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Abstract	
	
Traditionally,	recognizing	the	objects	within	a	scene	has	been	treated	as	a	prerequisite	to	recognizing	

the	scene	itself.	However,	research	now	suggests	that	the	ability	to	rapidly	recognize	visual	scenes	could	

be	supported	by	global	properties	of	the	scene	itself	rather	than	the	objects	within	the	scene.	Here,	we	

argue	for	a	particular	instantiation	of	this	view:	that	scenes	are	recognized	by	treating	them	as	a	global	

texture	and	processing	the	pattern	of	orientations	and	spatial	frequencies	across	different	areas	of	the	

scene	without	recognizing	any	objects.	To	test	this	model,	we	asked	whether	there	is	a	link	between	

how	proficient	individuals	are	at	rapid	scene	perception	and	how	proficiently	they	represent	simple	

spatial	patterns	of	orientation	information	(global	ensemble	texture).	We	find	a	significant	and	selective	

correlation	between	these	tasks,	suggesting	a	link	between	scene	perception	and	spatial	ensemble	tasks	

but	not	non-spatial	summary	statistics		In	a	second	and	third	experiment,	we	additionally	show	that	

global	ensemble	texture	information	is	not	only	associated	with	scene	recognition,	but	that	preserving	

only	global	ensemble	texture	information	from	scenes	is	sufficient	to	support	rapid	scene	perception;	

however,	preserving	the	same	information	is	not	sufficient	for	object	recognition.	Thus,	global	ensemble	

texture	alone	is	sufficient	to	allow	activation	of	scene	representations	but	not	object	representations.	

Together,	these	results	provide	evidence	for	a	view	of	scene	recognition	based	on	global	ensemble	

texture	rather	than	a	view	based	purely	on	objects	or	on	non-spatially	localized	global	properties.	

Keywords:	ensemble	perception;	statistical	summary	perception;	scene	recognition;	navigation;	visual	

texture.	
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Statement	of	Public	Significance	
	
People	can	recognize	visual	scenes	rapidly	and	accurately,	determining	the	meaning	of	complex	visual	

scenes	in	less	than	1/10th	of	a	second.	Intuitively,	we	might	expect	such	rapid	scene	recognition	to	

proceed	from	the	bottom	up:	first	we	recognize	objects,	then	the	configuration	of	these	objects	and	

then	the	entire	scene.	However,	object	recognition	is	not	necessary	for	accurate	scene	recognition,	and	

people	can	rapidly	recognize	scenes	even	when	they	cannot	recognize	any	individual	objects.	Here,	we	

provide	evidence	that	one	way	the	visual	system	performs	this	rapid	non-object-based	scene	

recognition	is	by	treating	scenes	as	“textures”	and	looking	at	the	distribution	of	orientations	and	spatial	

frequencies	across	the	entire	scene	at	once.	
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People	can	recognize	visual	scenes	rapidly	and	accurately,	determining	the	meaning	of	a	complex	scene	

in	less	than	100ms	(Intraub,	1981;	Potter	&	Faulconer,	1975;	Thorpe,	Fize,	&	Marlot,	1996).	Intuitively,	

we	might	expect	such	rapid	scene	recognition	to	proceed	from	the	bottom	up:	first	we	recognize	edges,	

then	object	parts,	then	entire	objects,	and	then	we	eventually	recognize	the	configuration	of	these	

objects	and	then	the	entire	scene.	Indeed,	classic	models	of	vision	have	generally	predicted	such	a	

structure	for	visual	recognition	and	treated	objects	and	their	relations	as	the	basic	unit	of	visual	scene	

recognition	(e.g.,	Biederman,	Mezzanotte,	&	Rabinowitz,	1982;	Marr,	1982).		

However,	object	recognition	is	not	necessary	for	accurate	scene	recognition:	people	can	rapidly	

recognize	scenes	even	when	they	cannot	recognize	any	individual	objects	(Oliva	&	Torralba,	2006;	

Schyns	&	Oliva,	1994).	Furthermore,	people	can	recognize	global	features	of	a	scene	before	they	can	

identify	the	image	category	(Greene	&	Oliva,	2009b),	and	these	global	properties,	rather	than	the	

objects	present	in	a	scene,	seem	to	drive	the	confusions	people	make	between	rapidly	presented	scenes	

(Greene	&	Oliva,	2009a).		This	suggests	that	a	representation	of	scene	layout,	independent	of	objects,	

may	play	a	major	role	in	rapid	scene	recognition	(Sanocki	&	Epstein,	1997;	Sanocki,	2003).	An	important	

role	for	spatial	layout,	rather	than	objects,	is	also	consistent	with	the	neural	evidence	from	regions	of	

the	brain	that	preferentially	respond	to	scenes	over	individual	objects,	like	the	parahippocampal	place	

area	(PPA;	Epstein	&	Kanwisher,	1998).	These	regions	are	sensitive	to	scene	layout	but	considerably	less	

sensitive	to	objects	and	other	scene	content	(Epstein,	2005;	Park,	Brady,	Greene,	&	Oliva,	2011).	

How	could	people	recognize	the	meaning	and	spatial	layout	of	a	scene	rapidly	without	using	

objects?	One	possibility	is	that	initial	scene	perception	occurs	by	rapidly	encoding	patterns	of	

orientation	and	spatial	frequency	across	an	image	–	effectively	treating	the	scene	as	a	holistic	entity	and	

examining	spatial	variations	in	its	texture.	Consistent	with	this	proposal,	computational	models	have	

shown	that	the	information	present	in	the	pattern	of	orientation	and	spatial	frequencies	across	an	

image	is	sufficient	to	categorize	a	scene	and	to	determine	some	global	properties	of	the	scene,	including	
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its	spatial	layout	(Oliva	&	Torralba,	2001,	2006;	Renninger	&	Malik,	2004),	and	can	explain	the	relative	

difficulty	of	different	scene	categorization	tasks	(Sofer,	Crouzet,	&	Serre,	2015).	For	example,	Oliva	and	

Torralba	(2006)	show	that	preserving	the	spatial	frequency	and	orientation	distribution	of	an	image,	but	

pooling	it	across	each	quadrant	of	an	image	(e.g.,	in	a	2x2	grid),	is	nevertheless	sufficient	to	determine	

the	natural	or	man-made-ness	of	an	environment,	as	well	as	any	3D	perspective	in	the	image	(Ross	&	

Oliva,	2010).	Preserving	more	spatial	information	(e.g.,	pooling	separately	in	each	cell	of	an	6x6	or	8x8	

grid)	additionally	preserves	the	average	depth	of	the	scene	as	well	as	the	degree	of	openness	(e.g.,	the	

extent	to	which	a	horizon	line	is	visible;	Ross	&	Oliva,	2010).		Thus,	even	a	very	simple	texture	

representation	of	a	scene	–	a	grid	of	spatial	frequency	and	orientation	information	–	is	computationally	

sufficient	to	recognize	significant	information	about	the	spatial	layout	and	3D	structure	of	a	scene,	even	

when	little	or	no	information	about	individuated	objects	is	preserved.	Even	very	limited	information	–	

e.g.,	only	the	amplitude	spectrum	of	a	scene,	with	no	spatial	information	at	all	–	can	provide	some	

information	about	the	scene	(e.g.,	the	amount	of	vertical	orientation	can	cue	whether	a	scene	is	a	city	or	

a	beach;	Guyader,	Chauvin,	&	Peyrin,	2004;	see	also	Honey	et	al.,	2008;	Kaping,	Tzvetanov,	&	Treue,	

2007),	although	without	spatial	information,	this	seems	to	be	limited	and	not	sufficient	to	recognize	the	

scene	gist	(Loschky	et	al.,	2007).	In	addition,	the	amplitude	spectrum	alone	cannot	account	for	even	the	

human	ability	to	perform	basic	distinctions	like	natural	vs.	man-made,	which	can	be	performed	rapidly	

and	accurately	even	with	image	sets	where	the	amplitude	spectrum	has	been	equated	(Joubert,	

Rousselet,	Fabre-Thorpe,	&	Fize,	2009).	Thus,	spatial	information	being	preserved	is	critical	to	

recognizing	scenes	based	on	texture	properties.	

-----	Figure	1	about	here	-----	

Are	people	actually	sensitive	to	patterns	of	orientation	and	spatial	frequency	information	across	

an	image?	The	literature	on	‘spatial	ensemble	perception’	argues	that	people	are	able	to	compute	

spatial	distributions	of	low-level	features	very	quickly	and	efficiently,	at	least	in	simple	displays.	For	
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example,	people	can	efficiently	compute	the	distribution	of	orientations	in	the	top	and	bottom	of	a	grid	

of	gabor	elements	(Alvarez	&	Oliva,	2009),	or	the	spatial	distribution	of	simple	color	squares	(Brady	&	

Tenenbaum,	2013)	and	seem	to	store	and	use	this	information	(e.g.,	Brady	&	Alvarez,	2015).	People	can	

also	compute	these	spatial	ensemble	statistics	when	attention	is	diffusely	spread	(Alvarez	&	Oliva,	2009)	

and	in	their	periphery	(Balas,	Nakano,	&	Rosenholtz,	2009),	consistent	with	a	role	in	scene	recognition.	

These	spatial	ensemble	patterns,	while	made	up	of	simple	elements	like	gabors,	nevertheless	closely	

mimic	the	patterns	of	orientated	elements	used	in	computer	vision	algorithms	to	holistically	recognize	

scenes	(e.g.,	Oliva	&	Torralba,	2006),	raising	the	question	of	whether	human	sensitivity	to	these	patterns	

in	simple	displays,	like	grids	of	gabors,	arises	because	of	their	role	in	allowing	for	rapid	recognition	of	the	

spatial	structure	of	scenes	(e.g.,	Figure	9	in	Brady,	Konkle,	&	Alvarez,	2011).	

In	addition	to	this	spatial	ensemble	information,	people	are	also	sensitive	to	even	simpler,	non-

spatial	ensemble	information,	like	the	mean	and	variance	of	basic	feature	dimensions	(often	referred	to	

as	summary	statistics).	For	example,	participants	can	rapidly	extract	the	mean	size	of	a	set	of	circles	

(Ariely,	2001;	Chong	&	Treisman,	2003)	or	the	average	emotion	of	a	set	of	faces	(Haberman	&	Whitney,	

2007).	Whereas	the	representations	required	to	perform	spatial	ensemble	tasks	must	preserve	spatial	

information	(e.g.,	the	top	is	mostly	horizontal;	bottom	is	mostly	vertical;	Alvarez	&	Oliva,	2009),	

summary	statistics	do	not.	While	computation	of	summary	statistics	requires	pooling	information	across	

space,	it	does	not	involve	the	recognition	of	spatial	patterns,	since	all	information	must	be	pooled	into	a	

single	representation	of	the	average.	Although	it	has	been	proposed	that	scene	recognition	relies	on	

such	summary	statistic	processing	(e.g.,	Wolfe,	Võ,	Evans,	&	Greene,	2011,	pg.	81),	representing	

properties	such	as	spatial	layout	requires	the	preservation	of	how	information	is	distributed	across	

space.	Thus,	it	remains	to	be	determined	how	related	these	non-spatial	summary	statistic	

representations	are	to	scene	recognition.		
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Here	we	examine	the	role	of	such	summary	statistics,	spatial	ensemble	statistics,	and	similar	

global	ensemble	texture	representations	in	visual	scene	recognition.	In	a	first	experiment,	we	use	an	

individual	differences	design	to	show	that	the	same	participants	who	perform	best	on	a	spatial	

ensemble	task	also	show	the	most	activation	of	scene	representations	in	brief	displays.	This	suggests	a	

link	between	spatial	ensemble	processing	and	rapid	scene	recognition.	However,	we	find	no	relationship	

between	non-spatial	summary	statistics	and	scene	recognition.	In	a	second	experiment,	we	show	that	

preserving	only	global-ensemble-texture	information	(in	particular,	a	spatial	distribution	of	orientations	

and	spatial	frequencies)	in	scenes	is	sufficient	to	allow	participants	to	activate	scene	representations.	In	

a	third	experiment,	we	show	that	this	link	between	spatial	ensembles	and	scenes	is	selective:	preserving	

the	same	information	in	images	of	objects	is	insufficient	to	allow	activation	of	object	representations.	

