
AAECC
DOI 10.1007/s00200-017-0346-7

ORIGINAL PAPER

Computing weight q-multiplicities for the

representations of the simple Lie algebras

Pamela E. Harris1
· Erik Insko2

· Anthony Simpson1

Received: 19 April 2017 / Revised: 9 October 2017 / Accepted: 18 October 2017

© Springer-Verlag GmbH Germany 2017

Abstract The multiplicity of a weight μ in an irreducible representation of a sim-

ple Lie algebra g with highest weight λ can be computed via the use of Kostant’s

weight multiplicity formula. This formula is an alternating sum over the Weyl group

and involves the computation of a partition function. In this paper we consider a q-

analog of Kostant’s weight multiplicity and present a SageMath program to compute

q-multiplicities for the simple Lie algebras.

Keywords Kostant’s weight multiplicity formula · q-analog of Kostant’s weight

multiplicity formula · Representations of simple Lie algebras

1 Introduction

Throughout this paper we let g be a simple Lie algebra of rank r and we let h be a

Cartan subalgebra of g. We let � be the set of roots corresponding to (g, h), and let

�+ ⊆ � be the set of positive roots, while � ⊆ �+ denotes the set of simple roots.

We let P(g) be the set of integral weights, while P+(g) denotes the set of dominant

The first and third author were supported by NSF award DMS-1620202.

B Pamela E. Harris

peh2@williams.edu

Erik Insko

einsko@fgcu.edu

Anthony Simpson

als7@williams.edu

1 Department of Mathematics and Statistics, Williams College, Williamstown, MA, USA

2 Department of Mathematics, Florida Gulf Coast University, Fort Myers, FL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-017-0346-7&domain=pdf

P. E. Harris et al.

integral weights. Let W denote the Weyl group, and for any w ∈ W , we let �(w)

denote the length of w. Recall that W is generated by the reflections s1, . . . , sr , where

si is the root reflection corresponding to the simple root αi ∈ �. For good general

references see [11,23].

We let L(λ)denote the irreducible (complex) representation ofgwith highest weight

λ and we let μ be a weight of this representation. To compute the q-multiplicity of

the weight μ in L(λ) we use the q-analog of Kostant’s weight multiplicity, defined by

Lusztig [24], as

mq(λ, μ) =
∑

σ∈W

(−1)�(σ)℘q(σ (λ + ρ) − ρ − μ). (1)

For any weight ξ ∈ h∗, we have that ℘q(ξ) = c0 + c1q + c2q2 + c3q3 + · · · + ckqk,

where ci is the number of ways to write ξ as a nonnegative integral linear combination

of exactly i positive roots. The q-analog of Kostant’s weight multiplicity formula when

evaluated at q = 1 recovers the weight multiplicity formula [22], which is given by

m(λ, μ) =
∑

σ∈W

(−1)�(σ)℘(σ(λ + ρ) − (μ + ρ)), (2)

where ℘ denotes Kostant’s partition function and ρ = 1
2

∑
α∈�+ α. Kostant’s partition

function is the nonnegative integer-valued function, ℘, defined on h∗, by ℘(ξ) =

number of ways ξ may be written as a nonnegative integral linear combination of

positive roots, for ξ ∈ h∗. Hence it is clear that ℘q |q=1 = ℘ and thus mq(λ, μ)|q=1 =

m(λ, μ).

Although a formula to compute q-multiplicities exists, its implementation is often

difficult. The main obstructions include the fact that for a Lie algebra of rank r the

order of the Weyl group, indexing the number of terms in Eq. (1), is factorial in r .

Additionally the partition function involved has no known closed formulas, albeit for

some very special cases [16,17]. Even with these complications there has been much

work done in computing weight multiplicities [1,2,7,9,10,13–16,26] and algorithms

associated to this computation [3–6,8]. However, less is known about the q-analog

computation, with the following work in that direction [12].

