
Inverse Problems

PAPER

A-optimal encoding weights for nonlinear inverse
problems, with application to the Helmholtz inverse
problem
To cite this article: Benjamin Crestel et al 2017 Inverse Problems 33 074008

 

View the article online for updates and enhancements.

Related content

A data-scalable randomized misfit
approach for solving large-scale PDE-
constrained inverse problems
E B Le, A Myers, T Bui-Thanh et al.

-

Bayesian inverse problems for functions
and applications to fluid mechanics
S L Cotter, M Dashti, J C Robinson et al.

-

Solving large-scale PDE-constrained
Bayesian inverse problems with Riemann
manifold Hamiltonian Monte Carlo
T Bui-Thanh and M Girolami

-

Recent citations

Preface for Inverse Problems special issue
on learning and inverse problems
Carola-Bibiane Schönlieb et al

-

This content was downloaded from IP address 128.179.253.222 on 31/12/2017 at 13:56



1

Inverse Problems

A-optimal encoding weights for nonlinear 

inverse problems, with application to the 

Helmholtz inverse problem

Benjamin Crestel1,5, Alen Alexanderian2, Georg Stadler3  
and Omar Ghattas1,4

1 Institute for Computational Engineering & Sciences, The University of Texas at 

Austin, Austin, TX, United States of America
2 Department of Mathematics, North Carolina State University, Raleigh, NC,  

United States of America
3 Courant Institute of Mathematical Sciences, New York University, NY,  

United States of America
4 Department of Geological Sciences and Department of Mechanical Engineering, 

The University of Texas at Austin, Austin, TX, United States of America

E-mail: crestel@ices.utexas.edu, alexanderian@ncsu.edu, stadler@cims.nyu.edu  

and omar@ices.utexas.edu

Received 25 January 2016, revised 27 February 2017

Accepted for publication 18 April 2017

Published 21 June 2017

Abstract

The computational cost of solving an inverse problem governed by PDEs, using 

multiple experiments, increases linearly with the number of experiments. A recently 

proposed method to decrease this cost uses only a small number of random linear 

combinations of all experiments for solving the inverse problem. This approach 

applies to inverse problems where the PDE solution depends linearly on the right-

hand side function that models the experiment. As this method is stochastic in 

essence, the quality of the obtained reconstructions can vary, in particular when 

only a small number of combinations are used. We develop a Bayesian formulation 

for the deinition and computation of encoding weights that lead to a parameter 

reconstruction with the least uncertainty. We call these weights A-optimal encoding 

weights. Our framework applies to inverse problems where the governing PDE is 

nonlinear with respect to the inversion parameter ield. We formulate the problem 

in ininite dimensions and follow the optimize-then-discretize approach, devoting 

special attention to the discretization and the choice of numerical methods in order 

to achieve a computational cost that is independent of the parameter discretization. 

We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-

based expressions for the gradient of the objective function of the optimization 

problem for inding the A-optimal encoding weights. The proposed method is 
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potentially attractive for real-time monitoring applications, where one can invest 

the effort to compute optimal weights ofline, to later solve an inverse problem 

repeatedly, over time, at a fraction of the initial cost.

Keywords: source encoding, Bayesian nonlinear inverse problem, A-optimal 

experimental design, randomized trace estimator, Helmholtz equation

(Some igures may appear in colour only in the online journal)

1. Introduction

Inverse problems are ubiquitous in science and engineering. They arise whenever one attempts 

to infer parameters m from indirect observations d and from a mathematical model—the 

parameter-to-observable map, F(·)—for the physical phenomenon that relates m and d. When 

available, it is common to use observations obtained from different experiments to improve 

the quality of the parameter estimation. Suppose Ns experiments are conduced, indexed by 

i ∈ {1, . . . , Ns}. The ith experiment results in observations di and the corresponding param-

eter-to-observable map is denoted by Fi(m). Following a deterministic approach to this inverse 

problem results in the nonlinear least-squares minimization problem

min
m

{

1

2Ns

Ns
∑

i=1

‖Fi(m)− di‖
2 +R(m)

}

, (1)

where R is an appropriate regularization operator to cope with the ill-posedness that is com-

mon for many inverse problems.

Nonlinear optimization problems such as (1) can only be solved iteratively, which requires 

the availability of irst (and ideally, also second) derivatives of the functional in (1) with respect 

to m. For an important class of inverse problems, the parameter-to-observable map involves the 

solution of a partial differential equation (PDE). This means that the evaluation of Fi(m) entails 

computing ui, the solution of a PDE, and this ui is usually restricted by an observation operator 

B to a subset of the domain (e.g. points), where observations are available. In this work, we 

make the assumption that the different experiments correspond to different right-hand sides fi of 

this PDE. Moreover, this PDE must be linear with respect to the solution ui, and both the PDE 

operator as well as the observation operator B must be the same for all experiments.

When the ith experiment corresponds to a forcing term fi, the parameter-to-observable map 

is given by Fi(m) = Bui, where A(m)ui = fi with A(m) denoting the linear PDE-operator that 

may depend nonlinearly on m. Note that the governing PDE can be stationary or time-depend-

ent. Adjoint methods allow to compute derivatives of the objective in (1) eficiently [1]. For 

instance, the computation of the gradient of the objective in (1) requires solving Ns forward 

and associated adjoint PDEs. Similar computational costs are associated with the application 

of the Hessian operator to vectors, such that the overall computational cost of solving (1), 

which is dominated by PDE solves with the operator A(m), grows (at least) linearly with the 

number of experiments Ns. In some important inverse problems, Ns is large (e.g. several thou-

sand), such that these computations are expensive or even infeasible.

There have been some recent breakthroughs to address this computational bottleneck using 

the concept of random source encoding, sometimes also referred to as simultaneous random 

sources [2, 3]. A mathematical justiication of this approach is given in the seminal paper 

[4], and is summarized in section 2. In [5], the authors employed a similar idea to encode 

the observations in inverse problems with large amount of data. The main idea of random 

source encoding is to replace the data generated by each individual experiment with a small 
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number, Nw � Ns, of linear combinations of the data; the weights of these linear combina-

tions, wi = [wi
1, . . . , wi

Ns
]T , are called encoding weights. Due to our linearity assumptions, this 

linear combination of data corresponds to the same linear combination of experiments, i.e. we 

can deine encoded parameter-to-observable maps F(wi; m), i = 1, . . . , Nw, as follows

F(wi; m) :=

Ns
∑

j=1

wi
jFj(m) = B





Ns
∑

j=1

wi
juj



 . (2)

Observe that 
∑Ns

j=1 wi
juj can be computed by solving the single PDE

A(m)





Ns
∑

j=1

wi
juj



 =





Ns
∑

j=1

wi
j fj



 .

Replacing the individual experiments with encoded experiments results in an inverse problem 

with lower computational complexity. The hope is that these linear combinations still carry 

most of the information contained in the individual experiments. As mentioned above, the 

source encoding method hinges on the linearity of the PDE describing the underlying physical 

phenomenon, such that the observables depends linearly on the forcing term. Additionally, the 

uniqueness of the observation operator B is necessary, but this requirement can be weakened 

in certain situations, e.g. if data from some experiments is missing [6].

The method of random source encoding, stochastic in essence, suffers from a few limita-

tions. The key idea of the random source encoding approach is the conversion of the determin-

istic optimization (1) into a stochastic optimization problem. The expectation to be minimized 

is then approximated using a Monte-Carlo technique (see [4] or section 2). To reduce the 

computational cost of solving the inverse problem, one would like to choose the number of 

samples used in this Monte-Carlo approximation small. A small number of samples translates 

into a large variance for the Monte-Carlo estimator of the expectation. In practice, this mani-

fests itself in large differences in the reconstructions obtained with different samples of encod-

ing weights. An approach to remedy that dificulty is to select the weights deterministically 

[7, 8]. In particular, in [7], the author considers to select the weights that generate the great-

est improvement from the current reconstruction, but the results are inconclusive. In [8], the 

authors choose the weights that minimize the expected medium misit in the case of a discrete 

linear inverse problem, which is related to the approach we follow in this paper.