Overall,	our	data	provide	evidence	for	the	role	of	rapid	global	ensemble	texture	processing	in	rapid	

scene	recognition,	as	well	as	suggesting	the	spatial	ensemble	tasks	may	tap	into	these	same	global	

ensemble	texture	processing	mechanisms.	

Experiment	1:	Individual	differences	

In	Experiment	1,	we	examine	the	relationship	between	rapid	scene	recognition,	spatial	ensemble	

perception,	and	summary	statistics	in	simple	displays	using	an	individual	differences	approach.	

Specifically,	we	ask	whether	skill	at	spatial	ensemble	processing	predicts	individual	participants’	rapid	

scene	recognition	ability	above	and	beyond	general	factors,	like	motivation,	working	memory	capacity	

and	non-spatial	summary	perception.		

As	a	measure	of	spatial	ensemble	processing,	we	use	a	modified	version	of	a	task	developed	by	

Alvarez	and	Oliva	(2009).	Participants	have	to	detect	changes	to	a	grid	of	high	spatial	frequency	gabor	

elements	while	their	attention	is	diffusely	spread	(so	they	cannot	focus	on	the	individual	gabor	

elements).	Sometimes	nothing	changes;	sometimes	all	the	individual	elements	rotate,	but	these	changes	
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do	not	change	the	global	structure	of	the	display;	and	sometimes	all	the	individual	elements	rotate	and	

these	changes	also	affect	the	global	structure/ensemble	of	the	display	(see	Figure	2A).	We	ask	whether	

participants	who	are	particularly	sensitive	to	the	ensemble	structure	changes	are	the	same	participants	

who	are	best	at	rapid	scene	recognition.		

As	a	measure	of	rapid	scene	recognition,	we	use	the	object	recognition	task	of	Davenport	and	

Potter	(2004).	We	ask	participants	to	recognize	objects,	and	these	objects	can	appear	on	top	of	

informative	scene	backgrounds	(e.g.,	a	priest	in	a	church),	or	on	top	of	uninformative	scene	backgrounds	

(e.g.,	a	priest	on	a	football	field).	The	only	difference	between	conditions	is	the	scene	backgrounds,	and	

thus	any	benefit	to	object	recognition	from	informative	scenes	must	be	driven	by	participant’s	rapid	

scene	recognition	ability.	We	chose	this	task	rather	than	a	direct	measure	of	scene	recognition	because	

a	task	where	naming	scenes	was	directly	relevant	would	need	to	use	extremely	brief	presentations	with	

strong	dynamic	masks	(e.g.,	a	single	frame;	Greene	&	Oliva,	2009b),	and	we	found	in	pilot	experiments	

that	individual	differences	in	scene	recognition	were	swamped	in	such	tasks	by	the	vigilance	and	

motivational	factors	that	are	prevalent	in	such	tasks.	Furthermore,	the	object	recognition	literature	has	

shown	robust	effects	of	background	scenes	on	object	recognition	(e.g.,	Biederman	et	al.,	1982;	Boyce,	

Pollatsek,	&	Rayner,	1989;	Boyce	&	Pollatsek,	1992;	Davenport	&	Potter,	2004;	although	see	

Hollingworth	&	Henderson,	1998,	1999),	and	scenes	are	known	to	rapidly	influence	objects	in	such	

object	recognition	tasks	(e.g.,	Joubert,	Fize,	Rousselet,	&	Fabre-Thorpe,	2008).	Thus,	the	facilitation	of	

object	recognition	by	scenes	can	be	usefully	used	as	a	measure	of	rapid	scene	processing.		

Finally,	we	also	measured	participants’	ability	to	compute	non-spatial	summary	statistics:	in	

particular,	the	average	orientation	of	a	set	of	Gabor	elements.	People	are	able	to	quickly	and	accurately	

report	summary	statistics	across	sets	of	objects:	e.g.,	the	average	orientation	of	a	set	(Dakin	&	Watt,	

1997;	Parkes,	Lund,	Angelucci,	Solomon,	&	Morgan,	2001)	or	the	average	size	of	a	set	(Ariely,	2001;	

Chong	&	Treisman,	2003;	see	Alvarez,	2011	for	a	review).	These	tasks	do	not	require	the	preservation	of	
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spatial	information,	and	thus	are	distinct	from	spatial	ensemble	tasks	as	well	as	from	the	texture	

representations	that	have	been	used	in	computational	models	of	scene	perception	(e.g.,	Oliva	&	

Torralba,	2001,	2006).	Because	the	task	is,	however,	dependent	on	the	global	spread	of	attention	and	

the	processing	of	multiple	gabor	elements,	it	serves	as	a	control	condition	for	the	spatial	ensemble	

task—it	allows	us	to	disambiguate	the	role	of	spatial	information	and	global	ensemble	texture	patterns,	

which	are	present	in	the	spatial	ensemble	task	but	not	present	in	the	summary	statistic	task,	from	the	

role	of	processing	multiple	gabor	elements	and	spreading	attention	globally,	which	are	present	in	both	

tasks.	It	also	allows	us	to	examine	whether	even	such	summary	statistic	tasks	might	be	related	to	scene	

recognition,	as	has	been	claimed	(e.g.,	Wolfe	et	al.,	2011).	

-----	Figure	2	about	here	-----	

Method	

Participants	

50	individuals	(age	range	18-	35)	from	the	Cambridge,	MA,	and	Harvard	University	community	

participated.	All	participants	gave	informed	consent	and	had	normal	or	corrected-to-normal	vision.	All	

individuals	completed	each	of	our	3	conditions	to	allow	us	to	examine	how	performance	on	different	

tasks	correlates	across	individuals.	This	enables	us	to	ask	whether	these	tasks	could	be	supported	by	the	

same	underlying	mechanism	or	whether	they	must	be	supported	by	independently	operating	

mechanisms	(e.g.,	Vogel	&	Awh,	2008;	Wilmer,	2008).		

Spatial	ensemble	processing	measure	

Participants	performed	200	trials	of	a	change-detection	task	in	which	an	8x8	grid	of	gabor	patches	(50%	

contrast;	~2	cycles/deg;		each	subtending	1°by	1°)	was	briefly	flashed	(250ms)	and	then	reappeared	

(300ms	later).	The	patches	were	aligned	so	that	the	top	of	the	screen	consisted	of	nearly	vertical	items	

(±22.5°	from	vertical)	and	the	bottom	consisted	of	nearly	horizontal	items	(±22.5°	from	horizontal),	or	

the	opposite	pattern	(vertical	bottom,	horizontal	top);	see	Figure	2A.	When	the	grid	reappeared,	50%	of	
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the	time	all	of	the	patches’	orientations	were	identical.	The	other	50%	of	the	time,	they	had	all	rotated	

by	45°.	On	50%	of	change	trials,	these	45°	rotations	altered	the	global	pattern	of	orientations	in	the	

display	(local+ensemble	changes;	e.g.,	the	top	went	from	roughly	vertical	to	horizontal	and	bottom	from	

horizontal	to	vertical).	The	other	half	of	the	time,	the	global	pattern	remained	the	same	despite	each	

element	rotating	by	45°	(local-only	changes;	e.g.,	the	top	remained	roughly	vertical	and	bottom	

remained	roughly	horizontal).	The	amount	of	local	change	to	each	gabor	was	identical	in	the	

local+ensemble	change	condition	and	the	local-only	change	condition—the	only	difference	between	

these	two	conditions	is	the	presence	of	an	ensemble	change.	To	the	extent	that	participants	are	

sensitive	to	the	ensemble	structure,	it	should	be	easier	to	notice	changes	on	local+ensemble	trials	than	

local-only	trials	(see	Alvarez	&	Oliva,	2009	for	a	similar	task	and	logic).		

Each	trial	started	with	a	distractor	task	that	encouraged	participants	to	spread	their	attention	

globally	rather	than	focusing	on	particular	elements:	Every	150ms	a	character	appeared	at	a	random	

location	on	the	screen	(6-11	characters),	and	participants	had	to	count	how	many	of	these	characters	

were	digits	(vs.	letters).	After	an	unpredictable	number	of	characters,	rather	than	a	digit	or	letter	

appearing,	the	grid	of	gabors	appeared.	Participants	responded	to	the	gabor	task	first	(change/no	

change),	but	they	were	instructed	to	focus	primarily	on	the	digit	task	to	ensure	that	they	kept	their	

attention	globally	spread.		

To	assess	performance	on	the	change	detection	task,	we	calculated	d’	to	quantify	participants’	

sensitivity	to	the	changes	in	the	local-only	and	local+ensemble	conditions.	We	then	calculated	an	

ensemble	benefit	score	by	using	regression	to	remove	performance	with	local-only	changes	from	

performance	with	local+ensemble	changes.		

We	used	regression,	not	subtraction,	because	this	results	in	an	ensemble	benefit	score	that	has	

no	correlation	with	performance	in	the	local-only	condition	and	a	positive	correlation	with	performance	

in	the	local+ensemble	condition.	In	our	task,	where	the	presence	of	ensemble	changes	is	likely	to	be	
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helpful	to	performance	but	their	absence	is	not	actively	negative	for	performance,	this	is	the	more	valid	

analysis	technique	(e.g.,	DeGutis,	Wilmer,	Mercado,	&	Cohan,	2013;	D.	Ross,	Richler,	&	Gauthier,	2014)1.	

Note	that	by	regressing	out	performance	in	local-only	from	performance	in	local+ensemble,	we	also	

eliminate	effects	of	motivation,	change	detection	ability	and	other	general	factors	from	our	ensemble	

benefit	score.	This	is	because	these	factors	are	present	in	the	local-only	condition	as	well	as	the	

local+ensemble	condition.	We	performed	the	regression	on	z-scored	values	of	d’	so	that	the	resulting	

coefficients	are	comparable	across	our	tasks.	

Rapid	scene	recognition	measure	

Our	rapid	scene	recognition	measure	was	based	on	the	task	employed	by	Davenport	and	Potter	(2004).	

We	presented	participants	with	quickly	flashed	images	of	objects	on	top	of	scenes,	and	they	had	to	

report	the	identity	of	the	object	in	a	free	response	format.	To	the	extent	that	participants	are	quicker	

and	more	accurate	at	rapid	scene	recognition,	they	should	have	higher	accuracy	for	informative	scene	

backgrounds	(e.g.,	a	priest	in	a	church)	than	uninformative	scene	backgrounds	(e.g.,	a	priest	on	a	

football	field).		The	objects	are	identical	in	the	two	conditions	and	only	the	usefulness	of	the	scene	

differs,	so	this	comparison,	despite	participants	being	asked	about	objects	and	not	scenes,	provides	our	

index	of	rapid	scene	recognition.	