This paper presents a SageMath program to compute the q-multiplicities of weights

in highest weight representations of the simple Lie algebras. The source code for the

program is found in [18] and the program can be downloaded from GitHub [19]. Our

program computes this multiplicity by exploiting the observation that, in practice, most

terms in (1) and (2) are zero. Hence, we reduce the weight multiplicity computation by

determining the Weyl group elements that contribute nontrivially to these equations.

With this in mind, we give the following definition.

Definition 1 For λ,μ dominant integral weights of g define the Weyl alternation set

to be

A(λ, μ) = {σ ∈ W | ℘(σ(λ + ρ) − (μ + ρ)) > 0}.

123

Computing weight q-multiplicities for the representations...

Table 1 The exceptional Lie algebras’ exponents, Weyl group order, and cardinality of A(α̃, 0)

Lie algebra Exponents |W | |A(α̃, 0)|

G2 1, 5 12 2

F4 1, 5, 7, 11 1152 25

E6 1, 4, 5, 7, 8, 11 25,920 58

E7 1, 5, 7, 9, 11, 13, 17 2,903,040 258

E8 1, 7, 11, 13, 17, 19, 23, 29 696,729,600 2318

There has been recent work in computing the Weyl alternation sets for certain spe-

cial weights. For example, Harris showed that the number of Weyl group elements

contributing nontrivially to the multiplicity of the zero weight in the adjoint represen-

tation (the representation with highest weight equal to the highest root) of slr+1(C)

was given by Fibonacci numbers [16]. Later, Harris, Insko, and Williams, generalized

these results to show that the number of Weyl group elements contributing nontriv-

ially to the multiplicity of the zero weight in the adjoint representation of all classical

Lie algebras is governed by linear homogeneous recurrence relations with constants

coefficients [20].

As an application of our program we computed the Weyl alternation sets corre-

sponding to the Weyl group elements contributing nontrivially to the multiplicity of

the zero weight in the adjoint representation of the exceptional Lie algebras. The com-

putations and elements of A(α̃, 0) for all exceptional Lie algebras can be found in

[18, Appendix B]. We then used these Weyl alternation sets to verify the following

result of Lusztig for the exceptional Lie algebras [24]: if g is a simple Lie algebra with

highest root α̃, then mq(α̃, 0) =
∑r

i=1 qei , where e1, . . . , er are the exponents of g.

We recall that the exponents of g are related to the degrees of the basic invariants. That

is, the degrees are obtained by simply increasing the exponents by one [21]. For each

exceptional Lie algebra g, Table 1, gives the order of the Weyl group, the cardinality

of the Weyl alternation set A(α̃, 0) where α̃ is the highest root of g, and the exponents

of g. From Table 1, it is evident that computing the Weyl alternation set reduces the

computation involved in mq(α̃, 0) drastically.

Another component of our program is the ability to calculate the values of ℘(ξ) and

℘q(ξ) for individual weights ξ in two ways. The program can implement the partition

via a recursive algorithm or via a geometric series expansion, a generalization of

Euler’s generating function for integer partitions. This allows the program to be a tool

for those interested in partition theory, as the program can be be used for computing

the value of the partition function without having to compute weight multiplicities.

2 Computer implementation

The following sections provide our computer implementation of (1) and the structures

used, including both versions for the computation of Kostant’s partition function and

its q-analog.

123

P. E. Harris et al.

2.1 Structures

Using SageMath, we automated Kostant’s weight multiplicity formula and the q-

analog of Kostant’s weight multiplicity formula. SageMath provides robust tools for

instantiating Lie algebras, in particular, the exceptional Lie algebras, which are the

object of our study. This allowed us to compute the result of applying σ ∈ W to

any weight in an exceptional Lie algebra. In this process, we wrote supporting code

for computing the value of the partition function, and its q-analog. To find values of

these functions, we created two classes in Python. The first, called the Weight class,

provides a computer representation of a weight that affords us the ability, through basic

operations and condition testing, to create a structure that finds the partition of a weight

as a nonnegative integral sum of positive roots. The second class (structure), called

a Partition Tree, computes (1) and (2) by instantiating every possible nonnegative

integral combination of positive roots equal to the weight passed as an argument to

the formulas. When the tree is instantiated, its input is the weight we are trying to

partition, and a list of the positive roots that can be used in the partitioning.

