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We say that a permutation π = π1π2 · · · πn ∈ Sn has a 
peak at index i if πi−1 < πi > πi+1. Let P (π) denote the 
set of indices where π has a peak. Given a set S of positive 
integers, we define P (S; n) = {π ∈ Sn : P (π) = S}. In 2013 
Billey, Burdzy, and Sagan showed that for subsets of positive 
integers S and sufficiently large n, |P (S; n)| = pS(n)2n−|S|−1

where pS(x) is a polynomial depending on S. They proved 
this by establishing a recursive formula for pS(x) involving 
an alternating sum, and they conjectured that the coefficients 
of pS(x) expanded in a binomial coefficient basis centered at 
max(S) are all nonnegative. In this paper we introduce a new 
recursive formula for |P (S; n)| without alternating sums and 
we use this recursion to prove that their conjecture is true.
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1. Introduction

Let [n] := {1, 2, . . . , n} and let Sn denote the symmetric group on n letters. Let 

π = π1π2 · · · πn denote the one-line notation for π ∈ Sn. We say that π has a peak at 

index i if πi−1 < πi > πi+1 and define the peak set of a permutation π to be the set:

P (π) = {i ∈ [n] | π has a peak at i}.

Given a subset S ⊆ [n] we denote the set of all permutations with peak set S by

P (S; n) = {π ∈ Sn | P (π) = S}.

Whenever P (S; n) �= ∅, we say S ⊆ [n] is n-admissible or simply admissible when the n

is understood. If S is n-admissible, then it is k-admissible for any k ≥ n.

Billey, Burdzy, and Sagan first studied the subsets P (S; n) ⊆ Sn for n-admissible 

sets S in 2013 [2]. Their work was motivated by a problem in probability theory which 

explored the relationship between mass distribution on graphs and random permutations 

with specific peak sets [3]. One of their foundational results established that for an 

n-admissible set S

|P (S; n)| = pS(n)2n−|S|−1 (1)

where pS(x) is a polynomial depending on S, which they called the peak polynomial

of S. It was shown that pS(x) has degree max(S) − 1 when S �= ∅, pS(x) = 1 when 

S = ∅, pS(x) = 0 when S is non-admissible, and that pS(x) takes on integral values 

when evaluated at integers [2, Theorem 1]. Similar observations were made for peak 

polynomials in other classical Coxeter groups (see the work of Castro-Velez, Diaz-Lopez, 

Orellana, Pastrana, and Zevallos [8] and Diaz-Lopez, Harris, Insko, and Perez-Lavin [9]). 

Using the method of finite differences, Billey, Burdzy, and Sagan gave closed formulas 

for the peak polynomials pS(x) in various special cases. The finite forward difference

operator ∆ is a linear operator defined by (∆f)(x) = f(x + 1) − f(x). Iterating this 

operator gives higher order differences defined by

(∆jf)(x) = (∆j−1f)(x + 1) − (∆j−1f)(x),

for j ≥ 1, where (∆0f)(x) = f(x). Using Newton’s forward difference formula, Billey, 

Burdzy, and Sagan expanded pS(x) in the binomial basis centered at m = max(S) as

pS(x) =

m∑

j=0

(∆jpS)(m)

(
x − m

j

)
(2)

and conjectured that for any admissible set S with m = max(S) each coefficient 

(∆jpS)(m) is a positive integer for 1 ≤ j ≤ m − 1 [2, Conjecture 14]. This conjecture 

has become known as the positivity conjecture for peak polynomials.
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Table 1

Forward difference table for the peak polynomial p{4,6}(x).

j, k 0 1 2 3 4 5 6

0 4 2 2 2 0 −3 0
1 −2 0 0 −2 −3 3 25
2 2 0 −2 −1 6 22 50
3 −2 −2 1 7 16 28 43
4 0 3 6 9 12 15 18
5 3 3 3 3 3 3 3
6 0 0 0 0 0 0 0

Example 1.1. Above is a table of forward differences for the peak polynomial p{4,6}(x)

(Table 1). The (j, k) entry in this table is the coefficient (∆jpS)(k) of 
(

x−k
j

)
in the 

expansion of pS(x) in the binomial basis centered at k.

For example, we expand p{4,6}(x) in the binomial bases centered at 0 and 6 as

p{4,6}(x) = 4

(
x

0

)
−2

(
x

1

)
+ 2

(
x

2

)
−2

(
x

3

)
+ 0

(
x

4

)
+ 3

(
x

5

)
+ 0

(
x

6

)

= 0

(
x − 6

0

)
+ 25

(
x − 6

1

)
+ 50

(
x − 6

2

)
+ 43

(
x − 6

3

)
+ 18

(
x − 6

4

)

+ 3

(
x − 6

5

)
+ 0

(
x − 6

6

)
.

