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Abstract

The computational cost of solving an inverse problem governed by PDEs, using
multiple experiments, increases linearly with the number of experiments. A recently
proposed method to decrease this cost uses only a small number of random linear
combinations of all experiments for solving the inverse problem. This approach
applies to inverse problems where the PDE solution depends linearly on the right-
hand side function that models the experiment. As this method is stochastic in
essence, the quality of the obtained reconstructions can vary, in particular when
only a small number of combinations are used. We develop a Bayesian formulation
for the definition and computation of encoding weights that lead to a parameter
reconstruction with the least uncertainty. We call these weights A-optimal encoding
weights. Our framework applies to inverse problems where the governing PDE is
nonlinear with respect to the inversion parameter field. We formulate the problem
in infinite dimensions and follow the optimize-then-discretize approach, devoting
special attention to the discretization and the choice of numerical methods in order
to achieve a computational cost that is independent of the parameter discretization.
We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-
based expressions for the gradient of the objective function of the optimization
problem for finding the A-optimal encoding weights. The proposed method is

3 Author to whom any correspondence should be addressed.

1361-6420/17/074008+25%$33.00 © 2017 IOP Publishing Ltd Printed in the UK 1



Inverse Problems 33 (2017) 074008 B Crestel et al

potentially attractive for real-time monitoring applications, where one can invest
the effort to compute optimal weights offline, to later solve an inverse problem
repeatedly, over time, at a fraction of the initial cost.

Keywords: source encoding, Bayesian nonlinear inverse problem, A-optimal
experimental design, randomized trace estimator, Helmholtz equation

(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse problems are ubiquitous in science and engineering. They arise whenever one attempts
to infer parameters m from indirect observations d and from a mathematical model—the
parameter-to-observable map, F (-)—for the physical phenomenon that relates m and d. When
available, it is common to use observations obtained from different experiments to improve
the quality of the parameter estimation. Suppose N, experiments are conduced, indexed by
i € {1,...,N,}. The ith experiment results in observations d; and the corresponding param-
eter-to-observable map is denoted by JF;(m). Following a deterministic approach to this inverse
problem results in the nonlinear least-squares minimization problem

N,

. RN

min ¢ = 3 [|Fi(m) — dilf? +R(m) ¢ M
$i=1

where R is an appropriate regularization operator to cope with the ill-posedness that is com-
mon for many inverse problems.

Nonlinear optimization problems such as (1) can only be solved iteratively, which requires
the availability of first (and ideally, also second) derivatives of the functional in (1) with respect
to m. For an important class of inverse problems, the parameter-to-observable map involves the
solution of a partial differential equation (PDE). This means that the evaluation of F;(m) entails
computing u;, the solution of a PDE, and this u; is usually restricted by an observation operator
B to a subset of the domain (e.g. points), where observations are available. In this work, we
make the assumption that the different experiments correspond to different right-hand sides f; of
this PDE. Moreover, this PDE must be linear with respect to the solution #;, and both the PDE
operator as well as the observation operator B must be the same for all experiments.

When the ith experiment corresponds to a forcing term f;, the parameter-to-observable map
is given by F;(m) = Bu;, where A(m)u; = f; with A(m) denoting the linear PDE-operator that
may depend nonlinearly on m. Note that the governing PDE can be stationary or time-depend-
ent. Adjoint methods allow to compute derivatives of the objective in (1) efficiently [1]. For
instance, the computation of the gradient of the objective in (1) requires solving N forward
and associated adjoint PDEs. Similar computational costs are associated with the application
of the Hessian operator to vectors, such that the overall computational cost of solving (1),
which is dominated by PDE solves with the operator A(m), grows (at least) linearly with the
number of experiments N;. In some important inverse problems, N; is large (e.g. several thou-
sand), such that these computations are expensive or even infeasible.

There have been some recent breakthroughs to address this computational bottleneck using
the concept of random source encoding, sometimes also referred to as simultaneous random
sources [2, 3]. A mathematical justification of this approach is given in the seminal paper
[4], and is summarized in section 2. In [5], the authors employed a similar idea to encode
the observations in inverse problems with large amount of data. The main idea of random
source encoding is to replace the data generated by each individual experiment with a small
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number, N,, < Nj, of linear combinations of the data; the weights of these linear combina-
tions, w' = [w},...,wj |7, are called encoding weights. Due to our linearity assumptions, this
linear combination of data corresponds to the same linear combination of experiments, i.e. we

can define encoded parameter-to-observable maps F(w’;m), i = 1,...,N,, as follows
Ny Ny
F(w'ym) = ij}](m) =B ij’uj . 2)
j=1 j=1
Observe that Zjvzl w}uj can be computed by solving the single PDE

N, Ny
Am) | D owis | = | Dowif;
j=1 J=1

Replacing the individual experiments with encoded experiments results in an inverse problem
with lower computational complexity. The hope is that these linear combinations still carry
most of the information contained in the individual experiments. As mentioned above, the
source encoding method hinges on the linearity of the PDE describing the underlying physical
phenomenon, such that the observables depends linearly on the forcing term. Additionally, the
uniqueness of the observation operator B is necessary, but this requirement can be weakened
in certain situations, e.g. if data from some experiments is missing [6].

The method of random source encoding, stochastic in essence, suffers from a few limita-
tions. The key idea of the random source encoding approach is the conversion of the determin-
istic optimization (1) into a stochastic optimization problem. The expectation to be minimized
is then approximated using a Monte-Carlo technique (see [4] or section 2). To reduce the
computational cost of solving the inverse problem, one would like to choose the number of
samples used in this Monte-Carlo approximation small. A small number of samples translates
into a large variance for the Monte-Carlo estimator of the expectation. In practice, this mani-
fests itself in large differences in the reconstructions obtained with different samples of encod-
ing weights. An approach to remedy that difficulty is to select the weights deterministically
[7, 8]. In particular, in [7], the author considers to select the weights that generate the great-
est improvement from the current reconstruction, but the results are inconclusive. In [8], the
authors choose the weights that minimize the expected medium misfit in the case of a discrete
linear inverse problem, which is related to the approach we follow in this paper.

1.1. Contributions

The main contributions of this article are as follows: (1) Drawing from recent developments
in optimal experimental design (OED) for high- or infinite-dimensional inverse problems
[9-12], and following a Bayesian view of inverse problems, we develop a method for the
computation of encoding weights that lead to a parameter reconstruction with the least uncer-
tainty—as measured by the average of the posterior variance. We refer to these (deterministic)
weights as A-optimal encoding weights, a nomenclature motivated by the use of the A-optimal
experimental design criterion from OED theory [13]. (2) The method we propose extends the
work in [8] by addressing inverse problems with nonlinear parameter-to-observable maps,
and allows for infinite-dimensional parameters. The infinite-dimensional formulation has two
main advantages: (a) the use of weak forms facilitates the derivation of adjoint-based expres-
sions for the gradient of the objective function to compute the A-optimal encoding weights;
(b) it allows us to follow the optimize-then-discretize approach, which, along with devot-
ing special attention to the discretization of the formulation and the choice of the numerical

3
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methods employed, helps control the computational cost independently of the parameter
discretization. (3) We elaborate our method for the Helmholtz inverse problem and derive
the adjoint-based gradient of the optimization problem for finding the A-optimal encoding
weights. We also analyze the computational cost—in terms of Helmholtz PDE solves—of
objective and gradient evaluation for this optimization problem. For this Helmholtz problem,
we present an extensive numerical study and discuss the potential and pitfalls of our approach.