1.1. Contributions

The main contributions of this article are as follows: (1) Drawing from recent developments 

in optimal experimental design (OED) for high- or ininite-dimensional inverse problems 

[9–12], and following a Bayesian view of inverse problems, we develop a method for the 

computation of encoding weights that lead to a parameter reconstruction with the least uncer-

tainty—as measured by the average of the posterior variance. We refer to these (deterministic) 

weights as A-optimal encoding weights, a nomenclature motivated by the use of the A-optimal 

exper imental design criterion from OED theory [13]. (2) The method we propose extends the 

work in [8] by addressing inverse problems with nonlinear parameter-to-observable maps, 

and allows for ininite-dimensional parameters. The ininite-dimensional formulation has two 

main advantages: (a) the use of weak forms facilitates the derivation of adjoint-based expres-

sions for the gradient of the objective function to compute the A-optimal encoding weights; 

(b) it allows us to follow the optimize-then-discretize approach, which, along with devot-

ing special attention to the discretization of the formulation and the choice of the numer ical 
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methods employed, helps control the computational cost independently of the parameter 

discretization. (3) We elaborate our method for the Helmholtz inverse problem and derive 

the adjoint-based gradient of the optimization problem for inding the A-optimal encoding 

weights. We also analyze the computational cost—in terms of Helmholtz PDE solves—of 

objective and gradient evaluation for this optimization problem. For this Helmholtz problem, 

we present an extensive numerical study and discuss the potential and pitfalls of our approach.

1.2. Paper overview 

The rest of this article is organized as follows. In section 2, we provide an overview of the 

method of random source encoding. We also introduce the notation that we will carry through-

out the paper. In section 3, we summarize the elements of Bayesian inverse problems and 

introduce approximations to the posterior covariance in function space. The framework for 

the A-optimal encoding weights is presented in section 4. In section 5, we elaborate our for-

mulation for the Helmholtz inverse problem. We derive adjoint-based expressions for the 

gradient of the A-optimal objective function, and analyze computational cost of evaluating 

the objective function and its gradient. Numerical results are presented in section 6, and we 

provide some concluding remarks in section 7.

2. Random source encoding

In this section, we review the method of random source encoding, and introduce the notation and 

terminology used throughout this article. We seek to infer a parameter ield m ∈ V where V  is 

an ininite-dimensional Hilbert space of functions deined over the domain D ⊂ R
d  (d  =  2, 3); 

a typical choice is V := L2(D). The parameter-to-observable map is denoted by Fi : V → R
q. 

Let us assume that ui solves the PDE A(m)ui = fi and that all experiments i = 1, . . . , Ns share a 

common observation operator B, where Bui ∈ R
q. We then write each parameter-to- observable 

map as Fi(m) = Bui. The right-hand side source fi characterizes the ith experiment. To apply 

source encoding, we require the parameter-to-observable map to be linear with respect to the 

source terms, which led us to introduce the encoded parameter-to-observable maps (2).

In [4] the authors give a mathematical justiication of the idea of random source encoding 

for a discrete problem and we follow their argument, here, for an inverse problem formulated 

in function space. We gather all Fi(m) (resp. di) in the columns of a matrix F(m) (resp. De) and 

call the data misit matrix S(m) := F(m)−D
e. Ignoring the regularization term for now, the 

inverse problem can be written as, minm∈V

{

‖S(m)‖
2

F

}

, where ‖ · ‖F is the Frobenius norm 

[14]. Note that ‖S(m)‖2
F = trace(S(m)TS(m)), which can be approximated eficiently using 

randomized trace estimators [15, 16]. Indeed, for random vectors z with mean zero and iden-

tity covariance matrix one inds that, trace(S(m)TS(m)) = Ez

(

‖S(m)z‖2
2

)

. Typical choices 

of distribution for z include the Rademacher distribution, where samples take values  ±1 with 

probability 1/2, and the standard normal distribution N (0, INs
). Among other possible choices 

we mention the discrete distribution that takes values  ±
√

3 with probability 1/6 and 0 other-

wise, or the uniform spherical distribution on a sphere of radius 
√

Ns  that we denote Us(
√

Ns); 
the fact that Us(

√
Ns) has identity covariance matrix can be shown using results from [17], 

along with the observation that z̃ ∼ Us(
√

Ns) iff z̃ =
√

Ns(z/|z|) with z ∼ N (0, INs
). We now 

write the data-misit term as an expectation, i.e. ‖F(m)−D
e‖2

F = Ez(‖(F(m)−D
e)z‖2), 

leading to the stochastic optimization problem

min
m∈V

{

Ez

(

‖(F(m)−D
e)z‖2

)

}

.

B Crestel et alInverse Problems 33 (2017) 074008
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There exist two main techniques to solve these types of problems [18]. Using stochastic aver-

age approximation (SAA), one approximates the cost functional with a Monte-Carlo-type 

approach before solving a deterministic optimization problem, i.e. for ixed samples zi ones 

solves

Ez

(

‖(F(m)−D
e)z‖2

)

≈
1

M

M
∑

i=1

‖(F(m)−D
e)zi‖

2.

In an alternative approach called stochastic approximation (SA), one resamples the random 

vector z at each step of the iteration.

We now specify the source-encoded equivalent of (1). Given Nw encoding weights 

w = (w1, . . . ,wNw), where each wi ∈ R
Ns, we deine the encoded data d(wi) :=

∑Ns

j=1 wi
jdj, 

the encoded right-hand side f (wi) :=
∑Ns

j=1 wi
jfj, and encoded parameter-to-observable maps 

F(wi; m) =
∑Ns

j=1 wi
jFj(m). The parameter ield mc(w) reconstructed using the Nw encoded 

sources is then deined as

mc(w) = argmin
m∈V

{

1

2Nw

Nw
∑

i=1

∥

∥F(wi; m)− d(wi)
∥

∥

2
+R(m)

}

. (3)

Due to the assumptions on Fi(m), the encoded map still corresponds to the observation of a 

single solution to a PDE, F(wi; m) = Bui, albeit this time ui solves the PDE A(m)ui = f (wi), 
i.e. with an encoded right-hand side.

3. Bayesian formulation of the inverse problem with encoded sources

This section contains a brief presentation of the Bayesian formulation of inverse problems 

with ininite-dimensional inversion parameters; for details we refer the reader to [19, 20] for 

theory and to [21] for the numerical approximation. In the Bayesian framework, the unknown 

parameter function m is modeled as a random ield. Starting from a prior distribution law 

for m, we use observed data to obtain an improved description of the law of m. This updated 

distribution law of m is called the posterior measure. The prior measure, which we denote 

by µ0, can be understood as a probabilistic model for our prior beliefs about the parameter 

ield m. The posterior measure, which we denote by µpost, is the distribution law of m, condi-

tioned on observed data. A key ingredient of a Bayesian inverse problem is the data likelihood, 

πlike(d|m), which describes the conditional distribution of the data given the parameter ield 

m; this is where the parameter-to-observable map enters the Bayesian inverse problem.

Let D ⊂ R
d  be a bounded domain with piecewise smooth boundary and (Ω,Σ,P) a prob-

ability space. We consider an inference parameter m = m(x,ω), with (x,ω) ∈ D × Ω, such 

that for any ω ∈ Ω, m(·,ω) ∈ V  where, as before, V  is an ininite-dimensional Hilbert space. 

Considering the law of m as a probability measure on (V ,B(V)), the ininite-dimensional 

Bayes’ theorem relates the Radon-Nikodym derivative of µpost with respect to µ0 with the data 

likelihood πlike(d|m):

dµpost

dµ0

∝ πlike(d|m). (4)

The use of non-Gaussian priors in ininite-dimensional Bayesian inverse problems rep-

resents a new, interesting area of research (see for instance [20, 22]). However, since the 

Bayesian inverse problem, in the formulation we introduce in section  4, only represents 

the inner problem, the additional complications created by the use of non-Gaussian priors 

B Crestel et alInverse Problems 33 (2017) 074008
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are not justiied. We instead rely on Gaussian priors for the Bayesian inverse problem; i.e. 

µ0 = N (m0, C0) is a Gaussian measure on V . In that case, we require C0 to be symmetric, 

positive and trace-class [19]. A common choice for C0 (in two and three space dimensions) 

is the squared inverse of a Laplacian-like operator K, i.e. C0 = K−2. We also assume that the 

noise in the data is additive, and independent and identically distributed (over the different 

experiments); the distribution of each noise vector is normal with mean zero and covariance 

matrix Γnoise. That is, di|m ∼ N
(

Fi(m),Γnoise

)

, for any i ∈ {1, . . . , Ns}. Consequently, each 

encoded observation d(wi) will be normally distributed with mean zero and covariance matrix 

Γnoise,i := (
∑Ns

j=1(w
i
j)

2)Γnoise, i.e. d(wi)|m ∼ N
(

F(wi; m),Γnoise,i

)

, for i ∈ {1, . . . , Nw}. 

Therefore, the likelihood function has the form

πlike(d(w)|m) ∝ exp

(

−
1

2Nw

Nw
∑

i=1

‖F(wi; m)− d(wi)‖2

Γ
−1
noise,i

)

.