We	used	27	images	of	objects	and	27	images	of	backgrounds	combined	into	27	informative	and	

27	uninformative	object-background	pairs	(from	Davenport	&	Potter,	2004);	see	Figure	2B.	Each	

participant	completed	54	trials,	with	each	trial	consisting	of	one	object-background	pair.	Trials	began	

with	a	fixation	cross,	and	then	the	image	(~28°	X	17°)	was	presented	for	84ms,	followed	by	a	mask	for	

200ms.	Then	participants	had	to	type	the	name	of	the	object	they	had	seen.	The	masks	consisted	of	

checkerboard-scrambled	versions	of	scenes.	The	same	objects	appeared	twice	for	each	participant,	once	

																																																													
1	In	general,	whether	to	use	regression	or	subtraction	depends	on	the	task:	if	one	condition	is	a	true	baseline,	and	
the	other	condition	only	adds	a	factor	on	top,	then	regression	is	preferred	(as	in	the	current	experiment).	If	one	
condition	has	a	factor	and	the	other	has	a	negative	version	of	that	factor	(e.g.,	if	our	local-only	condition	instead	
had	actively	misleading	ensemble	information),	then	subtraction	is	the	more	valid	technique	
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on	an	informative	background	and	once	on	an	uninformative	background.	We	counterbalanced	the	

stimuli	so	that	half	of	the	objects	appeared	first	in	an	informative	background	and	half	in	an	

uninformative	background.	

Participants’	responses	were	scored	as	correct	only	if	they	named	the	exact	object	(e.g.,	‘priest’	

or	‘pope’	or	‘religious	figure’,	not	just	‘man’).	This	scoring	was	done	by	two	independent	coders	without	

knowledge	of	the	condition	represented	by	each	response.	The	two	coders’	scores	were	in	strong	

agreement,	as	they	agreed	on	the	correct/incorrect	judgment	of	96.8%	of	trials.		

We	calculated	a	scene	benefit	score	by	using	regression	to	remove	participants’	performance	on	

trials	with	the	uninformative	scenes	from	their	performance	on	trials	with	the	informative	scenes.	This	

regression	also	eliminates	effects	of	motivation,	object	processing	ability	and	other	general	factors	from	

our	scene	benefit	score.	We	performed	this	regression	on	z-scored	values	of	percent	correct.	Using	

regression	in	this	case	is	justified	if	the	informative	backgrounds	are	helpful	for	recognizing	the	objects,	

whereas	uninformative	backgrounds	are	unhelpful	(rather	than	actively	misleading).		If	uninformative	

backgrounds	were	actively	misleading,	then	subtraction	would	be	the	preferred	analysis	technique	(e.g.,	

we	should	derive	the	scene	benefit	score	from	subtracting	performance	in	the	uninformative	condition	

from	performance	in	the	informative	condition).	To	disambiguate	these,	we	would	need	a	“neutral”	

condition.	However,	no	neutral	condition	is	feasible—there	is	no	such	thing	as	a	scene	that	is	exactly	like	

other	scenes,	but	makes	no	predictions	at	all	about	what	objects	are	most	likely	to	be	present.	Previous	

work	has	presented	the	objects	without	backgrounds	(e.g.,	Davenport	&	Potter,	2004),	but	no-

background	conditions	(or	1/f	noise)	make	segmenting	the	object	from	the	background	much	easier	

than	it	is	in	normal	scenes.	Consequently,	these	conditions	are	not	truly	neutral,	but	instead	are	

significantly	easier	than	conditions	with	true	scenes.	Since	most	objects	can	appear	in	most	situations	

(e.g.,	none	of	the	scenes	is	a	physically	impossible	place	for	any	of	our	objects),	it	seems	most	consistent	
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to	use	regression,	and	we	use	that	as	our	main	measure.	However,	we	report	the	effects	using	both	

regression	and	subtraction	to	show	that	the	choice	of	analysis	method	is	not	critical	to	the	conclusions.	

Object-based	summary	statistics	measure	

This	task	was	designed	to	measure	participants’	skill	at	computing	summary	statistics	and	was	based	on	

the	task	employed	by	Haberman,	Brady,	and	Alvarez	(2015).	Participants	completed	60	trials	of	a	task	

where	they	had	to	report	the	average	orientation	of	a	grid	of	4	gabor	patches	(see	Figure	2C).		

Each	display	consisted	of	4	oriented	gabors	(~1	cycles/deg)	varying	in	orientation.	The	4	items	

were	always	±5°	and	±15°	from	the	mean	orientation,	which	was	chosen	randomly	on	each	trial.	Each	

gabor	was	located	approximately	3°	from	fixation	and	subtended	approximately	3.5°.	Participants	saw	

the	display	of	gabors	for	1	second	and	then	after	a	1	second	delay,	a	test	item	appeared	at	the	center	of	

the	screen.	They	had	to	adjust	this	item	to	reflect	the	average	orientation	of	the	set	using	their	mouse.	

On	each	trial,	we	can	compute	an	error	measure	as	the	angle,	in	degrees,	between	the	correct	response	

and	participants’	response,	resulting	in	a	distribution	of	errors	across	trials.	We	then	fit	a	mixture	model	

of	a	von	Mises	distribution	and	a	uniform	distribution	to	these	error	distributions	using	the	MemToolbox	

(Suchow,	Brady,	Fougnie,	&	Alvarez,	2013),	as	is	common	in	visual	working	memory	experiments	(e.g.,	

Zhang	&	Luck,	2008).	The	standard	deviation	of	this	von	Mises	distribution	(z-scored)	was	our	measure	

of	fidelity.	This	mixture	model	approach	allowed	us	to	assess	the	fidelity	of	participants’	summary	

statistic	computation	independent	of	any	lapse	trials,	which	helps	make	our	measure	independent	of	

participants’	motivation	level.	While	this	model-based	approach	provides	a	more	realistic	measure	of	

participant’s	ability	to	compute	summary	statistics,	all	of	the	same	qualitative	conclusions	hold	if	we	

analyze	mean	absolute	error	without	removing	lapse	trials.	

Results	

Main	effects.	Participants	performed	well	in	the	spatial	ensemble	task,	with	90.3%	correct	in	the	

distractor	digit	counting	task	(S.E.M.:	±0.7%),	and,	looking	at	only	trials	with	a	correct	digit	response,	a	
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mean	d’	of	1.1	(S.E.M.:	±0.1)	in	the	local-only	change	detection	condition	and	of	2.6	(±0.2)	in	the	

local+ensemble	change	condition.	The	difference	between	these	two	conditions	was	reliable,	suggesting	

participants	did,	on	average,	take	advantage	of	the	ensemble	structure	(t(49)=12.7,	p<0.0001,	Cohen’s	

d=1.8;	see	Figure	3A).		

-----	Figure	3	about	here	-----	

In	the	rapid	scene	recognition	task,	participants	accurately	recognized	72.1%	(±1.8%)	of	the	objects	on	

the	uninformative	backgrounds	but	recognized	79.4%	(±1.7%)	on	the	informative	backgrounds,	a	reliable	

effect	of	the	scene	background	(t(49)=8.5,	p<0.0001;	see	Figure	3B).	Despite	being	a	relatively	small	

effect,	this	difference	was	highly	consistent	across	participants,	with	a	Cohen’s	d	of	1.2	and	with	only	

3/50	participants	showing	better	performance	with	uninformative	than	informative	backgrounds.	

		 In	the	summary	statistic	task,	participants	had	an	average	fidelity	of	13.7°	(±0.62°,	measured	as	

the	standard	deviation	of	the	von	Mises	distribution;	see	Figure	3B),	with	a	lapse	rate	of	8.3%	(±2.5%).	

Looking	at	all	trials,	rather	than	using	the	mixture	model,	and	computing	average	absolute	error	rather	

than	fitting	a	distribution,	gives	an	average	error	of	14.6°	(±1.3°).	

-----	Figure	4	about	here	-----	

Reliability.	Our	primary	interest	is	in	the	degree	to	which	our	different	measures	correlate	with	one	

another.	However,	the	correlation	observed	between	two	variables	is	limited	by	the	reliability	with	

which	those	variables	are	measured.	Thus,	we	first	assessed	the	reliability	of	all	of	our	measures	using	

Spearman-Brown	corrected	split-half	reliability	(Brown,	1910;	Spearman,	1910).	All	of	our	measures	

were	highly	reliable:	participants’	performance	at	object-recognition	on	informative	and	uninformative	

backgrounds	(r=0.95,	r=0.93,	respectively),	d’	for	local-only	and	local+ensemble	change	detection	

(r=0.95,	r=0.86),	and	fidelity	and	lapse	rate	in	the	summary	statistic	task	(r=0.85,	r=0.86)	all	had	
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reliability	estimates	greater	than	0.85.	Thus	the	maximum	observable	correlations	between	our	tasks	

range	from	0.85	to	0.92	(Nunnally	Jr,	1970).		

Correlations	between	tasks.	Our	main	question	of	interest	is	the	extent	to	which	summary	statistic	

processing	and	spatial	ensemble	processing	are	related	to	rapid	scene	recognition.	To	measure	this,	we	

used	our	scene	benefit	score,	calculated	by	regressing	performance	with	uninformative	scenes	out	of	

performance	with	informative	scenes	(see	Methods),	our	ensemble	benefit	score,	calculated	by	

regressing	local+only	performance	out	of	the	local+ensemble	performance,	and	our	measure	of	fidelity	

in	the	summary	statistic	task,	calculated	by	removing	lapse	trials	and	calculating	the	standard	deviation	

of	participants’	remaining	reports.	

We	find	that	participants’	ensemble	benefit	score	is	a	significant	predictor	of	their	scene	benefit	

score	(r=0.46,	r2=0.21,	p=0.001;	see	Figure	4A).	In	other	words,	the	same	participants	who	are	good	at	

detecting	changes	to	the	spatial	ensemble	structure	are	the	participants	who	benefit	most	from	

informative	scenes	in	an	object	recognition	task.	Since	we	regressed	out	performance	at	closely	

matched	control	conditions	(e.g.,	uninformative	scenes	and	local-only	changes),	this	relationship	cannot	

reflect	motivation,	general	skill	at	object	recognition	or	other	general	factors.	Thus,	21%	of	the	variance	

in	our	measure	of	rapid	scene	recognition	can	be	explained	by	participants’	sensitivity	to	the	spatial	

structure	of	oriented	gabors,	consistent	with	the	hypothesis	that	rapid	scene	recognition	is	supported	by	

global	ensemble	texture	processing	of	a	scene.		

By	contrast,	we	find	no	significant	relationship	between	performance	at	our	summary	statistic	

task	and	participants’	scene	benefit	score	(r=-0.14,	r2=0.02,	p=0.35;	Figure	4B)	or	ensemble	benefit	score	

(r=-0.15,	r2=0.02,	p=0.30;	Figure	4C).	Thus,	despite	making	use	of	the	same	local	elements	(gabors)	and	

requiring	both	integration	over	multiple	elements	and	a	diffuse	spread	of	attention,	a	simple	summary	

statistic	computation	does	not	appear	to	be	tied	to	rapid	scene	recognition	or	to	the	more	texture-

based	spatial	ensemble	task	(as	it	explains	less	than	2.3%	of	the	variance	in	each).	This	result	requires	
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some	revision	to	the	assumption	that	all	‘ensemble’	tasks	tap	a	similar	ability,	and	suggests	that	spatial	

ensemble	tasks	may	be	more	directly	related	to	scene	recognition.	

If	we	use	subtraction	rather	than	regression	to	calculate	the	scene	congruency	effect	(see	

Methods),	we	still	find	no	relationship	between	the	summary	statistic	task	and	participants’	scene	

benefit	score	(r=-0.00,	r2=0.00,	p=0.99),	and	a	significant	relationship	between	the	ensemble	benefit	

score	and	the	scene	benefit	score	(r=0.28,	r2=0.08,	p=0.048).	

Discussion	

Participants	who	were	most	sensitive	to	changes	in	spatial	ensemble	structure	were	also	the	

participants	most	influenced	by	scene	backgrounds	in	an	object	recognition	task.	This	provides	support	

for	the	hypothesis	that	spatial	ensemble	representations,	or	global	ensemble	texture	more	broadly,	

partly	underlies	rapid	scene	recognition.	By	contrast,	computation	of	object-based	summary	statistics	

(i.e.,	average	orientation)	did	not	relate	to	scene	recognition,	as	measured	by	our	tasks,	despite	the	

similarity	in	the	gabor	stimuli	used	in	the	spatial	ensemble	task	and	the	summary	statistic	task	and	the	

need	for	selection	of	all	of	the	items	in	both	tasks.		