12. Paper overview

The rest of this article is organized as follows. In section 2, we provide an overview of the
method of random source encoding. We also introduce the notation that we will carry through-
out the paper. In section 3, we summarize the elements of Bayesian inverse problems and
introduce approximations to the posterior covariance in function space. The framework for
the A-optimal encoding weights is presented in section 4. In section 5, we elaborate our for-
mulation for the Helmholtz inverse problem. We derive adjoint-based expressions for the
gradient of the A-optimal objective function, and analyze computational cost of evaluating
the objective function and its gradient. Numerical results are presented in section 6, and we
provide some concluding remarks in section 7.

2. Random source encoding

In this section, we review the method of random source encoding, and introduce the notation and
terminology used throughout this article. We seek to infer a parameter field m € V where V is
an infinite-dimensional Hilbert space of functions defined over the domain D C R4 d=2,3),
a typical choice is V := L?(D). The parameter-to-observable map is denoted by F; : V — R,
Let us assume that u; solves the PDE A(m)u; = f; and that all experiments i = 1,. .., Ny share a
common observation operator B, where Bu; € RY. We then write each parameter-to-observable
map as J;(m) = Bu;. The right-hand side source f; characterizes the ith experiment. To apply
source encoding, we require the parameter-to-observable map to be linear with respect to the
source terms, which led us to introduce the encoded parameter-to-observable maps (2).

In [4] the authors give a mathematical justification of the idea of random source encoding
for a discrete problem and we follow their argument, here, for an inverse problem formulated
in function space. We gather all 7;(m) (resp. d;) in the columns of a matrix F'(m) (resp. D¢) and
call the data misfit matrix S(m) := F(m) — D¢ Ignoring the regularization term for now, the

inverse problem can be written as, min,,cy { |S(m)][> }, where || - || is the Frobenius norm

[14]. Note that [|S(m)]||% = trace(S(m)"S(m)), which can be approximated efficiently using
randomized trace estimators [15, 16]. Indeed, for random vectors z with mean zero and iden-
tity covariance matrix one finds that, trace(S(m)”S(m)) = E, (||S(m)z|3). Typical choices
of distribution for z include the Rademacher distribution, where samples take values 1 with
probability 1/2, and the standard normal distribution A/ (0, Iy, ). Among other possible choices
we mention the discrete distribution that takes values ++/3 with probability 1/6 and O other-
wise, or the uniform spherical distribution on a sphere of radius /N, that we denote U (v/N;);
the fact that U;(+/N;) has identity covariance matrix can be shown using results from [17],
along with the observation that Z ~ U (v/Ny) iff Z = v/N,(z/|z|) with z ~ N (0, Iy, ). We now
write the data-misfit term as an expectation, i.e. |F(m) — D¢||2 = E,(||(F(m) — D)z|?),
leading to the stochastic optimization problem

min {]EZ(H(F(m) - De)sz)}.

i
mey
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There exist two main techniques to solve these types of problems [18]. Using stochastic aver-
age approximation (SAA), one approximates the cost functional with a Monte-Carlo-type
approach before solving a deterministic optimization problem, i.e. for fixed samples z; ones
solves

E, (||(F(m) — D)z|*) ~ % > I(FE(m) — D)zl

i=1
In an alternative approach called stochastic approximation (SA), one resamples the random
vector z at each step of the iteration.

We now specify the source-encoded equivalent of (1). Given N, encoding weights
w = (w!,...,w™), where each w' € R we define the encoded data d(w') := Z;V:

the encoded right-hand side f(w') := Z]N;l wj}ﬁ, and encoded parameter-to-observable maps

F(wiym) = ZJN;I Wi Fj(m). The parameter field m.(w) reconstructed using the N,, encoded

sources is then defined as

id.
led,

L , ,
me(w) :argfnnei]r/l{mgnf(wl;m) —d(wl)HZ—q-R(m)}. 3)

Due to the assumptions on F;(m), the encoded map still corresponds to the observation of a
single solution to a PDE, F(w';m) = Bu;, albeit this time u; solves the PDE A(m)u; = f(w'),
i.e. with an encoded right-hand side.

3. Bayesian formulation of the inverse problem with encoded sources

This section contains a brief presentation of the Bayesian formulation of inverse problems
with infinite-dimensional inversion parameters; for details we refer the reader to [19, 20] for
theory and to [21] for the numerical approximation. In the Bayesian framework, the unknown
parameter function m is modeled as a random field. Starting from a prior distribution law
for m, we use observed data to obtain an improved description of the law of m. This updated
distribution law of m is called the posterior measure. The prior measure, which we denote
by g, can be understood as a probabilistic model for our prior beliefs about the parameter
field m. The posterior measure, which we denote by ppo, is the distribution law of m, condi-
tioned on observed data. A key ingredient of a Bayesian inverse problem is the data likelihood,
miike (d|m), which describes the conditional distribution of the data given the parameter field
my; this is where the parameter-to-observable map enters the Bayesian inverse problem.

Let D C R? be a bounded domain with piecewise smooth boundary and (2, ¥, P) a prob-
ability space. We consider an inference parameter m = m(x,w), with (x,w) € D x €, such
that for any w € €, m(-,w) € V where, as before, V is an infinite-dimensional Hilbert space.
Considering the law of m as a probability measure on (V,B())), the infinite-dimensional
Bayes’ theorem relates the Radon-Nikodym derivative of pip0s With respect to pug with the data
likelihood ik (d|m):

dipost
dpos o¢ ke (d|m2). 4)
The use of non-Gaussian priors in infinite-dimensional Bayesian inverse problems rep-
resents a new, interesting area of research (see for instance [20, 22]). However, since the
Bayesian inverse problem, in the formulation we introduce in section 4, only represents
the inner problem, the additional complications created by the use of non-Gaussian priors

5
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are not justified. We instead rely on Gaussian priors for the Bayesian inverse problem; i.e.
po = N (mg,Cp) is a Gaussian measure on V. In that case, we require Cy to be symmetric,
positive and trace-class [19]. A common choice for Cy (in two and three space dimensions)
is the squared inverse of a Laplacian-like operator K, i.e. Co = K~2. We also assume that the
noise in the data is additive, and independent and identically distributed (over the different
experiments); the distribution of each noise vector is normal with mean zero and covariance
matrix Tpoise. That is, d;|m ~ N (]-'i(m), I‘noise), for any i € {1,...,N,}. Consequently, each
encoded observation d(w') will be normally distributed with mean zero and covariance matrix

TChoisei := (E;V;I(w})z)l"noise, ie. d(w')|m ~ N (F(w';m), Croise,i), for i€ {1,....N,}.

Therefore, the likelihood function has the form

Ny
1 i . ,
Tike (d(W)|m) x exp <2N g | F(w';m) — d(w’)H%,_l > .
W P noise,i

3.1 MAP point

In finite dimensions, the MAP point is the parameter myap that maximizes the posterior
probability density function. Although this definition does not extend directly to the infinite-
dimensional case, a MAP point can still be defined as a minimizer of a regularized data-misfit
cost functional over an appropriate Hilbert subspace of the parameter space [19]. Let us define
the Cameron-Martin space £ = Im(Col/ 2), endowed with the inner-product

(X, y)e = <Co_1/2x,Co_1/2y> = (Kx,Ky), Vx,ye€é. 5)
Then the MAP point is defined as
myap(w) = arg min {7 (wim)}, (6)

where, for the inverse problems considered in the present work, the functional 7 (w;-) : £ — R
is defined as

| N ‘ ’ 1
T (wim) = 55 > I Fwim) - d(W')Hi—_l 5 llm— mollz - (M
w i:1 noise,1

Here, the function my € £ is the mean of the prior measure.