To begin the process, the root of the tree is created, then its children are instantiated.

This is done by using the first item in the list of positive roots being used to partition

the weight stored at the root of the tree. Note that root has two uses, the root of a tree,

or a positive root. To avoid confusion, we will always refer to the root of the tree in

full. If we let ξ represent the weight we are trying to partition, and r1 denote the root

that we are currently using to do so, then the root has a child for every element of

{ξ − nr1 | n ∈ Z, n ≥ 0} that contains no simple roots with negative coefficients.

Each child stores a unique new weight ξ − nr1, and n, the number of times r1 was

used in the partitioning. This represents the subtraction of the first positive root from

the original weight as many times as possible. From here, the process begins at each

of the root’s children, but using r2, the second root in the list of positive roots. The

same process starts again at each of the children of the children of the root, but with

r3, the third root in the list of positive roots. In general, a node in the tree at a depth

of i from the root, will have its children created through the same process using ri+1,

the (i + 1)th root in the list of positive roots.

The process is complete when either the weight is reduced to the zero weight, or any

one of the coefficients in the linear combination of simple roots, equal to the weight

stored in the children of the tree, is negative. When it is reduced to zero, we have found

a successful partitioning, and so the terminal node, a constant that is instantiated at

the beginning of the program, is made to be a child of the node where the weight

was reduced to zero. Not all branches of the tree will end in a terminal node, so

another function goes through all tree branches and removes those that do not end in

the terminal node, since they do not represent successful partitions, i.e. those weights

where a coefficient becomes negative.

The following image represents the partition tree of the weight in (8). Note that we

provide the list of positive roots to the right of the tree, and underline the one being

used to partition at each level of the tree. Note that when we talk about the relationship

between nodes in the tree, we say that if one node has a connection to another node,

then those nodes have an edge between them, where the first node is the source node

and the second is the destination node, with respect to that edge. In this specific tree

123

Computing weight q-multiplicities for the representations...

2α1 + 2α2

2α1 + 2α2 α1 + 2α2 2α2

2α1 + 2α2 2α1 + α2 α1 + α2 0

0 2α1 + α2 0

0

n = 0 n = 1 n = 2 [α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2]

n = 0 n = 1 n = 1 n = 2 [α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2]

n = 2 n = 0 n = 1 [α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2]

n = 1 [α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2]

Fig. 1 Partition tree for 2α1 + 2α2 using the positive roots of the Lie algebra G2

structure, we have that the weight stored in the destination node is equal to the weight

stored in the source node minus n times the highlighted positive root. Note that in the

description of the code, the source node holds on to the value of n, but for the sake of

the graphic, it is easier to have them associated to the edges between nodes.

Recall that when a branch represents a successful partition, the branch ends in the

terminal node. For the purpose of simplifying the image in Fig. 1, on the next page

only the successful branches are provided, i.e. those branches ending in zero nodes.

Using Fig. 1, on the following page we can arrive at the same partitions of 2α1 + 2α2

as we did in Sect. 2.2.1. Note that, if we start from the root of the tree, and follow

any path to a node containing zero, we will find a partition of 2α1 + 2α2 using the

positive roots of G2. The collection of all paths from the node with 2α1 + 2α2 to a

node containing zero yields all partitions of this weight. For example, the path from

the root to the leftmost zero, indicates that α1 and α2 were not used, and α1 + α2 was

used twice. Thereby accounting for 2(α1 + α2) as a partition of 2α1 + 2α2.