Broadly	speaking,	this	provides	evidence	for	a	global	view	of	rapid	scene	recognition,	where	

information	about	a	scene’s	spatial	layout	is	computed	primarily	based	on	the	rapid	encoding	of	

patterns	of	orientation	and	spatial	frequency	across	an	image	(e.g.,	Oliva	&	Torralba,	2006).	These	

findings	also	highlight	the	strength	of	individual	differences	research	for	linking	computational	theories	

with	cognitive	models,	and	open	the	door	to	using	individual	differences	to	further	examine	the	

relationship	between	cognitive	and	neural	models	of	scene	perception.	Our	data	also	argue	for	a	

particular	instantiation	of	a	global	scene	recognition:	a	representation	based	on	the	spatial	distribution	

of	orientation	and	spatial	frequency	across	a	scene;	as	opposed	to	a	global	scene	representation	based	

on	low-frequency	information	(e.g.,	Schyns	&	Oliva,	1994)	or	non-spatially	localized	global	properties	
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(Greene	&	Oliva,	2009a).	The	layout	information	in	these	displays	is	carried	by	high	spatial	frequencies,	

not	low	spatial	frequencies	(e.g.,	if	you	blur	these	displays,	you	get	a	uniform	gray	field),	suggesting	the	

distribution	of	high	spatial	frequency	information	is	critical,	not	low	spatial	frequency	information.	In	

addition,	because	they	are	not	semantically	meaningful,	these	spatial	ensemble	displays	do	not	have	

properties	like	temperature	or	navigability	(Greene	&	Oliva,	2009a).	Thus,	the	connection	we	find	

between	the	spatial	ensemble	task	and	scene	processing	provides	evidence	that	the	spatial	distribution	

of	orientation	at	relatively	high	spatial	frequencies	–	as	used	in	computer	vision	models	of	spatial	layout	

properties	(Ross	&	Oliva,	2010)	--	is	related	to	scene	recognition.	

We	controlled	for	general	factors	like	motivation,	working	memory	capacity,	and	object	

recognition	by	using	a	design	with	paired	conditions.	We	also	showed	that	not	all	global	attention	tasks	

correlate	with	rapid	scene	recognition,	even	ones	dependent	on	very	similar	sets	of	gabor	elements,	like	

our	summary	statistic	task.	This	suggests	that	the	relationship	we	observe	with	scene	recognition	is	

selective	to	the	processing	of	spatial	patterns.	By	contrast,	summary	statistic	tasks	like	the	average	

orientation	of	gabors	seem	to	have	the	majority	of	their	individual	differences	explained	by	participant’s	

precision	at	processing	the	individual	gabors	themselves	(e.g.	Haberman,	Brady	&	Alvarez,	2015).		

Nevertheless,	individual	differences	are	relatively	indirect;	a	more	direct	measure	would	provide	

stronger	evidence	of	a	link	between	patterns	of	orientation	and	spatial	frequency	in	an	image	and	rapid	

scene	recognition.	Thus,	in	Experiment	2	and	3,	we	directly	manipulate	images	in	order	to	preserve	only	

global	ensemble	texture	information	and	ask	whether	this	is	sufficient	to	drive	scene	recognition	(but	

not	object	recognition).	

Experiment	2:	Sufficiency	of	global	ensemble	texture	for	scenes	

In	a	second	experiment,	we	ask	whether	preserving	only	global	ensemble	texture	information	but	

eliminating	the	semantic	meaning	of	scenes	is	still	sufficient	to	activate	scene	representations.		
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Our	primary	manipulation	is	to	“texturize”	the	scenes;	that	is,	to	eliminate	all	semantic	

information	in	the	scenes	and	render	them	unrecognizable,	and	preserve	only	a	small	part	of	the	spatial	

distribution	of	orientation	and	spatial	frequency	(see	Figure	5	for	example	stimuli).	In	particular,	we	

preserve	only	the	power	at	4	spatial	frequencies	and	6	orientations	in	a	6	by	6	spatial	grid.	This	discards	

approximately	99.5%	of	the	information	from	the	original	scenes2,	but	preserves	the	limited	set	of	

spatial	information	about	orientation	and	spatial	frequency	that	we	have	proposed	is	critical	for	some	

aspects	of	scene	recognition.		

To	measure	scene	recognition	with	texturized	scenes,	we	once	again	use	a	task	based	on	

Davenport	and	Potter	(2004).	In	particular,	we	ask	whether	participants	are	better	at	recognizing	objects	

that	follow	textures	derived	from	informative	scenes	(e.g.,	those	that	fit	with	the	objects)	as	opposed	to	

textures	derived	from	uninformative	scenes.	This	would	be	expected	only	if	this	texture	information	

preserves	sufficient	information	to	drive	the	scene	processing	pathway	and	activate	relevant	scene	

representations	to	a	sufficient	extent	to	allow	for	the	priming	of	relevant	objects	(perhaps	based	on	the	

spatial	layout	of	the	scene,	which	is	known	to	be	available	in	such	texture	information;	e.g.,	Ross	&	

Oliva,	2010).		

We	modified	the	paradigm	used	in	Experiment	1,	in	this	case	presenting	the	scenes	before	the	

objects-to-be-recognized,	and	thus	having	the	scenes	serve	as	primes	for	the	objects	(as	in	Palmer,	

1975),	rather	than	having	the	objects	embedded	in	the	scenes	(as	in	Davenport	&	Potter,	2004).	We	did	

this	because	(1)	the	objects	are	easier	to	segment	from	texturized	backgrounds	(making	the	task	too	

easy	in	some	cases),	and	(2)	because	inserting	objects	into	scenes	changes	the	global	scene	statistics	of	

the	images,	and	the	presence	of	consistent	vs.	inconsistent	objects	tends	to	change	the	global	image	

features	differently	(e.g.,	Banno	&	Saiki,	2015;	Gaspar	&	Rousselet,	2009;	Mack	&	Palmeri,	2010).	By	

																																																													
2	While	pixels	are	a	poor	measure	of	information,	this	reduces	the	simplest	representation	of	the	stimuli	from	
150,000-300,000	numbers	(px)	to	864	numbers	(6	orientation/4	spatial	frequencies	in	a	6x6	grid);	and,	under	any	
encoding	model,	is	a	significant	compression	of	the	stimuli.	
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keeping	the	scenes	intact	without	occluding	them	with	objects,	we	allow	participants	to	process	the	

scene	statistics	without	interference	from	overlapping	objects.	

To	gauge	the	level	of	performance	using	texturized-scenes,	we	first	ran	a	version	of	the	

experiment	using	non-texturized	scenes.	In	Experiment	2A,	we	asked	participants	to	recognize	objects	

following	intact	grayscale	scenes	that	were	either	informative	or	uninformative	about	the	identity	of	the	

objects.	In	Experiment	2B,	we	asked	participants	to	recognize	the	exact	same	objects,	but	now	following	

texturized	versions	of	the	same	scenes,	which	preserved	only	the	distribution	of	orientation	and	spatial	

frequency	information,	but	which	were	unrecognizable	at	the	basic-level	(e.g.,	oven,	tennis	court).	

Method	

Participants	

50	participants	were	recruited	on	Amazon’s	Mechanical	Turk	for	Experiment	2A	(with	non-texturized	

scenes).	We	expected	a	smaller	effect	size	in	Experiment	2B	(with	texturized	scenes),	so	100	participants	

were	recruited	for	Experiment	2B.	All	participants	were	from	the	United	States,	were	over	18,	and	gave	

informed	consent	in	accordance	with	the	procedures	and	protocols	approved	by	the	Harvard	Committee	

on	the	Use	of	Human	Subjects.	Turk	users	form	a	representative	subset	of	adults	in	the	United	States	

(Berinsky,	Huber,	&	Lenz,	2012;	Buhrmester,	Kwang,	&	Gosling,	2011),	and	data	from	Turk	are	known	to	

closely	match	data	from	the	lab	on	visual	cognition	tasks	(Brady	&	Alvarez,	2011;	Brady	&	Tenenbaum,	

2013).	All	participants	indicated	they	had	normal	or	corrected-to-normal	color	vision.	All	participants	

were	paid	1	dollar	for	several	minutes	of	their	time	and	none	of	the	participants	participated	in	multiple	

experiments	(all	participants	are	identified	by	a	unique	ID	by	Amazon).	

Stimuli	

Stimuli	consisted	of	the	27	object-scene	pairs	from	Experiment	1	(taken	from	the	set	created	by	

Davenport	&	Potter,	2004),	augmented	by	23	additional	pairs	to	create	50	informative	object-scene	

pairs.	Each	object	and	scene	was	also	paired	with	a	different	object	and	scene	to	create	uninformative	
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object-scene	pairs,	as	in	Experiment	1	and	Davenport	and	Potter	(2004).	In	this	experiment,	the	scenes	

did	not	contain	the	objects,	but	instead	were	separate	images.	The	objects	and	scenes	were	both	

presented	in	grayscale	to	remove	color	as	a	cue.	In	addition,	the	objects	were	presented	on	1/f	noise	

backgrounds	to	make	it	more	difficult	to	see	and	categorize	the	objects	(see	Figure	5).	The	scenes	were	a	

mixture	of	indoor,	outdoor,	and	urban	places,	and	were	paired	with	objects	of	various	kinds	[animals,	

people,	things],	at	different	sizes	(from	close	views	of	an	oven	or	desktop	to	large-scale	views	of	a	

mountain).	In	particular,	the	stimuli	consisted	of:	airport	[pilot];	barn	[tractor];	basketball	court	

[basketball	player];	a	bathroom	[tub];	bathroom	counter	[a	comb];	battle	ground	[soldier];	baseball	field	

[mitt];	beach	[surfer];	bowling	alley	[bowler];	cemetery	[gravestone];	church	[priest];	desert	[cactus];	

football	field	[football	player];	field	[buffalo];	fire	station	[fireman];	forest	[deer];	grass	[butterfly];	

hallway	[table];	helipad	[helicopter];	hospital	[doctor];	ice	rink	[figure	skater];	kitchen	[knife];	library	

[student];	living	room	[couch];	mountain	trail	[donkey	with	rider];	mud	pit	[pig];	NASCAR	racer	track	

[racecar];	NFL	football	game	[referee];	ocean	[fish];	inside	of	oven	[pie];	parade	[trumpet	player];	

parking	lot	[car];	path	in	a	park	[jogger];	ping	pong	table	[paddle];	resort	[a	boat];	restaurant	kitchen	

[chef];	rocks/stones	[penguin];	sand	[sandcastle];	savannah/field	[zebra];	a	ship’s	deck	[life	preserver];	

the	sky	[hot	air	balloon];	snowy	hill	[sled];	space	(earth/stars)	[space	shuttle];	a	street	(flat	view)	[a	

biker];	a	supermarket	[shopping	basket];	a	tennis	court	[racket];	a	theater	[ballerina];	a	racehorse	track	

[race	horse	with	jockey];	a	street	(perspective	view)	[a	truck];	and	underwater	[turtle].	

In	Experiment	2A,	the	unmanipulated	scenes	were	presented.	In	Experiment	2B,	they	were	first	

“texturized”,	using	the	algorithm	of	Oliva	&	Torralba	(2006).	In	particular,	the	images	were	divided	up	

into	a	6x6	grid,	and	in	each	grid	cell	the	power	was	estimated	at	4	spatial	frequencies	x	6	orientations.	