3.2. Approximation to the posterior covariance

In general, there are no closed-form expressions for moments of the posterior measure. Thus,
one usually relies on sampling-based methods to explore the posterior. For inverse problems
governed by PDEs and problems with high-dimensional parameters (as, for instance, arising
upon discretization of an infinite-dimensional parameter field), sampling of the posterior can
quickly become infeasible since every evaluation of the likelihood requires a PDE solve. We
thus rely on approximations of the posterior, namely Gaussian approximations about the MAP
estimate. After finding the MAP point, we consider two commonly used approximations of
the posterior measure by a Gaussian measure N (myap, Cpost)> as discussed next [21, 23].

3.2.1. Gauss—Newton approximation. Assuming the parameter-to-observable map F(w'; -)
is Fréchet differentiable at the MAP point, one strategy to approximate the posterior is to
linearize around the MAP point, i.e.
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F(w'sm) = F(w'smyap) + Jwi(m — myap),

with J4 : V — R the Fréchet derivative of the parameter-to-observable map F(w'; -) evalu-
ated at the MAP point (6). Calling (J:)* the adjoint of J, the covariance operator of the
resulting Gaussian approximation of the posterior is given by

—1

N,

I & e _

CS)I;I[ = (]VW Z<JW') Fnogse,iJW" + CO 1) ' (8)
i=1

Note that the operator that appears inside the brackets in (8) is the so called Gauss—Newton

Hessian of the functional (7) evaluated at the MAP point,

1 Ny

Haon (mmvap) = N D (T Treidw +C -
Woi=1

3.2.2. Laplace approximation. Assuming 7 (w;-), in (7), is at least twice Fréchet differen-
tiable at the MAP point, a second approach called Laplace approximation consists of using
the second derivative of J(w;-), i.e. the Hessian, at the MAP point as an approximation to
the posterior covariance

CII;OS{ = (J"(w; mMAP))_l =H " (myap), 9)

where the derivative in 7" is taken in terms of the parameter field m. Note that the Laplace
approximation can be related, in finite dimensions, to a quadratic local approximation of
J (w;-) around the MAP point.

4. A-optimal approach to source encoding

Combining the results from section 3 with elements from optimal experimental design, we
propose a rigorous method to compute A-optimal encoding weights. In the Bayesian frame-
work, the posterior covariance quantifies the uncertainty in the reconstruction. Since the pos-
terior covariance depends on the weights (see section 4.1), we can select the weights that lead
to a reconstruction with the least uncertainty. In the field of optimal experimental design, there
are various design criteria that measure the statistical quality of the reconstructed parameter
field [24]. In the present work, we rely on the A-optimal design criterion [24, 25], which aims
to minimize the trace of the posterior covariance, or equivalently, to minimize the average
posterior variance. That is, we compute the weights with the smallest trace of the posterior

covariance ®(w) = tr(Cpost)» With Cpoe given by Cg}; (8) or C'}];OSt 9).

An alternate view of the A-optimal design criterion is that of minimizing the expected
Bayes risk of the MAP estimator, which coincides with the trace of the posterior covariance
for a linear inverse problem [9, 11, 26]. This interpretation of the A-optimal criterion can
be stated as the average mean squared error between the MAP estimator (i.e. the parameter
reconstruction) and the true parameter (e.g. see [9]). While this interpretation of A-optimality
is restricted to linear inverse problems, it provides another motivation for our choice of the
design criterion. In our numerical results, we explore this relation between minimizing the
trace of the posterior covariance and the mean squared distance between the MAP point and
the true parameter and observe that minimizing the trace of the posterior covariance correlates
with smaller errors for the parameter reconstruction.
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4.1. Dependence of the operators CSO'\s't and Clﬁost onw

The dependence of the operators CSN (8) and CII; «(9) on the weights is twofold. First these

post 0.
operators depend on the encoded parameter-to-observable maps that depend explicitly on

the weights, F(w';m) = ZjN:l WJ’]:J(m) Moreover, the posterior covariance operators also

depend on the weights through the MAP point (6), which depends on the weights as illustrated
by (6) and (7).

The dependence of the covariance operator ngt on w is straightforward to see. In par-

ticular, using the chain-rule on the forward problem A(m)u; = f(w'), the Fréchet derivative
of the parameter-to-observable at the MAP point is given by

_ 0A(m)u;
Jwi = —B.A(mMAP(W)) l% . (10)
m _
m=niap(W)
Given N,, encoding weights w = (w'!, ..., w™) where w' € R™, we emphasize the depend-
ence of the posterior covariance on the weights by writing Cg;’t = Cgf)l;'t(w). The structure of

the covariance operator C, is more complicated. We detail the dependence of . on w for
the application problem considered in the present paper in section 5. Note that in the case of a
linear parameter-to-observable map, both posterior covariances (8) and (9) are equal.

In the present formulation, tr(Cposi(W)) scales with the weights. For instance, applying a
constant multiplicative factor A > 1 to all weights would reduce the influence of the prior in
the computation of the MAP point (6) for once. It would also inflate the norm of the state vari-
able u; by that factor A\, which would then increase the size of the derivative (10). This would
in turn artificially reduce the trace of the posterior covariance (8). A solution is to restrict the
codomain of each encoding weight to a sphere of radius r in R":. We denote the corresponding
space, for the weights w, by S, i.e. S, := {w = (w!,...,w™) € R™N:; |wi| =1, Vi}. As
discussed in section 2, the theory of randomized trace estimation dictates the use of r = /Nj.
However this value is arbitrary and can be compensated by an equivalent re-scaling of the
regularization parameter. Therefore for simplicity we use the value r =1 along with the
notation S := S). Another implication of that choice, Wi| = 1, is that the covariance matri-
ces for the encoded noise vectors, introduced in section 3, simplify to I'yoisei = I'noise, for
ie{l,...,N,}.

4.2. A-optimal encoding weights

We propose to compute the A-optimal encoding weights as the solution to the constrained
minimization problem

mig O(w) := tr(Cpost(w)). (11)

we

Since there are no closed-form expressions for moments of the posterior measure, we replace
the exact posterior covariance in (11) with one of the two approximations introduced in sec-
tion 3.2. The Gauss—Newton formulation of the A-optimal encoding weights,

Pon(w) = tr(Hon (wimaap(w))), (12)
is based on the posterior covariance approximation (8), and the Laplace formulation,

O (w) = tr(?—[_l(w;mMAp(w))), (13)
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is based on the posterior covariance (9). Note that both formulations (12) and (13) require the
computation of the MAP point which is computationally expensive for large-scale problems.
To avoid the cost associated with the computation of the MAP point, an additional simplifica-
tion of (12) can be achieved by evaluating the posterior covariance (8) at a reference parameter
field myg, which leads to the following (simplified) objective function,

Bo(w) = tr(Hgu (W mp)). (14)

