2017 International Symposium on Nonlinear Theory and Its Applications,

N 2OOL‘;A NOLTA2017, Cancun, Mexico, December 4-7,2017

A Harmonic Extension Approach for Collaborative Ranking

Da Kuang’, Zuogiang Shi*, Stanley Osher’, and Andrea L. Bertozzi’

TDepartment of Mathematics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, United States
$Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
Email: {dakuang,sjo,bertozzi}@math.ucla.edu’, zqshi @math.tsinghua.edu.cn*

Abstract—We present a new perspective on graph-
based methods for collaborative ranking for recommender
systems. Unlike user-based or item-based methods that
compute a weighted average of ratings given by the near-
est neighbors, or low-rank approximation methods using
convex optimization and the nuclear norm, we formulate
matrix completion as a series of semi-supervised learning
problems, and propagate the known ratings to the miss-
ing ones on the user-user or item-item graph globally.
The semi-supervised learning problems are expressed as
Laplace-Beltrami equations on a manifold, or namely, har-
monic extension, and can be discretized by a point inte-
gral method. Our approach, named LDM (low dimensional
manifold), does not impose a low-rank Euclidean subspace
on the data points, but instead minimizes the dimension
of the underlying manifold. It turns out to be particularly
effective in generating rankings of items, showing decent
computational efficiency and robust ranking quality com-
pared to state-of-the-art methods.

1. Introduction

Recommender systems are crucial components in con-
temporary e-commerce platforms (Amazon, eBay, Netflix,
etc.), Recommendation algorithms are commonly based
on collaborative filtering, or “crowd of wisdom”, and can
be categorized into memory-based and model-based ap-
proaches. Memory-based approaches include user-based
and item-based recommendation For example, for a user u,
we retrieve the highly-rated items from the nearest neigh-
bors of u, and recommend those items that have not been
consumed by #. Memory-based methods are actually based
on a graph, where a user-user or item-item similarity matrix
defines the nearest neighbors of each user or item. In con-
trast, model-based methods are formulated as matrix com-
pletion problems which assume that the entire user-by-item
rating matrix is low-rank,and the goal is to predict the miss-
ing ratings given the observed ratings.

Popular model-based methods such as regularized SVD
minimize the sum-of-squares error over all the observed
ratings. When evaluating the predictive accuracy of these
algorithms, after obtaining a model on a training set, we
evaluate the sum-of-squares error of its prediction on a sep-
arate test set in order to see how well it generalizes to un-
seen data. However, the measure for evaluating success in
a practical recommender system is very different. What we

care more about is whether the top recommended items for
a user u will actually be “liked” by u. A more relevant
evaluation measure in this context is the resemblance be-
tween the ranked list of top recommended items and the
ranked list of observed ratings in the test set. This problem
that places priority on the top recommended items rather
than the accuracy of predicted absolute ratings is referred
to as top-N recommendation, or more recently collabora-
tive ranking [2, 4], and is our focus in this paper.

Here are some notations we will use. For a vector x =
[x1, -, xn]7, we call y = [xi,, Xipy - o ,xir]T a subvector
of length r by extracting the elements of x in the index set
{i1,---,i}, where i} < i < --- < i,. For a matrix M, a
vector x, integers i, j, and sets of row and column indices
S,8’, we use M; j, Ms s, M. ;, Ms ;, xs to denote an entry
of M, a submatrix of M, the j-th column of M, a subvector
of the j-th column of M, and a subvector of x, respectively.

2. Harmonic Extension

We start with the matrix completion problem and for-
mulate it as a series of semi-supervised learning problems,
or in particular, harmonic extension problems on a mani-
fold that can be solved by label propagation [6]. For each
item, we want to know the ratings by all the users, and the
goal of the semi-supervised learning problem is to propa-
gate the known labels for this item (observed ratings) to the
unknown labels on the user-user graph; and reversely, for
each user, to propagate the known labels given by this user
to the unknown labels on the item-item graph.

Consider a user-by-item rating matrix A = (a;;) € R™",
where rows correspond to m users, and columns correspond
to n items. The observed ratings are indexed by the set
Q = {(i,)) : userirateditem j}. Let Q; = {1l < j < m:
(i, j) € Q}, 1 <i < n. Suppose there exists a “true” rating
matrix A* given by an oracle with no missing entries, which
is not known to us, and A|g = A*|q.

Without loss of generality, we assume that there exists
a user manifold, denoted as M, which consists of an in-
finite number of users. Each user is identified by an n-
dimensional vector that consists of the ratings to n items.
Thus, M is a submanifold embedded in R". For the i-th
item, we define the rating function f; : M — R that maps a
user into the rating of this item.