2.2 Computations using the structures

Once the partition tree has been created, we can compute ℘(ξ) and ℘q(ξ). That

is, ℘(ξ) can be determined by counting the number of branches of the partitioning

tree that end with the terminal node. Because we provided a function that removed

the branches that do not represent a successful partition, every branch ends with the

terminal node, so computing ℘(ξ) only requires us to count the number of branches

123

P. E. Harris et al.

in the tree, where a branch is just any path from the root of the tree to any leaf in the

tree. Note that there is only one leaf in the tree, namely the terminal node, so we need

only check for that to know the end of the tree.

The computation for ℘q(ξ) requires that we keep track of the number of roots used

in the partition. However, this was already done by storing n, from the expression

ξ − nri . Because the number of roots used at each step of the partitioning is stored

for every partition, simply summing the values of n stored in every node of a branch

gives the total number of roots used in any given partition. Moreover, counting the

roots used in a partition is equivalent to determining the length of the branch when one

considers the n value of a child to be the distance between that child node and its parent

node. Once the number of roots used is known for a single partition of the weight, the

corresponding coefficient in our running calculation of ℘q(ξ) must be incremented.

This means that every ci in ℘q(ξ) = c0 + c1q1 + · · · ckqk equals the total number

of branches of length i in the partitioning tree. From all branches in the tree, we can

obtain a value for ℘q(ξ).

With the ability to obtain ℘(σ(λ + ρ) − (ρ + μ)) and ℘q(σ (λ + ρ) − (ρ + μ))

for any element σ ∈ W , finding the values of m(λ, μ) and mq(λ, μ) just requires

us to iterate over all the elements of the Weyl group. Then, using the length of each

element to determine the sign of each term’s contribution to the sum in Kostant’s

weight multiplicity formula, yields the desired result.

2.2.1 The Lie algebra of type G2

We consider the exceptional Lie algebra G2 to illustrate our computations. The set of

positive roots of the exceptional Lie algebra G2 is

�+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2} (3)

where 3α1 + 2α1 is the highest root, and ρ = 1
2

∑
α∈�+ α = 5α1 + 3α2. The Weyl

group of G2 has 12 elements and is isomorphic to the dihedral group D6. As every

element in W is generated by s1 and s2, the simple reflections associated with the

simple roots α1 and α2, we can understand how any reflection acts on any weight by

composing the the simple reflections and applying them to each of the simple roots.

In this case we observe that

s1 : α1 �→ −α1 (4)

s1 : α2 �→ 3α1 + α2 (5)

s2 : α1 �→ α1 + α2 (6)

s2 : α2 �→ −α2. (7)

To compute s1(̃α + ρ) − ρ, we note that α̃ + ρ = 8α1 + 5α2 and by (4) and (5), it

follows that

s1(̃α + ρ) − ρ = s1(8α1 + 5α2) − (5α1 + 3α2) = 8s1(α1)

+ 5s1(α2) − (5α1 + 3α2) = 2α1 + 2α2. (8)

123

Computing weight q-multiplicities for the representations...

Table 2 Weyl alternation sets and q-analog values for G2

σ ∈ W �(σ) σ (̃α + ρ) − ρ ℘q (ξ)

1 0 3α1 + 2α2 q1 + 2q2 + 2q3 + q4 + q5

s1 1 2α1 + 2α2 2q2 + q3 + q4

s2 1 3α1 q3

mq (̃α, 0) = q + q5

We can now apply Kostant’s partition function to 2α1 + 2α2, and by using the

positive roots of the Lie algebra of type G2 as given in (3), we see that one can write

2α1 + 2α2 as a nonnegative integral sum of positive roots in the following four ways

2(α1)+2(α2), 2(α1+α2), 1(α1)+1(α2)+1(α1+α2), and 1(α1)+1(2α1+α2), which

use 4, 2, 3, and 2 positive roots, respectively. Thus ℘q(2α1 +2α2) = 2q2 +q3 +q4. To

determine the value that s1 contributes to (1), we note that (−1)�(s1) = (−1)1 = −1,

hence

(−1)�(s1)℘(s1(̃α + ρ) − ρ) = −2q2 − q3 − q4.