4.2.1. A-optimal encoding weights formulation for large-scale applications. Formulation (11)
is a nonlinear optimization problem that requires the use of iterative methods. These methods
involve repeated evaluations of the trace of the posterior covariance. Following discretization,
the posterior covariance is a high-dimensional operator that is defined implicitly, i.e. through
its applications to vectors. The exact computation of the trace of such operators, and their
derivatives with respect to encoding weights, is computationally intractable. For this reason,
we propose an approximate formulation using a randomized trace estimator (see [15, 16] for
the theory, and [8, 9] for examples of applications). Following the formulation in [10], we
introduce the Gaussian measure 5 = N'(0,Cs) where Cs := (I — §A)~2. Here A denotes the
Laplacian operator with homogeneous Neumann boundary conditions and 6 > 0 a sufficiently
small real number. Then for any positive, self-adjoint and trace-class operator 7, we may use
an estimator of the form,

1 Ny
tr(7T) =~ — Z<TZi,Zi>Ha

i
where the z; are drawn from ps. In practice, reasonable approximations of the trace can be
obtained with a relatively small 7.
The optimization problem for finding A-optimal encoding weights is formulated as follows

1 iy
min — Z(Cpost(W)Zi, Zi)-

wES Ny 4
i=1

Specializing to the cases of Pgn(w)(12) and ®r (w) (13) results in the following formulations,

1 Nye
min { > (Hah(w: mMAp(W))Z,-,Zi>} ; (15)

wEeS | Ny 4
i=1

weS Ny

min {1 im—' (w;mMAP(w»zi,z»} . (16)

i=1

Again to avoid the cost associated with the computation of the MAP point, one can evaluate
the Gauss—Newton Hessian in (15) at a fixed reference parameter field my; this leads to the
following (simplified) optimization problem,

S
vf?;%{%ZmGN(w,mo)w}- a7

i=1

The formulation (17) can be seen as an extension of the formulation proposed in [8] to a fully
nonlinear inverse problem formulated at the infinite-dimensional level.
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5. Application to the Helmholtz inverse problem

In this section, we elaborate the A-optimal encoding weights formulation introduced in sec-
tion 4 for the Helmholtz inverse problem. Recall that high resolution reconstructions in this
application require a large number of experiments and that the computational cost of the
inversion scales linearly with the number of experiments (see section 1). Source encoding can
provide a trade-off between high-quality reconstruction and computational cost.

We begin by describing the inverse problem used in our study (section 5.1). Then the
optimization problem to compute the A-optimal encoding weights, including the adjoint-
based expressions for the gradient of this objective function, is detailed in section 5.2.

5.1. The inverse problem: medium parameter reconstruction

For simplicity of the presentation, we derive the formulation using a single frequency but
extensions to the case of multiple frequencies are straightforward. We use homogeneous
Neumann boundary conditions. The frequency-domain Helmholtz equation is given, for
i=1,...,Ny,,by

—Au; — &*mu; = f(w') in D,
Vu;-n=0 on J9D.

Solutions u; (18) are considered in H'(D), i.e. the Sobolev space of functions in L*(D) with
square integrable weak derivatives. The original source terms are in the dual space of H} (D),
ie. e H ~1(D). The (medium) parameter field m € L>° (D) corresponds to the square of the
slowness (or the squared inverse local wave speed) and the constant & is the frequency of the
wave (in rad-s™1).

(18)

5.1.1. MAP point. The MAP point is the solution to a deterministic inverse problem (see sec-
tion 3.1) with the norms in the data-misfit and regularization terms weighted by the noise and
prior covariance operators respectively. In particular, with a Gaussian prior g = AN (my, Co)
and the norm corresponding to the inner product (5), we have

N,
. 1 = i |12 1 2
mMAP(W) — arg rrfllelg {QNW l:Zl HBM, — d(W )||F,;,ilgc + E ||m — m0||5} . (19)

where u; solves (18).
To properly define the source terms f;, appearing in the right hand-side of the forward prob-
lem, and the observation operator B, we define the mollifier ¢, (x;y) as follows:

1
pe(y) = e T Ly (1), (20)
g

where o, = 2nKe%e~ /< K = fol re=1/ (=) qp 1 B(y,) i the indicator function for the ball of
radius ¢ centered at y, and 0 < € < 1. This function is smooth and integrates to one. We choose
each source terms f; to be a mollifier centered at one of the N, source locations that we denote x; for
i=1,...,Nyie. fi(x) = pec(x;x). The observation operator B : H (D) — RYis the evaluation,
at each of the receiver locations which we denote x7 for j = 1,..., g, of a convolution between
the solution to the forward problem u; and a mollifier ¢./ (x; 0), i.e. (Bu;); = (u; * per (5 0)) (x]).
These choices of the source terms and observation operator guarantee that the forward, adjoint,
incremental forward and incremental adjoint solutions belong to H' (D).

10



Inverse Problems 33 (2017) 074008 B Crestel et al

5.1.2. Gradient and Hessian of the inverse problem. Availability of derivatives of the func-
tion in brackets on the right hand side of (19) is required for the computation of myap. The
second derivative, i.e. the Hessian operator, also enters the A-optimal formulation laid down
in section 4. We derive both gradient and Hessian following the formal Lagrangian approach
[1, 27]. The first-order necessary optimality condition for the MAP point is a coupled system
of PDEs: Find (myap, {ui}i, { pi}:) € € x H'(DY™ x H'(D)" such that for all variations
(m, (i {pi}i) € € x H'(D)™ x H'(D)™

(Vu;, Vi) — &> (myap(W)ug, pi) — <f(Wi),ﬁi> =0,Vi

(Vit;, Vp:) — k% (it;, muap(W)p;) + (Biti, Bu; — d(w'))p-1 =0, Vi (21)

N,
_ 1 _
<mMAP(W) — mo,m>g — N— Z ,{2<uip,',m> =0.
Woi=1

For the Hessian, we describe the solution to the equation y = H ! (myap)z. This leads to the
coupled system of PDEs: Find (v, {v;}s, {gi};) € € x H'(D)" x H' (D)™ such that for all
(i, {it; }is {pi}i) € € x H! (D)NW x H' (D)N“’ the following equations are satisfied:

(Voi, Vi) — k> (mvap(W) o, pi) — &% (uiy, pi) = 0, Vi

<v17£,‘, Vq,) — H2<fti,mMAp(W)qi> — /12<17li,piy> + <Bai’Bvi>FnT,aLc = 0, Vi (22)
| N,
yoi)e — > K [(oipi, ) + (wigi, ) | = (z, ).
N,

i=

5.2. The optimization problem for A-optimal encoding weights

Here we formulate the optimization problem for computing A-optimal source encoding
weights for the frequency-domain seismic inverse problem (18). We restrict ourselves to the
case of the Laplace formulation (16) as the other two functionals, (15) and (17), can be treated
as special cases of the Laplace formulation.

In its original format, the optimization problem for A-optimal encoding weights (16) is a
bi-level optimization, as the MAP point is itself the solution to a minimization problem (6).
However this is not a practical formulation to compute derivatives. We therefore reformulate
(16) as a PDE-constrained optimization problem in which the MAP point is defined as a solu-
tion of the first-order optimality condition (21). The other PDE constraint is the solution to
the Hessian system (22) along the random directions of the trace estimator, i.e. we define the
objective functional for the computation of the A-optimal encoding weights by

N

1
e Z<)’k,Zk>,
tr k=1

where z; is a random direction for the trace estimator and y; = H! (mmap)zx according to
(22). We can then enforce these PDE constraints with Lagrange multipliers and compute deriv-
atives of the optimization problem (16) using the formal Lagrangian approach. We account for
the constraint on the weights through a penalty term,

Ny

A .
oy o (wilP=1)7,

j=1

1
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with A > 0. Although a penalty term is not the only option, we found this relaxation of the
constraint to be efficient and easy to implement.