One basic observation is that for a fixed item, similar
users should give similar ratings. This implies that the

-318 -

function f;, 1 < i < nis a smooth function on M. There-
fore, it is natural to find the rating function f; by minimizing
the following energy functional:

E(f) = fM IV s fiol P,)

where V 5 f (1) is the gradient at u defined on the manifold
M.

Let the set of m users in our user-by-item rating system
be U = {uj, 1 < j < m}, where u; is the j-th row of A* and
U c Misasample of M. LetU; = {u; € U : j € Q;} be the
collection of users who rate the i-th item. Then we compute
the rating function f; for all the users by minimizing the
energy functional in (1):

min E(f}) subjectto:

iwly, = aij, (2
feHI (M) f(u])|U, aij ()

where H'! is the Sobolev space. Hence, we need to solve
the following type of optimization problem for n times.

E(f) f@la = gw), (3)

min

subject to:
feH' (M)

where A € M is a point set.

To solve the constrained optimization problem (3), we
use the Bregman iteration to enforce the constraint.
- Solve f**! = argminy E(f) + ullf — g + dk||22(A), where
||f||iz(A) = Y uen If@)?, and d” is a function defined on A.
- Update d*, d**'(u) = d*(u) + ' (u) — g(u), Yu € A.
- Repeat above process until convergence.

Using a standard variational approach, the solution to the
above unconstrained optimization problem can be reduced
to the following Laplace-Beltrami equation:

Af®) =) 8= V() — h(y) = 0, x € M,

YEA
6—f(x) =0, xeiM,
on

)

where § is the Dirac-¢ function in M, h = g — d" is a given
function on A, and n is the outer normal vector. That is to
say, the function f that minimizes (3) is a harmonic func-
tion on M\dM, and (4) is called the harmonic extension
problem in the continuous setting.

2.1. Point Integral Method (PIM)

The Laplace-Beltrami operator in (4) can be approxi-
mated by an integral form with provable bound (see details
in [5]), leading to an integral equation:

1
+ [veo- semmi vy
L Im
Y wENEG) —hy) =0, (5)

yeA

where no derivatives appear and therefore it is easy to dis-
cretize over the point cloud. We notice that the closed form

Algorithm 1 Harmonic Extension

Input: Initial rating matrix A.
Output: Rating matrix R.
1: SetR = A.
2: repeat
3: Estimate the weight matrix W = (w;;) from the user
set U (Algorithm 2).
4: Compute the graph Laplacian matrix: L = D - W
5: fori=1tondo
6: repeat
7 Solve the following linear systems

Lfi + ﬁW,U,(fi)U, = ﬁW,UihUr’

where h = g; — d*.

8: Update d¥,
dk+l _ dk + fk+l - g
- 1
9: until some stopping criterion for the Bregman it-
erations is satisfied
10: end for

11: r,-j:ﬁ(uj) andR:(r,-j).
12: until some stopping criterion is satisfied

of the user manifold M is not known, and we only have a
sample of M, i.e. U. Assume that the point set U is uni-
formly distributed over M. The integral equation can be
discretized as follows:

S s)0 x0) = fx p+
=

ut Z wi(Xi, Y)(f(¥) = h(y)) = 0 (6)

yEA

where | M| is the volume of the manifold M.
We can rewrite (6) in the matrix form:

Lf +aW. o fa = gW. ph. @)
where h = (hy,--- ,hy) and g = "%" L is a m X m matrix

which is given as
L=D-W ®)

where W = (w;)), 1, j = 1,--+ ,mis the weight matrix and
D = diag(d;) with d; = Z;":l w;j. Our harmonic extension
algorithm is summarized in Algorithm 1.

Remark. In the harmonic extension approach, we use a
continuous formulation based on the underlying user man-
ifold. And the point integral method is used to solve the
Laplace-Beltrami equation on the manifold. If a graph
model were used at the beginning, the natural choice for
harmonic extension would be the graph Laplacian. How-
ever, it has been observed that the graph Laplacian is not
consisitent in solving the harmonic extension problem [3],
and PIM gives much better results.