Repeating this procedure for every remaining element of W , we arrive at the Table 2,

which only lists the three elements of W contributing nontrivially to mq (̃α, 0). From

this one can verify that mq (̃α, 0) = q + q5 as expected.

2.3 Alternate approach to computing Kostant’s partition function

It turns out that, while the exhaustive method detailed above works for G2, F4, E6,

and E7, the approach required too much memory for E8. Even with a machine that

had 32 GB of memory, partitioning a single weight took too much memory. This is an

astounding fact considering that the computation for E7 completed without a problem.

However in the E8 case, the partitions do not complete as we are using 120 positive

roots. If we consider the number of nodes that would appear in the partition tree of

a weight just when we consider either including, or not including each positive root,

then we have 2120 ≈ 1.33 × 1036 nodes in the tree already. Hence, we implement a

well-known method to determine the value of the partition function, which is typically

used for partitioning integers, and we adapt it for our purposes.

The new partition function method focuses on expanding a geometric series. We

adapted Euler’s formula for finding the number of partitions of an integer, denoted

p(n). We begin by showing how to derive this formula first by following the work

presented in [25]. Begin by examining

∑

n≥0

p(n)xn, (9)

which is a formal power series, where the coefficient of xn counts the number of

partitions of n. We will derive a formula for the generating function given in (9).

123

P. E. Harris et al.

Define S to be the set of partitions of an arbitrary integer. We denote the partition of

an integer as (1m1 , 2m2 , . . . , nmn), where mi is the number of times i is used in the

partition. From this, we can see that for every partition, κ ,

κ = (10 ∈ κ or 11 ∈ κ or 12 ∈ κ or · · ·) and (10)

(20 ∈ κ or 21 ∈ κ or 22 ∈ κ or · · ·) and

(30 ∈ κ or 31 ∈ κ or 32 ∈ κ or · · ·) and · · · .

From the definition of an element in S, the generating function for the elements of S

will be

(x0 + x1 + x1+1 + · · ·)(x0 + x2 + x2+2 + · · ·)(x0 + x3 + x3+3) · · · . (11)

Notice that the terms in the product of (11) are geometric sums and
∑∞

n=0 rn = 1
1−r

.

Hence, we can rewrite (9) as

∑

n≥0

p(n)xn =
1

1 − x
·

1

1 − x2
·

1

1 − x3
· · · , (12)

which can be rewritten as

∑

n≥0

p(n)xn = lim
n→∞

n∏

i=1

1

1 − x i
. (13)

Though (13) involves an infinite product, when we want to find the number of partitions

for a specific integer, we can change the limit in (13) to be set to that integer. This

is because no integer greater than the one that we are partitioning could be used. For

example, if we look at partitions of 2, we see that its partitions still have the general

form given in (10), but since no number greater than three could be used, we know

that the every partition of 2 will be of the form (1m1 , 2m2 , 1, . . . , 1). This means that

every term past 2 in (13), on either side of the equals sign, can be ignored.

We now adapt this approach to count the number of partitions for a weight using a

certain set of positive roots. To be able to do this, we must first provide a translation

from linear combinations of simple roots to products of the variables used in the series.

We take a linear combination of simple roots, a1α1 + · · · + anαn , and change it to

A
a1

1 · · · A
an
n . We illustrate the technique with an example. If we take the positive root

3α1 + 2α2 in G2, then the term in our geometric sum will be A3
1 A2

2. If we denote the

set of these translations of positive roots to these terms as

�+
var = {A

a1

1 A
a2

2 · · · Aar
r : a1α1 + a2α2 + · · · + arαr ∈ �+},

then the series that we are interested in expanding is

∏

x∈�+
var

1

1 − qx
. (14)

123

Computing weight q-multiplicities for the representations...

