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1. Introduction

Let [n] := {1,2,...,n} and let &,, denote the symmetric group on n letters. Let
T = mma - - T, denote the one-line notation for 7 € &,,. We say that m has a peak at
index ¢ if m;_1 < m; > w41 and define the peak set of a permutation 7 to be the set:

P(m) = {i € [n]| 7 has a peak at i}.
Given a subset S C [n] we denote the set of all permutations with peak set S by
P(S;n)={r €6, |P(r) =5}

Whenever P(S;n) # 0, we say S C [n] is n-admissible or simply admissible when the n
is understood. If S is n-admissible, then it is k-admissible for any k > n.

Billey, Burdzy, and Sagan first studied the subsets P(S;n) C &,, for n-admissible
sets S in 2013 [2]. Their work was motivated by a problem in probability theory which
explored the relationship between mass distribution on graphs and random permutations
with specific peak sets [3]. One of their foundational results established that for an
n-admissible set S

|P(S;n)| = ps(n)2"~ ¥~ (1)

where pg(x) is a polynomial depending on S, which they called the peak polynomial
of S. It was shown that ps(z) has degree max(S) — 1 when S # ), ps(z) = 1 when
S =0, ps(z) = 0 when S is non-admissible, and that pg(z) takes on integral values
when evaluated at integers [2, Theorem 1]. Similar observations were made for peak
polynomials in other classical Coxeter groups (see the work of Castro-Velez, Diaz-Lopez,
Orellana, Pastrana, and Zevallos [8] and Diaz-Lopez, Harris, Insko, and Perez-Lavin [9]).
Using the method of finite differences, Billey, Burdzy, and Sagan gave closed formulas
for the peak polynomials pg(z) in various special cases. The finite forward difference
operator A is a linear operator defined by (Af)(z) = f(z + 1) — f(z). Iterating this
operator gives higher order differences defined by

(A7 f) (@) = (A1 f) (@ +1) = (AT f) (),

for j > 1, where (A°f)(x) = f(x). Using Newton’s forward difference formula, Billey,
Burdzy, and Sagan expanded pg(z) in the binomial basis centered at m = max(S) as

ps(a) = S (Aps)(m) (*5") @)

and conjectured that for any admissible set S with m = max(S) each coefficient
(Alpg)(m) is a positive integer for 1 < j < m — 1 [2, Conjecture 14]. This conjecture
has become known as the positivity conjecture for peak polynomials.
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Table 1

Forward difference table for the peak polynomial pg4 63 ().
7, k 0 1 2 3 4 5 6
0 4 2 2 2 0 -3 0
1 —2 0 0 —2 -3 3 25
2 2 0 —2 —1 6 22 50
3 —2 —2 1 7 16 28 43
4 0 3 6 9 12 15 18
5 3 3 3 3 3 3 3
6 0 0 0 0 0 0 0

Example 1.1. Above is a table of forward differences for the peak polynomial py4 6y (x)
(Table 1). The (j,k) entry in this table is the coefficient (A’pg)(k) of (I;k) in the
expansion of pg(x) in the binomial basis centered at k.

For example, we expand pgy ¢} () in the binomial bases centered at 0 and 6 as

x x x x x x x
=4 -2 2 -2 0 3 0
) =4(0)2(0) <) () +(3) +4() 2 (5)
z—6 z—6 z—6 z—6 z—6
= 2 5 4 1
A O L P R W R W
z—6 x—06
3 0 .
(750 (")

Billey, Burdzy, and Sagan proved the positivity conjecture holds when |S| < 1 [2,
Proposition 16], verified it computationally for all 2™ subsets containing a largest value
m = max(S) = 20, and showed that ps(m) = 0 for any set S [2, Lemma 15]. In 2014,
Billey, Fahrbach, and Talmage posed a stronger conjecture bounding the moduli of the
roots of pg(z), which they checked numerically for all peak sets with max(S) < 15 [4,
Conjecture 1.6]. They also discovered a computationally efficient recursive algorithm
for computing pg(z), and showed that pg(k) > 0 for £ > m and that the positivity
conjecture holds in several special cases, including when the position of the last peak of
S is three more than the position of the penultimate peak [4, Lemmas 4.4 and 3.9].

