Information Theoretic Limits of Data Shuffling for
Distributed Learning

Mohamed Adel Attia

Ravi Tandon

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ, 85721
Email: {madel, tandonr}@email.arizona.edu

Abstract—Data shuffling is one of the fundamental building
blocks for distributed learning algorithms, that increases the
statistical gain for each step of the learning process. In each
iteration, different shuffled data points are assigned by a central
node to a distributed set of workers to perform local computa-
tions, which leads to communication bottlenecks. The focus of
this paper is on formalizing and understanding the fundamental
information-theoretic tradeoff between storage (per worker) and
the worst-case communication overhead for the data shuffling
problem. We completely characterize the information theoretic
tradeoff for K = 2, and K = 3 workers, for any value of storage
capacity, and show that increasing the storage across workers
can reduce the communication overhead by leveraging coding.
We propose a novel and systematic data delivery and storage
update strategy for each data shuffle iteration, which preserves
the structural properties of the storage across the workers, and
aids in minimizing the communication overhead in subsequent
data shuffling iterations.

I. INTRODUCTION

Distributed computing systems for large data-sets have
gained a lot of interest recently as they enable the processing of
data-intensive tasks for machine learning, model tracing, and
data analysis over a large number of commodity machines,
and servers (e.g., Apache Spark [1], and MapReduce [2]).
Generally speaking, a master node, which has the entire data-
set, sends data blocks to be processed at distributed worker
nodes. The workers subsequently respond with locally com-
puted functions to the master node for the desired data analysis.
This enables the processing of many terabytes of data over
thousands of distributed servers in a time efficient manner.

One of the core elements in distributed learning algorithms
is data shuffling [3]. Before each iteration of the learning
process, the entire data is randomly shuffled before being
assigned to the worker nodes. This shuffling operation enables
the worker nodes to process different data batches at each
iteration, which presents large statistical gains [4], [5]. The
statistical advantages provided by data shuffling come at the
unavoidable cost of the communication overhead between the
master and the worker nodes which must be incurred for every
shuffling iteration. Thus, there exists a fundamental tradeoff
between the communication overhead and the storage capacity
of each worker node. To exemplify this tradeoff, consider two
extreme scenarios: an ideal scenario in which the storage at the
distributed workers is large enough to store the entire data-set,
thus no communication has to be done from the master node
for any shuffle. On the other extreme, when the storage is just
enough to store the batch under processing, the communication
load is expected to be maximum.

The focus of this paper is on formalizing and understand-
ing this fundamental information-theoretic tradeoff between

storage and the worst-case communication overhead for the
data shuffling problem. Each iteration of data shuffling can be
divided into two phases: data delivery, and storage update. In
the data delivery phase, depending on the shuffled data points,
the master node communicates a function of the data to the
workers, so that each worker obtains its assigned data points.
The second phase is termed as the storage update phase, which
as shown in this paper is extremely critical in reducing the
communication overhead of subsequently shuffling iterations.
We next summarize the main contributions of this paper:

e We first present an information-theoretic formulation of
the data shuffling problem involving both data delivery and
update phases, accounting for the respective constraints and
formalizing the tradeoff between worst-case communication
overhead and the storage capacity of distributed workers.

e We also completely characterize this tradeoff for K = 2
and K = 3 workers, for any value of storage capacity. One of
the most interesting aspects of the result for K = 3 worker
problem is the design of data delivery and storage update
algorithms. In particular, for data delivery phase, we show that
transmitting coded data from the master node to the workers
can significantly reduce the communication overhead. More
interestingly, the proposed storage update algorithm maintains
the structural properties of the storage at the workers over
time. This structural invariance placement is extremely critical
in leveraging the gains of coding for different shuffles.