This	reduces	the	hundreds	of	thousands	of	pixels	of	information	in	an	image	to	just	864	numbers,	

discarding	approximately	99.5%	of	the	information	in	each	image	when	the	image	is	(naively)	coded	in	

pixels.	Under	any	coding	algorithm,	the	image	ends	up	highly	compressed	and	most	information	is	

discarded.	Then,	a	random	white	noise	image	was	generated,	and	this	image	was	iteratively	coerced	to	
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have	the	same	distribution	of	orientations	and	spatial	frequencies	in	each	cell	as	the	original	image	did.	

At	each	iteration,	the	noise	is	decomposed	using	a	bank	of	multiscale-oriented	filters	and	the	magnitude	

output	of	the	filters	is	averaged	over	each	grid	cell,	then	these	features	are	modified	to	more	closely	

match	the	4	x	6	spatial	frequency/orientation	features	of	the	target	image	in	each	cell.	Through	an	

iterative	process,	the	noise	image	more	and	more	closely	matches	the	statistics	of	average	

orientation/spatial	frequency	of	the	original	image	in	each	of	the	6x6	cells.	Before	applying	the	iterative	

adjustment	to	the	white	noise	image,	the	adjustment	factor	for	each	of	the	6x6	cells	is	scaled	up	to	the	

original	size	of	the	image	with	bicubic	interpolation,	resulting	in	some	smoothing,	which	is	why	the	

images	do	not	display	grid	artifacts.	

This	texturized	version	of	the	scenes	preserves	most	of	the	orientation	and	spatial	frequency	

information	from	the	original	image,	but	their	spatial	organization	is	only	loosely	preserved.	This	

destroys	the	majority	of	the	recognizable	features	of	the	image	but	preserves	some	information	about	

the	spatial	layout	of	the	scene	(e.g.,	Oliva	&	Torralba,	2006;	see	Figure	5B).		

We	ensured	that	the	images	were	no	longer	recognizable	as	a	basic-level	(e.g.,	kitchen,	forest,	

etc.)	by	running	a	control	experiment	in	which	30	naïve	participants	were	shown	these	images	and	

asked	via	free	response	to	guess	what	kind	of	image	they	were	generated	from	or	most	closely	

resembled.	Participants	could	not	succeed	at	this	task.	Even	with	very	liberal	grading	criteria,	only	3.4%	

of	the	images	were	recognized,	and	this	was	largely	due	to	participants’	tendency	to	guess	the	same	

answer	for	many	images	(e.g.,	people	called	many	of	the	images	beaches,	even	when	this	was	incorrect).	

To	demonstrate	this,	we	shuffled	the	labels	and	images	relative	to	each	other	so	the	labels	were	graded	

with	different	scenes	than	the	participants	saw;	2.9%	-	4.8%	of	the	labels	were	still	judged	as	correct	

across	each	of	3	random	shuffles.	Thus,	it	is	unlikely	any	of	the	responses	reflected	true	recognition	of	

the	scenes,	as	a	similar	percent	correct	was	found	with	the	correct	labeling	or	with	shuffled	labels.	Thus,	

the	texturized	images	were	generally	unrecognizable	at	the	basic-level.		
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-----	Figure	5	about	here	-----	

Procedure	

We	presented	participants	with	images	of	scenes	(2A)	or	texturized	scenes	(2B)	for	500ms,	followed	by	

briefly	flashed	object	images	for	100ms,	and	then	a	mask	(the	same	masks	used	in	Davenport	&	Potter,	

2004	and	in	Experiment	1).	Participants	then	had	to	report	the	identity	of	the	object	in	a	free	response	

format.		Each	participant	saw	all	50	objects,	with	half	paired	with	an	informative	scene	and	half	paired	

with	an	uninformative	scene	(2A)	or	a	texturized	version	of	those	same	scenes	(2B).	To	the	extent	that	

the	prime	scenes/textures	drive	participant’s	scene	recognition	system	and	thus	prime	the	relevant	

objects,	participants	should	have	higher	accuracy	when	preceding	scenes	or	textures	contain	

informative	vs.	uninformative	information.		The	objects	are	identical	in	the	two	conditions,	and	only	the	

usefulness	of	the	prime	scene/texture	differs—so	this	comparison,	despite	participants	being	asked	

about	objects	and	not	scenes,	provides	our	index	of	whether	the	prime	scenes/textures	successfully	

drive	the	scene	recognition	system.	By	using	texturized-scenes,		Experiment	2B	allows	us	to	ask	if	the	

same	informative	scene	benefit	is	present	even	when	only	a	simple	distribution	of	low-level	information	

is	preserved:	e.g.,	enough	to	provide	information,	at	least	in	theory,	about	the	spatial	layout	of	the	

scene	(e.g.,	Ross	&	Oliva,	2010),	but	without	any	basic-level	recognition.	

As	in	Experiment	1,	participants’	responses	were	scored	as	correct	only	if	they	named	the	exact	

object	(e.g.,	‘priest’	or	‘pope’	or	‘religious	figure’,	not	just	‘man’).	This	scoring	was	once	again	done	

without	knowledge	of	the	condition	represented	by	each	response	(e.g.,	blind	to	condition).		

Results	

In	Experiment	2A,	with	meaningful	scenes	as	primes,	participants	accurately	recognized	72.7%	(±2.2%)	

of	the	objects	primed	by	uninformative	backgrounds	but	recognized	82.4%	(±2.2%)	primed	by	the	

informative	backgrounds,	a	reliable	effect	of	the	scene’s	informativeness	(t(49)=7.91,	p<0.0001;	see	

Figure	6A).	Thus,	the	benefit	of	informative	scenes	on	object	recognition	(e.g.,	Davenport	&	Potter,	
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2004)	replicates	even	with	grayscale	scenes	(see	Munneke,	Brentari,	&	Peelen,	2013)	and	even	with	the	

scene	as	a	prime	rather	than	with	participants	having	to	segment	the	object	from	the	scene	(e.g.,	

Palmer,	1975).	

Is	preserving	only	a	distribution	of	spatial	frequencies	and	orientations	in	the	texturized-scene	

condition	sufficient	to	drive	an	object	recognition	benefit	(Experiment	2B)?	We	found	that	participants	

accurately	recognized	76.5%	(±1.0%)	of	the	objects	primed	by	texturized	versions	of	uninformative	

backgrounds	but	recognized	79.4%	(±0.9%)	of	the	objects	primed	by	texturized-informative	

backgrounds,	a	reliable	effect	of	the	informativeness	of	the	texturized	scene	(t(99)=3.11,	p=0.002;	see	

Figure	6B).	Thus,	the	texturized	scenes,	which	are	not	recognizable	at	the	basic-level,	nevertheless	prime	

the	identity	of	objects	that	are	consistent	with	the	original	scenes.	This	suggests	that	preserving	only	the	

spatial	distribution	of	orientation	and	spatial	frequency	is	sufficient	to	drive	the	scene	pathway	and	

allow	the	activation	of	scene	representations	and	the	associated	object	representations.		

The	effect	of	informativeness	was	reliable	not	only	across	participants,	but	also	across	items	

(object-scene	pairs;	t(49)=3.10,	p=0.003).	This	suggests	that	the	effect	is	generalizable	across	the	scenes	

we	showed,	rather	than	driven	by	just	a	few	pairs	of	scenes	and	objects.	Given	the	diversity	of	our	

stimulus	set	(indoor;	outdoor;	urban;	natural,	with	far	views,	close	views;	and	animals,	people	and	

things),	this	shows	significant	generalization	of	the	effect.	The	effect	was	also	not	driven	by	the	small	

chance	of	participant’s	recognizing	a	texturized-scene.	If	we	calculate	a	priming	effect	using	only	the	

scenes	that	not	a	single	participant	guessed	the	identity	of	in	the	control	experiment,	we	find	a	priming	

effect	of	3.4%	(which	is	significantly	greater	than	zero;	t(19)=3.11,	p=0.006);	with	scenes	that	at	least	

one	person	guessed	the	identity	of,	the	priming	effect	was	only	1.8%,	a	numerical	smaller	effect	(the	

opposite	of	what	would	be	predicted).	This	difference	for	ever-recognized	vs.	never-recognized	scenes	

was	not	significant	(t(48)=1.01,	p=0.32).		

-----	Figure	6	about	here	-----	
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Discussion	

We	found	that	even	texturized	versions	of	informative	scenes	were	sufficient	to	drive	an	object	

recognition	advantage,	although	this	advantage	was	less	than	that	provided	by	the	full	scenes	(which	

convey	a	lot	of	other	information,	including	semantics).	This	provides	further	support	for	the	idea	that	

global	pattern	information,	like	the	spatial	distribution	of	orientations	and	spatial	frequencies	is	

sufficient	to	activate	some	aspects	of	scene	representations.	This	may	be	because	these	global	

ensemble	textures	preserve	information	about	scene	layout	(e.g.,	Oliva	&	Torralba,	2006;	Ross	&	Oliva,	

2010),	and	spatial	layout	information	alone	is	sufficient	to	generate	predictions	about	which	objects	are	

commonly	present	in	the	activated	scene,	thereby	facilitating	object	detection	and	recognition	(Bar,	

2004;	Bar	et	al.,	2006).	This	texture	information	may	also	be	sufficient	to	activate	other	aspects	of	scene	

representations	(e.g.,	affordances;	Greene	&	Oliva,	2010).	

We	used	facilitation	of	object	recognition	as	our	measure	of	whether	scenes	were	sufficiently	

processed	to	activate	scene	representations.	Our	results	suggest	that	global	ensemble	texture	

representations	are	sufficient	to	activate	representations	of	related	objects,	suggesting	that	object-

scene	consistency	effects	may	be	in	part	driven	by	global	scene	structure	rather	than	solely	by	the	

semantic	information	in	recognizable	scenes.	This	claim	is	consistent	with	some	previous	work	which	has	

also	pointed	to	the	fact	that	object-scene	consistency	effects	can	be	driven	by	spatially	global	

representations	of	scenes.	For	example	Munneke,	Brentari	and	Peelen	(2013)	showed	that	the	spatial	

location	of	attention	had	little	effect	on	the	scene	benefit	for	objects,	suggesting	a	more	global,	gist-

based	representation	might	be	responsible.		

Overall,	the	current	results	suggest	that	sensitivity	to	the	distribution	of	orientations	and	spatial	

frequencies	–	what	we	call	global	ensemble	texture	–	can	activate	scene	representations,	perhaps	

because	this	information	is	critical	to	the	representation	of	scenes’	spatial	layout.	Combined	with	
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Experiment	1,	these	results	reinforce	the	proposed	link	between	such	global	ensemble	texture	and	

scene	recognition.		

Experiment	3:	Is	global	ensemble	texture	particularly	informative	for	scenes?	

In	the	first	two	experiments,	we	showed	that	(1)	the	same	participants	who	are	the	best	at	recognizing	

global	pattern	in	simple	grids	of	gabor	elements	are	also	the	best	at	rapid	scene	recognition,	and	(2)	

preserving	only	a	grid	of	orientation	and	spatial	frequency	information	is	sufficient	to	drive	the	scene	

pathway,	at	least	enough	to	activate	and	prime	relevant	objects.	In	both	cases,	we	suggested	this	is	

because	of	a	link	between	scenes	in	particular	and	global	ensemble	texture	patterns.	Indeed,	

computational	work	has	shown	that	such	texture	representations	are	particularly	informative	for	

scenes,	since	such	texture	patterns	preserve	information	about	3D	scene	structure	(e.g.,	Ross	&	Oliva,	

2010).		

