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Mean-Variance Risk-Averse Optimal Control of Systems Governed by PDEs with
Random Parameter Fields Using Quadratic Approximations*
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Abstract. We present a method for optimal control of systems governed by partial differential equations (PDEs)
with uncertain parameter fields. We consider an objective function that involves the mean and
variance of the control objective, leading to a risk-averse optimal control problem. Conventional
numerical methods for optimization under uncertainty are prohibitive when applied to this problem.
To make the optimal control problem tractable, we invoke a quadratic Taylor series approximation
of the control objective with respect to the uncertain parameter field. This enables deriving explicit
expressions for the mean and variance of the control objective in terms of its gradients and Hessians
with respect to the uncertain parameter. The risk-averse optimal control problem is then formulated
as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs
defining these gradients and Hessians. The expressions for the mean and variance of the control
objective under the quadratic approximation involve the trace of the (preconditioned) Hessian and
are thus prohibitive to evaluate. To overcome this difficulty, we employ trace estimators, which only
require a modest number of Hessian-vector products. We illustrate our approach with two specific
problems: the control of a semilinear elliptic PDE with an uncertain boundary source term, and the
control of a linear elliptic PDE with an uncertain coefficient field. For the latter problem, we derive
adjoint-based expressions for efficient computation of the gradient of the risk-averse objective with
respect to the controls. Along with the quadratic approximation and trace estimation, this ensures
that the cost of computing the risk-averse objective and its gradient with respect to the control—
measured in the number of PDE solves—is independent of the (discretized) parameter and control
dimensions, and depends only on the number of random vectors employed in the trace estimation,
leading to an efficient quasi-Newton method for solving the optimal control problem. Finally, we
present a comprehensive numerical study of an optimal control problem for fluid flow in a porous
medium with an uncertain permeability field.
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1. Introduction. An important class of problems arising in engineering and science is
the optimization or optimal control of natural or engineered systems governed by partial
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differential equations (PDEs). Often, the PDE models of these systems are characterized by
parameters (or parameter functions) that are not known and are considered uncertain and
hence modeled as random variables. These parameters can appear, for example, as coefficients,
boundary data, initial conditions, or source terms. Consequently, optimization of such systems
should be done in a way that the computed optimal controls or designs are robust with respect
to the variability in the uncertain parameters.

Literature survey and challenges. There is a rich body of literature on theoretical and
computational aspects of optimal control of systems governed by PDEs [45, 25, 5, 9, 27] and
of optimization under uncertainty (OUU) [6, 40, 4, 41]. Recently there has been considerable
interest in solution methods for optimization problems lying at the intersection of these two
fields, namely, optimization problems governed by PDEs with uncertain parameters [10, 9, 11,
26, 28, 44, 29, 32, 31, 34, 30, 13, 33, 16]. To discuss the challenges of optimal control and, more
generally, optimization of systems governed by PDEs with uncertain parameters, we consider
a real-valued optimization objective O(z,m) that depends on a control variable z and an
uncertain parameter m, both of which can be finite- or infinite-dimensional. Throughout this
article we refer to ©(z,m) as the control objective. The evaluation of this control objective
requires the solution of a system of PDEs. Namely, O(z,m) := (:)(z, m,u) with u = §(z,m),
where § is a PDE solution operator. Here, we assumed that the system of PDEs admits
a unique solution u for every pair (z,m) of controls and parameters. This dependence of
© on the solution of a PDE makes the evaluation (and the computation of derivatives) of
© computationally expensive. The presence of uncertain parameters greatly compounds the
computational challenges of solving the PDE-constrained optimization problem.

In an OUU problem, it is natural to seek optimal controls z that make © small in an
average sense. For example, a risk-neutral optimal control approach seeks controls that solve

(1) mzin E{O(z,m)},

where E{-} denotes expectation over the uncertain parameter m. If we seek controls that, in
addition to minimizing the expected value of © with respect to m, result in a small uncertainty
in ©, we are led to risk-averse optimal control. In the present work, we use the variance of
the control objective as a risk measure and seek optimal controls that solve the problem

(2) min E{O(z,m)} + Var{©(z,m)}.

Here, Var{-} denotes the variance with respect to m, and > 0 is a risk-aversion parameter
that aims to penalize large variances of the control objective. This mean-variance formulation
is only one of several formulations for finding risk-averse optimal controls. Other examples
of more complex risk measures include the value at risk (VaR) and the conditional value at
risk (CVaR) [37, 41]. Compared to the mean-variance formulation, these approaches do not
symmetrically penalize the deviation of the quantity of interest around the mean, which is
desirable, for instance, in applications where the control objective models a loss. In [33], the
authors consider primal and dual formulations of a risk-averse PDE-constrained OUU problem
using CVaR. They employ and study smooth approximations of the primal formulation to
enable the application of derivative-based optimization methods to the CVaR objective, and
rely on quadrature-based discretizations in the discretized parameter space.
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To illustrate the main computational challenges involved in OUU problems, let us con-
sider the (simpler) risk-neutral problem. A common approach to cope with the expectation
in the objective function uses sampling over the random parameter space, E{O(z,m)} =~
Yo wiO(z,m;), where {m;}" , is a sample set, and w; are sample weights. In the context of
PDE-constrained OUU, evaluation of ©(z, m;) requires solving the PDE problem u; = S(z, m;)
for each sample point m;. The sample set {m;}! ; is chosen either by Monte Carlo sampling,
where each m; is a draw from the distribution law of m (and w; = 1/n for every i), or, for a
suitably low-dimensional parameter space, is based on quadrature rules (and w; are quadrature
weights). The Monte Carlo-based approach, sometimes referred to as sample average approx-
imation (SAA), is computationally prohibitive for OUU problems governed by PDEs. This
is due to the slow convergence of Monte Carlo and the resulting large number of PDE solves
for each evaluation of the expectation. Quadrature-based methods, obtained from tensoriza-
tion of one-dimensional quadrature rules, use the regularity of ©(z, m) with respect to m and
can accelerate convergence, but they suffer from the curse of dimensionality—the exponential
growth of the number of quadrature points as the dimension increases. The use of sparse
quadrature [42] can mitigate but not overcome the curse of dimensionality. Quadrature-based
methods can be improved significantly by using adaptive sparse grids (see, e.g., [32, 9, 31], in
which adaptive sparse grids are employed to solve OUU problems); however, these approaches
are still computationally expensive for problems with parameter dimensions on the order of
hundreds or thousands. Another class of methods for OUU problems are stochastic approx-
imation (SA) methods [36, 24, 22, 39]. Similar to methods based on SAA, SA methods are
computationally intractable for PDE-constrained OUU problems with high-dimensional pa-
rameters due to their slow convergence and the resulting need for a prohibitively large number
of PDE solves.

Approach. We consider an uncertain parameter m that is modeled with a random field,
which can also be viewed as a function-valued random variable. In the uncertainty quan-
tification literature, it is a common to use an a priori dimension reduction provided by a
truncated Karhunen—Loeéve (KL) decomposition for such problems. However, KL, modes that
appear unimportant in simulating the random process may turn out to be important to the
control objective. Moreover, a priori truncation of the KL, expansion of a random field is most
useful if the eigenvalues of the covariance operator (of the uncertain parameter) exhibit rapid
decay. This is not always the case, for example, in the presence of small correlation lengths;
in such cases, an a priori truncation needs to retain a large number of KL modes. We do not
follow such approaches, to avoid bias introduced by the truncated KL expansion. Instead,
we seek formulations that preserve the problem’s infinite-dimensional character and work in
an infinite-dimensional setting as long as possible. Moreover, we aim to devise algorithms
whose computational complexity, measured in the number of PDE solves, is independent of
the discretized parameter dimension.