3.1. MAP point

In inite dimensions, the MAP point is the parameter mMAP that maximizes the posterior 

probability density function. Although this deinition does not extend directly to the ininite-

dimensional case, a MAP point can still be deined as a minimizer of a regularized data-misit 

cost functional over an appropriate Hilbert subspace of the parameter space [19]. Let us deine 

the Cameron-Martin space E = Im(C0
1/2), endowed with the inner-product

〈x, y〉E := 〈C0
−1/2x, C0

−1/2y〉 = 〈Kx,Ky〉, ∀x, y ∈ E . (5)

Then the MAP point is deined as

mMAP(w) = argmin
m∈E

{J (w; m)} , (6)

where, for the inverse problems considered in the present work, the functional J (w; ·) : E → R 

is deined as

J (w; m) :=
1

2Nw

Nw
∑

i=1

∥

∥F(wi; m)− d(wi)
∥

∥

2

Γ
−1
noise,i

+
1

2
‖m − m0‖

2

E
. (7)

Here, the function m0 ∈ E  is the mean of the prior measure.

3.2. Approximation to the posterior covariance

In general, there are no closed-form expressions for moments of the posterior measure. Thus, 

one usually relies on sampling-based methods to explore the posterior. For inverse problems 

governed by PDEs and problems with high-dimensional parameters (as, for instance, arising 

upon discretization of an ininite-dimensional parameter ield), sampling of the posterior can 

quickly become infeasible since every evaluation of the likelihood requires a PDE solve. We 

thus rely on approximations of the posterior, namely Gaussian approximations about the MAP 

estimate. After inding the MAP point, we consider two commonly used approximations of 

the posterior measure by a Gaussian measure N (mMAP, Cpost), as discussed next [21, 23].

3.2.1. Gauss–Newton approximation. Assuming the parameter-to-observable map F(wi; ·) 
is Fréchet differentiable at the MAP point, one strategy to approximate the posterior is to 

linearize around the MAP point, i.e.

B Crestel et alInverse Problems 33 (2017) 074008
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F(wi; m) ≈ F(wi; mMAP) + Jwi(m − mMAP),

with Jwi : V → R the Fréchet derivative of the parameter-to-observable map F(wi; ·) evalu-

ated at the MAP point (6). Calling (Jwi)∗ the adjoint of Jwi, the covariance operator of the 

resulting Gaussian approximation of the posterior is given by

C
GN
post =

(

1

Nw

Nw
∑

i=1

(Jwi)∗Γ−1
noise,iJwi + C

−1
0

)−1

. (8)

Note that the operator that appears inside the brackets in (8) is the so called Gauss–Newton 

Hessian of the functional (7) evaluated at the MAP point,

HGN(mMAP) :=
1

Nw

Nw
∑

i=1

(Jwi)∗Γ−1
noise,iJwi + C

−1
0 .

3.2.2. Laplace approximation. Assuming J (w; ·), in (7), is at least twice Fréchet differen-

tiable at the MAP point, a second approach called Laplace approximation consists of using 

the second derivative of J (w; ·), i.e. the Hessian, at the MAP point as an approximation to 

the posterior covariance

C
L
post = (J ′′(w; mMAP))

−1
= H−1(mMAP), (9)

where the derivative in J ′′  is taken in terms of the parameter ield m. Note that the Laplace 

approximation can be related, in inite dimensions, to a quadratic local approximation of 

J (w; ·) around the MAP point.

4. A-optimal approach to source encoding

Combining the results from section 3 with elements from optimal experimental design, we 

propose a rigorous method to compute A-optimal encoding weights. In the Bayesian frame-

work, the posterior covariance quantiies the uncertainty in the reconstruction. Since the pos-

terior covariance depends on the weights (see section 4.1), we can select the weights that lead 

to a reconstruction with the least uncertainty. In the ield of optimal experimental design, there 

are various design criteria that measure the statistical quality of the reconstructed parameter 

ield [24]. In the present work, we rely on the A-optimal design criterion [24, 25], which aims 

to minimize the trace of the posterior covariance, or equivalently, to minimize the average 

posterior variance. That is, we compute the weights with the smallest trace of the posterior 

covariance Φ(w) = tr(Cpost), with Cpost given by CGN
post (8) or CL

post (9).

An alternate view of the A-optimal design criterion is that of minimizing the expected 

Bayes risk of the MAP estimator, which coincides with the trace of the posterior covariance 

for a linear inverse problem [9, 11, 26]. This interpretation of the A-optimal criterion can 

be stated as the average mean squared error between the MAP estimator (i.e. the parameter 

reconstruction) and the true parameter (e.g. see [9]). While this interpretation of A-optimality 

is restricted to linear inverse problems, it provides another motivation for our choice of the 

design criterion. In our numerical results, we explore this relation between minimizing the 

trace of the posterior covariance and the mean squared distance between the MAP point and 

the true parameter and observe that minimizing the trace of the posterior covariance correlates 

with smaller errors for the parameter reconstruction.

B Crestel et alInverse Problems 33 (2017) 074008
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4.1. Dependence of the operators CGN
post and CL

post
 on w

The dependence of the operators CGN
post (8) and CL

post(9) on the weights is twofold. First these 

operators depend on the encoded parameter-to-observable maps that depend explicitly on 

the weights, F(wi; m) =
∑Ns

j=1 wi
jFj(m). Moreover, the posterior covariance operators also 

depend on the weights through the MAP point (6), which depends on the weights as illustrated 

by (6) and (7).

The dependence of the covariance operator CGN
post on w is straightforward to see. In par-

ticular, using the chain-rule on the forward problem A(m)ui = f (wi), the Fréchet derivative 

of the parameter-to-observable at the MAP point is given by

Jwi = −BA(mMAP(w))−1 ∂A(m)ui

∂m

∣

∣

∣

∣

m=mMAP(w)

. (10)

Given Nw encoding weights w = (w1, . . . ,wNw) where wi ∈ R
Ns, we emphasize the depend-

ence of the posterior covariance on the weights by writing CGN
post = CGN

post(w). The structure of 

the covariance operator CL
post is more complicated. We detail the dependence of CL

post on w for 

the application problem considered in the present paper in section 5. Note that in the case of a 

linear parameter-to-observable map, both posterior covariances (8) and (9) are equal.

In the present formulation, tr
(

Cpost(w)
)

 scales with the weights. For instance, applying a 

constant multiplicative factor λ > 1 to all weights would reduce the inluence of the prior in 

the computation of the MAP point (6) for once. It would also inlate the norm of the state vari-

able ui by that factor λ, which would then increase the size of the derivative (10). This would 

in turn artiicially reduce the trace of the posterior covariance (8). A solution is to restrict the 

codomain of each encoding weight to a sphere of radius r in RNs. We denote the corresponding 

space, for the weights w, by Sr, i.e. Sr :=
{

w = (w1, . . . ,wNw) ∈ R
NwNs ; |wi| = r, ∀i

}

. As 

discussed in section 2, the theory of randomized trace estimation dictates the use of r =
√

Ns . 

However this value is arbitrary and can be compensated by an equivalent re-scaling of the 

regularization parameter. Therefore for simplicity we use the value r  =  1 along with the 

notation S := S1. Another implication of that choice, |wi| = 1, is that the covariance matri-

ces for the encoded noise vectors, introduced in section 3, simplify to Γnoise,i = Γnoise, for 

i ∈ {1, . . . , Nw}.

4.2. A-optimal encoding weights

We propose to compute the A-optimal encoding weights as the solution to the constrained 

minimization problem

min
w∈S

Φ(w) := tr
(

Cpost(w)
)

. (11)

Since there are no closed-form expressions for moments of the posterior measure, we replace 

the exact posterior covariance in (11) with one of the two approximations introduced in sec-

tion 3.2. The Gauss–Newton formulation of the A-optimal encoding weights,

ΦGN(w) = tr(H−1
GN(w; mMAP(w))), (12)

is based on the posterior covariance approximation (8), and the Laplace formulation,

ΦL(w) = tr(H−1(w; mMAP(w))), (13)

B Crestel et alInverse Problems 33 (2017) 074008
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is based on the posterior covariance (9). Note that both formulations (12) and (13) require the 

computation of the MAP point which is computationally expensive for large-scale problems. 

