

function fi, 1  i  n is a smooth function onM. There-

fore, it is natural to find the rating function fi by minimizing

the following energy functional:

E(fi) =

Z

M

krM fi(u)k2du, (1)

where rM f (u) is the gradient at u defined on the manifold

M.

Let the set of m users in our user-by-item rating system

be U = {u j, 1  j  m}, where u j is the j-th row of A⇤ and

U ⇢ M is a sample ofM. Let Ui = {u j 2 U : j 2 Ωi} be the

collection of users who rate the i-th item. Then we compute

the rating function fi for all the users by minimizing the

energy functional in (1):

min
fi2H1(M)

E(fi) subject to: fi(u j)|Ui
= ai j, (2)

where H1 is the Sobolev space. Hence, we need to solve

the following type of optimization problem for n times.

min
f2H1(M)

E(f) subject to: f (u)|Λ = g(u), (3)

where Λ ⇢ M is a point set.

To solve the constrained optimization problem (3), we

use the Bregman iteration to enforce the constraint.

- Solve f k+1 = arg min f E(f) + µk f − g + dkk2
L2(Λ)
, where

k f k2
L2(Λ)
=
P

u2Λ | f (u)|2, and dn is a function defined on Λ.

- Update dk, dk+1(u) = dk(u) + f k+1(u) − g(u), 8u 2 Λ.

- Repeat above process until convergence.

Using a standard variational approach, the solution to the

above unconstrained optimization problem can be reduced

to the following Laplace-Beltrami equation:

8

>

>

>

>

>

<

>

>

>

>

>

:

∆M f (x) − µ
X

y2Λ

δ(x − y)(f (y) − h(y)) = 0, x 2 M,

∂ f

∂n
(x) = 0, x 2 ∂M,

(4)

where δ is the Dirac-δ function inM, h = g − dn is a given

function on Λ, and n is the outer normal vector. That is to

say, the function f that minimizes (3) is a harmonic func-

tion on M\∂M, and (4) is called the harmonic extension

problem in the continuous setting.

2.1. Point Integral Method (PIM)

The Laplace-Beltrami operator in (4) can be approxi-

mated by an integral form with provable bound (see details

in [5]), leading to an integral equation:

1

t

Z

M

(f (x) − f (y))wt(x, y)dy

+ µ
X

y2Λ

wt(x, y)(f (y) − h(y)) = 0, (5)

where no derivatives appear and therefore it is easy to dis-

cretize over the point cloud. We notice that the closed form

Algorithm 1 Harmonic Extension

Input: Initial rating matrix A.

Output: Rating matrix R.

1: Set R = A.

2: repeat

3: Estimate the weight matrix W = (wi j) from the user

set U (Algorithm 2).

4: Compute the graph Laplacian matrix: L =D −W

5: for i = 1 to n do

6: repeat

7: Solve the following linear systems

Lfi + µ̄W:,Ui
(fi)Ui

= µ̄W:,Ui
hUi
,

where h = gi − d
k.

8: Update dk,

dk+1 = dk + f k+1 − gi

9: until some stopping criterion for the Bregman it-

erations is satisfied

10: end for

11: ri j = fi(u j) and R = (ri j).

12: until some stopping criterion is satisfied

of the user manifoldM is not known, and we only have a

sample of M, i.e. U. Assume that the point set U is uni-

formly distributed over M. The integral equation can be

discretized as follows:

|M|

m

m
X

j=1

wt(xi, x j)(f (xi) − f (x j))+

µt
X

y2Λ

wt(xi, y)(f (y) − h(y)) = 0 (6)

where |M| is the volume of the manifoldM.

We can rewrite (6) in the matrix form:

Lf + µ̄W:,ΛfΛ = µ̄W:,Λh. (7)

where h = (h1, · · · , hm) and µ̄ =
µtm

|M|
. L is a m ⇥ m matrix

which is given as

L =D −W (8)

where W = (wi j), i, j = 1, · · · ,m is the weight matrix and

D = diag(di) with di =
Pm

j=1 wi j. Our harmonic extension

algorithm is summarized in Algorithm 1.

Remark. In the harmonic extension approach, we use a

continuous formulation based on the underlying user man-

ifold. And the point integral method is used to solve the

Laplace-Beltrami equation on the manifold. If a graph

model were used at the beginning, the natural choice for

harmonic extension would be the graph Laplacian. How-

ever, it has been observed that the graph Laplacian is not

consisitent in solving the harmonic extension problem [3],

and PIM gives much better results.