In the present work, we employ quadratic approximations of the parameter-to-objective
map, m +— ©O(-,m), to render the computation of the control objective and its gradient (as
necessitated by a gradient-based optimization method) tractable. Related approaches for
OUU with finite-dimensional uncertain parameters and inexpensive-to-evaluate (compared to
problems governed by PDEs) control objectives are used in [18, 17]. More generally, linear
or quadratic expansions with respect to uncertain finite-dimensional parameters have also
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been used for robust (finite-dimensional) optimization and reliability methods in engineering
applications; we refer the reader to, e.g., [21, 35]. Using this approach, we can compute the
moments of the first- and second-order Taylor expansions of ©(z, m) analytically. For optimal
control problems with infinite-dimensional parameters, computation of the derivatives with
respect to the uncertain parameters and the controls is prohibitive using the direct sensitivity
approach (or finite differences). Instead, we employ adjoint methods to avoid dependence on
the dimension of the discretized parameter field. Our formulation is particularized to two
model problems: the control of a semilinear elliptic PDE with an uncertain boundary source
term, and the control of a linear elliptic PDE with an uncertain coefficient field. The latter is
motivated by industrial problems involving the optimal control of flows in porous media.

As we will see, using the quadratic approximation of m +— ©(-,m) results in an OUU
objective function that involves traces of operators that depend on the Hessian of this mapping.
Since direct computation of these traces is prohibitive for high-dimensional problems (explicit
computation of the Hessian requires as many PDE solves as there are parameters), we use
trace estimation based either on random vectors or on eigenvectors of the (preconditioned)
Hessian at a nominal control. This only requires the action of the Hessian on vectors and is
thus well suited for control problems governed by systems of PDEs.

Contributions. The main contributions of this work are as follows: (1) For an uncertain
parameter field that follows a Gaussian distribution law, we derive analytic expressions for
the mean and variance of a quadratic approximation to the parameter-to-objective map in
infinite dimensions. These results are the basis for developing an efficient OUU approach that
extends the work in [17] to a method suitable for large-scale PDE-constrained OUU problems.
(2) We propose a formulation of the risk-averse OUU problem as a PDE-constrained optimiza-
tion problem, with the constraints given by the PDEs defining the adjoint-based expression
for the gradient ©,, and the linear action of the Hessian ©,,,, of the parameter-to-objective
map. Our method ensures that the cost of computing the risk-averse objective and its gra-
dient with respect to the control—measured in the number of PDE solves—is independent
of the (discretized) parameter and control dimensions, and depends only on the number of
random vectors used in the trace estimation. (3) We fully elaborate our approach for the
risk-averse control of an elliptic PDE with uncertain coefficient field and, in particular, derive
the adjoint-based gradient of the control objective with respect to the control. We numerically
study various aspects of our risk-aversion measure and of the efficiency of the method. The
results show the effectiveness of our approach in computing risk-averse optimal controls in a
problem with a 3,000-dimensional discretized parameter space.

Limitations. We also remark on limitations of our method. (1) Since we rely on approxima-
tions based on Taylor expansions, our arguments require smoothness (and proper boundedness
of the derivatives) of the parameter-to-objective map. For the mean-variance formulation used
here, this smoothness mainly depends on the governing PDEs and how the parameter enters
these PDEs. (2) Compared to sampling-based methods, our approach requires first and sec-
ond derivatives of O(z,m) with respect to m, and thus appropriate adjoint solvers for the
efficient computation of these derivatives. However, efficient methods for the solution of op-
timal control problems governed by PDEs will require adjoint-based derivatives with respect
to the control; only minor modifications are needed to obtain derivatives with respect to the
uncertain parameters. (3) Our derivation of the mean and variance of the quadratic approx-
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imation to the parameter-to-objective map assumes that the parameter space is a Hilbert
space, say ¢, and that O(z,-) is defined and has the required derivatives in J#. As such, our
framework does not apply to cases where the parameter space is a general Banach space. Even
when we consider a Hilbert space J# of uncertain parameters, O(z, m) may not be defined
for every m in 2 and have derivatives that are bounded in 47, in which case the expressions
for the mean and variance could be used only formally to obtain an objective function for a
risk-averse OUU problem. This is the case for the linear elliptic PDE problem with uncer-
tain coefficient field, where the parameter-to-objective map is defined and has the required
smoothness only in a subspace that has full measure. In section 3.3, we discuss such issues
further and give conditions that ensure that the expressions for the mean and variance are
well defined. Extensions to more general cases will be a subject of our future work.

2. Preliminaries. We let 7 be an infinite-dimensional real separable Hilbert space en-
dowed with an inner product (-,-) and induced norm ||-|[* = (-,-). We consider uncertain
parameters that are modeled as spatially distributed random processes, which can be viewed
as function-valued random variables. Let m denote such an uncertain parameter. We assume
that the distribution law of m, which we denote by u, is supported on ¢ and consider m
as an J¢-valued random variable. That is, m is a function, m : (Q, X, P) — (4, B()),
where 2 is a sample space, X is an appropriate sigma-algebra, and P is a probability measure;
here, A(#) denotes the Borel sigma-algebra on 7. In what follows, with a slight abuse of
notation, we denote the realizations of the uncertain parameter using the same symbol m.

As is common practice, instead of working on the abstract probability space (2, F, P),
we work in the image space (€, B(), ), where p is the law of m, and use E{¢(m)} =
[y #(m)p(dm) for an integrable function ¢ : # — R. As mentioned in the introduction,
we assume that m has a Gaussian probability law, u = N (m,C). Here, C is a self-adjoint,
positive trace class operator, and thus p defines a Gaussian measure on J7.

We denote by 2,4 the set of admissible controls, which is a closed convex subset of L?(D),
where D C R? is a bounded open set with piecewise smooth boundary. We consider the
control objective © as a real-valued function defined on 2,4 x 7. We refer to the mapping
m +— O(-,m) as the parameter-to-objective map. For normed linear spaces 2~ and % we
denote by L(Z", %) the space of bounded linear transformations from 2" to ¢, and by £(.Z")
the space of bounded linear operators on 2. For a Hilbert space %, we use Lgym () to
denote the subspace of L(.¢) consisting of self-adjoint linear operators.

2.1. Linear and quadratic expansions. Recall that for a function f: 2 — R, where 2~
is a Banach space, existence of first and second Fréchet derivatives at m € 2~ implies that

3) f(m) = f(m) + f'(m)[m —m] + %f”(m)[m —m,m —m] +of|lm — %),

with f/(m) € Z7* and f"(m) € L(Z", Z*). In the following, we consider the case where 2
is a Hilbert space ¢, and hence the derivatives admit Riesz representers in .77.

Next, we consider the control objective, © : Z,q x J# — R, and assume for an arbi-
trary control, z € Z,4, existence of first and second Fréchet derivatives for the parameter-to-
objective map m — O(z,m) at m € . Consider the linear and quadratic approximations of
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the parameter-to-objective map:
(4) elin<zvm) :@(z,m)+<®m(z,m),m—m>,

(5) Oquad(2,m) = O(2,m) + (Op (2, M), m — M) + = (Omm(z,m)(m —m), m —m).

Notice that for clarity, we denote first and second derivatives of @ with respect to m by ©,,
and O, respectively. In this paper, we mainly use the quadratic approximation ©qyaq-

Using these approximations rather than the exact parameter-to-objective map O(z,m)
enables one to analytically compute the moments appearing in the objective function of the
(approximate) risk-averse OUU problem. This computation is facilitated by the fact that m
has a Gaussian distribution law. Note also that the accuracy of such linear and quadratic
approximations, considered in an average sense, can be related to the variance of the uncertain
parameter. In section 3, where we derive analytic expressions for the mean and variance of the
local quadratic approximation to O(z,m), we also describe how the variance of m is related
to the expected value of the truncation error in the quadratic approximation.

2.2. Probability measures on .77°. Here we recall basics regarding Borel probability mea-
sures, and Gaussian measures on infinite-dimensional Hilbert spaces. Let p be a Borel prob-
ability measure on # with finite first and second moments. The mean a of p is an element
of J¢ such that

/ (5. b) u(ds) = (a,b) for all b€ 2.
4

The covariance operator C of u is a positive self-adjoint trace-class operator that satisfies
/ (a,s —a)(b,s — a) u(ds) = (Ca,b) for all a,b € .