-319-

Algorithm 2 Estimating the weight matrix

Input: Incomplete rating matrix R € R"™", number of
nearest neighbors K
1: Generate binary rating matrix Rp € R™":
1, Rjj is not missing
(Rp)jj = { »

0, Rjj is missing

2: Normalize each row of Ry such that |[(Rg);.ll. = 1,
Vjil<j<m

3: Build a kd-tree on the data points (rows) in Rp

4: Initialize a sparse matrix W « 0"

5. for j=1tomdo

6: Np < The set of K approximate nearest neighbors

of (Rp);., found by querying the kd-tree
7. for j € N (j # j)do

8: Set of co-rated items C «
{i : Rj; is not missing, and R ; is not missing}
9: W, < cosine(Rjc,Rj ¢c)
10: end for
11: end for

Output: Sparse weight matrix W € R™™"

2.2. Low Dimensional Manifold (LDM) Interpretation

Here we emphasize another interpretation of our method
based on the low dimensionality of the user manifold. A
user is represented by an n-dimensional vector that con-
sists of the ratings to n items, and the user manifold is a
manifold embedded in R", where # is usually a large num-
ber in the order of 10> ~ 10°. The intrinsic dimension of
the user manifold is typically much smaller than n. Based
on this observation, we use the dimension of the user man-
ifold as a regularization, in contrast to the dimension of the
user subspace in a matrix factorization method, to recover
the rating matrix, which implies the following optimization
problem:

min dim(M),)
X/E\illzcﬂl” ’
subject to: Pqo(X) = Pa(A), UX)c M.

where dim(M) is the dimension of the manifold M, U(X)
is the user set corresponding to the rows of X, and Pq, is the
projection operator to €2,

[w Gheo
PQ(X)‘{ 0. (jeQ.

By referring to the theory in differential geometry, the op-
timization problems (1) and (9) are shown to be equivalent
[3] which gives our model a geometric interpretation.

3. Estimating the Weight Matrix

If the underlying manifold M (the true rating matrix A*
given by an oracle in the discrete setting) were known, the

Table 1: Statistics of the data sets in our experiments. N is
the number of ratings in the training set for each user.

Data set #users | #items | # ratings

. N=10 943 1,682 100K
MovieLens-100k N =20 744 1.682 95K
N=10 6,040 3,706 IM

MovieLens-1m N =20 5,289 3,701 982K
N =50 3,938 3,677 924K

N=10 | 69,878 | 10,677 10M

. N =20 | 57,534 | 10,675 9.7M
MovieLens-10m | v _ 55 | 38604 | 10,672 8.9M

n problems in (2) would be independent with each other
and could be solved individually by (4). However, M is
not known, and therefore we have to get a good estimate
for the operator Ay based on f;’s, or W based on f;’s.

The weight matrix W plays an important role in our al-
gorithm as well as other graph-based approaches [6]. We
employ the typical user-user or item-item graph with co-
sine similarity used in existing memory-based approaches
for recommendation. However, we have made substantial
changes to make the procedure efficient for large sparse rat-
ing matrices. Our algorithm for building the weight matrix
is described in detail in Algorithm 2. Again, we consider
the user-user graph without loss of generality.

First, as usual, we can only afford to compute and store a
sparse nearest-neighbor weight matrix. To get the K near-
est neighbors for a target user u, traditional algorithms in
memory-based methods require computing the distances
between u and every other user, and selecting the K closest
ones, where most of the computation is wasted if K << m.
In our algorithm, we first identify the nearest neighbors
approximately, without computing the actual distances or
similarities, and then compute the similarities between u
and its nearest neighbors only. We use a binary rating ma-
trix Rp that records “rated or not-rated”” information (Algo-
rithm 2, line 1-2), and determine the K nearest neighbors
using an kd-tree based approximate nearest neighbor algo-
rithm (line 3, line 5). That is to say, two users who have
rated similar sets of movies are more likely to be consid-
ered to be in each other’s neighborhood, regardless of their
numeric ratings for those movies. Neither of the ways to
build the kd-tree and to find nearest neighbors based on the
tree are as precise as a naive search; however, empirical re-
sults in the next section have shown that our approximate
strategy does not compromise the quality.

Second, we extended the VLFeat package' to enable
building a kd-tree from a sparse data matrix (in our case,
Rp) and querying the tree with sparse vectors. kd-tree uses
a space partitioning scheme for efficient neighbor search.
For high-dimensional data, we employ the greedy way that
chooses the most varying dimension for space partitioning
at each step of building the tree, and the procedure termi-
nates when each leaf partition has one data point. Thus, the

1

"http://www.vlfeat.org/

- 320 -

Table 2: Benchmarking results of ranking quality NDCG@ 10 and run-time.