To avoid the cost associated with the computation of the MAP point, an additional simpliica-

tion of (12) can be achieved by evaluating the posterior covariance (8) at a reference parameter 

ield m0, which leads to the following (simpliied) objective function,

Φ0(w) = tr(H−1
GN(w; m0)). (14)

4.2.1. A-optimal encoding weights formulation for large-scale applications. Formulation (11) 

is a nonlinear optimization problem that requires the use of iterative methods. These methods 

involve repeated evaluations of the trace of the posterior covariance. Following discretization, 

the posterior covariance is a high-dimensional operator that is deined implicitly, i.e. through 

its applications to vectors. The exact computation of the trace of such operators, and their 

derivatives with respect to encoding weights, is computationally intractable. For this reason, 

we propose an approximate formulation using a randomized trace estimator (see [15, 16] for 

the theory, and [8, 9] for examples of applications). Following the formulation in [10], we 

introduce the Gaussian measure µδ = N (0, Cδ) where Cδ := (I − δ∆)−2. Here ∆ denotes the 

Laplacian operator with homogeneous Neumann boundary conditions and δ > 0 a suficiently 

small real number. Then for any positive, self-adjoint and trace-class operator T , we may use 

an estimator of the form,

tr(T ) ≈
1

ntr

ntr
∑

i=1

〈T zi, zi〉H,

where the zi are drawn from µδ. In practice, reasonable approximations of the trace can be 

obtained with a relatively small ntr.

The optimization problem for inding A-optimal encoding weights is formulated as follows

min
w∈S

1

ntr

ntr
∑

i=1

〈Cpost(w)zi, zi〉.

Specializing to the cases of ΦGN(w) (12) and ΦL(w) (13) results in the following formulations,

min
w∈S

{

1

ntr

ntr
∑

i=1

〈H−1
GN(w; mMAP(w))zi, zi〉

}

, (15)

min
w∈S

{

1

ntr

ntr
∑

i=1

〈H−1(w; mMAP(w))zi, zi〉

}

. (16)

Again to avoid the cost associated with the computation of the MAP point, one can evaluate 

the Gauss–Newton Hessian in (15) at a ixed reference parameter ield m0; this leads to the 

following (simpliied) optimization problem,

min
w∈S

{

1

ntr

ntr
∑

i=1

〈H−1
GN(w; m0)zi, zi〉

}

.

 

(17)

The formulation (17) can be seen as an extension of the formulation proposed in [8] to a fully 

nonlinear inverse problem formulated at the ininite-dimensional level.
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5. Application to the Helmholtz inverse problem

In this section, we elaborate the A-optimal encoding weights formulation introduced in sec-

tion 4 for the Helmholtz inverse problem. Recall that high resolution reconstructions in this 

application require a large number of experiments and that the computational cost of the 

inversion scales linearly with the number of experiments (see section 1). Source encoding can 

provide a trade-off between high-quality reconstruction and computational cost.

We begin by describing the inverse problem used in our study (section 5.1). Then the 

optim ization problem to compute the A-optimal encoding weights, including the adjoint-

based expressions for the gradient of this objective function, is detailed in section 5.2.

5.1. The inverse problem: medium parameter reconstruction

For simplicity of the presentation, we derive the formulation using a single frequency but 

extensions to the case of multiple frequencies are straightforward. We use homogeneous 

Neumann boundary conditions. The frequency-domain Helmholtz equation  is given, for 

i = 1, . . . , Nw, by

−∆ui − κ
2mui = f (wi) in D,

∇ui · n = 0 on ∂D.
 (18)

Solutions ui (18) are considered in H1(D), i.e. the Sobolev space of functions in L2(D) with 

square integrable weak derivatives. The original source terms are in the dual space of H1
0(D), 

i.e. fj ∈ H−1(D). The (medium) parameter ield m ∈ L∞(D) corresponds to the square of the 

slowness (or the squared inverse local wave speed) and the constant κ is the frequency of the 

wave (in rad · s−1).

5.1.1. MAP point. The MAP point is the solution to a deterministic inverse problem (see sec-

tion 3.1) with the norms in the data-misit and regularization terms weighted by the noise and 

prior covariance operators respectively. In particular, with a Gaussian prior µ0 = N (m0, C0) 
and the norm corresponding to the inner product (5), we have

mMAP(w) = argmin
m∈E

{

1

2Nw

Nw
∑

i=1

∥

∥Bui − d(wi)
∥

∥

2

Γ
−1
noise

+
1

2
‖m − m0‖

2

E

}

,

 

(19)

where ui solves (18).

To properly deine the source terms fi, appearing in the right hand-side of the forward prob-

lem, and the observation operator B, we deine the molliier ϕε(x; y) as follows:

ϕε(x; y) =
1

αε
e
−

1

ε
2−|x−y|2

1B(y,ε)(x), (20)

where αε = 2πKε
2e−1/ε2

, K =
∫ 1

0
re−1/(1−r2)dr, 1B(y,ε) is the indicator function for the ball of 

radius ε centered at y, and 0 < ε � 1. This function is smooth and integrates to one. We choose 

each source terms fi to be a molliier centered at one of the Ns source locations that we denote xs
i  for 

i = 1, . . . , Ns, i.e. fi(x) = ϕε(x; xs
i ). The observation operator B : H1(D) → R

q is the evaluation, 

at each of the receiver locations which we denote xr
j  for j = 1, . . . , q, of a convolution between 

the solution to the forward problem ui and a molliier ϕε′(x; 0), i.e. (Bui)j = (ui ∗ ϕε′(·; 0))(xr
j ). 

These choices of the source terms and observation operator guarantee that the forward, adjoint, 

incremental forward and incremental adjoint solutions belong to H1(D).
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5.1.2. Gradient and Hessian of the inverse problem. Availability of derivatives of the func-

tion in brackets on the right hand side of (19) is required for the computation of mMAP. The 

second derivative, i.e. the Hessian operator, also enters the A-optimal formulation laid down 

in section 4. We derive both gradient and Hessian following the formal Lagrangian approach 

[1, 27]. The irst-order necessary optimality condition for the MAP point is a coupled system 

of PDEs: Find (mMAP, {ui}i, { pi}i) ∈ E × H1(D)
Nw × H1(D)

Nw
 such that for all variations 

(m̃, {ũi}i, {p̃i}i) ∈ E × H1(D)
Nw × H1(D)

Nw

〈∇ui,∇p̃i〉 − κ
2〈mMAP(w)ui, p̃i〉 − 〈 f (wi), p̃i〉 = 0, ∀i

〈∇ũi,∇pi〉 − κ
2〈ũi, mMAP(w)pi〉+ 〈Bũi, Bui − d(wi)〉

Γ
−1
noise

= 0, ∀i

〈mMAP(w)− m0, m̃〉E −
1

Nw

Nw
∑

i=1

κ
2〈uipi, m̃〉 = 0.

 
(21)

For the Hessian, we describe the solution to the equation y = H−1(mMAP)z. This leads to the 

coupled system of PDEs: Find (y, {vi}i, {qi}i) ∈ E × H1(D)
Nw × H1(D)

Nw
 such that for all 

(m̃, {ũi}i, {p̃i}i) ∈ E × H1(D)
Nw × H1(D)

Nw
 the following equations are satisied:

〈∇vi,∇p̃i〉 − κ
2〈mMAP(w)vi, p̃i〉 − κ

2〈uiy, p̃i〉 = 0, ∀i

〈∇ũi,∇qi〉 − κ
2〈ũi, mMAP(w)qi〉 − κ

2〈ũi, piy〉+ 〈Bũi, Bvi〉Γ−1
noise

= 0, ∀i

〈y, m̃〉E −
1

Nw

Nw
∑

i=1

κ
2
[

〈vipi, m̃〉+ 〈uiqi, m̃〉
]

= 〈z, m̃〉.

 

(22)

5.2. The optimization problem for A-optimal encoding weights

Here we formulate the optimization problem for computing A-optimal source encoding 

weights for the frequency-domain seismic inverse problem (18). We restrict ourselves to the 

case of the Laplace formulation (16) as the other two functionals, (15) and (17), can be treated 

as special cases of the Laplace formulation.

In its original format, the optimization problem for A-optimal encoding weights (16) is a 

bi-level optimization, as the MAP point is itself the solution to a minimization problem (6). 

However this is not a practical formulation to compute derivatives. We therefore reformulate 

(16) as a PDE-constrained optimization problem in which the MAP point is deined as a solu-

tion of the irst-order optimality condition (21). The other PDE constraint is the solution to 

the Hessian system (22) along the random directions of the trace estimator, i.e. we deine the 

objective functional for the computation of the A-optimal encoding weights by

1

ntr

ntr
∑

k=1

〈yk, zk〉,

where zk is a random direction for the trace estimator and yk = H−1(mMAP)zk according to 

(22). We can then enforce these PDE constraints with Lagrange multipliers and compute deriv-

atives of the optimization problem (16) using the formal Lagrangian approach. We account for 

the constraint on the weights through a penalty term,

λ

2Nw

Nw
∑

j=1

(

‖w j‖2
− 1

)2
,
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with λ > 0. Although a penalty term is not the only option, we found this relaxation of the 

constraint to be eficient and easy to implement.