It is straightforward to show that [, ||s — a||? p(ds) = Tr(C), where Tr(C) denotes the trace
of the (positive self-adjoint) operator C; see, e.g., [14, p. 8]. Note also that

(©) | s =@ utds) = o).
A
One can also show (see, e.g., [1, Lemma 1]) that for a bounded linear operator K : 5 — 2,
(7) / (K(s — a), s — a) u(ds) = Tr(KC) = Tr(CY/2KCH?).
H

Now consider the case where the measure p is a Gaussian, p = N(a,C), where C is a
positive, self-adjoint, trace-class operator. The mean a is assumed to belong to the Cameron—
Martin space & := Im(C'/?). The Cameron-Martin space is a dense subspace of .7 and is a
Hilbert space endowed with the inner product (-, ), := <C71/2-, C71/2-> [15]. While the space
& is dense in S, it is in some sense very “thin”; more precisely, (&) = 0.

We follow the construction in [12] and define a Gaussian measure j on J# = L%(D), where
D is a bounded domain with piecewise smooth boundary, as follows: define the covariance
operator as the inverse of the square of a Laplacian-like operator,

(8) C=(-rA+al)?= A7,
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where k, > 0, and the domain of A is given by D(A) = {u € H*(D) : Vu-n =0 on dD}.
Here, H%(D) is the Sobolev space of L?(D) functions with square integrable first and second
weak derivatives, and n is the unit outward normal for the boundary 0D. This construction
of the operator C ensures that it is positive, self-adjoint, and of trace-class, and thus the
Gaussian measure p = N (a,C) on S is well-defined. A Gaussian random field whose law is
given by such a Gaussian measure has almost surely continuous realizations [43].

As we saw in (7), given a Borel probability measure on . with bounded first and second
moments, we can obtain a simple expression for the first moment of a quadratic form on 7.
If p is a Gaussian measure N (a,C) on ., we can also compute the second moment of a
quadratic form (see Remark 1.2.9 in [15]). In particular, if we let K be a self-adjoint bounded
linear operator on ¢, then

9) / (K(s—a),s —a)* u(ds) = 2Tr[(cl/2/ccl/2)2] 4 Tr(CY2KCH?)2,
H

3. Risk-averse OUU with quadratic approximation of the parameter-to-objective map.
As discussed above, we consider a control objective © = O(z, m), where m has a Gaussian dis-
tribution law . = A (m,C). In section 3.1, we analytically derive the moments of the quadratic
approximation Oguaq of ©. We discuss the approximation errors due to this approximation
by studying the expected value of the remainder term in the Taylor expansion. In section 3.2,
using the expressions for the moments of the quadratic approximation, we formulate the op-
timization problem for finding risk-averse optimal controls. Extensions of our OUU approach
to problems where ©(z,m) is defined only in a subspace of J# are discussed in section 3.3.

3.1. Quadratic approximation to a function of a Gaussian random variable. In this
section, we compute mean and variance of Oguaq defined in (5) in the infinite-dimensional
Hilbert space setting. The following arguments are pointwise in the control z € %4, and
hence, for notational convenience, we suppress the dependence of © on z. We begin by
establishing the following technical result.

Lemma 3.1. Let p = N(a,C) be a Gaussian measure on J, let b € A be fized, and let K
be a bounded linear operator on €. Then

/ (b, s — @) (K(s — @), s — a)pu(ds) = 0.
.

Proof. Without loss of generality, we assume a = 0. Let {e;}5° be an orthonormal basis of
eigenvectors of C with corresponding positive eigenvalues {A;}7°. By mn(s) = 3°7_; (s, ¢j)e;
we denote the orthogonal projection onto the span of the first n eigenvectors. Observe
that (b, s)(Ks,s) = limy, 00 (b, mn(s)) (Kmn(s), mn(s)) and that [(b, m,(s))(Kmn(s), m(s))] <
1| 118]] [|s]|*. Since P ||s||®> w(ds) < oo, we can apply the Lebesgue dominated convergence
theorem to obtain

/ (b, $)(Ks, ) p(ds) = Tm [ (b, () {Kma(s), ma(s)) p(ds)
H H

n—oo
n

= lim Z (b, ei)(Kej, ex) /}f (s,€i)(s,ej)(s,exr) p(ds) =0,

n—oo 4
i,5,k=1
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where in the last step we used that the random n-vector Y : 7 — R"™ defined by Y (s) =

((s,e1), (s, €2),...,(s,en)) is an n-variate Gaussian whose distribution law is po Y ! =
N(0,diag(A1,...,\,)). Note that we also use the result (see, e.g., [46]) that for a mean
zero n-variate normal random vector Y, E{Y,,Y,,Ya,} = 0 for a1, a9, a3 € {1,...,n}. [ ]

3.1.1. Mean and variance of the quadratic approximation. Next, we derive expressions
for the mean and variance of ©gyuaq in the infinite-dimensional Hilbert space setting.

Proposition 3.2. Let © : (€, 8(7),n) — (R,AR)) be a function that is twice dif-
ferentiable at m € I, with gradient ©,,(m) € H and Hessian H(m) € Lsym (). Let
Oquad : (JC, B(H), 1) — (R, B(R)) be as defined in (5). Then

(10) E{Oquad} = O(m) + %Tr [CY20 m (m)CH?]

(1) Var{®uuad} = (O (), C[O(m)]) + %ﬁ[(clﬂ@mm(m)clﬂ)ﬂ.
Proof. The first statement follows from

E{Oquua} = /ﬂ Oauaa(m)p(dm) = O) + 5 [ (©,ii)(m = ), m = ) ()

—o(m) + %Tr [Omm(m)C] = O(m) + %Tr (€120, (R)CH2).

To derive the expression for the variance, first note that the variance of ©gyaq(m) equals
the variance of Oguad(m) — ©(m). Thus,

(12) Var{Oquad} = E{(Oquad(m) — ©(m))?} — E{Oquaa(m) — O(m)}*.

The first term on the right-hand side is given by

E{(@quad(m) - @(m))Q} =E {(<@m(m)a m — m)> + %<@mm(m)(m - m)v m — m>)2}

= B{(@n(m),m — )} + 1 B {{Onm(m)(m —m), m — m)?}
+E {<@m( T )vm - m)><@mm(m)(m - TTL), m— m)}
= (Om(),C[Om(M)]) + iTr (€20 mm(m)c?] + %Tr[(cm@mm(m)cl/ Rt

This, along with E{Oqyaa(m) — ©(m)} = 1 Tr(C'/20,,,C'/?) and (12), finishes the proof. M

Note that the expressions for the mean and variance of the linear approximation O,
defined in (4) consist of only the first terms in (10) and (11), respectively. We also point
out an intuitive interpretation of the covariance-preconditioned Hessian, C1/20,,,,C/2, in the
expressions for the mean and variance in (10) and (11). As the Hessian ©,,,, only appears
preconditioned by the covariance C, the second-order contributions to the expectation and the
variance are large only if the dominating eigenvector directions of C and O, are “similar.”
More precisely, the eigenvectors of C that correspond to large eigenvalues (i.e., directions of
large uncertainty) only have a significant influence on the mean and variance if these directions
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are also important for the Hessian of the prediction. Conversely, important directions for the
prediction Hessian only result in significant contributions to the second-order approximation
of mean and variance if the uncertainty in these directions is significant.

We point out that while the Gaussian assumption on the distribution law of m is required
for derivation of the expression for Var{©yuaq} in Proposition 3.2, the expression for E{Oguad }
can be derived without this assumption. Namely, it holds if the law of m is any Borel proba-
bility measure on 5# with bounded first and second moments. These assumptions on the law
of m are also sufficient for deriving the expressions for the mean and variance of Oy,

E{Oin} = 0(m), Var{Oun} = (Om(m),C[On(m)]).

Here, the expression for the mean is immediate, and the one for variance follows from (6).