We now present the complete formulation for (16). The A-optimal encoding weights are
solutions to the minimization problem

) 1 & A , 2
ngn{%Z@k,zme(nwwl) } @3)

k=1 j=1

where for every k=1,....ne (v {via}i {qia}i) € € x H'(D)"™ x H'(D)™ solves the
system
(V0ik, VPik) — £ (mmap(W)0ik, Pix) — K (iy pix) = 0, Vi
(Vitig, Vaix) — £t myap(W)qix) — £ (i pive) + (Biti, Bvix)p-1 =0, Vi (24)
1
Ok m)e — N > K [<vi,kpi, m) + (uiqix, m)| = (z,m),

i=1
for all (ﬁ’l, {ﬁi,k}i»{ﬁi,k}i) €& x HI(D)NW X HI(D)NW and where (mMAp,{u,‘},‘, {pi}i) S

& x H' (D)™ x H'(D)"™ solves the first-order optimality system for the Helmholtz inverse
problem

(Vui, Vpi) — & (myaap(W)ui, i) — (f(w').pi) = 0, Vi

<Vﬁ,», Vp,) — H2<ﬁi,mMAp(W)p[> + <Bljli,BM,‘ — d(Wl)>F71 = 0, Vl

N,
_ 1 w ~
(map(w) = mo, m)e = - > K (uipjs i) = 0,
Wizl
for all (ﬁl, {ﬁi}i’ {ﬁt}t) c €& x H] (D)Nw % Hl (D)Nw.

5.2.1. Gradient of the A-optimal weight problem. We derive the gradient of the objective func-
tiondefinedin (23), withrespectto w, using aformal Lagrangian approach. We refer the reader to
the Appendix for this derivation. Since we enforce the PDE constraints weakly using Lagrange
multipliers, we introduce adjoint variables that are indicated with a star superscript, e.g. m™ is

the adjoint variable for m. The gradient is given by [6y1 @7 (W), Gy ®L (W), . . ., Symn B (W)]",
where forany i = 1,...,N,,

<fl»u;‘k> + <Bp?‘, dl>r“—oi‘Se
+

1 (fo ui) (Bp;, da)p—

6wi @L (W) — _ Ni . noise

(fvoui) +  (Bpf,dy,)p-

The variables u; and p; are computed by solving the following Hessian-like system
(compare with (22)): Find (m*, {u}}i, { p; }:) € € x H' (D)™ x H'(D)" such that for all
(i, {iti }is {pi}i) € E x H' (’D)NW x H! (’D)NW the following equations are satisfied:

12
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Ny
(V11 Vi) = 209} ) = " ) = = > e )
kr:_l
(Vur, Vi) — k> (mu, i;) — K> (pom*, ;) + <BP?’Bﬁi>p;&e = —n% K2 WGk i), (25)
k=1
* 1 AL 2 * > * ~ 2 o 2 ~
(m*,m)e — N ;f‘ﬂ (i, m) + (pipi,m)] = e kz::l ; K™ (Vikqik» 11).

The variables {v;;} (resp. {gi«}) are the incremental state (resp. adjoint) variables that occur
in the application of the inverse Hessian in the direction of the kth trace estimator direction z.

5.2.2. Discretization. The numerical solution of (23) is done via the optimize-then-discretize
(OTD) approach, where the discretization is based on continuous Galerkin finite element with
Lagrange nodal basis functions. Extra care is needed for the discretization of the covariance
operator to ensure that its discrete representation faithfully represents the properties of the
target infinite-dimensional object. We do not provide full details of the discretization and refer
the reader to [9, 21]. However, we show how to select the discrete random directions z; in the
trace estimator. Let us call V}, the finite-dimensional approximation to the space H'(D) used
for the finite-element representations of all state, adjoint, corresponding incremental vari-
ables and their respective adjoints. And let V}" be the finite-dimensional space for the medium
parameter m. Let us call {1;}!_, (resp. {¢;}'_,) a basis for V}, (resp. V/"). Let us introduce the
vector notations y, = (yi,...,y,)" (resp.zx = (z},...,2z4)7) for the finite element representa-
tions of yy (resp. z;) in V}". The finite-dimensional approximation to the trace estimation is then

1 Ny 1 Ny 1 o 1 Ny
e ZC’Z’ZZ)LZ = Z Z Yizilbis )z = — Z<Yk, Zk)M,
T =1 e i = e

with M;; = (¢, ¢;),> the mass matrix in V}". From the definition of y;, we see that each y}
solves the system (Hy?, ¢;)r2 = (20, ¢i)p2, for i = 1,..., 1. Substituting the representation of
yz and zZ in the basis of V)", we obtain the matrix system Hy; = Mz;, where H is the
standard Hessian matrix obtained from finite-element discretization of system (22), i.e.
H;; = (H¢;, ¢;) 2. The finite-dimensional approximation to the trace estimation becomes

Ny Ny Ny

1 1 1 _
— <)’Z,ZZ>L2 = — Z<H71Mzk, Zi)M = — Z(HMIZk, Zik)M

n n n
tr k=1 tr k=1 tr k=1

where we defined HK/II := H~'M. The matrix HK/[' is M-symmetric [21], i.e. self-adjoint

Tir

with respect to the M inner-product. Then it was proved in [9] that ni“ o (Hyg 20, i) M

is indeed a trace estimator provided z; ~ A(0, M~!). In practice, vectors z; are sampled

by taking draws x; from multivariate standard normal distribution, x; ~ N(0,I), and using
_ M2

Z, — M X

5.2.3. Computational cost. Problem (23) is highly nonlinear and requires iterative methods
to be solved. The gradient, derived in section 5.2.1, allows us to use quasi-Newton methods
[28]. In table 1, we report the dominating terms of the computational cost of evaluating the
objective function and its gradient in all three cases (15)—(17). Additionally, it is possible to

13
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Table 1. Computational cost for objective function and gradient evaluation of
the optimization problem for finding A-optimal encoding weights. We report the

computational cost, in terms of the number of forward PDE solves, for ®gn(W),
[0 (W), and D (W) defined in (15)—(17) respectively. Notations: ncg = number of
Conjugate-Gradient iterations to compute the search direction in Newton’s method;
Npewt = number of Newton steps to compute the MAP point.