We now present the complete formulation for (16). The A-optimal encoding weights are 

solutions to the minimization problem

min
w

{

1

ntr

ntr
∑

k=1

〈yk, zk〉+
λ

2Nw

Nw
∑

j=1

(

‖w j‖2 − 1
)2

}

, (23)

where for every k = 1, . . . , ntr, (yk, {vi,k}i, {qi,k}i) ∈ E × H1(D)
Nw × H1(D)

Nw
 solves the 

system

〈∇vi,k,∇p̃i,k〉 − κ
2〈mMAP(w)vi,k, p̃i,k〉 − κ

2〈uiyk, p̃i,k〉 = 0, ∀i

〈∇ũi,k,∇qi,k〉 − κ
2〈ũi,k, mMAP(w)qi,k〉 − κ

2〈ũi,k, piyk〉+ 〈Bũi,k, Bvi,k〉Γ−1
noise

= 0, ∀i

〈yk, m̃〉E −
1

Nw

Nw
∑

i=1

κ
2
[

〈vi,kpi, m̃〉+ 〈uiqi,k, m̃〉
]

= 〈zk, m̃〉,

 (24)

for all (m̃, {ũi,k}i, {p̃i,k}i) ∈ E × H1(D)
Nw × H1(D)

Nw
 and where (mMAP, {ui}i, { pi}i) ∈ 

E × H1(D)
Nw

× H1(D)
Nw

 solves the irst-order optimality system for the Helmholtz inverse 

problem

〈∇ui,∇p̃i〉 − κ
2〈mMAP(w)ui, p̃i〉 − 〈 f (wi), p̃i〉 = 0, ∀i

〈∇ũi,∇pi〉 − κ
2〈ũi, mMAP(w)pi〉+ 〈Bũi, Bui − d(wi)〉

Γ
−1
noise

= 0, ∀i

〈mMAP(w)− m0, m̃〉E −
1

Nw

Nw
∑

i=1

κ
2〈uipi, m̃〉 = 0,

for all (m̃, {ũi}i, {p̃i}i) ∈ E × H1(D)
Nw × H1(D)

Nw
.

5.2.1. Gradient of the A-optimal weight problem. We derive the gradient of the objective func-

tion deined in (23), with respect to w, using a formal Lagrangian approach. We refer the reader to 

the Appendix for this derivation. Since we enforce the PDE constraints weakly using Lagrange 

multipliers, we introduce adjoint variables that are indicated with a star superscript, e.g. m∗ is 

the adjoint variable for m. The gradient is given by [δw1ΦL(w), δw2ΦL(w), . . . , δwNwΦL(w)]
T

, 

where for any i = 1, . . . , Nw,

δwiΦL(w) = −
1

Nw













〈 f1, u∗i 〉 + 〈Bp∗i ,d1〉Γ−1
noise

〈 f2, u∗i 〉 + 〈Bp∗i ,d2〉Γ−1
noise

〈 fNs
, u∗i 〉 + 〈Bp∗i ,dNs

〉
Γ

−1
noise













.

The variables u∗

i  and p∗

i  are computed by solving the following Hessian-like system 

(compare with (22)): Find (m∗, {u∗i }i, { p∗i }i) ∈ E × H1(D)
Nw × H1(D)

Nw such that for all 

(m̃, {ũi}i, {p̃i}i) ∈ E × H1(D)
Nw × H1(D)

Nw
 the following equations are satisied:
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〈∇p∗

i ,∇p̃i〉 − κ
2〈mp∗i , p̃i〉 − κ

2〈uim
∗, p̃i〉 = −

2

ntr

ntr
∑

k=1

κ
2〈vi,kyk, p̃i〉,

〈∇u∗i ,∇ũi〉 − κ
2〈mu∗i , ũi〉 − κ

2〈 pim
∗, ũi〉 + 〈Bp∗i , Bũi〉Γ−1

noise
= −

2

ntr

ntr
∑

k=1

κ
2〈ykqi,k, ũi〉,

〈m∗, m̃〉E −
1

Nw

Nw
∑

i=1

κ
2 [〈uiu

∗

i , m̃〉+ 〈 p∗i pi, m̃〉] = −
2

ntrNw

ntr
∑

k=1

Nw
∑

i=1

κ
2〈vi,kqi,k, m̃〉.

 

(25)

The variables {vi,k} (resp. {qi,k}) are the incremental state (resp. adjoint) variables that occur 

in the application of the inverse Hessian in the direction of the kth trace estimator direction zk.

5.2.2. Discretization. The numerical solution of (23) is done via the optimize-then-discretize 

(OTD) approach, where the discretization is based on continuous Galerkin inite element with 

Lagrange nodal basis functions. Extra care is needed for the discretization of the covariance 

operator to ensure that its discrete representation faithfully represents the properties of the 

target ininite-dimensional object. We do not provide full details of the discretization and refer 

the reader to [9, 21]. However, we show how to select the discrete random directions zk in the 

trace estimator. Let us call Vh the inite-dimensional approximation to the space H1(D) used 

for the inite-element representations of all state, adjoint, corresponding incremental vari-

ables and their respective adjoints. And let Vm
h  be the inite-dimensional space for the medium 

parameter m. Let us call {ψi}
t
i=1 (resp. {φi}

l
i=1) a basis for Vh (resp. Vm

h ). Let us introduce the 

vector notations yk = (y1
k , . . . , yl

k)
T  (resp. zk = (z1

k , . . . , zl
k)

T ) for the inite element representa-

tions of yk (resp. zk) in Vm
h . The inite-dimensional approximation to the trace estimation is then

1

ntr

ntr
∑

k=1

〈yh
k , zh

k〉L2 =
1

ntr

ntr
∑

k=1

l
∑

i,j=1

yi
kz

j

k〈φi,φj〉L2 =
1

ntr

ntr
∑

k=1

〈yk, zk〉M,

with Mij = 〈φi,φj〉L2 the mass matrix in Vm
h . From the deinition of yk, we see that each yh

k 

solves the system 〈Hyh
k ,φi〉L2 = 〈zh

k ,φi〉L2, for i = 1, . . . , l. Substituting the representation of 

yh
k and zh

k  in the basis of Vm
h , we obtain the matrix system Hyk = Mzk , where H is the 

standard Hessian matrix obtained from inite-element discretization of system (22), i.e. 

Hij = 〈Hφj,φi〉L2 . The inite-dimensional approximation to the trace estimation becomes

1

ntr

ntr
∑

k=1

〈yh
k , zh

k〉L2 =
1

ntr

ntr
∑

k=1

〈H−1
Mzk, zk〉M =

1

ntr

ntr
∑

k=1

〈H−1
M

zk, zk〉M,

where we deined H−1
M

:= H−1
M. The matrix H−1

M
 is M-symmetric [21], i.e. self-adjoint 

with respect to the M inner-product. Then it was proved in [9] that 1
ntr

∑ntr

k=1〈H
−1
M

zk, zk〉M 

is indeed a trace estimator provided zk ∼ N (0,M−1). In practice, vectors zk  are sampled 

by taking draws xk  from multivariate standard normal distribution, xk ∼ N (0, I), and using 

zk = M
−1/2

xk .

5.2.3. Computational cost. Problem (23) is highly nonlinear and requires iterative methods 

to be solved. The gradient, derived in section 5.2.1, allows us to use quasi-Newton methods 

[28]. In table 1, we report the dominating terms of the computational cost of evaluating the 

objective function and its gradient in all three cases (15)–(17). Additionally, it is possible to 
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reduce the cost of formulation (15) by computing a low-rank approximation of the Hessian 

operator [29]. One must keep in mind, however, that the incremental state variables {vi,k} and 

incremental adjoint variables {qi,k} corresponding to each random directions {zk} are required 

to compute the gradient. For this reason, a low-rank approximation of the Hessian will only 

lower the computational cost when ntr > ncgnnewt.

Following the OTD approach, the optimization problem (23) is formulated in function 

space, before being solved with algorithms that are discretization-independent. This results 

in the overall computational cost being independent of the discretization of the parameter 

space, or in other words, each of the quantities nnewt, ncg and ntr in table 1 remain constant 

when the mesh gets reined. We spend the rest of this section discussing the choice of such 

discretization-invariant algorithms. First, we use Newton’s method, with Armijo line search, 

to compute the MAP point; the number of Newton steps needed to converge, nnewt, is typi-

cally independent of the size of the parameter space [30]. Moreover, the Hessian system (22) 

needed to compute the MAP point, to evaluate the objective function (23), and to compute the 

adjoint variable m∗ (25), is solved using the preconditioned Conjugate Gradient method [28]. 