Our main result is the following theorem, which proves the positivity conjecture in all
cases.

Theorem 1.2. If S C [n] is a nonempty admissible set with m = max(S), then
(AVpg)(k) >0 for all1 < j<m—1 and k > m, and (A™pg)(z) = 0.

We prove Theorem 1.2 at the end of Section 2. Positivity of coefficients in a given
binomial basis is a phenomenon that occurs throughout combinatorics. A particular
illuminating example comes from Ehrhart theory. For a d-dimensional integral convex
polytope P, recall that ip(n) is the number of integer points in the n-th dilation of P.
Ehrhart proved that ip(n) is a polynomial in n of degree d, so classical techniques

in generating functions establish that ip(n) = Z?:o h ("t477) for complex values h3,
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see [5]. The vector (hg, h},...,h}) is called the h*-vector of P, and a celebrated theorem
of Stanley confirms that h} are nonnegative integers for all j, [12, Theorem 2.1].

In addition to positivity, we have verified that the coefficients (A7pg)(m) are
log-concave in j for all admissible sets S with m = max(S) < 20, and we suspect
that log-concavity holds in general. We note that log-concavity along with our positivity
result would imply the unimodality of the coefficients (Afpg)(m) for 1 < j < m — 1. If
unimodality is not true in general, a related problem would be classifying peak sets for
which unimodality holds. Such problems are a major theme throughout combinatorics
(for instance, they are central in Ehrhart theory [5]) and could lead to many interesting
and fruitful combinatorial questions.

In addition, Theorem 1.2 provides supporting evidence for Billey, Fahrbach, and Tal-
mage’s stronger conjecture bounding the moduli of the zeros of peak polynomials [4,
Conjecture 1.6]. As they noted, Ehrhart, chromatic, and Hilbert polynomials are all ex-
amples of polynomials with integer coefficients (in some basis) whose roots are bounded
in the complex plane [1,5-7,10,11]. Their conjecture suggests that peak polynomials fit
into the family of polynomials sharing these properties.

2. Peak polynomial positivity
We begin with a definition that is used throughout the rest of this paper.

Definition 2.1. Let S = {i,42,...,is} C [n] with ¢; < iy < ... < is be an n-admissible
set, and hence P(S;n) # 0. For 1 < ¢ < s define

Sig = {i177;27"‘7i€717iz - 17if+1 - 17i€+2 - 17"'7is - 1}7

Si, = {i1,82, - yio—1,%0, 00401 — Lidpgo — 1, ... dg — 1},
where the notation z? means that the element i, has been omitted from the set.

In general, the sets 5;, might not be n-admissible as they may contain two adjacent
integers when ¢y — 1 = iy_; + 1. However, the sets S;, are always n-admissible.

Example 2.2. If S = {3, 5,8} C [9], then

53 = {23477}7 55 = {37477}3 SS = {3753 7}5
Ss={4,7}, Ss={3,7}, Ss={3,5}.

The sets S3, Ss, §3, §5, §8 are 9-admissible whereas S5 is not.

Our first result describes a recursive construction of the set P(S;n + 1) from disjoint
subsets in &,,.
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Theorem 2.3. Let S = {iy,i9,...,i5} C N with i1 < 15 < ... < i5 be a nonempty
n-admissible set for any n > max(S). Then

S

|[P(S5n + 1) = 2|P(S;n)| + 2 [P(Si,in)| + Y [P(Siyin)l, 3)

=1 =1

for n > max(S).

Proof. We recursively build all permutations in P(S;n+ 1) C &,,41 from permutations
in &,, by inserting the number n + 1 (in different positions) in the permutations of &,,.
Let # = m .- m, be a permutation in &,, and consider the following five cases:

Case 1: If w € P(S;n), then by inserting n + 1 after m,, we create the permutation
F=mmg---m(n+1) € P(S;n+1).