In	a	third	experiment,	we	asked	whether	global	ensemble	texture	information	provided	

information	that	was	particularly	relevant	for	scene	representations,	as	we	have	hypothesized,	or	

whether	global	ensemble	texture	was	instead	equally	useful	for	driving	object	recognition	systems.	In	

particular,	we	designed	a	stimulus	set	and	experiment	that	mirrored	that	of	Experiment	2A	and	2B,	but	

rather	than	using	scenes	and	texturized-scenes	as	primes,	we	used	objects	(3A)	and	texturized-objects	

(3B).	We	reasoned	that	if	the	preservation	of	global	ensemble	texture	information	is	informative	only	for	

scenes	and	not	for	objects,	as	would	be	expected	if	it	is	driven	primarily	by	sensitivity	to	spatial	layout,	

then,	despite	the	presence	of	a	strong	priming	effect	from	texturized-scenes	(in	Experiment	2B),	we	

should	abolish	all	priming	effects	by	using	texturized	objects	(in	Experiment	3B).		

Experiment	3	was	thus	identical	to	Experiment	2,	except	using	objects	rather	than	scenes	as	

primes:	an	informative	object	prime	(e.g.,	a	basketball	hoop)	or	uninformative	object	prime	(e.g.,	a	

cooking	pot)	was	shown,	followed	by	an	object	to	be	recognized	(e.g.,	a	basketball	player),	after	which	
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the	object	was	masked	and	then	participants	had	to	type	the	name	of	the	object	they	saw.	The	objects	

that	needed	to	be	recognized	were	identical	to	those	in	Experiment	2.		

Existing	work	has	shown	that	object-to-object	consistency	gives	rise	to	object	recognition	

benefits,	just	as	scene-to-object	consistency	give	rise	to	object	recognition	benefits.	For	example,		

Davenport	(2007)	showed	in	a	paradigm	very	similar	to	that	of	Davenport	and	Potter	(2004)	that	

informative	objects	facilitated	free	responses	for	naming	other	objects	(see	also	Auckland,	Cave,	&	

Donnelly,	2007).	Thus,	we	reasoned	that	objects	should	serve	as	primes	exactly	as	well	as	scenes	

(Experiment	3A).	This	allows	us	to	investigate	whether	texturizing	those	objects	preserves	the	priming	

effect	as	it	did	for	scenes	(Experiment	3B).	We	used	pilot	experiments	to	choose	the	prime	objects,	

which	allowed	us	to	match	performance	with	the	informative-object	primes	(Exp.	3A)	to	the	

performance	of	informative-scene	primes	(Exp.	3B),	thus	providing	an	equal	starting	point	for	asking	

about	how	texturizing	the	primes	affects	performance	in	scenes	and	objects.	

Method	

Participants	

50	participants	were	recruited	on	Amazon’s	Mechanical	Turk	for	Experiment	3A,	which	we	expected	to	

have	a	similar	effect	size	to	Experiment	2A.	To	choose	a	sample	size	for	Experiment	3B,	we	did	a	power	

calculation	based	on	the	data	from	Experiment	2B.	Because	we	hypothesized	that	texturized-objects	

might	not	lead	to	a	priming	effect,	we	made	sure	we	had	95%	power	to	detect	the	same	size	priming	

effect	we	observed	with	texturized-scenes	(Cohen’s	d=0.31).	Achieving	this	power	requires	136	

participants.	Thus,	in	Experiment	3B,	we	recruited	150	participants,	giving	ample	power	to	detect	a	

priming	effect	if	one	is	present	with	texturized-objects.	All	participants	were	from	the	United	States,	

were	over	18,	and	gave	informed	consent	in	accordance	with	the	procedures	and	protocols	approved	by	

the	Harvard	Committee	on	the	Use	of	Human	Subjects.	All	participants	indicated	they	had	normal	or	

corrected-to-normal	color	vision.	All	participants	were	paid	1	dollar	for	several	minutes	of	their	time	and	
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none	of	the	participants	participated	in	multiple	experiments	(all	participants	are	identified	by	a	unique	

ID	by	Amazon).	

-----	Figure	7	about	here	-----	

Stimuli	

Stimuli	consisted	of	the	same	50	objects	as	in	Experiment	2,	but	rather	than	scenes	serving	as	primes,	

related	objects	instead	served	as	primes	(e.g.,	a	cooking	pot	for	a	chef;	a	basketball	hoop	for	a	basketball	

player;	a	checkered	flag	for	a	race	car;	see	Figure	7).		In	Experiment	3A,	the	prime-objects	were	

presented	normally.	In	Experiment	3B,	they	were	first	“texturized”,	using	the	same	algorithm	as	

described	in	Experiment	2B.	

As	in	Experiment	2,	we	ensured	that	the	texturized	object-prime	images	were	difficult	or	

impossible	to	recognize	at	a	basic-level	(e.g.,	pot,	bunny,	etc.)	by	running	a	control	experiment	in	which	

30	naïve	participants	were	shown	the	texturized-object	images	and	asked	via	free	response	to	guess	

what	kind	of	image	they	were	generated	from	or	most	closely	resembled.	Participants	were	generally	

unsuccessful	at	this	task	(6.3%	correct),	although	there	were	4	images	that	were	recognized	a	significant	

portion	of	the	time	(a	snake,	a	rabbit,	a	giraffe	and	a	fork)	–	all	cases	where	the	“outline”	of	the	image	

was	sufficient	to	drive	recognition	in	cases	where	participants	were	explicitly	asked	to	recognize	the	

object.	It	remains	unlikely	that	participants	would	recognize	these	objects	in	the	context	of	the	

experiment,	but,	to	ensure	the	possibility	of	recognition	did	not	effect	our	results,	we	look	at	

performance	with	these	images	separately	as	well	as	analyzing	all	images	together.	

Procedure	

The	procedure	was	identical	to	that	of	Experiment	2,	except	with	prime	objects	(3A)/prime	texturized-

objects	(3B)	rather	than	prime	scenes/texturized-scenes.		

Results	
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In	Experiment	3A,	with	recognizable	objects	as	primes,	participants	accurately	recognized	73.7%	(±1.9%)	

of	the	objects	primed	by	uninformative	objects	but	recognized	82.9%	(±1.5%)	primed	by	the	informative	

objects,	a	reliable	effect	of	the	prime	object	(t(49)=5.89,	p<0.0001;	see	Figure	6C).	Thus,	the	basic	

benefit	of	informative	objects	on	object	recognition	was	very	similar	to	the	effect	of	informative	scenes	

on	object	recognition	(benefit	of	informative	scenes:	9.7%,	benefit	of	informative	objects:	9.2%).		

Is	preserving	only	a	distribution	of	spatial	frequencies	and	orientations	in	the	texturized-object	

condition	sufficient	to	drive	an	object	recognition	benefit	(Experiment	3B)	as	it	was	with	scenes?	

Participants	accurately	recognized	77.2%	(±1.0%)	of	the	objects	primed	by	texturized	versions	of	

uninformative	objects	and	recognized	77.2%	(±1.0%)	of	the	objects	primed	by	texturized	versions	of	

informative	objects.	Thus,	there	was	no	reliable	effect	of	the	informativeness	of	the	texturized	object	

prime	(t(149)=0.12,	p=0.90;	see	Figure	6D).	Moreover,	comparing	Experiments	2B	and	3B	shows	that	the	

benefit	for	texturized-objects	(-0.08%)	was	significantly	smaller	than	the	benefit	for	texturized-scenes	

(2.9%;	t(248)=2.63,	p=0.009),	showing	an	interaction	between	experiments.	Thus,	while	the	texturized	

scenes	nevertheless	prime	the	identity	of	objects	that	are	consistent	with	the	scenes,	the	texturized	

objects	do	not.	This	is	despite	the	fact	that	fully	recognizable	objects	and	scenes	result	in	the	same	

priming	effect.	This	suggests	that	preserving	only	the	spatial	distribution	of	orientation	and	spatial	

frequency	is	sufficient	to	drive	the	scene	pathway	but	not	the	object	pathway.		

As	with	the	texturized-scenes,	we	can	break	down	the	effect	by	whether	the	prime	object	was	

recognized	or	not.	If	we	calculate	a	priming	effect	using	only	the	prime-objects	that	not	a	single	

participant	guessed	the	identity	of	in	the	control	experiment,	we	find	a	priming	effect	of	0.5%;	with	

prime-objects	that	at	least	one	person	guessed	the	identity	of,	the	priming	effect	was	-0.4%.	This	

difference	is	not	significant	(t(48)=0.52,	p=0.61).	Thus,	the	small	chance	of	a	texturized-scene	or	

texturized-object	being	recognized	by	a	participant	does	not	seem	to	modulate	the	priming	effect.	

Discussion	
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We	found	that	texturized	versions	of	prime	objects	were	insufficient	to	drive	an	object	recognition	

advantage.	Thus,	while	the	texturized	scenes	prime	the	identity	of	objects	that	are	consistent	with	the	

scenes,	the	texturized	objects	do	not.	This	is	despite	the	fact	that	fully	recognizable	objects	and	scenes	

result	in	similar	size	priming	effects.	This	suggests	that	preserving	only	the	spatial	distribution	of	

orientation	and	spatial	frequency	–	the	global	ensemble	texture	--	is	sufficient	to	drive	the	scene	

pathway	but	not	the	object	pathway.		

General	Discussion	

In	Experiment	1,	we	found	that	participants	who	were	most	sensitive	to	changes	in	spatial	ensemble	

structure	were	also	the	participants	most	influenced	by	scene	backgrounds	in	an	object	recognition	task.	

This	suggests	a	link	between	spatial	ensemble	processing	and	rapid	scene	recognition.	In	a	second	

experiment,	we	showed	that	preserving	only	global	ensemble	texture	information	in	scenes	is	sufficient	

to	allow	participants	to	activate	scene	representations.	In	a	third	experiment,	we	show	that	this	link	

between	global	ensemble	texture	and	scenes	is	selective	to	scenes:	preserving	the	same	information	in	

images	of	objects	is	insufficient	to	allow	activation	of	related	object	representations.	Overall,	our	data	

support	the	hypothesis	that	global	ensemble	texture	representations	can	drive	activation	of	scene	

information	during	rapid	scene	recognition.	This	is	consistent	with	computer	vision	models	showing	the	

sufficiency	of	global	patterns	of	orientation	and	spatial	frequency	for	recognizing	scene	information	

(Oliva	&	Torralba,	2001,	2006;	Renninger	&	Malik,	2004;	Sofer	et	al.,	2015)	and	in	particular,	information	

about	spatial	layout	(e.g.,	Ross	&	Oliva,	2010).	

Our	data	argue	against	a	purely	object-based	view	of	scene	recognition	in	favor	of	a	more	global	

account.	Our	data	also	point	to	a	particular	instantiation	of	global	scene	recognition:	a	representation	

based	on	the	spatial	distribution	of	orientation	and	spatial	frequency	across	a	scene;	as	opposed	to	a	

global	scene	representation	based	on	low-frequency	information	(e.g.,	Schyns	&	Oliva,	1994)	or	non-

spatially	localized	global	properties	(Greene	&	Oliva,	2009a).	For	example,	because	the	displays	from	the	
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spatial	ensemble	task	in	Experiment	1	and	the	tasks	of	Experiments	2	and	3	are	not	semantically	

meaningful,	these	spatial	ensemble	displays	do	not	have	properties	like	temperature	or	navigability	

(Greene	&	Oliva,	2009a).	Thus,	the	connection	we	find	between	the	spatial	ensemble	tasks	and	scene	

processing	and	the	preservation	of	priming	from	texturized-scenes	provides	evidence	for	a	global	scene	

recognition	system	based	at	least	in	part	on	the	spatial	distribution	of	orientation	at	relatively	high	

spatial	frequencies	rather	than	solely	based	on	affordances	and	other	semantic	global	properties	

(Greene	&	Oliva,	2009a).	