3.1.2. Expected value of the truncation error. Next, we discuss the error due to replacing
© by the quadratic approximation ©gyaq. Assuming sufficient smoothness and boundedness
of the derivatives of O, we study the expected value of the truncation error as the uncertainty
in the parameter m decreases; i.e., we consider N (m,eC), where ¢ > 0 approaches zero. To
gain intuition, consider the case when the covariance operator is such that parameter draws
m have a high probability of being close to the mean m, where the quadratic approximation
is more accurate. In this case, we can expect the truncation error to be small.

To derive a quantitative estimate, we assume that © is three times continuously differen-
tiable such that the remainder term in the quadratic expansion (3) has the form

_ 1 _ _ _
(13) R(m;m) := ©(m) — Oquaa(m) = g@(?’) (©[m —m,m —m,m —m].
Here, ©®) denotes the third derivative with respect to m at &, which is an element of the
line segment between m and m. Note that this and the following considerations are pointwise
in the control variable z. We are interested in the expectation value of the remainder term,
which we will relate to Tr(C), the average variance of m.

Assuming ©(®) is a uniformly bounded trilinear map, i.e., for all € € 7, |0®) (&)[u, v, w]| <
K ||u| [|v]| [Jw|| for all u,v,w € F, we obtain

(14) / (R(m; m)| u(dm) < K / I —mlf? p(dm) = K / e — | [fm — ]| u(dm)
T I I
1/2 \ 1/2
<K ( [ =l u(dm)) ( [ =i M(dm)> |
H H
Next, recall that [, ||m — m||* u(dm) = Tr(C). Moreover, using (9) with K = I, we have
(15) / Im — ml|* p(dm) = 2Tx(C2) + Tr(C)? < 3Tx(C)?,
H
where we have also used Tr(C?) < Tr(C)?. Therefore, using (14) and (15), we have

/f | R(m;m)| p(dm) < VBKTr(C)*?,
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Now, if we consider a family of laws p. = N (m,eC), € > 0, for m, then the expected value of
the remainder (13) is O(e%/?), as € — 0. This should be contrasted with the expected value
of the remainder term for the linear expansion, which can be shown to be O(¢e). Note that if
O is cubic, the third derivative ©®) is constant, and the expectation over the remainder term
vanishes since m follows a Gaussian distribution that is symmetric with respect to its mean.

The above argument regarding the expected value of the remainder in a Taylor expansion
can be generalized for higher order expansions; see Appendix A.

3.2. The OUU objective function. We can now give the explicit form for the objective
function for the risk-averse OUU problem (2), in which we use ©quaq rather than ©; using
(10) and (11), we consider the following expression for the OUU objective function:

1

O(z,m) + 5 Tr [C120m (2, m)C/?]
(16)
1

+ 5 { Omlzm), ClOm(z ) + ST [(€2Omm(zm)C 2] |+ 2 21

Note that we have also added the control cost 3 |2]|? in (16). The numerical computation
of operator traces appearing in the expressions for the mean and variance of the quadratic
approximation is expensive and can be prohibitive for inverse problems governed by PDEs.
Hence, we employ approximations obtained by randomized trace estimators [3, 38], which
require only the application of the operator to (random) vectors and provide reasonably accu-
rate trace estimates using a small number ny, of trace estimator vectors (see also [2, Appendix
A] for a result on an infinite-dimensional Gaussian trace estimator). Trace estimation for

Tr(CY20,mmC/?) and Tr[(C'/?0,,C1/?)?] amounts to

Ntr

1
TI‘(Cl/2@mmcl/2) ~ nf Z <Cj7 @mm<j>)

tr

(17) =
1 tr
1/2 1/2y2] o ) A
Tr |:(C @mmC ) } Ny jz_; <®mm<]7c[@mmC]]>a
where (j, j € {1,...,ny} are draws from the measure v = N(0,C). This form of the trace

estimators is justified by the identities
| @m0 r(de) =15(C 00 C ), [ (O ClOmnC]) A =T [(€20,nC 2]

Replacing the operator traces in the OUU objective function (16) using trace estimators results
in the OUU objective function

Ntr

1

J(z) :=0(z,m) + e Z (G, 4)
(18&) o 1 Nty
5 1 On(zm).ClOmGm) + 5D (.00 45 4P,

j=1



1176 A. ALEXANDERIAN, N. PETRA, G. STADLER, AND O. GHATTAS

where for j € {1,...,n4},
(18b) ¢j = @mm(zam)gjﬁ Cj ~ N(O,C) .

As an alternative to the randomized estimator in (17), we can use

Tr(C20mmC?) m >~ (w), Ommw;),  Tr[(CV20mmC )] &> (Ommw), C[Ommw;]),
j=1 j=1

where w; = C 1 QU]', {v; };?‘;0 is an orthonormal basis of .7Z, and ny, is an appropriate trunca-
tion level. One possibility is to choose v;, j € {1,...,n¢} as the dominant eigenvectors of
C'/20,m (11, 20)C/?, where z is a nominal control variable. Since in many applications the
operator C/20,,,C'/? has a rapidly decaying spectrum, nt, can be chosen small. While such
an estimator is tailored to the Hessian evaluated at zg, we have observed it to perform well
for values of the control variable in a neighborhood of z5. We will demonstrate the utility of
this approach in our computational results.

Note that the existence of minimizers for J(z) (as well as (16)) depends on the control
space and on properties of ©,, and O,,,,, and must be argued on a case-by-case basis.

3.3. Extensions. In some applications, the control objective ©(z, m) might be defined
only for m in a Banach subspace & C J with u(2) = 1. Let (Z,]]||4) be such a
subspace, and recall that since the Cameron—Martin space & is compactly embedded in all
subspaces of . that have full measure [43], & is compactly embedded in 2°. Moreover,
when using quadratic approximations, we need derivatives at m € &. It is thus reasonable to
require existence of derivatives only in the Cameron—Martin space. In such cases, one might
be tempted to consider the restriction of © to the Cameron—Martin space & and use

(19)  ©(m) ~ O(m) + (O (1), m — i) g e + %(@mm(m)(m ), m = ) g, M E E.

Here (-,-) .6~ denotes the duality pairing between & and its dual &, and O (m) € & and
Omm(m) € L(&, &) are the gradient and Hessian of ©(m) at m = m, respectively. Note that
we have suppressed the dependence of © on z.

The definition (19), however, is not meaningful from a measure-theoretic point of view, as
& has measure zero. A possible remedy is to define a bounded and self-adjoint linear operator
S®: # — & and to consider the composition ©%(m) := ©(S%m). One possibility is to choose
S%:= (I +6C~Y?)~1, in which case the smoothing is controlled by 6 > 0. The gradient and
Hessian of ©%(-) are now given by

00 (m) = 8°0,,(8%n) e s, O, (m) = 80, (S°m)S° € L(HA).

This way, one might consider the local quadratic approximation

Ofuaa (m) = ©°(m) + (07, (M), m — m) + %@fnm(m)(m —m),m—m), mex.

This construction allows us to consider control objectives that are defined only on & to be
extended to .# via the mapping ©°. Then the Hilbert space formulation of the risk-averse
OUU with quadratic approximations, developed in earlier sections, can be applied.



RISK-AVERSE OPTIMAL CONTROL UNDER UNCERTAINTY 1177

Another case where the Hilbert space theory needs extension is when © is defined on a
Banach subspace 2 of full measure, and thus its gradient and Hessian belong to 2™ and
L(Z, X)), respectively. For example, in the control problem governed by a linear elliptic PDE
with an uncertain coefficient, discussed in section 5, the space 2" = C(D) plays such a role
(it is known [43, 19] that due to our choice of the covariance operator C, u(.27) = 1). In this
case, we show that the expressions for the mean and variance of the quadratic approximation
continue—under appropriate assumptions—to be well-defined.

Now, the gradient 0,,(m) € 2 C &*, and thus (0,,(m),C[O,(m)]), can be interpreted
as a duality product, i.e., the linear action of O,,(m) € &* on C[©,,(m)] € &. Here we have
used that for the covariance operator C defined above, we have C1/2 : &* — &.