The Conjugate Gradient solver is preconditioned by the prior covariance operator; the number 

of iterations ncg needed to solve the Hessian system then depends on the spectral properties of 

the prior-preconditioned data-misit part of the Hessian operator (i.e. the Hessian in function 

space) and is therefore independent of the discretization. The trace estimator displays a similar 

type of behaviour. The number of trace estimator vectors ntr one should use depends on the 

spectral properties of the underlying ininite-dimensional operator. The choice of a discrete 

inner-product weighted by the mass matrix (see section 5.2.2) guarantees that our discrete 

operator will be a valid approximation of the ininite-dimensional operator and will conserve 

its spectral properties. The actual evaluation of the trace is performed through the repeated 

solution of the Hessian system (24), which was shown above to be discretization-independent.

6. Numerical results

In this section, we present numerical results for the Helmholtz inverse problem in two (spatial) 

dimensions. We start with a low-dimensional example (Nw  =  1 for Ns  =  2), which allows us 

to visualize the objective functions deined in section 4.2 over the entire weight space. This 

Table 1. Computational cost for objective function and gradient evaluation of 
the optimization problem for inding A-optimal encoding weights. We report the 

computational cost, in terms of the number of forward PDE solves, for ΦGN(w), 
ΦL(w), and Φ0(w) deined in (15)–(17) respectively. Notations: ncg = number of 

Conjugate-Gradient iterations to compute the search direction in Newton’s method; 
nnewt = number of Newton steps to compute the MAP point.

Φ0(w)
ΦGN(w) and ΦL(w)
(No low-rank)

ΦGN(w)
(With low-rank)

Objective evaluation

MAP point 2Nw 2Nwncgnnewt 2Nwncgnnewt

tr(H−1) 2Nwncgntr 2Nwncgntr 2Nwncg

Gradient evaluation

vik, qik — — 2Nwntr

m∗ — 2Nwncg —

u∗

i , p∗

i
Nw — 2Nw

Total 2Nwncgntr 2Nwncg(nnewt + ntr) 2Nw(ncgnnewt + ntr)
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facilitates a qualitative comparison of the different approximations introduced, the Gauss–

Newton (12) and Laplace objective functions (13), along with the linearized formulation (14). 

We then present an example with a higher-dimensional weight space (Ns  =  10) in which we 

study the distribution of the A-optimal encoding weights and random weights sampled from 

the uniform spherical distribution and how the number of encoded weight vectors inluence 

these results.

The setting for this section  is a square domain with 20 receivers located at the top of 

the domain, and sources positioned on the bottom and left edges of the domain. The source 

term is a molliier (20) with ε = 10−6. This choice of source terms was numerically found 

to be reasonably well approximated, at the discrete level, by a point source; we utilize that 

approximation in this section. We use a wave frequency of κ = 2π in equation (18). All partial 

differential equations are discretized by continuous Galerkin inite elements (linear elements 

for the parameters and quadratic elements for the state and adjoint variables). This results in 

a (medium) parameter space of 182 degrees of freedom. We work with synthetic data that are 

polluted by a 2% additive Gaussian noise.

6.1. One-dimensional weight space

In this section, we study a one-dimensional source encoding problem corresponding to a sin-

gle linear combination of two sources (Ns  =  2 and Nw  =  1). Although this setting represents 

an unrealistic situation (low number of sources, and high ratio of number of encoded sources 

over total number of sources), it is informative for the following reasons: (1) it provides 

numerical evidence of the strong and highly nonlinear dependence of the objective functions 

(12)–(14) on the encoding weights; (2) it demonstrates the presence of multiple local minima 

in the minimization problem (11); (3) it highlights the difference between the Gauss–Newton 

and Laplace formulations. The sources are located on the bottom and left edges of the domain, 

and we study two different medium parameters, each made of a constant background and a 

smooth compactly supported perturbation (see igure 1).

We next deine the noise covariance and the prior covariance operators used in these 

numerical applications. Let us introduce the non-singular, positive deinite, elliptic operator 

Y = −γ∆+ βI , with γ,β positive constants, I the identity operator and ∆ the Laplacian 

operator with homogeneous Neumann boundary conditions. Then we deine the prior covari-

ance operator as C0
−1 = Y + ηY2 with η > 0. One can verify that this choice of prior covari-

ance operator is symmetric, positive deinite and trace-class as long as γ, η,β > 0. The noise 

covariance operator for the observations is chosen to be a multiple of the identity matrix, i.e. 

Γnoise = σ
2
I—in our examples we choose σ = 1. The parameters γ, β, and η are chosen as 

γ = 10−3, β = 10−4 and η = 10−2, and we have veriied that this choice approximately satis-

ies the discrepancy principle. In the (discrete) numerical applications, we use δ = 0 in the 

measure µδ the trace estimator vectors zi are sampled from (see section 4.2).

To enforce the constraint w ∈ S , i.e. 

√

w2
1 + w2

2 = 1 in this case, we parameterize the 

weight vector as (w1,±

√

1 − w2
1). The parameter w1, alone, controls the combination of 

both sources. Moreover, the weight vectors (w1,−
√

1 − w2
1) and (−w1,

√

1 − w2
1) lead to 

the same reconstruction, such that it sufices to consider the encoding weights (w1,

√

1 − w2
1) 

for w1 ∈ [−1, 1].
In igure  2, we plot the three objective functions (12)–(14) from section  4.2. For each 

w1 ∈ [−1, 1], the Gauss–Newton (12) and Laplace (13) formulations are evaluated at the MAP 

point, mMAP(w1), corresponding to the encoding weight (w1,

√

1 − w2
1); in other words, the 
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Hessian for these two criteria is evaluated at a medium parameter mMAP(w1) that varies with 

the weight w1. For formulation (14), we choose m0 to be a constant value equal to the back-

ground medium, i.e. m0 ≡ 1. We observe that the result for the Gauss–Newton formulation 

(12) differs from the Laplace approximation (13). In addition, we clearly observe that each 

formulation contains local minima.

6.1.1. Robustness of the Gauss–Newton formulation (12). Since the computation of the MAP 

point mMAP(w1) is a computationally intensive task for large-scale problems, it might be use-

ful to solve the optimization (11) without having to recompute the exact MAP point for each 

iterate of the weights. The Laplace formulation (13) is based on the full Hessian which is 

guaranteed to be positive deinite only in a neighbourhood of the MAP point. The Gauss–

Newton approximation, however, is always positive deinite and we observe numerically that 

it preserves relevant information about the objective function, even far away from the MAP 

Figure 1. Target medium parameters, along with the locations of the sources (green 
squares) and receivers (yellow circles). (a) Medium parameter 1; (b) medium parameter 2.

Figure 2. Plots of tr(H−1) with H−1(mMAP(w1)), H
−1
GN(mMAP(w1)) and H−1

GN(m0) for 

both target media. m0 ≡ 1, same as the background value for the medium parameter.  

(a) Medium parameter 1; (b) medium parameter 2.

B Crestel et alInverse Problems 33 (2017) 074008



17

point. In igure 3, we plot the objective function (12), for all values of w1 ∈ [−1, 1], for differ-

ent (ixed) medium parameters m̄s ranging from the background medium, m0 ≡ 1, to the MAP 

point m� computed using both sources independently (for medium parameter 2). The sources 

are located at the points (0, 0.1) and (0, 1.1). That is, we deine

m̄s = (1 − s)m0 + s m�.

It appears that the medium parameter needs to include the main features of the target 

medium suficiently accurately (s  >  0.5) to match the main features of the exact trace of the 

posterior covariance; this can be seen from the behavior of tr
(

H
−1
GN(w1, m̄s)

)

 in the interval 

w1 ∈ [0.2, 1.0].

6.1.2. The effect of trace estimation. When computing A-optimal encoding weights, one only 

needs the local minima of the trace to be well characterized. We show in igure 4 that trace 

estimation does indeed affect the shape of the objective function in the formulations of the 

A-optimal encoding weights (16). However, in our example, the objective function using a 

trace estimation preserves the local minima of the objective function using an exact trace 

when a suficient number of trace estimator vectors are used.

Figure 3. Plots of objective function Φ0 (14) for weights w1 ∈ [−1, 1] (right), at 
medium m̄s, with s = 0, 0.5, 1 (left). Here m0 ≡ 1 (the background medium). (a) s  =  0; 
(b) s  =  0.5; (c) s  =  1.