- 319 -

Algorithm 2 Estimating the weight matrix

Input: Incomplete rating matrix R 2 Rm⇥n, number of

nearest neighbors K

1: Generate binary rating matrix RB 2 R
m⇥n:

(RB) j, j0 =

8

>

>

<

>

>

:

1, R j, j0 is not missing

0, R j, j0 is missing

2: Normalize each row of RB such that k(RB) j,:k2 = 1,

8 j, 1  j  m

3: Build a kd-tree on the data points (rows) in RB

4: Initialize a sparse matrix W 0m⇥m

5: for j = 1 to m do

6: NB The set of K approximate nearest neighbors

of (RB) j,:, found by querying the kd-tree

7: for j0 2 NB (j0 , j) do

8: Set of co-rated items C

{i : R j,i is not missing, and R j0,i is not missing}

9: W j, j0 cosine(R j,C,R j0,C)

10: end for

11: end for

Output: Sparse weight matrix W 2 Rm⇥m

2.2. Low Dimensional Manifold (LDM) Interpretation

Here we emphasize another interpretation of our method

based on the low dimensionality of the user manifold. A

user is represented by an n-dimensional vector that con-

sists of the ratings to n items, and the user manifold is a

manifold embedded in Rn, where n is usually a large num-

ber in the order of 103 ⇠ 106. The intrinsic dimension of

the user manifold is typically much smaller than n. Based

on this observation, we use the dimension of the user man-

ifold as a regularization, in contrast to the dimension of the

user subspace in a matrix factorization method, to recover

the rating matrix, which implies the following optimization

problem:

min
X2Rm⇥n ,
M⇢Rn

dim(M), (9)

subject to: PΩ(X) = PΩ(A), U(X) ⇢ M.

where dim(M) is the dimension of the manifoldM, U(X)

is the user set corresponding to the rows of X, and PΩ is the

projection operator to Ω,

PΩ(X) =

(

xi j, (i, j) 2 Ω,

0, (i, j) < Ω.

By referring to the theory in differential geometry, the op-

timization problems (1) and (9) are shown to be equivalent

[3] which gives our model a geometric interpretation.

3. Estimating the Weight Matrix

If the underlying manifoldM (the true rating matrix A⇤

given by an oracle in the discrete setting) were known, the

Table 1: Statistics of the data sets in our experiments. N is

the number of ratings in the training set for each user.

Data set # users # items # ratings

MovieLens-100k
N = 10 943 1,682 100K

N = 20 744 1,682 95K

MovieLens-1m

N = 10 6,040 3,706 1M

N = 20 5,289 3,701 982K

N = 50 3,938 3,677 924K

MovieLens-10m

N = 10 69,878 10,677 10M

N = 20 57,534 10,675 9.7M

N = 50 38,604 10,672 8.9M

n problems in (2) would be independent with each other

and could be solved individually by (4). However, M is

not known, and therefore we have to get a good estimate

for the operator ∆M based on f j’s, or W based on f j’s.

The weight matrix W plays an important role in our al-

gorithm as well as other graph-based approaches [6]. We

employ the typical user-user or item-item graph with co-

sine similarity used in existing memory-based approaches

for recommendation. However, we have made substantial

changes to make the procedure efficient for large sparse rat-

ing matrices. Our algorithm for building the weight matrix

is described in detail in Algorithm 2. Again, we consider

the user-user graph without loss of generality.

First, as usual, we can only afford to compute and store a

sparse nearest-neighbor weight matrix. To get the K near-

est neighbors for a target user u, traditional algorithms in

memory-based methods require computing the distances

between u and every other user, and selecting the K closest

ones, where most of the computation is wasted if K << m.

In our algorithm, we first identify the nearest neighbors

approximately, without computing the actual distances or

similarities, and then compute the similarities between u

and its nearest neighbors only. We use a binary rating ma-

trix RB that records “rated or not-rated” information (Algo-

rithm 2, line 1-2), and determine the K nearest neighbors

using an kd-tree based approximate nearest neighbor algo-

rithm (line 3, line 5). That is to say, two users who have

rated similar sets of movies are more likely to be consid-

ered to be in each other’s neighborhood, regardless of their

numeric ratings for those movies. Neither of the ways to

build the kd-tree and to find nearest neighbors based on the

tree are as precise as a naı̈ve search; however, empirical re-

sults in the next section have shown that our approximate

strategy does not compromise the quality.

Second, we extended the VLFeat package1 to enable

building a kd-tree from a sparse data matrix (in our case,

RB) and querying the tree with sparse vectors. kd-tree uses

a space partitioning scheme for efficient neighbor search.

For high-dimensional data, we employ the greedy way that

chooses the most varying dimension for space partitioning

at each step of building the tree, and the procedure termi-

nates when each leaf partition has one data point. Thus, the

1http://www.vlfeat.org/

- 320 -

Table 2: Benchmarking results of ranking quality NDCG@10 and run-time.