We introduce the q into our adaptation of (13), to count the number of roots used in

each partition. Note that in this product, we have geometric sums and we can expand

(14) as

∏

x∈�+
var

∞∑

n=0

(qx)n . (15)

From here, we return to the specific example of G2. In G2, we know the positive
roots are given by �+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}, so

�+
var = {A1, A2, A1 A2, A2

1 A2, A3
1 A2, A3

1 A2
2}. We can use this to rewrite (15) for this

specific case, which becomes

∞∑

n=0

(q A1)n ·

∞∑

n=0

(q A2)n ·

∞∑

n=0

(q A1 A2)n ·

∞∑

n=0

(q A2
1 A2)n ·

∞∑

n=0

(q A3
1 A2)n ·

∞∑

n=0

(q A3
1 A2

2)n . (16)

By expanding (16), the value of ℘q(ξ) is the coefficient of the translation of ξ , just in

the same way that the coefficient of xn was the number of partitions of n in (9). You

can think of the translation as the bijection trans(a1α1 + · · · + arαr) = A
a1

1 · · · A
ar
r

for any weight a1α1 +· · ·+arαr . Thus, we can limit the upper bound on the individual

sums in (16) to the maximum number of times the associated positive root could have

been used. We will again examine the weight 2α1 + 2α2 from (8). Our translation of

the weight 2α1 + 2α2 is A2
1 A2

2. We know that α1, α2, and α1 + α2 can only be used

a maximum of 2 times, 2α1 + α2 can only be used once, and the other positive roots

of G2 cannot be used when partitioning 2α1 + 2α2. If we are examining the weight

2α1+2α2 as we did at the end of Sect. 2.2.1, then we need only expand the polynomial

(1 + q A1 + q2 A2
1)(1 + q A2 + q2 A2

2)(1 + q A1 A2 + q2 A2
1 A2

2)(1 + q A2
1 A2)(1)(1).

(17)

Notice that we do not have to expand (17) fully. Since we know exactly for which term

we are searching, we need only multiply everything that will give us a coefficient of

A2
1 A2

2. Thus we can choose the terms

(q2 A2
1)(q

2 A2
2) = q4 A2

1 A2
2 (18)

(q A1)(q A2)(q A1 A2) = q3 A2
1 A2

2 (19)

(q A2)(q A2
1 A2) = q2 A2

1 A2
2 (20)

(q2 A2
1 A2

2) = q2 A2
1 A2

2. (21)

The sum of these relevant terms yields (2q2 + q3 + q4)A2
1 A2

2, whose coefficient is

exactly the value of ℘q(2α1 +2α2) that we found at the end of Sect. 2.2.1. Proceeding

in this fashion with every element of the Weyl group that contributes nontrivially to

Kostant’s weight multiplicity formula we obtain mq (̃α, 0).

123

P. E. Harris et al.

2.4 Generating the Weyl alternation set

Even with the faster method for computing the partition function, there were still too

many elements of the Weyl group of E8 for the computation to finish in a feasible

amount of time. Because of this, we implemented a way to compute the alternation

set A(λ, μ) before proceeding to find the multiplicity of μ with respect to λ. This

allowed us to work with a much smaller subset of the Weyl group, and thus reduce the

computational time associated to the partitioning algorithms.

To compute the alternation set, we first check to see if the expression 1(λ + ρ) −

(ρ + μ) has any negative coefficients when expressed as a sum of simple roots. If

so, then it cannot be partitioned using positive roots and the alternation set is the

empty set. If the coefficients are all nonnegative integers, then we know that at least

the identity element is in the alternation set, so we append the identity element to the

alternation set. We then build the alternation set by taking the elements already in the

set, concatenating by simple reflections, and computing σ(λ+ρ)−(ρ+μ), where σ is

the result of concatenating a simple reflection to an existing element of the alternation

set. If the result of this computation results in a nonnegative integral combination of

simple roots, then we include the element in the alternation set and iterate the process.