Case 2: If 71 € P(S;n), then by inserting n + 1 between m; _; and m;, we create the
permutation

fF=m - m,1(n+ Dm, - -mp € P(S;n+1).

Case 3: If 7 € P(S;,;n) for any 1 < £ < s, then by inserting n + 1 between ;,_1 and 7,
we create the permutation

F=m - my—1(n+ 1)m, -7, € P(S;n+1).

Case 4.1: If m € P(S;,;n) and 1 < £ < s, then 7 has a peak at position i,_; and by
inserting n + 1 between m;, ,—1 and m;, , we create the permutation

F=m - miy,_—1n+)m,_, ---m € P(S;n+1).

Case 4.2: If m € P(S;,;n) where S;; = {i1 — 1,42 —1,...,is — 1}, then by inserting n+1
to the left of 1 we create the permutation

#=m+1)m -7, € P(S;n+1).

Case 5: If T € P(gig;n) for any 1 < ¢ < s, then w has no peak at position iy. By inserting
n + 1 between 7;,_; and m;, we create the permutation

F=m - my—1(n+ 1)m, -7, € P(S;n+1).

The permutations 7 created via Cases 1 through 5 are distinct elements of P(S;n+1).
To see this note that if two permutations are the same, when you remove n + 1 from
each they will stay the same, hence they will have the same peak set. Thus the only
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potential collisions are between Cases 1 and 2, or between Cases 3 and 4. In both cases
the permutations in question are distinct because n + 1 appears in different positions.

In fact, we show that P(S;n+1) is precisely the union of the permutations # appearing
in Cases 1 through 5. If this is the case, the sets being disjoint gives us

|P(S;n+1)| = 2|P(S;n |+22|P S;,im) |+Z|P Si,im)l.

(=1 /=1

Note that any permutation 7 in P(S;n + 1) has the number n 4+ 1 in one of the
following positions: 1,41, ...,is,n+ 1. If n+ 1 is in position n+ 1, then removing it from
the permutation 7 yields a permutation 7 in Case 1. If n 41 is in the first position, then
removing it from the permutation 7 yields a permutation 7 in Case 4.2. If n + 1 is in
position ¢, for some 1 < ¢ < s, then removing it from the permutation 7 leads to three
possibilities: a permutation with a peak at position ¢, (Cases 2 and 4.1), a permutation
with a peak at position iy —1 (Case 3), or a permutation without a peak at positions i, —1
or iy (Case 5). Thus we have created all permutation in P(S;n+ 1) via the constructions
in Cases 1-5. O

Note that the recurrence provided in Theorem 2.3 also holds whenever S = () as the
only contributing term is 2| P(;n)|. The following result plays a key role in the proof of
Theorem 1.2.

Corollary 2.4. Let S = {i1,42,...,is} C [n] with i1 < i2 < ... < is be a nonempty
n-admissible set. Then the following equality of polynomials holds

(Aps)(x ZPSW + Zpgie (z). (4)
(=1

Proof. Let m = max(5). It suffices to show that the two polynomials agree at infinitely
many values, and to do so we show that for any g > m,

(Aps)(g ZPSM )+ s, () (5)
(=1

Observe that for such ¢, substituting Equation (1) appropriately into Theorem 2.3 yields

S

21 18Ipg(q + 1) — 29 Wlps(q) = Y207 15ulpg, (q) + Z 21715 pg, (0)
=1 =

— 99— ISIZPS ) 4 29~ ISIZp (6)

where the last equality holds since |S;,| = |S| and |S;,| = |S| — 1 for all 1 < £ < s. The
result follows from multiplying Equation (6) by 1/29-151. o
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The following lemma reduces proving Theorem 1.2 to the case when k = max(S5).