It	remains	an	open	question	at	what	level	such	ensemble	texture	effects	operate.	For	example,	

the	priming	effects	of	Experiment	2	could	be	relatively	high-level	or	low-level.	At	a	high	level,	

participants	might	directly	perceive	spatial	layout	in	our	texturized-scenes,	allowing	them	to	activate	the	

relevant	object	representations.	Alternatively,	the	effects	could	arise	at	a	lower-level;	for	example,	

participants	might	be	primed	by	large	homogenous	regions	in	the	scene	to	expect	large	objects	vs.	small	

ones.	One	important	note	here	is	that	any	account	needs	to	explain	why	priming	is	preserved	for	

texturized-scenes	but	eliminated	for	texturized-objects.	Thus,	some	scene-specific	information	must	be	

posited,	even	in	low-level	accounts.	

While	our	results	suggest	some	role	for	global	ensemble	texture	in	scene	recognition,	global	

ensemble	texture	information	is	certainly	not	the	only	thing	relevant	to	scene	recognition.	People	

accumulate	a	great	deal	of	information	about	scenes	over	multiple	saccades	and	integrate	this	

information	into	a	rich	scene	representation	(e.g.,	Hollingworth	&	Henderson,	2002;	Hollingworth,	2004,	

2006;	Malcolm,	Nuthmann,	&	Schyns,	2014).	In	addition,	more	fine-grained	information,	like	junctions	

between	contours,	are	also	relevant	to	how	participants	rapidly	recognize	scenes	(e.g.,	Walther	&	Shen,	

2014).		However,	our	results	do	point	to	the	possibility	that	scene	processing	may	be	partially	reliant	on	

distributions	of	orientation	and	spatial	frequency	that	are	not	totally	localized.	
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Separate	object	and	scene	processing	pathways	

Bar	(2004),	among	others,	has	argued	that	low	spatial	frequencies	might	be	processed	quickly	to	

arrive	at	a	perceptual	hypothesis	about	the	identity	of	an	object.	Our	proposal	is	related	but	different,	in	

that	the	global	ensemble	texture	information	we	propose	helps	underlie	scene	recognition	is	primarily	

reflected	in	a	spatial	distribution	of	high	spatial	frequency	information	rather	than	the	low	spatial	

frequency	information.	For	example,	if	blurred	with	a	low-pass	filter,	the	stimuli	from	our	spatial	

ensemble	task	(Figure	1A)	become	a	uniform	gray	field.	While	low	frequency	information	may	be	

particularly	informative	for	objects,	as	it	preserves	overall	shape	contours	(e.g.,	Bar,	2004),	the	

distribution	of	relatively	high-spatial	frequency	information	has	previously	been	shown	to	be	particularly	

informative	for	scene	layout	(e.g.,	Ross	&	Oliva,	2010).		

This	suggests	a	possible	dissociation	between	the	processing	of	scenes	and	the	processing	of	

objects,	which	may	be	related	to	the	known	dissociation	between	how	these	stimuli	are	processed	in	

the	ventral	visual	pathway	(e.g.,	Kanwisher,	2010).	In	general,	our	data	are	consistent	with	a	two-

pathway	view	of	the	brain’s	processing	of	visual	scenes,	in	which	one	focal	attention-bound	pathway	

(e.g.,	LOC,	pFS)	processes	object	information	while	a	second	non-attentional	(or	distributed	attention)	

pathway	processes	scene	information	via	global	ensemble	texture	and	spatial	layout	(e.g.,	OPA/TOS,	

PPA)	(Park	et	al.,	2011;	Wolfe	et	al.,	2011).	In	particular,	neuroimaging	studies	of	scene-selective	brain	

regions	suggest	that,	of	all	the	ways	scenes	differ	from	objects,	the	dimensions	most	relevant	for	these	

brain	regions	are	the	spatial	layout	of	the	scenes	and	their	visual	texture	rather	than	the	number	of	

objects	present	or	how	complicated	the	relations	between	objects	are	(Cant	&	Xu,	2012;	Dilks,	Julian,	

Paunov,	&	Kanwisher,	2013;	Epstein	&	Kanwisher,	1998;	Epstein,	2005).		This	is	consistent	with	the	idea	

that	global	ensemble	texture	information	may	be	particularly	relevant	for	scenes,	rather	than	objects,	

and	that	this	may	be	related	to	such	texture	information’s	utility	for	determining	the	spatial	layout	of	a	

scene.	
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One	possibility	is	that	these	two	pathways	–	an	object	pathway	and	a	scene	pathway	--	process	all	

scenes	simultaneously	(e.g.,	Wolfe	et	al.	2011).	For	example,	when	viewing	a	single	scene,	areas	like	LOC	

may	process	information	about	the	objects	and	content	while	simultaneously	areas	like	PPA	process	

information	about	spatial	layout	(e.g.,	Park,	Brady,	Greene	&	Oliva,	2011).		

Effect	of	image	statistics	on	object	and	scene	recognition	

We	argue	that	rapid	scene	recognition	may	rely	on	global	ensemble	texture	processing,	but	that	

object	recognition	requires	more	information	than	just	the	global	ensemble	texture	of	the	object.	In	

particular,	we	find	that	our	texturized	objects	(Exp.	3B)	are	insufficient	to	prime	related	objects,	whereas	

the	same	texturization	process	preserves	enough	information	about	scenes	to	prime	related	objects	

(Exp.	2B).	However,	there	do	seem	to	be	some	circumstances	where	participants	can	make	very	basic	

distinctions	about	the	objects	an	image	contains	based	on	global	image	statistics.	In	particular,	there	is	a	

significant	literature	on	rapid	detection	of	whether	an	animal	is	present	in	a	scene	or	not	(Kirchner	&	

Thorpe,	2006;	and	some	related	work	on	tasks	like	vehicle	detection;	VanRullen	&	Thorpe,	2001).	These	

tasks	show	that	participants	can	very	rapidly	detect	whether	an	image	contains	an	animal.	However,	

some	have	argued	that	rather	than	doing	object	recognition	per	se,	participants	may	succeed	at	these	

tasks	in	part	by	analyzing	the	images	holistically	and	asking	whether	their	global	image	statistics	(like	

their	amplitude	spectra)	are	consistent	with	what	would	be	expected	of	an	image	with	an	animal	in	it	

(e.g.,	Torralba	&	Oliva,	2003).	However,	the	extent	to	which	this	is	true	remains	unclear	(Crouzet,	

Joubert,	Thorpe,	&	Fabre-Thorpe,	2012;	Fabre-Thorpe,	2011;	Gaspar	&	Rousselet,	2009)	and	for	the	

most	part,	this	strategy	appears	to	be	useful	only	for	making	superordinate-level	categorizations	about	

large	central	objects,	rather	than	a	more	general	property	of	object	recognition	(Fabre-Thorpe,	2011).		

While	the	global	ensemble	texture	of	the	object	alone	does	not	support	basic-level	object	

recognition,	it	is	possible	that	large	objects	may	affect	the	global	ensemble	texture	of	scenes,	making	
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the	scenes	more	or	less	recognizable.	For	example,	recent	work	on	rapid	scene	recognition	has	shown	

that	even	with	very	rapid	scene	categorization,	participants	are	faster	to	recognize	a	scene	in	the	

presence	of	congruent	objects	(compared	to	incongruent	objects)	(Joubert,	Rousselet,	Fize,	&	Fabre-

Thorpe,	2007).	However,	this	effect	of	objects	on	scene	recognition	can	actually	be	modeled	by	

considering	the	ways	in	which	adding	large	objects	to	a	scene	affects	the	global	image	statistics	of	a	

scene	(Mack	&	Palmeri,	2010).	In	particular,	differences	in	the	global	ensemble	texture	of	the	congruent	

vs.	incongruent	images	are	sufficient	to	explain	this	effect	without	any	appeal	to	object	recognition	per	

se.	Thus,	these	data	are	consistent	with	our	claim	that	rapid	scene	recognition	may	be	particularly	

related	to	global	ensemble	texture	processing,	and,	at	least	in	some	cases,	object	congruency	effects	

may	be	caused	not	by	object	recognition	processes	per	se	but	by	the	way	objects	affect	global	ensemble	

texture	and	thus	scene	recognition	(Mack	&	Palmeri,	2010).	Note	that	in	the	current	experiments,	we	

are	interested	in	the	opposite	effect	(the	extent	to	which	scenes	prime	object	recognition),	so	our	use	of	

global	ensemble	texture	does	not	conflict	with	the	results	of	Mack	and	Palmeri	(2010)	but	instead	

provides	additional	support	for	a	global	ensemble	texture	view	of	scene	recognition.	In	addition,	in	

Experiments	2	and	3,	we	presented	the	prime	scenes/objects	and	test	objects	sequentially	to	avoid	any	

interactions	in	how	the	objects	modified	the	scene	statistics	or	object	statistics	in	a	simultaneous	

display.		

Throughout	the	current	set	of	experiments,	we	used	a	task	where	scene	recognition	was	

measured	only	indirectly,	through	its	facilitation	of	object	recognition.	We	based	this	decision	on	the	

robust	literature	suggesting	scenes	influence	objects	in	an	interactive	manner	during	early	recognition	

(e.g.,	Joubert	et	al.	2008).	In	Experiment	2,	we	show	this	facilitation	of	object	recognition	can	occur	even	

with	limited	scene	information	(only	the	global	ensemble	texture).	In	many	ways,	this	very	limited	scene	

context	is	similar	to	the	paradigm	used	in	contextual	cueing	experiments	(Chun	&	Jiang,	1998).	In	these	

paradigms,	contextual	information	is	often	just	the	location	of	relevant	distractor	objects	in	a	display	of	
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simple	discrete	objects	(like	T’s	and	L’s).	Having	a	consistent	and	recurring	background	context	can	help	

make	decisions	about	target	objects	–	like	which	direction	a	sideways	T	is	facing	–	easier	(Brady	&	Chun,	

2007;	Kunar,	Flusberg,	&	Wolfe,	2006).	One	interesting	implication	of	this	is	to	ask	whether	global	

ensemble	texture	information	might	be	particularly	useful	for	guiding	visual	search	during	contextual	

cueing	and	other	memory-based	tasks	where	limited	“scene”	information	is	used	to	guide	object-based	

tasks.			

Choice	of	texture	representation	

Many	studies	have	relied	on	the	Portilla	and	Simoncelli	algorithm	(Portilla	&	Simoncelli,	2000)	to	

preserve	low-level	information	while	discarding	high-level	information	in	natural	images.	In	the	current	

experiments,	we	instead	make	use	of	a	model	based	on	V1-like	features	(the	GIST	model	of	Oliva	&	

Torralba,	2001;	2006).		We	made	use	of	this	texture	algorithm	because	we	are	most	interested	in	how	

people	represent	spatial	structure	–	e.g.,	the	top	of	the	image	being	largely	made-up	of	vertical	

elements	and	the	bottom	horizontal	elements,	an	important	clue	to	spatial	layout	--	which	is	not	the	

kind	of	structure	the	Portilla	and	Simoncelli	texture	model	represents.	In	fact,	the	Portilla	and	Simoncelli	

algorithm	assumes	stationarity	(homogeneity)	across	the	image	(Portilla	&	Simoncelli,	2000).	Thus,	while	

this	algorithm	preserves	important	texture	information,	it	does	not	preserve	the	kind	of	spatial	layout	

information	we	are	interested	in	the	current	experiments	(see	Figure	8	for	examples).		