Billey, Burdzy, and Sagan proved the positivity conjecture holds when |S| ≤ 1 [2, 

Proposition 16], verified it computationally for all 2m subsets containing a largest value 

m = max(S) = 20, and showed that pS(m) = 0 for any set S [2, Lemma 15]. In 2014, 

Billey, Fahrbach, and Talmage posed a stronger conjecture bounding the moduli of the 

roots of pS(z), which they checked numerically for all peak sets with max(S) ≤ 15 [4, 

Conjecture 1.6]. They also discovered a computationally efficient recursive algorithm 

for computing pS(x), and showed that pS(k) > 0 for k > m and that the positivity 

conjecture holds in several special cases, including when the position of the last peak of 

S is three more than the position of the penultimate peak [4, Lemmas 4.4 and 3.9].

Our main result is the following theorem, which proves the positivity conjecture in all 

cases.

Theorem 1.2. If S ⊆ [n] is a nonempty admissible set with m = max(S), then 

(∆jpS)(k) > 0 for all 1 ≤ j ≤ m − 1 and k ≥ m, and (∆mpS)(x) = 0.

We prove Theorem 1.2 at the end of Section 2. Positivity of coefficients in a given 

binomial basis is a phenomenon that occurs throughout combinatorics. A particular 

illuminating example comes from Ehrhart theory. For a d-dimensional integral convex 

polytope P , recall that iP (n) is the number of integer points in the n-th dilation of P . 

Ehrhart proved that iP (n) is a polynomial in n of degree d, so classical techniques 

in generating functions establish that iP (n) =
∑d

j=0 h∗
j

(
n+d−j

d

)
for complex values h∗

j , 
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see [5]. The vector (h∗
0, h∗

1, . . . , h∗
d) is called the h∗-vector of P , and a celebrated theorem 

of Stanley confirms that h∗
j are nonnegative integers for all j, [12, Theorem 2.1].

In addition to positivity, we have verified that the coefficients (∆jpS)(m) are 

log-concave in j for all admissible sets S with m = max(S) ≤ 20, and we suspect 

that log-concavity holds in general. We note that log-concavity along with our positivity 

result would imply the unimodality of the coefficients (∆jpS)(m) for 1 ≤ j ≤ m − 1. If 

unimodality is not true in general, a related problem would be classifying peak sets for 

which unimodality holds. Such problems are a major theme throughout combinatorics 

(for instance, they are central in Ehrhart theory [5]) and could lead to many interesting 

and fruitful combinatorial questions.

In addition, Theorem 1.2 provides supporting evidence for Billey, Fahrbach, and Tal-

mage’s stronger conjecture bounding the moduli of the zeros of peak polynomials [4, 

Conjecture 1.6]. As they noted, Ehrhart, chromatic, and Hilbert polynomials are all ex-

amples of polynomials with integer coefficients (in some basis) whose roots are bounded 

in the complex plane [1,5–7,10,11]. Their conjecture suggests that peak polynomials fit 

into the family of polynomials sharing these properties.

2. Peak polynomial positivity

We begin with a definition that is used throughout the rest of this paper.

Definition 2.1. Let S = {i1, i2, . . . , is} ⊆ [n] with i1 < i2 < . . . < is be an n-admissible 

set, and hence P (S; n) �= ∅. For 1 ≤ � ≤ s define

Si�
= {i1, i2, . . . , i�−1, i� − 1, i�+1 − 1, i�+2 − 1, . . . , is − 1},

Ŝi�
= {i1, i2, . . . , i�−1, î�, i�+1 − 1, i�+2 − 1, . . . , is − 1},

where the notation î� means that the element i� has been omitted from the set.

In general, the sets Si�
might not be n-admissible as they may contain two adjacent 

integers when i� − 1 = i�−1 + 1. However, the sets Ŝi�
are always n-admissible.

Example 2.2. If S = {3, 5, 8} ⊆ [9], then

S3 = {2, 4, 7}, S5 = {3, 4, 7}, S8 = {3, 5, 7},

Ŝ3 = {4, 7}, Ŝ5 = {3, 7}, Ŝ8 = {3, 5}.

The sets S3, S8, Ŝ3, Ŝ5, Ŝ8 are 9-admissible whereas S5 is not.

Our first result describes a recursive construction of the set P (S; n + 1) from disjoint 

subsets in Sn.
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Theorem 2.3. Let S = {i1, i2, . . . , is} ⊆ N with i1 < i2 < . . . < is be a nonempty 

n-admissible set for any n ≥ max(S). Then

|P (S; n + 1)| = 2|P (S; n)| + 2
s∑

�=1

|P (Si�
; n)| +

s∑

�=1

|P (Ŝi�
; n)|, (3)

for n ≥ max(S).