Related Work: In the past few years, there has been a
flurry of research acitivity in understanding the benefits of
coding for caching starting from the work of Maddah-Ali and
Niesen [6] who showed that exploiting multi-casting opportu-
nities by coding can reduce the communication for caching. In
[7], coding for MapReduce was proposed in order to reduce the
communication cost between mappers and reducers, however
the underlying focus of [7] is significantly different than the
problem considered in this work, where we care about the
communication between the master node and the workers. The
paper most closely related to this work is [8], where the idea
of coding for data shuffling problem is presented to reduce the
communication overhead between the master node and worker
nodes. [8] provides a probabilistic scheme of leveraging coding
based on a random storage placement. In contrast to [8], in
this paper we provide a deterministic and systematic storage
update scheme, which increases the coding opportunities in the
delivery phase. The underlying metric used here is the worst-
case communication cost over all the possible shuffles, unlike
the average cost considered in [8]. Finally, we also present the
first information theoretic lower bounds on the communication
overhead for the data shuffling problem.

978-1-5090-1328-9/16/$31.00 ©2016 IEEE

II. SYSTEM MODEL

We assume a master node which has access to the entire
data-set A = [z 22 ... 217 of size Nd bits, ie., Ais a
matrix containing N data points, denoted by x1,x2,..., 2N,
where d is the dimensionality of each data point. Treating A,
and its data points x,, as random variables, we therefore have
the entropies of these random variables as

H(A)=N x H(z,) = Nd, Yne{l,2,...,N}. (1)

At each iteration, indexed by ¢, the master node divides
the data-set A into K data batches given as A%, A%, ... AL,
where the batch Af is designated to be processed by worker
wg, and these batches correspond to the random permutation
of the data-set, 7' : A — {A!, ..., AL }. Note that these data
chunks are disjoint, and span the whole data-set, i.e.,

ANA =0, Vi, (2a)
AtuAbu.. UAL =A, VL (2b)

Hence, the entropy of any batch A% is given as

N

H(Ai):%H(A):?d, Vee{l,....,K}. (3

After getting the data batch, each worker locally computes
a function (as an example, this function could correspond to
the gradient or sub-gradients of the data points assigned to the
worker). The local functions from the K workers are processed
subsequently at the master node. We assume that each worker
wy, has a storage Z,tc of size Sd bits, for a real number S. For
processing purposes, the assigned data blocks are needed to
be stored by the workers, therefore, each worker w; must at
least store the data block A} at time ¢. If we consider Z}, as
a random variable then the storage constraint is given by

H(Z})=Sd>H(AL), Veke{l,...,K}. &

According to (3) and (4), we get the minimum storage per
worker S > % We also have the processing constraint as

H(AYZ) =0, Vke{l,...,K}. ®)

In the next epoch ¢+ 1, the data-set is randomly reshuffled
at the master node according to a random permutation 7'+ :
A — {AVALTL . ATF'}. The main communication
bottleneck occurs during Data Delivery since the master node
needs to communicate the new data batches to the workers.
Trivially, if the storage (per worker) exceeds Nd bits, i.e.,
S > N, then each worker can store the whole data-set, and no
communication has to be done between the master node and
the workers for any shuffle. Therefore from the constraint on
minimum storage per worker, we can write the possible range
for storage as 3 < .S < N.

We next proceed to describe the data delivery mechanism,
and the associated encoding and decoding functions. The main
process can be divided into 2 phases, namely the data delivery
phase and the storage update phase as described next:

A. Data Delivery Phase

At time ¢ + 1, the master node sends a function of the data
batches for the subsequent shuffles (ms, 7t y1), X(r, mppy) =
(AL, AL AL A = G(rpmisn)(A) over the
shared link, where ¢ is the data delivery encoding function

¢:P%ﬂ%:99m”ﬂﬂﬂ, 6)

where R(r, x,,,) i the rate of the shared link based on the
shuffles (¢, 7;11). Therefore, we have

H(X(ﬂ'tgﬂ't+l)|A) =0, H (X(Wtﬂftﬂ)) = R(mﬂftﬂ)d')

Each worker wy, should decode the desired batch At™! out of
the transmitted function X, ,.,), and the data stored in the
previous time slot denoted as Z}. Therefore, the desired data is
given by ALT! = V(X (ry,m011) Z1)» Where 9 is the decoding
function at the workers

b [x 259 2R, ®)

which can be written in terms of a decodability constraint, at
each worker as follows