(I)GN(W) and (DL(W) q)GN(W)

Do(w) (No low-rank) (With low-rank)
Objective evaluation
MAP pOil’lt 2N, 2ancgnnewt 2vancgnnewl
tr(’H*I) 2ancgntr 2ancgnlr 2ancg
Gradient evaluation
Viks qik — — 2Nyhy
m* — 2Nyheg —
M?, p;k N, w - 2N, w
Total 2Ny neghy 2Ny (Mnewt + i) 2N (Reghnewt + Mir)

reduce the cost of formulation (15) by computing a low-rank approximation of the Hessian
operator [29]. One must keep in mind, however, that the incremental state variables {v;;} and
incremental adjoint variables {g;+} corresponding to each random directions {z;} are required
to compute the gradient. For this reason, a low-rank approximation of the Hessian will only
lower the computational cost when ny, > neghnewt-

Following the OTD approach, the optimization problem (23) is formulated in function
space, before being solved with algorithms that are discretization-independent. This results
in the overall computational cost being independent of the discretization of the parameter
space, or in other words, each of the quantities 7pewt, neg and ny in table 1 remain constant
when the mesh gets refined. We spend the rest of this section discussing the choice of such
discretization-invariant algorithms. First, we use Newton’s method, with Armijo line search,
to compute the MAP point; the number of Newton steps needed to converge, 7pewt, 1S typi-
cally independent of the size of the parameter space [30]. Moreover, the Hessian system (22)
needed to compute the MAP point, to evaluate the objective function (23), and to compute the
adjoint variable m* (25), is solved using the preconditioned Conjugate Gradient method [28].
The Conjugate Gradient solver is preconditioned by the prior covariance operator; the number
of iterations n., needed to solve the Hessian system then depends on the spectral properties of
the prior-preconditioned data-misfit part of the Hessian operator (i.e. the Hessian in function
space) and is therefore independent of the discretization. The trace estimator displays a similar
type of behaviour. The number of trace estimator vectors n, one should use depends on the
spectral properties of the underlying infinite-dimensional operator. The choice of a discrete
inner-product weighted by the mass matrix (see section 5.2.2) guarantees that our discrete
operator will be a valid approximation of the infinite-dimensional operator and will conserve
its spectral properties. The actual evaluation of the trace is performed through the repeated
solution of the Hessian system (24), which was shown above to be discretization-independent.

6. Numerical results

In this section, we present numerical results for the Helmholtz inverse problem in two (spatial)
dimensions. We start with a low-dimensional example (V,, = 1 for Ny = 2), which allows us
to visualize the objective functions defined in section 4.2 over the entire weight space. This

14
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facilitates a qualitative comparison of the different approximations introduced, the Gauss—
Newton (12) and Laplace objective functions (13), along with the linearized formulation (14).
We then present an example with a higher-dimensional weight space (Ny = 10) in which we
study the distribution of the A-optimal encoding weights and random weights sampled from
the uniform spherical distribution and how the number of encoded weight vectors influence
these results.

The setting for this section is a square domain with 20 receivers located at the top of
the domain, and sources positioned on the bottom and left edges of the domain. The source
term is a mollifier (20) with ¢ = 10~°. This choice of source terms was numerically found
to be reasonably well approximated, at the discrete level, by a point source; we utilize that
approximation in this section. We use a wave frequency of x = 27 in equation (18). All partial
differential equations are discretized by continuous Galerkin finite elements (linear elements
for the parameters and quadratic elements for the state and adjoint variables). This results in
a (medium) parameter space of 182 degrees of freedom. We work with synthetic data that are
polluted by a 2% additive Gaussian noise.

6.1. One-dimensional weight space

In this section, we study a one-dimensional source encoding problem corresponding to a sin-
gle linear combination of two sources (Ny; = 2 and N,, = 1). Although this setting represents
an unrealistic situation (low number of sources, and high ratio of number of encoded sources
over total number of sources), it is informative for the following reasons: (1) it provides
numerical evidence of the strong and highly nonlinear dependence of the objective functions
(12)—(14) on the encoding weights; (2) it demonstrates the presence of multiple local minima
in the minimization problem (11); (3) it highlights the difference between the Gauss—Newton
and Laplace formulations. The sources are located on the bottom and left edges of the domain,
and we study two different medium parameters, each made of a constant background and a
smooth compactly supported perturbation (see figure 1).

We next define the noise covariance and the prior covariance operators used in these
numerical applications. Let us introduce the non-singular, positive definite, elliptic operator
Y = —yA + I, with ~, 8 positive constants, / the identity operator and A the Laplacian
operator with homogeneous Neumann boundary conditions. Then we define the prior covari-
ance operator as Co ™' = ) + nY? with > 0. One can verify that this choice of prior covari-
ance operator is symmetric, positive definite and trace-class as long as -y, 7, 8 > 0. The noise
covariance operator for the observations is chosen to be a multiple of the identity matrix, i.e.
Thoise = 02I—in our examples we choose ¢ = 1. The parameters ~y, 3, and 7 are chosen as
v =103, 8 =10"*and = 1072, and we have verified that this choice approximately satis-
fies the discrepancy principle. In the (discrete) numerical applications, we use § = 0 in the
measure s the trace estimator vectors z; are sampled from (see section 4.2).

To enforce the constraint w € S, i.e. \/W% + W% = 1 in this case, we parameterize the
weight vector as (wj,+4/1 — w?). The parameter w;, alone, controls the combination of
both sources. Moreover, the weight vectors (wi, —y/1 —w?) and (—wy, /1 — w?) lead to
the same reconstruction, such that it suffices to consider the encoding weights (wy, /1 — w%)

forw; € [—1,1].
In figure 2, we plot the three objective functions (12)—(14) from section 4.2. For each
wy € [—1, 1], the Gauss—Newton (12) and Laplace (13) formulations are evaluated at the MAP

point, myap(w1), corresponding to the encoding weight (w1, y/1 — w?); in other words, the
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Figure 1. Target medium parameters, along with the locations of the sources (green
squares) and receivers (yellow circles). (a) Medium parameter 1; (b) medium parameter 2.
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Figure 2. Plots of tr(# ") with 7" (myap(w1)), Hgx (mmap(wi)) and Hg(mo) for
both target media. my = 1, same as the background value for the medium parameter.
(a) Medium parameter 1; (b) medium parameter 2.

Hessian for these two criteria is evaluated at a medium parameter myap(w;) that varies with
the weight w;. For formulation (14), we choose m to be a constant value equal to the back-
ground medium, i.e. my = 1. We observe that the result for the Gauss—Newton formulation
(12) differs from the Laplace approximation (13). In addition, we clearly observe that each
formulation contains local minima.

6.1.1. Robustness of the Gauss—Newton formulation (12). Since the computation of the MAP
point myap(w ) is a computationally intensive task for large-scale problems, it might be use-
ful to solve the optimization (11) without having to recompute the exact MAP point for each
iterate of the weights. The Laplace formulation (13) is based on the full Hessian which is
guaranteed to be positive definite only in a neighbourhood of the MAP point. The Gauss—
Newton approximation, however, is always positive definite and we observe numerically that
it preserves relevant information about the objective function, even far away from the MAP
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(c)

Figure 3. Plots of objective function ®y (14) for weights w; € [—1,1] (right), at
medium my, with s = 0, 0.5, 1 (left). Here my = 1 (the background medium). (a) s = 0;
b)s=05;()s=1.
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Figure 4. Plots of the objective function in (16) when the trace of the posterior
covariance is computed exactly or with a trace estimator (n,, = 1, 10, 30). For each n,
we used a fixed realization of the trace estimator vectors.

point. In figure 3, we plot the objective function (12), for all values of w; € [—1, 1], for differ-
ent (fixed) medium parameters 7, ranging from the background medium, my = 1, to the MAP
point m? computed using both sources independently (for medium parameter 2). The sources
are located at the points (0, 0.1) and (0, 1.1). That is, we define

iy = (1 — s)my + smb.
It appears that the medium parameter needs to include the main features of the target
medium sufficiently accurately (s > 0.5) to match the main features of the exact trace of the

posterior covariance; this can be seen from the behavior of tr(’Hal\lf(wl, ﬁzs)) in the interval
w; € [0.2,1.0].