Next, considering the expressions (10) and (11) for mean and variance, it remains to
specify conditions that ensure that the operator C/ 20,m(m)C 1/2 i trace-class on 2.

Proposition 3.3. Let C be the covariance operator as defined in section 2.2. Assume that
Omm(m) € L(Z, Z*) restricted to & is a bounded linear operator on (&, |||s). Then the
operator (?1/2@7,17,1(770(31/2 18 a trace-class operator on .

Proof. Tt is straightforward to see that CY/20,,m, (m)CY/2 € L(H). Tt remains to show that
C1/20, (1)CY/? is trace-class. Let {e; }521 be the complete orthonormal set of eigenvectors
of C, with corresponding (positive) eigenvalues {A;}32,. We note that for u,v € 7, (u,v) =

<C1/2u,01/2v>g. Therefore, for each j > 1, we can write

(€5:C*0mm()CH2e; ) = (€261, COMm(MIC2e;) < [Omm(m)I|IC/2Ces |2
= [1®mm (m) [ |Cejl llejll = Omm (M) A;-

&

Therefore, Zj <ej,C1/2@mm(m)Cl/2€j> < |1®mm(m) || Zj Aj < o0 u

4. Control of a semilinear elliptic PDE with uncertain Neumann boundary data. We
first illustrate our approach for the optimal control of a semilinear elliptic PDE with uncertain
Neumann boundary data and a right-hand side control. In this problem, the nonlinearity
in the governing PDE is the sole reason why the quadratic approximation Oguad(:) of the
objective is not exact. Below, we present and discuss the optimization formulation for this
PDE-constrained OUU problem.

We assume a bounded domain D C R? with boundary split into disjoint parts Iy and Ip,
and we consider the semilinear elliptic equation

—Au+cud =z in D,
(20) u=0 on Ip,
Vu-n=m on Iy.

Here, ¢ > 0, z € Lo(D) is the control, and the uncertain parameter is m € L?(Iy), distributed
according to the law p = N(m,C) with mean m and covariance operator C. Due to the
monotonicity of the nonlinear term, the state equation (20) has a unique solution for every
Neumann data m and every z € Ly(D) [20].
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We consider a control objective of tracking type as follows:
1
(21) Oz, m) = 3w~ ual’®

where ug € L*(D) is a given desired state. It is straightforward to show that the solution u
of (20) satisfies the estimate |[ul| y1p) < K(||2[2(p) + [Iml f2(ry,)) for a constant K = K (D).
Hence, since m has moments of all orders, it follows that the state variable u = wu(z,m)
also has moments of all orders for every z € L?(D). This in particular implies the existence
of the first and second moments of the control objective ©(z,m) for every z. Therefore, a
mean-variance risk-averse OUU objective function is well-defined.

To derive the quadratic approximation of (21) with respect to m at the mean m, we
compute, for fixed control z, the gradient and Hessian of © with respect to m. The gradient of
© with respect to m is ©,,(m) = —pjr, , where u satisfies (20) with m = m (the corresponding
state is denoted by ), and p satisfies the adjoint equation

—Ap+ 3ci’p = — (1 — ug) in D,

(22) =0 on Ip,
Vp-n=20 on Iy.
The second derivative at m evaluated in a direction 1 is given by ©,,,, (M) (1) = —pp,, where

p solves the incremental adjoint equation

—Ap+ 3ci*p = —(6cup + 1)@ in D,

(23) p=20 on Ip,
Vp-n=0 on Iy,
and @ the incremental state equation
—AU+3ci?ti=0 in D,
(24) =0 on Ip,
Vi-n=m on Ijy.

We now show that ©,m(m) : m = —pjp, is bounded as a mapping from La(Iy) — La(Iy).
From (24) it follows that |[i[|g1(py < [l72]|. To estimate the H~1(D)-norm of the right-hand
side in (23), we consider an arbitrary v € H' (D). Using Holder’s inequality and the continuous
embedding of H(D) in L*(D), we obtain

/D(chp+ Dawdz < ||6cup + 1[||av]| < (e1 + eallll pap) Pl a(py) 1l Lao) 0]l 1 (o)

< cslldll gm0l 71y
where the constants c1, co, c3 do not depend on @ or v. This shows that the H~!(D)-norm of
the right-hand side in (24) is bounded by ||| g1(p). Hence, with constants cy, c5, cg,
10 2 () < callBllanpy < esllil gy < csllmllpz ),

which proves the boundedness of ©,,,,. Thus, the OUU objective function (16), specialized to
the present example, with the gradient and Hessian operators ©,,(m) and ©,,,,(m) defined
above, is well-defined and conforms to the theory outlined in sections 3.1-3.2.
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5. Control of an elliptic PDE with an uncertain coefficient. Motivated by problems
involving the optimal control of flows in porous media, we consider the optimal control of a
linear elliptic PDE with an uncertain coefficient field. We discuss this application numerically
in section 6, where we consider control of fluid injection into the subsurface at injection wells.
In this section, we describe the control objective and the PDE-constrained objective function
for the risk-averse OUU problem, and derive the adjoint-based expressions for the gradient
of the OUU objective function. This is an example of a problem in which the parameter-to-
objective map is defined only on a Banach subspace of 7 that has full measure. We thus
use the expressions for the mean and variance of the quadratic approximation, developed in a
Hilbert space setting in section 3, formally, to define the objective function for the risk-averse
optimal control problem.

We begin by describing the state (forward) equation. On an open bounded and sufficiently
smooth domain D C R", n € {1,2,3} with boundary 9D, we consider the following elliptic
partial differential equation:

-V -(e"Vu)=b+Fz inD,
(25) u=g on Ip,
e"Vu-n=20 on Iy.

Here, the boundary is split into disjoint parts Ip and Iy on which we impose Dirichlet and
Neumann boundary conditions, respectively. The Dirichlet data is g € H'/ 2(Ip), m denotes
the unit-length outward normal for the boundary 9D, and for simplicity we have considered
homogeneous Neumann conditions. We assume that the right-hand side is specified as F'z+ b,
where F : L?(D) — L?(D) is a bounded linear transformation and b € L?(D) is a distributed
source per unit volume.

We consider the weak form of (25), i.e., we seek solutions u € ¥ := {v € H*(D) : v’FD =g}
that satisfy

(26) (e™Vu,Vv) — (b+ Fz,0) =0 forallve ¥ :={ve H(D): U‘FD = 0}.

We consider the case where the log-permeability, m, is uncertain and is modeled as a spatially

distributed random field; see also [19, 7]. The realizations of m belong to the Hilbert space

A = L*(D), and we assume m is distributed according to a Gaussian with covariance operator

C and mean m € & C J€, where & is the Cameron—Martin space associated with the Gaussian

measure p. With our choice of the covariance operator, u(2) = 1 with 2" = C(D) C .
We consider the following tracking-type control objective ©(z, m):

(27) O(z,m) = 3 1 Qu(z,m) —al

where u = u(z,m) solves the weak form of the state equation (26), Q : L?(D) — RY is a
bounded linear operator, and q € RY is given. Notice that this control objective is defined
for every m € 2, i.e., almost surely. It is also possible to prove boundedness of moments
of ||ul| 5-, which, in particular, ensures that a mean-variance risk-averse OUU objective based
on (27) is well-defined. Compared to the problem discussed in section 4, here the proof of
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boundedness of moments of ||| ,- is more involved (see [19, Example 2.15]) and requires the
use of Fernique’s theorem [23].