NDCG@10 Time (seconds)

SVD LCR AItSVM LDM SVD LCR | AItSVM LDM
MovieLens-1m, N = 10 0.6836 | 0.7447 | 0.6680 | 0.7295 844.4 254.2 3.6 61.1
MovieLens-1m, N = 20 0.6758 | 0.7428 | 0.6879 | 0.7404 843.3 4373 6.8 52.3
MovieLens-1m, N = 50 0.6178 | 0.7470 | 0.7730 | 0.7527 730.5 1168.8 53.0 37.0
MovieLens-10m, N = 10 || 0.6291 | 0.6866 | 0.6536 | 0.7077 || 24913.4 4544 4 61.2 | 1496.3
MovieLens-10m, N =20 | 0.6201 | 0.6899 | 0.7208 | 0.7213 || 14778.5 6823.5 275.4 | 1653.1
MovieLens-10m, N = 50 || 0.5731 | 0.6830 | 0.7507 | 0.7286 || 10899.1 | 14668.5 648.4 | 1295.0

Oi\ll7%vieLen5400k, #training = 10 / user MovieLens-100k, #training = 20 / user
a
0.7 & w
8 . B . 2% a a
o PO x &
® K ® By xx
[ORARE: 1%} Ex Xaxpg s A
8 Lo v 8 0.65 [% © LDM
’
Z o6 2 SVD z) 4 SVD
« LCR i * LCR
AltSVM ‘ AltSVM
0.55 0.6
0 20 40 60 80 0 50 100 150 200
Time (s) Time (s)

Figure 1: Ranking quality NDCG@10 vs. run-time under
various hyperparameters.

complexity of building the tree is not exponential, contrary
to common understanding; and the practical performance
of kd-tree can be very efficient.

4. Experiments

We use three MovieLens data sets in our experiments,
and randomly select N ratings for each user as the training
set, and the other ratings were used for testing. Information
regarding the selected data is summarized in Table 1.

We evaluate our proposed method LDM in terms of
both run-time and ranking quality against SVD? and two
state-of-the-art methods, namely local collaborative rank-
ing (LCR) [2] and Alternating support vector machine
(AItSVM) [4]. In Algorithm 1, which typically accounts
for most (~ 95%) of the run-time in our method, we set
u = 1 and run one inner iteration and one outer iteration
only; and in Algorithm 2, we set k = 64 and D = 256.
We evaluate the ranking quality by normalized discounted
cumulative gain (NDCG) @K (see details in [1]).

Fig. 1 plots NDCG @10 against the run-time for several
small data sets where performances of the four methods
are compared under varying hyperparameters. Ideally, a
good performance of a collaborative ranking method means
producing higher NDCG@10 scores in less time. LDM
achieves the highest NDCG@10 in a reasonable amount
of time compared to the other methods. AItSVM is effi-
cient but produces unsatisfactory ranking quality, which is
also sensitive to its hyperparameters. For LCR, the rank-
ing quality is acceptable but it takes considerably longer
time, especially when the size of training set increases. On
MovieLens-100k (N = 20), SVD and LDM achieve similar
NDCG@10 scores but LDM costs much shorter run-time.

2http://prea.gatech.edu

Table 2 reports the run-time and NDCG@10 scores
on the larger data sets where each method uses its best-
performing hyperparameters. LDM does not achieve
the highest NDCG@10 scores in every case, but pro-
duces robust ranking quality with decent run-time (ex-
cept MovieLens-10m, N = 50). For LCR and SVD,
the time cost increases dramatically on larger data sets.
AltSVM achieves superior ranking quality when the num-
ber of training ratings N is large, but its performance is
sensitive to the number of iterations, which in turn depends
on the data set and the given tolerance parameter. We con-
clude that LDM is an overall competitive method that is
efficient and robust to hyperparameters and the underlying
data sets. Also, LDM has particular advantages when N is
small, which we consider is a more difficult problem than
the cases with richer training information.

Acknowledgements

The authors would like to thank NSF grants DMS-
1737770, DMS-1417674; ONR grant N00014-16-1-2119;
DOE grant DE-SC00183838. NSFC grants 11371220 and
11671005.

References

[1] D. Kuang, Z. Shi, S. Osher, and A. L. Bertozzi, “A har-
monic extension approach for collaborative ranking,”
2016, https://arxiv.org/abs/1602.05127.

[2] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer,
“Local collaborative ranking,” in WWW 2014.

[3] S. Osher, Z. Shi, and W. Zhu, “Low dimensional man-
ifold model for image processing,” accepted by SIAM
Journal on Imaging Sciences, 2017.

[4] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and
1. Dhillon, “Preference completion: Large-scale col-
laborative ranking from pairwise comparisons,” in
ICML 2015.

[5] Z. Shi and J. Sun, “Convergence of the point integral
method for Poisson equation on point cloud,” accepted
by Research in the Mathematical Sciences, 2017.

[6] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-
supervised learning using gaussian fields and harmonic
functions,” in ICML 2003.

-321-