Once we cannot append any simple reflections to any of the elements of the alternation

set, we know that we have the full alternation set, as we have run through every element

in the Weyl group.

This process is implemented with Python’s list data structure, rather than sets,

so to disambiguate the process further, we will explain in this context. We start the

alternation set as a list with just the identity, then we begin iterating through the list.

We will denote our index with the variable i , which will initially be set to 0. We start

by taking the element in the alternation set at position i . We iterate over each simple

reflection, append it to the reflection at position i to make a new reflection and compute

the same expression mentioned before. If the expression results in a nonnegative

integral linear combination of simple roots, then the new reflection is appended to the

end of the list. Notice that this element will also have simple reflections appended to

it as i increases and eventually reaches this element. This process is guaranteed to

work because we know that once the expression σ(λ+ρ)− (μ+ρ) yields a negative

coefficient when expressed as a sum of simple roots, appending more reflections to σ

which make the length of σ increase will only decrease the coefficients of the simple

roots further, as was proven by the first and second author in [20, Proposition 3.4]. We

present this result below, but omit its proof as it is both technical and lengthy.

Proposition 2.1 Let si denote the simple root reflection corresponding to αi ∈ �.

Write the weights σ(ρ) − ρ, σ si (ρ) − ρ, and siσ(ρ) − ρ as linear combinations of

positive roots as follows:

• σ(ρ) − ρ = −
∑

α j ∈� c jα j with c j ≥ 0,

• σ si (ρ) − ρ = −
∑

α j ∈� d jα j with d j ≥ 0, and

• siσ(ρ) − ρ = −
∑

α j ∈� e jα j with e j ≥ 0.

123

Computing weight q-multiplicities for the representations...

Then:

1. If �(σ si) > �(σ), then d j ≥ c j for all j and dk > ck for at least one αk ∈ �.

2. If �(siσ) > �(σ), then e j ≥ c j for all j with ei > ci .

Proposition 2.1 implies that by appending simple reflections that increase the length

of elements known to be in the alternation set until the Weyl group element created

results in a weight with at least one negative coefficient results in an exhaustive list of

elements in the Weyl alternation set.

2.5 Program optimizing

Though this project is complete, it may be worthwhile to optimize the program. Should

the partition tree program be optimized for memory usage, it could be possible to

complete the E8 computation. The advantage of the first program is that it allows the

actual individual partitions to be listed from the partition tree. However, the method of

series expansion allows for much quicker computations. Where the first method took

approximately 169.33 s to run E6, the method by series expansion only took 109.14 s.

Notice that this was run on a build of SageMath that did not allow for the code to be run

in parallel. From a computer scientist’s viewpoint, it would be interesting to see the

increase in speed if the first program was parallelized and possibly run on a graphics

processing unit (GPU), instead of a CPU, especially because of the independent nature

of each branch of the partition tree.

References

1. Baldoni, W., Beck, M., Cochet, C., Vergne, M.: Volume computation for polytopes and partition

functions for classical root systems. Discret. Comput. Geom. 35(4), 551–595 (2006)

2. Baldoni, W., Vergne, M.: Kostant partitions functions and flow polytopes. Transform. Groups 13(3–4),

447–469 (2008)

3. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimen-

sion is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

4. Barvinok, A.: Lattice points and lattice polytopes. In: Handbook of Discrete and Computational Geom-

etry, CRC Press Ser. Discrete Math. Appl., pp. 133–152. CRC, Boca Raton (1997). ,

5. Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. In New Per-

spectives in Algebraic Combinatorics (Berkeley, CA, 1996–97). Volume 38 of Math. Sci. Res. Inst.