Figure 4. Plots of the objective function in (16) when the trace of the posterior 
covariance is computed exactly or with a trace estimator (ntr = 1, 10, 30). For each ntr, 
we used a ixed realization of the trace estimator vectors.
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6.2. A-optimal encoding weights in higher dimensional weight spaces

We now consider a problem with 10 sources (i.e. Ns  =  10). Here, we focus on qualitative 

properties of the A-optimal source encoding weights by performing statistical tests, in which 

we study how successful A-optimal encoding weights are in reducing posterior variance and 

relative medium misit compared to encoding weights sampled from the uniform spheri-

cal distribution. We also compared with random weights sampled, then re-scaled, from the 

Rademacher distribution (see section 2). Since the results we obtained were not statistically 

different from the results presented in this section using random weights sampled from the 

uniform spherical distribution, we decided to omit these results. Throughout this section, the 

relative medium misit is taken to be the relative L2-error between the reconstruction of inter-

est and the reconstruction obtained using all 10 sources independently. The penalty parameter 

was empirically selected to be λ = 103.

We show the results in igure 6. Each plot shows, for different number of encoded sources 

(Nw  =  1, 2, 3 and 6), the objective function ΦL(w) deined in (13) against the relative medium 

misit of the reconstruction, which is an indication for the quality of the reconstruction. Each 

reconstruction is indicated by a translucent dot; a darker shade indicates a higher concentra-

tion of reconstructions in that part of the plot. This shows the variation in the quality of the 

reconstruction. The blue dots correspond to reconstructions that use random encoding weights 

sampled from the uniform spherical distribution. The red dots indicate A-optimal encoding 

weights based on the Laplace formulation (16). The reconstructions marked with black dots 

use A-optimal encoding weights based on the Gauss–Newton formulation (15). In order to 

detect potential local minima, the A-optimal encoding weights are re-computed several times, 

starting from different initial conditions.

Notice that with one encoded source, A-optimal encoding weights do not provide a clear 

advantage over random weights. The overall distribution of random weights does not indicate 

a strong connection between the trace of the posterior covariance (13) and the relative medium 

misit. On the other hand, the A-optimal encoding weights outperform the random weights (on 

average), when suficiently many encoding weights are used (see in particular Nw  =  2 and 3 in 

igure 6). In that case, the random weights appear to indicate a linear correlation between our 

objective function and the relative medium misit, which translates into the best reconstruc-

tion being also the one with smallest trace of the posterior covariance. Overall, these results 

suggest the existence of a threshold, in the number of encoding sources, above which optimal 

Figure 5. Target medium parameter and locations of the 10 sources (green squares), 
and receivers (yellow circles).
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weights provide improvement in both variance and medium misit over random encoding 

weights. Moreover, based on these results, there does not appear to be a clear advantage in 

using the Laplace approximation (16) over the Gauss–Newton approximation (15), provided 

suficiently many encoded sources are used. In the last row of igure 6, optimal weights com-

puted with both formulations provide similar results, although the actual values of the weights 

do not necessarily agree.

In addition, we provide a comparison of the reconstructions computed using all sources 

independently (igure 7(a)), using three A-optimally encoded sources (igure 7(b)), and two 

examples of reconstructions computed using three randomly encoded sources: one resulting 

in a good reconstruction (igure 7(c)), and one resulting in a poor reconstruction (igure 7(d)). 

There is virtually no difference between the reconstructions computed using all 10 sources 

and using three A-optimally encoded sources. On the other hand, using random encoding 

weights drawn from the same distribution may lead to good or poor reconstructions, as is 

shown in igures 7(c) and (d). This is consistent with the results in igure 6 (bottom left), where 

the blue dots show large variations in terms of relative medium misit.

6.2.1. Variability of the A-optimal encoding weights. The A-optimal encoding weight form-

ulation introduced in section  4 relies on a ixed realization of the trace estimator vectors. 

Note that the A-optimal encoding weights are solutions to a highly nonlinear optimization 

problem that in general exhibits local minima. However, we show numerically that, provided 

suficiently many encoding weights are chosen and a large enough number of trace estimator 

vectors are used, the computation of the A-optimal encoding weights is stable with respect 

Figure 6. Plot of ΦL(w) (13) against relative medium misit (Ns  =  10 and 
Nw = 1, 2, 3, 6) for reconstructions using random encoding sources sampled from the 
uniform spherical distribution (blue) or A-optimal encoding weights computed with 
formulation (15) (black) and (16) (red). Target model 2 with source coniguration as 
shown in igure 5. Sample size  =  500, ntr = 30.
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to trace estimation. In igure 8, we show 100 results obtained with Laplace A-optimal encod-

ing weights (16), in the case of 3 encoded sources, with different numbers of trace estimator 

vectors (ntr = 4, 10, 30). Each computation uses different realizations of the trace estimator 

vectors, and different initial guess of the weights.

We observe that with ntr = 10 and 30 the computations of the A-optimal encoding weights 

provide similar results. On the other hand, the use of 4 trace estimator vectors leads to a much 

wider range in the quality of the results, both in terms of relative medium misit and trace of 

the posterior covariance.

6.3. Remarks on the Gauss–Newton formulation

Here, we discuss the justiication for and advantages of using the Gauss–Newton formulation 

for inding A-optimal encoding weights. In many important situations, the Gauss–Newton 

form ulation appears accurate enough to compute the A-optimal encoding weights. The 

Figure 7. Four examples of reconstructions using different number of sources, with 
target parameter 2: (a) 10 independent sources; (b) 3 A-optimally encoded sources;  
(c) 3 randomly encoded sources; (d) 3 other randomly encoded sources.

Figure 8. Variability of the A-optimal weights for different numbers of trace estimator 
vectors, ntr = 30 (red), 10 (black) and 4 (magenta). A-optimal encoding weights are 
computed with formulation (16) (Ns  =  10 and Nw  =  3), using different realizations of 
the trace estimator vectors and different initial guess of the weights. Sample size  =  100. 
Blue dots correspond to reconstructions computed using random encoding sources 
sampled from the uniform spherical distribution (see igure 6).
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Gauss–Newton approximation to the Hessian is most accurate when the data misit residual 

is small at the solution of the inverse problem. This is the case, for instance, when the noise 

level in the observations is low. In our numerical experiments we observed that, provided 

suficiently many encoded sources are used, the Gauss–Newton formulation represents a suf-

iciently accurate approximation to the Laplace formulation for the purpose of computing 

A-optimal encoding weights.

The Gauss–Newton formulation holds strong promises to reduce the computational cost of 

the A-optimal encoding weights. The data-misit part of the Gauss–Newton Hessian is guaran-

teed to be positive semi-deinite at any evaluation point, and hence the Gauss–Newton Hessian 

is positive deinite. This allows two main improvements to the computations of the A-optimal 

weights. First, and as detailed in section 5.2.3, one can incorporate a low-rank approximation 

of the Gauss–Newton Hessian to reduce the computational cost. The magnitude of that reduc-

tion is problem-dependent, but will be most noticeable when large numbers of trace estimator 

vectors are required.

Another advantage of the positive deiniteness of the Gauss–Newton Hessian is that the 

objective function (12) of the Gauss–Newton formulation does not have to be evaluated in a 

small neighbourhood of the MAP point for the objective function to make sense. This could 

allow one, for instance, to solve the MAP point inexactly when the A-optimal objective func-

tion is far from its minimum, which would reduce the overall computational cost. In sec-

tion 6.1, we studied how the objective function varies with the evaluation point m̄s (igure 3), 

and observed that the objective function tends to maintain similar local minima away from 

the MAP point.

Finally, we want to point out that in certain situations, the full Hessian may not be avail-

able, may be too complicated to derive, or too expensive to compute, rendering the Laplace 

formulation inadequate. This can be the case for inverse problems with highly nonlinear for-

ward problems.

7. Conclusion

We have developed a method for the computation of A-optimal encoding weights aiming at 

large-scale non-linear inverse problems. As we show numerically, reconstructions obtained 

using A-optimal encoding weights not only minimize the average of the posterior variance, but 

consistently outperform random encoding weights in terms of the quality of the reconstruc-

tions. While in this work, we relied on quasi-Newton methods for solving the optimization 

problem for A-optimal encoding weights, we will explore the derivation and implementation 

of a Newton solver for this optimization problem in future work. We point out that, thanks to 

the optimize-then-discretize approach we adopted, the derivation of the analytical expression 

for the action of the Hessian in a direction is possible with little more effort than what was 

required to get the gradient.