Proof. We recursively build all permutations in P (S; n + 1) ⊆ Sn+1 from permutations 

in Sn by inserting the number n + 1 (in different positions) in the permutations of Sn. 

Let π = π1 · · · πn be a permutation in Sn and consider the following five cases:

Case 1: If π ∈ P (S; n), then by inserting n + 1 after πn we create the permutation

π̂ = π1π2 · · · πn(n + 1) ∈ P (S; n + 1).

Case 2: If π ∈ P (S; n), then by inserting n + 1 between πis−1 and πis
we create the 

permutation

π̂ = π1 · · · πis−1(n + 1)πis
· · · πn ∈ P (S; n + 1).

Case 3: If π ∈ P (Si�
; n) for any 1 ≤ � ≤ s, then by inserting n + 1 between πi�−1 and πi�

we create the permutation

π̂ = π1 · · · πi�−1(n + 1)πi�
· · · πn ∈ P (S; n + 1).

Case 4.1: If π ∈ P (Si�
; n) and 1 < � ≤ s, then π has a peak at position i�−1 and by 

inserting n + 1 between πi�−1−1 and πi�−1
we create the permutation

π̂ = π1 · · · πi�−1−1(n + 1)πi�−1
· · · πn ∈ P (S; n + 1).

Case 4.2: If π ∈ P (Si1
; n) where Si1

= {i1 − 1, i2 − 1, . . . , is − 1}, then by inserting n + 1

to the left of π1 we create the permutation

π̂ = (n + 1)π1 · · · πn ∈ P (S; n + 1).

Case 5: If π ∈ P (Ŝi�
; n) for any 1 ≤ � ≤ s, then π has no peak at position i�. By inserting 

n + 1 between πi�−1 and πi�
we create the permutation

π̂ = π1 · · · πi�−1(n + 1)πi�
· · · πn ∈ P (S; n + 1).

The permutations π̂ created via Cases 1 through 5 are distinct elements of P (S; n +1). 

To see this note that if two permutations are the same, when you remove n + 1 from 

each they will stay the same, hence they will have the same peak set. Thus the only 
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potential collisions are between Cases 1 and 2, or between Cases 3 and 4. In both cases 

the permutations in question are distinct because n + 1 appears in different positions.

In fact, we show that P (S; n +1) is precisely the union of the permutations π̂ appearing 

in Cases 1 through 5. If this is the case, the sets being disjoint gives us

|P (S; n + 1)| = 2|P (S; n)| + 2

s∑

�=1

|P (Si�
; n)| +

s∑

�=1

|P (Ŝi�
; n)|.

Note that any permutation π̂ in P (S; n + 1) has the number n + 1 in one of the 

following positions: 1, i1, . . . , is, n + 1. If n + 1 is in position n + 1, then removing it from 

the permutation π̂ yields a permutation π in Case 1. If n + 1 is in the first position, then 

removing it from the permutation π̂ yields a permutation π in Case 4.2. If n + 1 is in 

position i� for some 1 ≤ � ≤ s, then removing it from the permutation π̂ leads to three 

possibilities: a permutation with a peak at position i� (Cases 2 and 4.1), a permutation 

with a peak at position i�−1 (Case 3), or a permutation without a peak at positions i�−1

or i� (Case 5). Thus we have created all permutation in P (S; n +1) via the constructions 

in Cases 1–5. �

Note that the recurrence provided in Theorem 2.3 also holds whenever S = ∅ as the 

only contributing term is 2|P (∅; n)|. The following result plays a key role in the proof of 

Theorem 1.2.

Corollary 2.4. Let S = {i1, i2, . . . , is} ⊆ [n] with i1 < i2 < . . . < is be a nonempty 

n-admissible set. Then the following equality of polynomials holds

(∆pS)(x) =

s∑

�=1

pSi�
(x) +

s∑

�=1

p
Ŝi�

(x). (4)

Proof. Let m = max(S). It suffices to show that the two polynomials agree at infinitely 

many values, and to do so we show that for any q ≥ m,

(∆pS)(q) =
s∑

�=1

pSi�
(q) +

s∑

�=1

p
Ŝi�

(q). (5)

Observe that for such q, substituting Equation (1) appropriately into Theorem 2.3 yields

2q−|S|pS(q + 1) − 2q−|S|pS(q) =
s∑

�=1

2q−|Si�
|pSi�

(q) +
s∑

�=1

2q−|Ŝi�
|−1p

Ŝi�

(q)

= 2q−|S|
s∑

�=1

pSi�
(q) + 2q−|S|

s∑

�=1

p
Ŝi�

(q) (6)

where the last equality holds since |Si�
| = |S| and |Ŝi�

| = |S| − 1 for all 1 ≤ � ≤ s. The 

result follows from multiplying Equation (6) by 1/2q−|S|. �
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The following lemma reduces proving Theorem 1.2 to the case when k = max(S).