-----	Figure	8	about	here	-----	

Of	course,	non-stationary	texture	models	could	be	employed	that	are	considerably	more	

sophisticated	than	our	simple	grid	of	orientations	and	spatial	frequencies	model.		However,	one	benefit	

of	the	simpler	texture	algorithm	we	use	is	that	the	analogy	between	the	representation	of	global	

ensemble	texture	we	use	here	and	the	spatial	ensemble	Gabor-task	we	use	in	Experiment	1	is	extremely	

direct:	Both	are	limited	to	a	set	of	orientations	at	fixed	spatial	frequencies	and	grid	locations.	The	



Global	ensemble	texture	representations	are	critical	to	rapid	scene	perception	 				35	
	

success	of	even	this	simple	texture	algorithm	at	preserving	spatial	layout	information	but	discarding	

semantic	information	and	object-based	information	provides	a	motivation	for	why	participants	might	be	

good	at	the	spatial	ensemble	tasks	we	employ	in	Experiment	1,	and	why	performance	in	such	tasks	

might	be	related	to	scene	recognition.		

Distinctions	between	summary	statistic	tasks	and	spatial	ensemble	tasks	

In	Experiment	1,	we	found	that	computation	of	non-spatial	summary	statistics	(i.e.,	average	

orientation)	did	not	relate	to	scene	recognition,	despite	the	similarity	between	the	gabor	elements	and	

global	attention	required	in	the	spatial	ensemble	task	and	the	summary	statistic	task.	In	the	context	of	

our	task,	this	suggests	that	the	correlation	we	find	between	spatial	ensembles	and	scene	recognition	is	

not	driven	purely	by	the	ability	to	globally	attend	to	multiple	gabor	elements.	However,	this	data	also	

suggests	that	spatial	ensembles	and	non-spatial	summary	statistics	may	be	distinct.	In	particular,	the	

major	constraint	on	computing	summary	statistics	like	the	mean	may	be	how	precisely	the	individual	

elements	are	represented,	as	this	places	a	limit	on	the	possible	precision	of	such	statistical	summaries	

(e.g.,	Alvarez,	2011;	Haberman	et	al.	2015).	In	other	words,	non-spatial	summary	statistics	like	the	mean	

orientation	of	a	set	may	be	more	related	to	the	precision	of	individual	object	representations,	while,	

ensemble	representations	that	require	the	preservation	of	distributions	of	spatial	information	may	be	

particularly	related	to	scene	recognition.	

Alternatively,	there	may	be	aspects	of	our	task	that	results	in	the	summary	statistic	task	being	

performed	differently	than	the	spatial	ensemble	task.	For	example,	consistent	with	existing	studies	of	

summary	statistics,	we	used	relatively	long	1	second	exposures	(e.g.,	Haberman	et	al.,	2015;	Sweeny	&	

Whitney,	2014).	Thus,	participants	in	this	task	may	have	performed	it	with	serial	attention,	weakening	

the	link	to	scene	recognition.	

Conclusion	
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The	present	series	of	studies	argues	for	an	important	link	between	global	ensemble	texture	information	

and	scene	recognition.	We	first	used	an	individual	differences	approach	to	establish	a	relationship	

between	rapid	scene	perception	and	spatial	ensemble	processing	(but	not	non-spatial	statistical	

summary	perception),	a	kind	of	global	ensemble	texture	representation.	We	then	showed	the	

sufficiency	of	global	ensemble	texture	information	for	activating	scene	representations,	but	not	object	

representations,	using	a	priming	paradigm.	Together,	these	studies	provide	support	for	the	hypothesis	

that	global	ensemble	texture	representations	partly	underlie	rapid	scene	recognition.		
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Figure	Legends	
	
Figure	1.	One	way	for	participants	to	recognize	a	scene	would	be	to	make	use	of	global	ensemble	

texture	information,	like	the	distribution	of	orientations	and	spatial	frequencies,	which	has	been	shown	

to	be	computationally	sufficient	to	recognize	the	spatial	layout	and	category	of	a	scene	(e.g.,	Ross	&	

Oliva,	2010);	e.g.,	features	like	perspective,	depth	of	view,	and	other	spatial	layout	characteristics.	For	

example,	a	scene	can	be	transformed	into	only	loosely	localized	information	about	its	spatial	frequency	

and	orientation	distribution,	which	can	then	be	transformed	into	information	about	the	3D	layout	and	

category	of	the	scene.	

Figure	2.	Methods	for	the	3	parts	of	Experiment	1.	(A)	In	the	spatial	ensemble	task,	participants	had	to	

detect	changes	to	a	grid	of	gabor	elements	that	appeared	at	an	unexpected	time	for	a	brief	duration	

while	they	performed	another	task	(counting	digits).	The	grid	of	gabors	appeared	briefly,	then	

disappeared.	When	the	display	reappeared	after	a	brief	blank,	it	could	sometimes	be	identical	to	before	

the	blank	(no	change);	or	all	of	the	individual	gabor	elements	could	have	rotated	by	45°	(change	trials).	

On	every	change	trial,	all	of	the	individual	gabor	patches	rotated	by	45°,	but	on	local-only	trials	(left),	the	

way	the	elements	rotated	kept	the	ensemble	structure	the	same	(vertical	on	top,	horizontal	on	bottom),	

whereas	on	local+ensemble	trials	(right),	the	45°	rotations	changed	the	ensemble	structure;	for	

example,	in	the	example	in	the	figure,	the	top	is	now	horizontal	and	the	bottom	vertical.	The	gabors	in	

these	example	displays	are	larger	and	have	higher	contrast	than	the	gabors	used	in	the	actual	

experiment.	(B)	In	the	rapid	scene	recognition	task,	participants	saw	a	briefly	flashed	object	on	top	of	an	

irrelevant	scene	background	(84ms)	followed	by	a	mask	for	200ms.	They	then	had	to	type	the	name	of	

the	object.	On	some	trials,	the	scene	background	was	informative	because	it	was	consistent	with	the	

object	(left),	whereas	on	other	trials	the	scene	background	was	uninformative	(right).	The	difference	

between	these	conditions	provides	a	selective	measure	of	scene	processing,	as	only	the	scenes	differ	

between	the	conditions.	(C)	In	the	summary	statistic	task,	participants	saw	a	grid	of	4	gabor	elements	for	

1s	and	had	to	remember	the	average	orientation	of	the	set	during	a	1s	delay	and	then	report	it	by	

adjusting	a	gabor	to	match	this	average	orientation	using	the	mouse.		

Figure	3.	Main	effects	across	all	50	participants	for	the	(A)	spatial	ensemble	task	(d’	at	detecting	

changes),	(B)	scene	task	(percent	correct	in	recognizing	objects),	and	(C)	summary	statistic/mean	

orientation	task	(standard	deviation	of	participant’s	reports,	as	estimated	from	the	mixture	model).	

Error	bars	represent	within-participant	standard	errors	of	the	mean.		
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Figure	4.	Results.	(A)	Participants’	performance	for	local+ensemble	after	controlling	for	their	

performance	on	local-only	changes	(ensemble	benefit)	was	a	strong	predictor	of	their	performance	

recognizing	objects	in	informative	scenes	after	controlling	for	their	performance	with	uninformative	

scenes	(scene	benefit).	The	same	participants	who	benefited	most	from	ensemble	changes	in	the	spatial	

ensemble	task	with	gabors	were	also	the	ones	who	benefited	most	from	informative	scenes.	(B)	The	

orientation	summary	statistic	task,	by	contrast,	did	not	significantly	correlate	with	either	the	scene	

benefit	or	the	ensemble	benefit.	

	

Figure	5.	Methods	of	(A)	Experiment	2A,	(B)	Experiment	2B.	In	both	experiments,	a	grayscale	prime	

scene	or	texture	was	presented,	followed	by	a	brief	presentation	of	a	grayscale	object	on	a	noise	

background,	followed	by	a	mask.	Then	participants	had	to	type	the	name	of	the	object	they	saw.	In	

Experiment	2B,	the	prime	was	a	texturized	scene,	designed	to	be	unrecognizable	but	containing	the	

same	spatial	distribution	of	orientations	and	spatial	frequencies.	

	

Figure	6.	Results	of	(A)	Experiment	2A,	(B)	Experiment	2B,	(C)	Experiment	3A,	and	(D)	Experiment	3B.	In	

Experiment	2A,	there	was	a	significant	effect	of	the	prime	scene;	participants	performed	better	when	

the	scene	was	informative.	The	same	was	true	in	Experiment	3A,	where	a	prime	object	generated	better	

performance	when	informative	than	uninformative.	However,	with	texturized	images,	there	was	a	major	

distinction	between	scenes	and	objects:	In	Experiment	2B,	there	was	a	significant	effect	of	the	prime	

texturized-scene,	where	people	did	better	when	the	texture	was	generated	from	informative	scenes	

than	when	it	was	generated	from	uninformative	scenes.	However,	there	was	no	benefit	in	Experiment	

3B	from	informative	texturized-object	primes.	

Figure	7.	Methods	of	(A)	Experiment	3A,	(B)	Experiment	3B.	In	both	experiments,	a	grayscale	prime	

object	or	texture	was	presented,	followed	by	a	brief	presentation	of	an	object	on	a	noise	background,	

followed	by	a	mask.	Then	participants	had	to	type	the	name	of	the	object	they	saw	on	the	texture	

background	(the	second	object).	In	Experiment	3B,	the	prime	was	a	texturized	object,	designed	to	be	

unrecognizable	but	containing	the	same	spatial	distribution	of	orientations	and	spatial	frequencies.	

	

Figure	8.	(A)	Scene	images	used	in	Experiment	2.	(B)	Texturized-versions	of	these	scenes	using	our	grid	

of	orientation	and	spatial	frequencies	algorithm	(based	on	Oliva	&	Torralba,	2006).	(C)	Texturized-

versions	of	these	scenes	using	a	popular	algorithm	that	assumes	stationarity	(homogeneity),	by	Portilla	

and	SImoncelli	(2000).	You	can	see	that	the	algorithm	we	use,	which	is	considerably	simpler	and	retains	
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fewer	image	features	than	the	Portilla	and	SImoncelli	algorithm,	nevertheless	preserves	spatial	layout	

information	better	than	the	Portilla	and	Simoncelli	algorithm	because	it	does	not	assume	spatial	

homogeneity	across	the	image	and	is	designed	as	a	model	of	scene	structure	rather	than	explicitly	as	a	

model	of	visual	texture.	
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Figure	1.	One	way	for	participants	to	recognize	a	scene	would	be	to	make	use	of	global	ensemble	

texture	information,	like	the	distribution	of	orientations	and	spatial	frequencies,	which	has	been	shown	

to	be	computationally	sufficient	to	recognize	the	spatial	layout	and	category	of	a	scene	(e.g.,	Ross	&	

Oliva,	2010);	e.g.,	features	like	perspective,	depth	of	view,	and	other	spatial	layout	characteristics.	For	

example,	a	scene	can	be	transformed	into	only	loosely	localized	information	about	its	spatial	frequency	

and	orientation	distribution,	which	can	then	be	transformed	into	information	about	the	3D	layout	and	

category	of	the	scene.	
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Figure	8.	(A)	Scene	images	used	in	Experiment	2.	(B)	Texturized-versions	of	these	scenes	using	our	grid	

of	orientation	and	spatial	frequencies	algorithm	(based	on	Oliva	&	Torralba,	2006).	(C)	Texturized-

versions	of	these	scenes	using	a	popular	algorithm	that	assumes	stationarity	(homogeneity),	by	Portilla	

and	SImoncelli	(2000).	You	can	see	that	the	algorithm	we	use,	which	is	considerably	simpler	and	retains	

fewer	image	features	than	the	Portilla	and	SImoncelli	algorithm,	nevertheless	preserves	spatial	layout	

information	better	than	the	Portilla	and	Simoncelli	algorithm	because	it	does	not	assume	spatial	

homogeneity	across	the	image	and	is	designed	as	a	model	of	scene	structure	rather	than	explicitly	as	a	

model	of	visual	texture.	

	

	

	


