sets and/or different phenology retrieval methods. Our
results therefore can help settle the debate on the trends of spring phenology over the Tibetan Plateau. Our
results demonstrate that there were no consistent trends in spring phenology for alpine meadow and steppe
over the Tibetan Plateau. The in situ budburst data also indicated no significant trends in spring phenology.
The discrepancies in SOS among the different NDVI data sets mainly resulted from the differences in the mag-
nitude and trends of the NDVI data; the noise of the data sets caused by snow, cloud, and other factors; and
the different SOS retrieval methods. The relationships between SOS and environmental factors (air tempera-
ture, precipitation, soil temperature, and snow depth) also varied with NDVI data set and retrieval method.
The correlation analysis between SOS and environmental factors showed that the increases in winter and
spring temperature had offsetting effects on spring phenology.
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