Publ., pp. 91–147. Cambridge University Press, Cambridge (1999)

6. Berenstein, A.D., Zelevinsky, A.V.: Tensor product multiplicities and convex polytopes in partition

space. J. Geom. Phys. 5(3), 453–472 (1988)

7. Billey, S., Guillemin, V., Rassart, E.: A vector partition function for the multiplicities of slk (C). J.

Algebra 278(1), 251–293 (2004)

8. Cochet, C.: Vector partition function and representation theory. In: Conference Proceedings Formal

Power Series and Algebraic Combinatorics, p. 12, 2005

9. Deckart, R.W.: On the combinatorics of Kostant’s partition function. J. Algebra 96(1), 9–17 (1985)

10. Fernández-Núñez, J., García-Fuertes, W., Perelomov, A.M.: On the generating function of weight

multiplicities for the representations of the Lie algebra C2. J. Math. Phys. 56(4), 041702 (2015)

11. Goodman, R., Wallach, N.R.: Symmetry. Representations and Invariants. Springer, New York (2009)

12. Gupta, R.K.: Characters and the q-analog of weight multiplicity. J. Lond. Math. Soc. 2(1), 68–76

(1987)

13. Harris, P.E.: Chapter 9. In: Wootton, A., Peterson, V., Lee, C. (eds.) A Primer for Undergraduate

Research, Foundations for Undergraduate Research in Mathematics. Birkhäuser, Basel (to appear)

123

P. E. Harris et al.

14. Harris, P.E.: Combinatorial problems related to Kostant’s weight multiplicity formula. Doctoral dis-

sertation, University of Wisconsin-Milwaukee, Milwaukee, WI (2012)

15. Harris, P.E.: Kostant’s weight multiplicity formula and the Fibonacci numbers. arXiv:1111.6648

[math.RT]

16. Harris, P.E.: On the adjoint representation of sln and the Fibonacci numbers. C. R. Math. Acad. Sci.

Paris 349, 935–937 (2011)

17. Harris, P.E., Insko, E., Omar, M.: The q-analog of Kostant’s partition function and the highest root of

the simple Lie algebras (2016). http://arxiv.org/pdf/1508.07934

18. Harris, P.E., Insko, E., Simpson, A.: Computing weight q-multiplicities for the representations of the

simple Lie algebras (2017). http://arxiv.org/pdf/1710.02183

19. Harris, P.E., Insko, E., Simpson, A.: GitHub code download. https://github.com/antman1935/lie_

algebras

20. Harris, P., Insko, E., Williams, L.: The adjoint representation of a classical Lie algebra and the support

of Kostant’s weight multiplicity formula. J. Comb. 7(1), 75–116 (2016)

21. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Universty Press, Cambridge

(1997)

22. Kostant, B.: A formula for the multiplicity of a weight. Proc. Nat. Acad. Sci. USA 44, 588–589 (1958)

23. Knapp, A.W.: Lie Groups Beyond an Introduction. Birkhäuser Boston Inc., Boston (2002)

24. Lusztig, G.: Singularities, character formulas, and a q-analog of weight multiplicities. Astérisque

101(102), 208–229 (1983)

25. Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Func-

tions, pp. 141–144. Springer, New York (2001)

26. Schmidt, J.R., Bincer, A.M.: The Kostant partition function for simple Lie algebras. J. Math. Phys.

25(8), 2367–2373 (1984)

123

http://arxiv.org/abs/1111.6648
http://arxiv.org/pdf/1508.07934
http://arxiv.org/pdf/1710.02183
https://github.com/antman1935/lie_algebras
https://github.com/antman1935/lie_algebras

	Computing weight q-multiplicities for the representations of the simple Lie algebras
	Abstract
	1 Introduction
	2 Computer implementation
	2.1 Structures
	2.2 Computations using the structures
	2.2.1 The Lie algebra of type G2

	2.3 Alternate approach to computing Kostant's partition function
	2.4 Generating the Weyl alternation set
	2.5 Program optimizing

	References