NDCG@10 Time (seconds)

SVD LCR AltSVM LDM SVD LCR AltSVM LDM

MovieLens-1m, N = 10 0.6836 0.7447 0.6680 0.7295 844.4 254.2 3.6 61.1

MovieLens-1m, N = 20 0.6758 0.7428 0.6879 0.7404 843.3 437.3 6.8 52.3

MovieLens-1m, N = 50 0.6178 0.7470 0.7730 0.7527 730.5 1168.8 53.0 37.0

MovieLens-10m, N = 10 0.6291 0.6866 0.6536 0.7077 24913.4 4544.4 61.2 1496.3

MovieLens-10m, N = 20 0.6201 0.6899 0.7208 0.7213 14778.5 6823.5 275.4 1653.1

MovieLens-10m, N = 50 0.5731 0.6830 0.7507 0.7286 10899.1 14668.5 648.4 1295.0

Time (s)

0 20 40 60 80

N
D

C
G

 @
 1

0

0.55

0.6

0.65

0.7

0.75
MovieLens-100k, #training = 10 / user

LDM

SVD

LCR

AltSVM

Time (s)

0 50 100 150 200

N
D

C
G

 @
 1

0

0.6

0.65

0.7

MovieLens-100k, #training = 20 / user

LDM

SVD

LCR

AltSVM

Figure 1: Ranking quality NDCG@10 vs. run-time under

various hyperparameters.

complexity of building the tree is not exponential, contrary

to common understanding; and the practical performance

of kd-tree can be very efficient.

4. Experiments

We use three MovieLens data sets in our experiments,

and randomly select N ratings for each user as the training

set, and the other ratings were used for testing. Information

regarding the selected data is summarized in Table 1.

We evaluate our proposed method LDM in terms of

both run-time and ranking quality against SVD2 and two

state-of-the-art methods, namely local collaborative rank-

ing (LCR) [2] and Alternating support vector machine

(AltSVM) [4]. In Algorithm 1, which typically accounts

for most (⇠ 95%) of the run-time in our method, we set

µ = 1 and run one inner iteration and one outer iteration

only; and in Algorithm 2, we set k = 64 and D = 256.

We evaluate the ranking quality by normalized discounted

cumulative gain (NDCG) @K (see details in [1]).

Fig. 1 plots NDCG@10 against the run-time for several

small data sets where performances of the four methods

are compared under varying hyperparameters. Ideally, a

good performance of a collaborative ranking method means

producing higher NDCG@10 scores in less time. LDM

achieves the highest NDCG@10 in a reasonable amount

of time compared to the other methods. AltSVM is effi-

cient but produces unsatisfactory ranking quality, which is

also sensitive to its hyperparameters. For LCR, the rank-

ing quality is acceptable but it takes considerably longer

time, especially when the size of training set increases. On

MovieLens-100k (N = 20), SVD and LDM achieve similar

NDCG@10 scores but LDM costs much shorter run-time.

2http://prea.gatech.edu

Table 2 reports the run-time and NDCG@10 scores

on the larger data sets where each method uses its best-

performing hyperparameters. LDM does not achieve

the highest NDCG@10 scores in every case, but pro-

duces robust ranking quality with decent run-time (ex-

cept MovieLens-10m, N = 50). For LCR and SVD,

the time cost increases dramatically on larger data sets.

AltSVM achieves superior ranking quality when the num-

ber of training ratings N is large, but its performance is

sensitive to the number of iterations, which in turn depends

on the data set and the given tolerance parameter. We con-

clude that LDM is an overall competitive method that is

efficient and robust to hyperparameters and the underlying

data sets. Also, LDM has particular advantages when N is

small, which we consider is a more difficult problem than

the cases with richer training information.

Acknowledgements

The authors would like to thank NSF grants DMS-

1737770, DMS-1417674; ONR grant N00014-16-1-2119;

DOE grant DE-SC00183838. NSFC grants 11371220 and

11671005.

References

[1] D. Kuang, Z. Shi, S. Osher, and A. L. Bertozzi, “A har-

monic extension approach for collaborative ranking,”

2016, https://arxiv.org/abs/1602.05127.

[2] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer,

“Local collaborative ranking,” in WWW 2014.

[3] S. Osher, Z. Shi, and W. Zhu, “Low dimensional man-

ifold model for image processing,” accepted by SIAM

Journal on Imaging Sciences, 2017.

[4] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and

I. Dhillon, “Preference completion: Large-scale col-

laborative ranking from pairwise comparisons,” in

ICML 2015.

[5] Z. Shi and J. Sun, “Convergence of the point integral

method for Poisson equation on point cloud,” accepted

by Research in the Mathematical Sciences, 2017.

[6] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-

supervised learning using gaussian fields and harmonic

functions,” in ICML 2003.

- 321 -