6.1.2. The effect of trace estimation. When computing A-optimal encoding weights, one only
needs the local minima of the trace to be well characterized. We show in figure 4 that trace
estimation does indeed affect the shape of the objective function in the formulations of the
A-optimal encoding weights (16). However, in our example, the objective function using a
trace estimation preserves the local minima of the objective function using an exact trace
when a sufficient number of trace estimator vectors are used.
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Figure 5. Target medium parameter and locations of the 10 sources (green squares),
and receivers (yellow circles).

6.2. A-optimal encoding weights in higher dimensional weight spaces

We now consider a problem with 10 sources (i.e. Ny = 10). Here, we focus on qualitative
properties of the A-optimal source encoding weights by performing statistical tests, in which
we study how successful A-optimal encoding weights are in reducing posterior variance and
relative medium misfit compared to encoding weights sampled from the uniform spheri-
cal distribution. We also compared with random weights sampled, then re-scaled, from the
Rademacher distribution (see section 2). Since the results we obtained were not statistically
different from the results presented in this section using random weights sampled from the
uniform spherical distribution, we decided to omit these results. Throughout this section, the
relative medium misfit is taken to be the relative L*-error between the reconstruction of inter-
est and the reconstruction obtained using all 10 sources independently. The penalty parameter
was empirically selected to be A = 103.

We show the results in figure 6. Each plot shows, for different number of encoded sources
(N,, = 1, 2, 3 and 6), the objective function @, (w) defined in (13) against the relative medium
misfit of the reconstruction, which is an indication for the quality of the reconstruction. Each
reconstruction is indicated by a translucent dot; a darker shade indicates a higher concentra-
tion of reconstructions in that part of the plot. This shows the variation in the quality of the
reconstruction. The blue dots correspond to reconstructions that use random encoding weights
sampled from the uniform spherical distribution. The red dots indicate A-optimal encoding
weights based on the Laplace formulation (16). The reconstructions marked with black dots
use A-optimal encoding weights based on the Gauss—Newton formulation (15). In order to
detect potential local minima, the A-optimal encoding weights are re-computed several times,
starting from different initial conditions.

Notice that with one encoded source, A-optimal encoding weights do not provide a clear
advantage over random weights. The overall distribution of random weights does not indicate
a strong connection between the trace of the posterior covariance (13) and the relative medium
misfit. On the other hand, the A-optimal encoding weights outperform the random weights (on
average), when sufficiently many encoding weights are used (see in particular N,, = 2 and 3 in
figure 6). In that case, the random weights appear to indicate a linear correlation between our
objective function and the relative medium misfit, which translates into the best reconstruc-
tion being also the one with smallest trace of the posterior covariance. Overall, these results
suggest the existence of a threshold, in the number of encoding sources, above which optimal
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Figure 6. Plot of ®;(w) (13) against relative medium misfit (N,= 10 and
N,, =1, 2, 3, 6) for reconstructions using random encoding sources sampled from the
uniform spherical distribution (blue) or A-optimal encoding weights computed with
formulation (15) (black) and (16) (red). Target model 2 with source configuration as
shown in figure 5. Sample size = 500, n, = 30.

weights provide improvement in both variance and medium misfit over random encoding
weights. Moreover, based on these results, there does not appear to be a clear advantage in
using the Laplace approximation (16) over the Gauss—Newton approximation (15), provided
sufficiently many encoded sources are used. In the last row of figure 6, optimal weights com-
puted with both formulations provide similar results, although the actual values of the weights
do not necessarily agree.

In addition, we provide a comparison of the reconstructions computed using all sources
independently (figure 7(a)), using three A-optimally encoded sources (figure 7(b)), and two
examples of reconstructions computed using three randomly encoded sources: one resulting
in a good reconstruction (figure 7(c)), and one resulting in a poor reconstruction (figure 7(d)).
There is virtually no difference between the reconstructions computed using all 10 sources
and using three A-optimally encoded sources. On the other hand, using random encoding
weights drawn from the same distribution may lead to good or poor reconstructions, as is
shown in figures 7(c) and (d). This is consistent with the results in figure 6 (bottom left), where
the blue dots show large variations in terms of relative medium misfit.

6.2.1. Variability of the A-optimal encoding weights. The A-optimal encoding weight form-
ulation introduced in section 4 relies on a fixed realization of the trace estimator vectors.
Note that the A-optimal encoding weights are solutions to a highly nonlinear optimization
problem that in general exhibits local minima. However, we show numerically that, provided
sufficiently many encoding weights are chosen and a large enough number of trace estimator
vectors are used, the computation of the A-optimal encoding weights is stable with respect
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Figure 7. Four examples of reconstructions using different number of sources, with
target parameter 2: (a) 10 independent sources; (b) 3 A-optimally encoded sources;
(c) 3 randomly encoded sources; (d) 3 other randomly encoded sources.
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Figure 8. Variability of the A-optimal weights for different numbers of trace estimator
vectors, n, = 30 (red), 10 (black) and 4 (magenta). A-optimal encoding weights are
computed with formulation (16) (N; = 10 and N,, = 3), using different realizations of
the trace estimator vectors and different initial guess of the weights. Sample size = 100.
Blue dots correspond to reconstructions computed using random encoding sources
sampled from the uniform spherical distribution (see figure 6).

to trace estimation. In figure 8, we show 100 results obtained with Laplace A-optimal encod-
ing weights (16), in the case of 3 encoded sources, with different numbers of trace estimator
vectors (ny = 4, 10, 30). Each computation uses different realizations of the trace estimator
vectors, and different initial guess of the weights.

We observe that with n, = 10 and 30 the computations of the A-optimal encoding weights
provide similar results. On the other hand, the use of 4 trace estimator vectors leads to a much
wider range in the quality of the results, both in terms of relative medium misfit and trace of
the posterior covariance.

6.3. Remarks on the Gauss—Newton formulation

Here, we discuss the justification for and advantages of using the Gauss—Newton formulation
for finding A-optimal encoding weights. In many important situations, the Gauss—Newton
formulation appears accurate enough to compute the A-optimal encoding weights. The
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Gauss—Newton approximation to the Hessian is most accurate when the data misfit residual
is small at the solution of the inverse problem. This is the case, for instance, when the noise
level in the observations is low. In our numerical experiments we observed that, provided
sufficiently many encoded sources are used, the Gauss—Newton formulation represents a suf-
ficiently accurate approximation to the Laplace formulation for the purpose of computing
A-optimal encoding weights.

The Gauss—Newton formulation holds strong promises to reduce the computational cost of
the A-optimal encoding weights. The data-misfit part of the Gauss—Newton Hessian is guaran-
teed to be positive semi-definite at any evaluation point, and hence the Gauss—Newton Hessian
is positive definite. This allows two main improvements to the computations of the A-optimal
weights. First, and as detailed in section 5.2.3, one can incorporate a low-rank approximation
of the Gauss—Newton Hessian to reduce the computational cost. The magnitude of that reduc-
tion is problem-dependent, but will be most noticeable when large numbers of trace estimator
vectors are required.