For fixed parameter m and control z, the gradient of the parameter-to-objective map can
be computed with a standard variational calculus approach (see, e.g., [8]). In particular, at
m = m, the gradient ©,,(m) € 2™ is given by

(28) O (m) =e™Vu - Vp,

where u is the solution to the state equation, and p solves the adjoint equation, i.e., p € ¥,
and satisfies

(29) (e™Vp,Vp) = —(Q*(Qu—q),p) forallpe¥.
Similarly, the action of the Hessian, ©,,,,(m) in a direction ¢ € J#, can be expressed as
(30) Omm (M) =e™((Vu -Vp+V -Vp+Vu-V ),

where u and p are the state and adjoint variables computed with a given control z at m = m.
The variables and , which we refer to as the incremental state and adjoint variables, are
obtained by solving the following incremental state and adjoint equations:

(31a) (e"V V) =—(¢e"Vu, V") forall "€,
(31b) (e"V ,V7)=—(Q"Q ,7) = (¢"Vp, V™) forall ~e¥.
Note that (28) and (30) for ©,, and ©,,,, require that the state and adjoint equations (25)

and (29), as well as their incremental variants (31), are satisfied. Thus, in the formulation of
the OUU objective function (18a), these equations must be enforced as constraints.

5.1. The OUU problem for (25). Here we summarize the formulation of the OUU prob-
lem, which uses a quadratic approximation of © defined in (27):

Ntr

1
131615«7(2) *HQu—qHz ST ]Z@aa%)

(32&) Ntr
454 (Onlm).Clou sCs) o I,
] 1
where for j =1,...,ny,
(32b) O (M) =™ Vu - Vp,
(32¢) by =e"(GVu-Vp+V ;- Vp+Vu-V ),

and the variables (u,p,{ ;},{ j}) € ¥?x (¥™)2 which can be considered the state variables
of the OUU problem, solve

(32d) (e"Vu, Vi) = (b+ Fz, a) for all w € ¥,
(32e¢) (e™Vp,Vp) = *(Qu—q),p) forallpe 7,
(32f) <emV i )= —<C] e™Vu, V™) for all ~ € 7,
(32g) < s > =—(Q'Q ;,7)— <CjemVp, ~> forall e V.
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5.2. Evaluation and gradient computation of the OUU objective function. Solving the
PDE-constrained optimization problem (32) efficiently requires gradient-based optimization
methods. To compute the gradient of J with respect to z, we follow a Lagrangian approach
and employ adjoint variables (i.e., Lagrange multipliers) to enforce the PDE constraints (32d)—
(32g). The details of the derivation of the gradient are relegated to Appendix B. The expression
for the gradient, in a direction Z, takes the form

(33) G(2)2 = ~(z,2) — (Fz,u*), %€ L*D),

where u* is obtained by solving the following system of equations for the OUU adjoint variables

(whp* {3 3N € V2 x (1

(34a) (emV §,V~>=<b§j), >

(340) (@ 59+ (20 5 =(, ),

(34c) (e™Vp*, Vi) + > (e™V 5, V)= (b3, p),
7j=1

(34d) (e™Vur, Vi) + (Q°Qp*, i) + > ((e™V 5, Vi) = (by, @)
j=1

for all (@,p, ", ") € ¥*, with {bgj)}?;rl, {b(J)}’Jml, b3, and by given by

N 1 _ B _ 5
(40,7} =~ [ e 97 g9 ).
<bgj)a ~> =- 2:% <CJ7 "V’ VP> + 7< Ve VP7C¢J>]
r =1

Ntr
Nty

<b4,ﬂ>:—[<Q*(Qu—_ +—Z<cj, (¢Va-Vp+Va-V ;)

+ <emV1~l, . vp,C[Gm(m)]>

Ntr

> (™ Vi Vp+ ViV j),c¢j>] :

J=1

+

2ntr

Next, we count the number of PDE solves required for the evaluation of the objective function
(32a) and of its gradient (33). Although in the present example, the application of C requires
PDE solves that are similar to those in the state and adjoint equations, we do not include
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them in our counting since (1) the matrix in C does not change, and thus a sparse factorization
or multigrid solver can be set up up front, and (2) we aim at problems where the state (and
thus the adjoint) equation is more complex than in the present case, and thus its solution
dominates the application of C.

Hence, the number of forward-like PDE solves (i.e., the state equations, the adjoint
equation, and incremental equations) required for evaluating the objective function (32a) is
2+ 2 x ny;. The gradient evaluation requires another 2 + 2 x ny, PDE solves. Thus, 4+ 4 X ny,
PDE solves are necessary for evaluating the OUU objective function and its gradient. If a
small n¢, provides an approximation of the trace that is suitable for computing an optimal
control, each iteration of a gradient-based method requires a moderate, fixed number of PDE
solves. We demonstrate this in our numerical experiments, where for a typical OUU problem
with a discretized parameter dimension of about 3,000, O(10) PDE solves are required for
approximating the OUU objective and its gradient. This modest computational cost should
be contrasted with methods that approximate the OUU objective using sampling or quadra-
ture in the parameter space. While these approaches can, asymptotically, solve the original
OUU problem rather than the formulation based on the quadratic expansion of ©, their cost
in terms of PDE solves can be much higher. Moreover, if a factorization-based direct solver
can be used for the governing PDE problems, these factorizations can be reused multiple
times in the quadratic approximation approach. This is the case since the PDE operators
arising in each quadratic approximation correspond to the same parameter. Thus, reusing
factorizations can save significant computation time. Since each sample in the Monte Carlo
approach corresponds to a different parameter, matrix factorizations must be recomputed for
each sample.

The computational cost of sampling-based methods is exacerbated for OUU problems
governed by nonlinear forward PDEs; in such cases, while our approach requires only one
nonlinear PDE solve and O(ny,) linear(ized) PDE solves (for OUU objective and gradient
evaluation), the required number of nonlinear PDE solves for sampling approaches scales with
the number of samples.

6. Computational experiments. Next, we numerically study our OUU approach applied
to the control of an elliptic PDE with an uncertain coefficient, as discussed in section 5.

6.1. Problem setup. We consider a rectangular domain D = (0,2) x (0,1) C R? for (25),
impose Dirichlet boundary conditions on the left and right sides of the domain according to
u(0,y) =1 and u(2,y) = 0 for y € [0, 1], and use homogeneous Neumann boundary conditions
on the top and bottom boundaries. We use a finite element mesh with 3,081 linear rectangular
elements and 3,200 degrees of freedom to discretize the state and adjoint variables and the
uncertain parameter field. The discretized uncertain parameters are the coefficients in the
finite element expansion of the parameter field.

The probability law of the uncertain parameter field. The probability law of the uncertain
parameter, which is the log-permeability field m, is given by a Gaussian measure u = N'(m, C).
The mean m and the locations of production and control wells are shown in Figure 1 (upper
left image). The covariance operator C of y is as in (8), with x = 2 x 1072 and « = 4. These
values are chosen such that samples from p have a desired magnitude and correlation length.
Typical realizations of the random process m are also shown in Figure 1.
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. .

Figure 1. Top row: Shown on the left is the mean log-permeability field with corresponding Darcy flow driven
by the lateral boundary conditions. Superimposed is the well configuration (triangles indicate the locations of
injection/control wells, and squares of production wells). Shown on the right is the target pressure at the
production wells, located at points {x;}12,, computed according to G; = q(x:), where q(x) = 3 — 4(x1 — 1) —
8(x2 — 0.5)2. Bottom row: Realizations of the uncertain log-permeability field.

The control. For the right-hand side in (25), we consider b = 0 and define F as a weighted

sum of finitely many mollified Dirac delta functions, which we denote by f;, i = 1,...,n:
Nec
i=1

The weights z; in (35) are the (finitely many) control variables, summarized in the control vec-
tor z = (z1,...,2,,)". The right-hand side (35) is motivated by subsurface flow applications
in petroleum engineering, where fluid injection at injection wells is used to control the flow
rates at production wells. Here, f; = f;(x,y) represent the locations of injection wells, and z;
are the injection rates at these wells. We impose control bounds; i.e., the set of admissible
controls is

Zad = {Z € R"™ : zmin < 2 < Zmax, 1 <1 < TLC},

where zpin = 0 and zpmax = 16. In the present example, we use n. = 20 control wells; see
Figure 1 (top left). The control objective (27) is the squared ¢? difference between the pressure
at the production wells and a vector q of target pressure values, which follows a parabolic
profile as depicted in Figure 1 (top right).