We introduced two formulations for the computation of the A-optimal encoding weights, 

namely the Gauss–Newton formulation (15) and the Laplace formulation (16). Although the 

Gauss–Newton formulation represents an approximation to the Laplace formulation, it holds 

several advantageous features from computational point of view.

We note that computing A-optimal encoding weights can entail a signiicant computational 

effort. However, the method can be attractive for real-time monitoring applications where 

one needs to solve an inverse problem repeatedly over time. In this case, one irst computes 

the A-optimal encoding weights ofline, and then can use those weights to solve the inverse 

problem repeatedly at a fraction of the original cost. An example for such an application is the 
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monitoring of an oil reservoir, where seismic or electro-magnetic inverse problems are solved 

repeatedly to characterize the evolution of the reservoir properties over time.

Appendix. Gradient of the optimization formulation (23)

We detail the derivation of the gradient of the Laplace formulation of the A-optimal weights 

in the case of the Helmholtz inverse problem, as deined in (23). In that formulation, we 

enforce the PDE constraints weakly using Lagrange multipliers. Therefore, we need to intro-

duce adjoint variables that are indicated with a star superscript, e.g. m∗ is the adjoint variable 

for m. Following the formal Lagrangian approach [1], we deine the Lagrangian L,

L(w, m, {ui}, { pi}, {vi,k}, {qi,k}, {yk}, m∗, {u∗i }, { p∗i }, {v
∗

i,k}, {q∗i,k}, {y∗k})

=
1

ntr

ntr
∑

k=1

〈yk, zk〉

+
1

ntrNw

ntr
∑

k=1

Nw
∑

i=1

[

〈∇vi,k,∇v
∗

i,k〉 − κ
2〈mvi,k, v

∗

i,k〉 − κ
2〈uiyk, v

∗

i,k〉
]

+
1

ntrNw

ntr
∑

k=1

Nw
∑

i=1

[

〈∇q∗

i,k,∇qi,k〉 − κ
2〈q∗i,k, mqi,k〉 − κ

2〈q∗i,k, piyk〉+ 〈Bq∗i,k, Bvi,k〉Γ−1
noise

]

+
1

ntr

ntr
∑

k=1

[

〈yk, y∗k 〉E −
1

Nw

Nw
∑

i=1

κ
2 (〈vi,kpi, y∗k 〉+ 〈uiqi,k, y∗k 〉)− 〈zk, y∗k 〉

]

+
1

Nw

Nw
∑

i=1

[

〈∇ui,∇u∗

i 〉 − κ
2〈mui, u∗i 〉 − 〈 f (wi), u∗i 〉

]

+
1

Nw

Nw
∑

i=1

[

〈∇p∗

i ,∇pi〉 − κ
2〈 p∗i , mpi〉+ 〈Bp∗i , Bui − d(wi)〉

Γ
−1
noise

]

+ 〈m − m0, m∗〉E −
1

Nw

Nw
∑

i=1

κ
2〈uipi, m∗〉.

 

(A.1)

The gradient is then given by δwL = [δw1L, δw2L, . . . , δwNwL]
T

, where for any 

i = 1, . . . , Nw,

δwiL = −
1

Nw













〈 f1, u∗i 〉 + 〈Bp∗i ,d1〉Γ−1
noise

〈 f2, u∗i 〉 + 〈Bp∗i ,d2〉Γ−1
noise

〈 fNs
, u∗i 〉 + 〈Bp∗i ,dNs

〉
Γ

−1
noise













.

Before we specify the steps that lead to the evaluation of the variables u∗

i  and p∗

i , we iden-

tify some important symmetries between the state variables and their adjoints. Indeed, for each 

k = 1, . . . , ntr, the variables (yk, {vi,k}i, {qi,k}i) solve a Hessian system similar to (22), and the 

corresponding adjoint variables (y∗k , {v
∗

i,k}i, {q∗i,k}i) solve the system of equations given (for-

mally) by δvik
L = δqik

L = δyk
L = 0. While the former system of equations solve Hyk = zk , 

the latter solves Hy∗k = −zk. This leads to the symmetry relations
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yk = −y∗k , vik = −q∗ik, and qik = −v
∗

ik, (A.2)

for any i = 1, . . . , Nw and k = 1, . . . , ntr.

For any i = 1, . . . , Nw, the variable u∗

i  (resp. p∗

i ) solves the equation  δui
L = 0 (resp. 

δpi
L = 0). That is, for any ũ ∈ H1(D), u∗

i  solves

〈∇u∗

i ,∇ũ〉 − κ
2〈mu∗i , ũ〉

− κ
2〈 pim

∗, ũ〉+ 〈Bp∗i , Bũ〉
Γ

−1
noise

− κ
2 1

ntr

ntr
∑

k=1

[

〈ykv
∗

i,k, ũ〉+ 〈qi,ky∗k , ũ〉
]

= 0.

On the other hand, for any p̃ ∈ H1(D), p∗

i  solves

〈∇p∗i ,∇p̃〉 − κ
2〈 p∗

i , mp̃〉 − κ
2〈uim

∗, p̃〉 − κ
2 1

ntr

ntr
∑

k=1

[

〈q∗i,kyk, p̃〉+ 〈vi,ky∗k , p̃〉
]

= 0.

Using (A.2), this reduces, for any i = 1, . . . , Nw, to the system of equations

〈∇u∗

i ,∇ũ〉 − κ
2〈mu∗i , ũ〉 − κ

2〈 pim
∗, ũ〉+ 〈Bp∗i , Bũ〉

Γ
−1
noise

+
2

ntr

ntr
∑

k=1

κ
2〈ykqi,k, ũ〉 = 0,

〈∇p∗

i ,∇p̃〉 − κ
2〈mp∗i , p̃〉 − κ

2〈uim
∗, p̃〉+

2

ntr

ntr
∑

k=1

κ
2〈vi,kyk, p̃〉 = 0.

 (A.3)

Therefore, computation of the u∗

i ’s and p∗

i ’s requires knowledge of the quantities {ui}, {pi}, 
m∗, {vi,k}, {qi,k} and {yk}. Variables {ui}, {pi}, {vi,k}, {qi,k}, and {yk} are all evaluated during 

the computation of the objective functional 1/ntr

∑ntr

k=1〈yk, zk〉, such that the only remaining 

unknown quantity is m∗. That variable is solution to the equation δmL = 0, that is, for any 

m̃ ∈ E , m∗ solves

1

ntrNw

ntr
∑

k=1

Nw
∑

i=1

[

−κ
2〈m̃vi,k, v

∗

i,k〉 − κ
2〈q∗i,k, m̃qi,k〉

]

+
1

Nw

Nw
∑

i=1

[

−κ
2〈m̃ui, u∗i 〉 − κ

2〈 p∗

i , m̃pi〉
]

+ 〈m̃, m∗〉E = 0.

Using (A.2), we simplify this equation to obtain

2

ntrNw

ntr
∑

k=1

Nw
∑

i=1

κ
2〈vi,kqi,k, m̃〉 −

1

Nw

Nw
∑

i=1

κ
2 [〈uiu

∗

i , m̃〉+ 〈 p∗

i pi, m̃〉] + 〈m∗, m̃〉E = 0.

This equation can be grouped with the system of equations (A.3) to obtain the larger system
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〈∇p∗

i ,∇p̃〉 − κ
2〈mp∗i , p̃〉 − κ

2〈uim
∗, p̃〉 = −

2

ntr

ntr
∑

k=1

κ
2〈vi,kyk, p̃〉

〈∇u∗i ,∇ũ〉 − κ
2〈mu∗i , ũ〉 − κ

2〈 pim
∗, ũ〉+ 〈Bp∗i , Bũ〉

Γ
−1
noise

= −
2

ntr

ntr
∑

k=1

κ
2〈ykqi,k, ũ〉

〈m∗, m̃〉E −
1

Nw

Nw
∑

i=1

κ
2 [〈uiu

∗

i , m̃〉+ 〈 p∗i pi, m̃〉] = −
2

ntrNw

ntr
∑

k=1

Nw
∑

i=1

κ
2〈vi,kqik, m̃〉.

This system of equations should be compared to the system of equations for the Hessian (22). 

From this, it should be clear that the computation of m∗ corresponds to the solution of another 

Hessian system with a right-hand side depending on the state and adjoint variables, {ui} and 

{pi}, the incremental state and adjoint variables, {vi,k} and {qi,k}, the medium param eter m, 

and the {yk}. We denote this right-hand side as F . In strong form, m∗ thus solves

H(mMAP)m
∗ = F({ui}, { pi}, {vi,k}, {qi,k}, m, {yk}).
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