Lemma 2.5. Let S = {i1, i2, . . . , is} ⊆ [n] with i1 < i2 < . . . < is be a nonempty 

n-admissible set, and m = is. If (∆jpS)(m) > 0 for all 1 ≤ j ≤ m −1, then (∆jpS)(k) > 0

for all k ≥ m and all 1 ≤ j ≤ m − 1.

Proof. Using the definition of the operator ∆ we obtain (∆jpS)(k + 1) = (∆jpS)(k) +

(∆j+1pS)(k). For 1 ≤ j ≤ m − 2 the proof follows by induction on k using k = m as 

the base case. For j = m − 1, we get (∆m−1pS)(k + 1) = (∆m−1pS)(k) + (∆mpS)(k). 

Since deg(pS) = m − 1 and the operator ∆ decreases the degree of a polynomial by one, 

then (∆mpS)(x) = 0 and the equation becomes (∆m−1pS)(k +1) = (∆m−1pS)(k). Thus, 

recursively we get (∆m−1pS)(k) = (∆m−1pS)(m) > 0 for all k ≥ m. �

We are now ready to prove the positivity conjecture for peak polynomials.

Proof of Theorem 1.2. Using Lemma 2.5 it is enough to prove the theorem when k =

max(S). Billey, Burdzy, and Sagan showed that the result is true when |S| = 1 [2, 

Proposition 16].

Suppose now that |S| ≥ 2, and let m = max(S). From Corollary 2.4 we have

(∆pS)(x) =
s∑

�=1

pSi�
(x) +

s∑

�=1

p
Ŝi�

(x). (7)

Note that in the above equation, each term indexed by a non-admissible set Si�
is zero. 

However, the sets Ŝi�
indexing the terms in the second sum are admissible. For all such 

sets Ŝi�
we have the following inequality max(Ŝi�

) < max(S) = m. Theorem 3.8 and 

Proposition 4.4 in [4] imply that

0 = p
Ŝi�

(max(Ŝi�
)) < p

Ŝi�

(m).

Similarly, for all admissible sets Si�
we have that max(Si�

) < max(S) = m, and 

pSi�
(m) > 0. Using Equation (7) we conclude that (∆pS)(m) > 0, which proves the 

theorem when j = 1.

Suppose then that 2 ≤ j ≤ m − 1 and let S be any admissible set. We proceed by 

induction on m = max(S). The base case is when S = {2}. This case, as well as the 

cases where |S| = 1, are proved in [2, Proposition 16]. Thus, for the rest of the proof, we 

assume |S| ≥ 2.

Suppose the result is true for all nonempty admissible sets T with max(T ) < max(S). 

By applying the ∆ operator repeatedly to Equation (7) we get that,

(∆jpS)(m) = (∆(∆j−1pS))(m) =
s∑

�=1

(∆j−1pSi�
)(m) +

s∑

�=1

(∆j−1p
Ŝi�

)(m). (8)
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Since deg(pT (x)) = max(T ) − 1 for any nonempty admissible set T ⊆ [n] and 

deg(pT (x)) = 0 when T is empty or non-admissible, in particular, we have that for 

all 1 ≤ � ≤ s

deg(pS(x)) > deg(p
Ŝi�

(x)) and deg(pS(x)) > deg(pSi�
(x)).

Applying the inductive hypothesis to the sets Ŝi�
and Si�

we conclude that,

∆j−1(pSi�
)(m) ≥ 0 and ∆j−1(p

Ŝi�

)(m) ≥ 0,

where we get equality only when the sets indexing the polynomials are non-admissible, 

or when the degree of the polynomial is less than j − 1 in which case applying ∆ a total 

of j − 1 times leads to the zero polynomial. To finish the proof, using Equation (8) and 

the above inequalities, it is enough to show that there is at least one set for which the 

inequality is strict. Write S = {i1, i2, . . . , is} with i1 < i2 < · · · < is. If is − is−1 > 2

then the set Sis
= {i1, i2, . . . , is−1, is − 1} is admissible and

deg(pSis
) = deg(S) − 1 = m − 2 ≥ j − 1, thus ∆j−1(pSis

)(m) > 0.

If is − is−1 = 2 then Ŝis−1
= {i1, i2, . . . , is−2, is − 1} is admissible and

deg(p
Ŝis−1

) = deg(S) − 1 = m − 2 ≥ j − 1, thus ∆j−1(p
Ŝis−1

)(m) > 0.

Finally, as mentioned in the proof of Lemma 2.5, the operator ∆ decreases the degree of 

a polynomial by one, thus (∆mpS)(x) = 0. �
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