Quadratic approximations in the small variance limit. Here, we compare approximation error
in the linear and quadratic approximations of the parameter-to-objective map, at a fixed
control 2° with z? =4 for i =1,...,nc, in the sense discussed in section 3.1.2. In Figure 2,
we consider the expected value of the truncation error of the first- and second-order Taylor
expansion to the mapping m + ©(z% m). This illustrates the rate of decay of the expected
truncation error as indicated by the analysis in section 3.1.2. In particular, the truncation
error in a linear expansion is O(e), and that of the quadratic approximation is O(¢%/2). In
this study, we consider scaling the distribution law of m given according to u = N(m,eC)
with successively smaller values of €.
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Figure 2. The expected values E{|O(z,-) — Oun(z, )|} (black solid line) and E{|O(z,-) — Oquad (2, )|} (gray
solid line), with the distribution law of m given by p = N'(m,eC) as € — 0. The black and gray dashed lines
indicate O(e) and O(e%/?), respectively. The errors are computed for ex = 1/2%, for k =0,...,6, using a fized
Monte Carlo sample of size 10,000 to approximate the average errors.
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Figure 3. Left: Control 2° with constant values 2§ = 4, i € {1,...,n.} (in black). Right: Histogram of
@(zo,m) and the distributions of Onn and Oquad, which are based on first- and second-order expansions of the
parameter-to-objective function (27).

6.2. Results. We solve the numerical optimization problem (32) via an interior point
method (to incorporate the box constraints for z) with BFGS Hessian approximation. For
that purpose, we employ the MATLAB fmincon routine, to which we provide functions for
the evaluation of the objective function (32) and for the computation of its gradient with
respect to the control, as derived in the previous section.

We use a uniform control vector 20 = (4,...,4) (see Figure 3, left) as the initial guess
of the optimization algorithm. It is instructive to consider the statistical distribution of the
control objective (as defined in (27)) for this initialization, which is shown in the right image
in Figure 3. We also depict the distributions of the linear and quadratic approximations
Orin (2%, m) and Oguaa(z°, m) as defined in (4) and (5), respectively. For all figures, we have
used kernel density estimation (KDE) to approximate the probability density functions (PDF's)
from 10,000 samples. Note that compared to Oy, the distribution of ©gyaq is a significantly
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better approximation for the distribution of ©.

In Figure 4 we show the risk-averse optimal control for the risk-aversion parameter =1,
the control cost weight v = 1075, and where we use ni, = 40 trace estimator vectors for
approximating the traces in the OUU objective function. To cope with the nonconvexity of
the OUU objective function, we use a continuation strategy with respect to ;i.e., we solve a
sequence of optimization problems with increasing , namely { k}2:1 ={0,0.25,0.5,0.75,1}.
The average number of quasi-Newton interior point iterations required to decrease the residual
by 5 x 10~% was 65. The left figure shows the magnitude of the control vector at each injection
well, and the right figure depicts the statistical distribution of the control objective at the
computed optimal control for both © and ©guaq (note that the optimal control is based on
the latter). To assess how successful the optimal control is in reducing the mean and the
standard deviation, compare the right images in Figures 3 and 4. Notice that compared to
the constant control 2%, the optimal control results in a distribution of the objective that both
is shifted to the left (reduction in the mean) and has less spread (reduction in variance).

0.6 : : :
@(22{??@ )
-_ (_)quad(zzgidv )
- 04r *
2
iz
=
z
© oo2f i
0 L . o

Figure 4. Left: The optimal control zfupl;d computed by minimizing the OUU objective function with

quadratic approzimation to the parameter-to-objective map (27), where we use = 1,y = 107°, and ny = 40.
The initial guess for the optimizer was z° defined in Figure 3. Right: The distributions of © and Oquaq for the

. opt
optimal control z ;. 4.

Next, we study whether using the linear (rather than the quadratic) approximation to
the parameter-to-objective map for the computation of risk-averse optimal control can lead
to suboptimal results. Using Oy, instead of Oqyaq results in a simplified version of (32a),
obtained by neglecting terms involving the Hessian ©,,,,. We solve the same risk-averse OUU
problem as before but with Oy, rather than ©qyaq. The resulting optimal control zfiﬂt is shown
on the left of Figure 5, and the distributions of @(zﬁflt, m), @hn(zﬁﬁt, m), and O qyad (zﬁit, m)
are shown on the right. Note the large discrepancy between the distributions; in particular,
the distribution based on Oy, is a poor approximation to the actual distribution. Our goal,
however, is to find a control such that the distribution of the control objective © has small
mean and variance. In the present example, the optimal control computed with the linear
approximation of the parameter-to-objective function Oy, does not perform much worse than
the optimal control found with ©guaq in terms of reducing the mean and variance of the
distribution of ©—despite the poor approximation shown in Figure 5. This can be seen from
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5 : : :
t
Oz )
elin(z]oiﬁtv )

— Oquaa (i )

distribution

0 2 4 6 8§ 10 12 14 16

Figure 5. Left: Optimal control zﬁﬁt computed by minimizing the OUU objective function with linear
approzimation to the parameter-to-objective map, where we use = 1, = 107°. Right: Distributions of the

. . . . . _ _opt
control objective and its approximations for z = z\;, .
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Figure 6. Comparison of the distributions of ©(z,-) for z = 22" (dashed) and z = zgﬁgd (solid) for =1,

v = 107°, and ns = 40 trace estimation vectors. The inserts show the Monte Carlo sample convergence for
the mean and the variance of the distributions.

opt
quad”

Figure 6, where we compare the distribution of © for the optimal controls 2P and z
We notice that the distribution of @(zﬁit, m) has slightly larger mean and variance, as can be
observed by the thicker tail of the distribution.

Influence of risk-aversion parameter  on the optimal control. Next, we study the effect of
the parameter in (32a) on the optimal control and the corresponding distribution of the
control objective. In Figure 7, we show results for the mean and the variance for various
risk-aversion parameters . While the optimal controls have been computed using ©qyad, we
also report the mean and variance of ©. With increasing , the mean of ©y,aq increases and
the variance of ©gyua.q decreases, as expected. The optimal controls were computed using a
fixed randomized trace estimator with n¢, = 40.

Next, we consider the effect of increasing on the distribution of © itself. While for small
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Figure 7. Effect of risk-aversion parameter  on the mean and the variance of the control objective (27)

and its quadratic approximation at the optimal control zgﬁtad. We report statistical values for ©quaa, which has

been used in the computation of the optimal control, as well as statistical values for the true objective ©. These
plots were generated using Monte Carlo sampling, with 10,000 sample points.

values, increasing  results in smaller variances for ©(z,m), as desired, for larger values of

, the variance increases with . This can be attributed to the fact that for computing the
optimal control, we use the quadratic approximation ©quaq(2,m), which only approximates
the moments of the control objective ©(z, m).

Comparison between quadratic approximation and Monte Carlo. Next, we compare the com-
putational cost for computing the optimal controls using the approach based on the quadratic
approximation versus an SAA approach, where Monte Carlo sampling is used to approxi-
mate (2). In Figure 8 (left), we plot the true OUU objective, approximated accurately using a
large number of samples, against the cost per iteration measured in the number of PDE solves
required for objective and gradient computation, for three different risk-aversion parameters

For the quadratic approximation, we approximate the trace terms in the OUU objec-
tive function using randomized trace estimation (dash-dotted lines) and using eigenvectors of
the covariance-preconditioned Hessian operator (solid lines), as described in section 3.2. For
the randomized trace estimation, we use nt, values in the range of 1-100 and use the same
trace estimator vectors for different values of ; for the eigenvector-based approach, we use
ne € {1,...,10}. The eigenvectors are computed for a reference (namely, the initial) control.
The Monte Carlo sampling approach is shown with a dashed line; for this approach, we use
the same sequence of samples for the different values of | with samples of size 10, 20, 40, 80,
160, and 320. Note that in the Monte Carlo approach, the cost per iteration for objective and
gradient computation is twice the size of the Monte Carlo sample used.