Lemma 2.5. Let S = {iy,ia,...,is} C [n] with i1 < is < ... < is be a nonempty
n-admissible set, andm = is. If (AVpg)(m) > 0 for all1 < j < m—1, then (Aipg)(k) > 0
forallk>m and all1 <j7<m—1.

Proof. Using the definition of the operator A we obtain (A/pg)(k + 1) = (Adpg)(k) +
(A7 pg) (k). For 1 < j < m — 2 the proof follows by induction on k using k = m as
the base case. For j = m — 1, we get (A™ pg)(k + 1) = (A" Ipg)(k) + (A™ps) (k).
Since deg(ps) = m — 1 and the operator A decreases the degree of a polynomial by one,
then (A™pg)(z) = 0 and the equation becomes (A™ !pg)(k+1) = (A™ 1pg)(k). Thus,
recursively we get (A™ !pgs)(k) = (A™ 1pg)(m) >0 for all k > m. O

We are now ready to prove the positivity conjecture for peak polynomials.

Proof of Theorem 1.2. Using Lemma 2.5 it is enough to prove the theorem when k =
max(S). Billey, Burdzy, and Sagan showed that the result is true when |S| = 1 |2,
Proposition 16].

Suppose now that |S| > 2, and let m = max(S). From Corollary 2.4 we have

(Bps)(x) = D ps, (@) + 3 g, (2). (7)
=1 (=1

Note that in the above equation, each term indexed by a non-admissible set S;, is zero.
However, the sets S;, indexing the terms in the second sum are admissible. For all such

sets S;, we have the following inequality max(S;,) < max(S) = m. Theorem 3.8 and
Proposition 4.4 in [4] imply that

0=rpg, (max(S;,)) < pg, (m).

ip

Similarly, for all admissible sets S;, we have that max(S;,) < max(S) = m, and
ps;,(m) > 0. Using Equation (7) we conclude that (Aps)(m) > 0, which proves the
theorem when j = 1.

Suppose then that 2 < j < m — 1 and let S be any admissible set. We proceed by
induction on m = max(S). The base case is when S = {2}. This case, as well as the
cases where |S| = 1, are proved in [2, Proposition 16]. Thus, for the rest of the proof, we
assume |S| > 2.

Suppose the result is true for all nonempty admissible sets T' with max(T") < max(S5).
By applying the A operator repeatedly to Equation (7) we get that,

S

(Alps)(m) = (AT ps))(m) = Y (AT Mps, )(m) + D (A pg, Y(m).  (8)
(=1

(=1
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Since deg(pr(z)) = max(T) — 1 for any nonempty admissible set 7' C [n] and
deg(pr(x)) = 0 when T is empty or non-admissible, in particular, we have that for
all1 </ <s

deg(ps()) > deg(pg, (¢)) and  deg(ps(z)) > deg(ps,, (v))-
Applying the inductive hypothesis to the sets :5’\1-2 and S;, we conclude that,
Ajfl(pgiz)(m) >0 and Ajfl(pgie)(m) >0,

where we get equality only when the sets indexing the polynomials are non-admissible,
or when the degree of the polynomial is less than 7 — 1 in which case applying A a total
of 7 — 1 times leads to the zero polynomial. To finish the proof, using Equation (8) and
the above inequalities, it is enough to show that there is at least one set for which the
inequality is strict. Write S = {i1,49,...,is} with i1 < iy < -+ < 5. If 45 —d5_1 > 2
then the set S;, = {i1,42,...,45s_1,is — 1} is admissible and

deg(ps, ) = deg(S) —1=m —2>j—1, thus A" !(pg, )(m) > 0.

If iy —is_y = 2 then S;._, = {i1,in,...,is_2,is — 1} is admissible and

deg(pg ) =deg(S)—1=m—2>j—1, thus A '(pg )(m)>0.
ts—1 ts—1

Finally, as mentioned in the proof of Lemma 2.5, the operator A decreases the degree of

a polynomial by one, thus (A™pg)(z) =0. O
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