Another advantage of the positive definiteness of the Gauss—Newton Hessian is that the
objective function (12) of the Gauss—Newton formulation does not have to be evaluated in a
small neighbourhood of the MAP point for the objective function to make sense. This could
allow one, for instance, to solve the MAP point inexactly when the A-optimal objective func-
tion is far from its minimum, which would reduce the overall computational cost. In sec-
tion 6.1, we studied how the objective function varies with the evaluation point iz (figure 3),
and observed that the objective function tends to maintain similar local minima away from
the MAP point.

Finally, we want to point out that in certain situations, the full Hessian may not be avail-
able, may be too complicated to derive, or too expensive to compute, rendering the Laplace
formulation inadequate. This can be the case for inverse problems with highly nonlinear for-
ward problems.

7. Conclusion

We have developed a method for the computation of A-optimal encoding weights aiming at
large-scale non-linear inverse problems. As we show numerically, reconstructions obtained
using A-optimal encoding weights not only minimize the average of the posterior variance, but
consistently outperform random encoding weights in terms of the quality of the reconstruc-
tions. While in this work, we relied on quasi-Newton methods for solving the optimization
problem for A-optimal encoding weights, we will explore the derivation and implementation
of a Newton solver for this optimization problem in future work. We point out that, thanks to
the optimize-then-discretize approach we adopted, the derivation of the analytical expression
for the action of the Hessian in a direction is possible with little more effort than what was
required to get the gradient.

We introduced two formulations for the computation of the A-optimal encoding weights,
namely the Gauss—Newton formulation (15) and the Laplace formulation (16). Although the
Gauss—Newton formulation represents an approximation to the Laplace formulation, it holds
several advantageous features from computational point of view.

We note that computing A-optimal encoding weights can entail a significant computational
effort. However, the method can be attractive for real-time monitoring applications where
one needs to solve an inverse problem repeatedly over time. In this case, one first computes
the A-optimal encoding weights offline, and then can use those weights to solve the inverse
problem repeatedly at a fraction of the original cost. An example for such an application is the
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monitoring of an oil reservoir, where seismic or electro-magnetic inverse problems are solved
repeatedly to characterize the evolution of the reservoir properties over time.

Appendix. Gradient of the optimization formulation (23)

We detail the derivation of the gradient of the Laplace formulation of the A-optimal weights
in the case of the Helmholtz inverse problem, as defined in (23). In that formulation, we
enforce the PDE constraints weakly using Lagrange multipliers. Therefore, we need to intro-
duce adjoint variables that are indicated with a star superscript, e.g. m* is the adjoint variable
for m. Following the formal Lagrangian approach [1], we define the Lagrangian L,

L(w,m, {uiy, A pi}s {virds {qinds ek m™ {1 A b {0ipd Adixds i}

M

1
= Z<)’k,Zk>

k=1
1 ng N,
Z Z [(V"Ui,k, V’U:k> - Iiz (mv,;k, v:k> — l€2 <l/t,‘yk, ’U:k>]
k=1 i=1
ng Ny

1 * * * *
o 20 Pl ais) — i)~ k) + BB |
k=1 i=1

* NNy

Ny Ny
1 * 1 * * *
T [<Yk,Yk>£ v Z K2 ((Oupi Y0) + (i i) — <Zkayk>]
tr

i

Ny i=1

| M
t N (Vuy, Vul) — &7 (mui, ut) — (f(w'), uf)]

Woi=1

| M
+ - 2 (Vi V) — k(i mpi) + (Bpi Bu; — d(w") . |

Woi=1

| M

+{m—my,m* )¢ — mz;mz(uipi,m*). (A.D)

The gradient is then given by 0wl = [0y L,0w2L,. .., 0wnL]", where for any
i=1,...,N,,

(S, ”;k> + <BP?’ d >I‘“*“i‘5e
s 1 (fos “l*> + <Bpi*, dz>r"—0i‘Se
wit — _Niw .

(fv.ui)  +  (Bpi,dy,)p—

noise

Before we specify the steps that lead to the evaluation of the variables ] and p;, we iden-
tify some important symmetries between the state variables and their adjoints. Indeed, for each
k=1,...,ny, the variables (yx, {vix}i» {gix}:) solve a Hessian system similar to (22), and the
corresponding adjoint variables (y;, {0}, }i» {gj% }:) solve the system of equations given (for-
mally) by §,, L = 6,,L = 6, L = 0. While the former system of equations solve Hy; = z.,
the latter solves Hy; = —z. This leads to the symmetry relations
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Yk = —Yi» Uik = —qj, and gy = —0j, (A.2)

foranyi=1,...,Nyandk=1,..., 5.
For any i =1,...,N,, the varlable u? (resp. p;) solves the equation 6,,L =0 (resp.
5, L = 0). That is, for any it € H' (D), u} solves

(Vu;, Vi) — &2 (mu, i)

— &3 (pim’, i) + (Bpj, Bit)p 1 — K > [wvhe @) + (quoi.@)] = 0.
v =

On the other hand, for any p € H'(D), p} solves

* ~ * ~ * o~ 1 <
(Vp;,Vp) — k*(pf.mp) — k> (um*,p) — K*—

Nir

[{g}ep) + (viyi.p)] = 0.
=1

Using (A.2), this reduces, for any i = 1, ..., N, to the system of equations
~ ~ ~ 2 Ny
(Vul, Vi) — k% (mul, ity — &> pim*, ity + (Bp}, Bit) p + — ZH Viqik» ) = 0,
k=1

. ~ . - 2 Nye
(Vpi, Vp) = 5 (mpj,p) — > (wm’",p) + — ZH iy P) = 0.
(A.3)
Therefore, computation of the u}’s and p;”’s requires knowledge of the quantities {u;}, {p;},

m*, {vit}, {qix} and {yi}. Variables {u;}, {pi}, {vit}, {gix}, and {yi} are all evaluated during
the computation of the objective functional 1/ny >} | (vk, z) such that the only remaining
unknown quantity is m*. That variable is solution to the equation 6,,£ = 0, that is, for any
m € &, m* solves

ny Ny

n ZZ mv,k, vy) — 2<q;k,k”hﬁli,k>]
Ny k=1 i=1
N
+ L Z [*H2<n~m,~,u*> — /-{2<p?“ ﬁzpi>] + (m,m")e = 0.
NW 1 1

i=1

Using (A.2), we simplify this equation to obtain

ZZ& VikGik> M ——Zfi wiul ,my + {pipi.m)) + (m*,m)e = 0.

This equation can be grouped with the system of equations (A.3) to obtain the larger system
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. ~ . - ~ 2 Tir ~
(Vpi,Vp) — “2<m17i D) — /€2<uim*,p> = T Kz(”i,k)’k,ﬁ
tr k=1
I . = N - 2 & -
(Vuf, Vi) — k7 (mu ity — &7 (pm*, 1) + (Bp;,Bit)p-1 = T K (Vegis 1)
w =
1 Ny, ) ne Ny,
(m",m)e — No Z K [(wiu; i) + ( pi pin )] = TN Z Z K> (Vi kit ).
Woi=1 W =1 i=1

This system of equations should be compared to the system of equations for the Hessian (22).
From this, it should be clear that the computation of m* corresponds to the solution of another
Hessian system with a right-hand side depending on the state and adjoint variables, {u;} and
{pi}, the incremental state and adjoint variables, {v;;} and {¢;s}, the medium parameter m,
and the {y;}. We denote this right-hand side as . In strong form, m* thus solves

H(mmap)m™ = F({u;}, { pi}, {vic}s {qin}> m, {yc})-
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