For a more precise comparison, in Figure 8 (right) for each case we list the data values
corresponding to the largest number of PDE solves. The figure on the left shows the following
important results: (1) the eigenvector-based trace estimation outperforms the randomized
trace estimation for all choices of ; in both cases, as the number of vectors used for the
approximation of the trace increases, the function values level off, indicating convergence of the
respective optimal controls; (2) the optimal controls computed using Monte Carlo sampling of
the objective asymptotically converge to the exact optimal controls of the true OUU objective;
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Figure 8. Left: OUU objective evaluated at differently computed optimal controls z°P* versus the number

of PDE solves required for one objective/gradient computation. Shown are results with different risk-aversion
parameters  for optimal controls computed using a quadratic approzimation (solid and dash-dotted lines) and
Monte Carlo sampling (dashed lines). For the Monte Carlo sampling, the same sequence of samples was used
for the different values of . For the quadratic approximation, to estimate the trace we used both the basis of
eigenvectors of the covariance-preconditioned Hessian, evaluated at the initial point zo (solid line) and random
vectors (dash-dotted line). Right: The OUU objective values corresponding to the largest number of PDE
solves for various  wvalues. The columns labeled with MC, quad;, and quady correspond to the Monte Carlo
sampling, quadratic approximation with eigenvector- and random vectors-based trace estimations, respectively.
To approzimate the OUU objective at the computed optimal controls, we use a fired Monte Carlo sample of size
10, 000.

hence, these controls will asymptotically outperform optimal controls based on the quadratic
approximation; and (3) for low risk-aversion (i.e., small ) or for limited compute time (i.e.,
when only a small number of PDE solves is afforded), the quadratic approximation approach
is superior to the Monte Carlo SAA approach.

7. Conclusions. We propose a scalable method for risk-averse optimal control of systems
governed by PDEs with uncertain parameter fields. Our approach uses a quadratic approx-
imation of the parameter-to-objective map, which enables one to analytically compute the
moments appearing in the OUU objective function. Moreover, we employ randomized trace
estimators for the operator traces in the OUU objective function. The resulting optimization
problem is constrained by the PDEs defining the gradient ©,, and the linear action of the
Hessian ©,,,,,. The resulting method for risk-averse OUU is applicable to problems with high-
dimensional discretized parameter spaces. This is demonstrated in numerical tests, where we
present results for a problem with a 3,200-dimensional (discretized) parameter space. Hence,
our approach provides a practical alternative to computationally expensive sampling-based
OUU methods. The advantages of our method compared to sampling/quadrature methods
are even more pronounced in the context of risk-averse optimal control of systems governed
by nonlinear PDEs. Whereas our approach requires only one nonlinear PDE solve and about
2 x nyy linear(ized) PDE solves (to evaluate the OUU objective function), the required number
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of nonlinear PDE solves for sampling approaches scales with the number of samples.

Appendix A. Expectation of the truncation error in a Taylor expansion. We begin
by stating a well-known result [43, Theorem 6.6] regarding Gaussian measures on a Hilbert
space.

Theorem A.1. Let u = N(0,C) be a Gaussian measure on a Hilbert space 7. For any
integer r > 1, there is a constant B = B, > 0 such that

(36) L el ) < BT(CY

Note that the above theorem, for the case of r = 2, follows from (15). Next, we define the
notation T'[mP| := T'[m,m, ..., m] for the action of a p-linear map 7" : S x H x ---x H — R.

Lemma A.2. Let u = N(0,C), and suppose T is a symmetric p-linear map, with p > 2,
such that |T[mP]| < K |m||” for all m € . Then we have [, |T[mP]| p(dm) < KTr(C)r/?
for a positive constant K.

Proof. For p = 2, the proof is straightforward. For p > 2, if p is even, i.e., p = 2k for
k € Zs, then [, |T[m?*]|u(dm) < K [,, |m|** p(dm) < KTr(C)*, where the last inequality
follows from Theorem A.1. Note that here K = KB with B from (36). In the case p = 2k +1
for k € Z,, we have

/%\T[m%“]lﬂ(dm) <K /f I+ u(dim)

1/2 12 . _
SK[/% ol )] | /% Il ()] < RTe(C) 2 Tr(C)F = RTr()21)/2, m

Proposition A.3. Let © : (0, B(H),1n) — (R, B(R)) be, almost surely, a p+ 1 times
continuously differentiable function, and assume m = N (m,eC), with € > 0. Suppose © has
p + 1 uniformly bounded derivatives. Then the expected value of the truncation error of the
pth-order Taylor expansion is O(P+1)/2),

Proof. Since © : 7 — R is p + 1 times continuously differentiable, we have

O(m) = 6(m) + 3 %@W (m)(m — m)" + Ry(m; m).
n=1

The remainder term is given by R,(m;m) = (pil)!@(p“)(ﬁ)[(m — m)P*], where ¢ is in the
interior of the line segment between m and m. Here we use the notation ©™ for the nth
derivative. Now by assumption of the proposition, ©**+1 is uniformly bounded on .. There-
fore, by Lemma A.2 we get E{R,(m;m)} is O(e®PT1)/2). [ ]

Appendix B. Derivation of the gradient of the OUU objective function 7. Here, we
summarize the derivation of the gradient of the OUU objective function presented in (32a).
To derive the expression for the gradient, we employ a formal Lagrangian approach [45, §],
which uses a Lagrangian function composed of the objective function (32a) with the PDE
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constraints (32d)—(32g) enforced through Lagrange multiplier functions. This Lagrangian
function .Z for the OUU problem is given by

AR R IR I RN A T R )

Ttr

1
fHQu—‘HﬁfZ(CJ, (GVu-Vp+V ;-Vp+Vu-V ;)

Ttr

D

n
tr j=1

(e™Vu-Vp,Cle™Vu - Vp]) + 1

i 2
C2e™(Vu-Vp+V ;- Vp+Vu-V J‘”H

Qw\

- ||zH + <emVu vu* > (b+ Fz,u*) + <emVp, Vp*> +(Q"(Qu —q),p”)

+Z [( Y 5,V )+ (e, V ;>}

\)

+Z[ ("V 1V ) H(Q1Q 5 )+ (Gem VRV ).

The variables (u,p,{ j},{ j}) € ¥? x (¥™*)? are the OUU state variables, and (u*, p*, { it
{ 1}) € ¥2 x (¥™r)? are the OUU adjoint variables, with j € {1,...,m}. Requlrmg that
variations of . with respect to the OUU adjoint variables vanish, we recover the OUU state
equations (32d)—(32g). The variations of .Z with respect to the OUU state variables are

Ntr

L] =(9*(Qu — q), +—Z<Q, (Vi -Vp+Vi-V )+ (e™Vi- Vp,Cl0,(m)])

> (e™(Va-Vp+ ViV ;),Cle™GVu-Vp+V ;- Vp+Vu-V j))
j=1

+

Qntr

Ntr

+ (™Y, Vi) + (Q°Qu,p) + Y (e VL,V ),

j=1
Bl = 5= D (G (GVu V5V Vi) + (" Vu V5, ClOm(m)])
L

> (e™GVu-Vi+V - Vp),Cle™(Vu-Vp+V ;- Vp+Vu-V ;)])
j=1

2ntr

Ntr

+(e™Vp, VP ) + > (GemVEV 3,

j=1
2,0 =5 (Y V) + s (VTP CleM (V- Vp+ V-Vt Vue V)
+(e™VT,V 5)+(Q°Q7, ),
1 - _ _
.,iﬂjﬂ = —<Cj,emVu-V~> +—(emVU-VN,C[em(CjVu-Vp—i-V i Vp+Vu-V ])]>
2ntr 2ntr

+ (™Y, V ),
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with (@,p, ", ") € #*. Letting these variations vanish results in the OUU adjoint equa-
tions (34a)—(34d). Finally, the gradient for (32a) is given by

(37) L2 = G(2)2 = y(z,2) — (Fz,u*), %€ L*(D).
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