H(ATNZE Xrymeny) =0, VE€{1,...,K}. (9

B. Storage Update Phase

At each iteration, every worker updates its stored content as
follows: the new storage content Z; "' is a function of the old
storage content Z}, as well as transmitted function X, ~,).
ie, Z,T = (X (, 7011)> Zi)» Where i is the update function

oz 2R) i [259) — [2599], (10)
This implies the following storage-update constraint

H(Z{ M2, X(rymeiny) =0, VEe{1,...,K}. (1D

The excess storage, if any, can be used to store oppor-
tunistically a function of the remaining data batches. Since
the shuffling process at each time is done randomly, all the
remaining batches are of equal importance. Consequently, the
amount of excess storage, given by (S — %)d bits, is divided
equally among the remaining K — 1 batches. For the scope
of this work, we assume that the placemen}\t{ of the excess
storage is uncoded, which means that %d bits of the
excess storage are dedicated to store a function of only one
of the remaining K — 1 batches. We give the notation A%,
where ¢ # k, as the part of data that worker wy, stores about
AEH in the excess storage at time ¢ + 1. Considering Aﬁ,l as
a random variable, then 7

.
weg = (5o w0 a2

for k,i e {1,...,K}, and ¢ # k.
We next define the worst-case communication as follows:

Definition 1 (Worst-Case Communication). For any achiev-
able scheme characterized by the functions (¢,v,u), the
worst-case communication overhead over all possible consec-
utive data shuffles (my, 1) is defined as

R(dmb,u) (K, S) = max R(d’ﬂl&ﬂ) (K, S) (13)

worst-case (rismesn) (me,me41)

Our goal in this work is to characterize the optimal worst-
case communication R (K, S) defined as

worst-case
* : b,
Ryorst-case (K 5) = ((;nd}i) (orst—légse(K7 S). (14)

We next present a claim which shows that the optimal com-
munication R* (for any shuffle including the worst-case) is a
convex function of the storage S:

Claim 1. R* is a convex function of S, where S is the available
storage at each worker.

Proof: Claim 1 follows from a simple memory sharing
argument which shows that for any two available storage
values S and Sy, if (S1, R*(K, S1)), and (52, R*(K, S)) are
achievable optimal schemes, then for any storage S = a.S7 +
(1—)S2, 0 < o < 1, there is a scheme which achieves a com-
munication overhead of R = aR*(K, S1)+(1—a)R* (K, S2).

This is done as follows: First, we divide the data-set A
across d dimensions into 2 batches namely; A(®), and A(*=®)
of dimensions ad, and (1 — «)d, for each point respectively.
Then, we divide the storage for every worker wy into 2 parts
namely; Z,(Ca), and Z,gl_a) of size Sjad, and S3(1 — a)d,
respectively. The former batch A(®) will be shuffled among
the former part of the storage Z,ia) to achieve the point
(S1, R*(K, S1)), while the latter batch A=) will be shuffled

among the latter part of the storage Z ,gl_a) to achieve the point
(S2, R*(K,S2)). Therefore, the total achievable load is given
by

H(X) = R*(K, S1)ad+ R*(K,S)(1 — a)d = Rd. (15)

We next note that the optimal communication rate R*(K,S)
is upper bounded by R(K,S), the rate of the memory sharing
scheme, which completes the proof.]

III. MAIN RESULTS

Theorem 1. For the distributed shuffling problem with K = 2
workers of storage Sd bits each, and a data-set of size Nd bits,
the optimal communication versus storage tradeoff is given by

%SSSN. (16)

*worst—case(Qa S)=N -8,
Theorem 2. For a distributed shuffling problem system with
K = 3 workers, the optimal communication versus storage
tradeoff is given by

IN _ 35 N 2N
:vorst-case(gvs) = { (]SV 5? 7 QBNS 5= 5. (17)
73 3 <S=N
One interesting implication of Theorem 2 for K = 3
workers is that the corner point (%, %) as in Fig. 1 is better
than memory sharing between the two points (%, %) and

(N,0), which falls on the line connecting the two points,
i.e., memory sharing here is not optimal, and coding can be
leveraged to reduce the communication overhead.

IV. PROOF OF THEOREM 1 (K = 2 WORKERS)

A. Achievability for K = 2 workers

We start with the achievablity of the corner points S = N

and S = % The point S = N is trivial and represents the

R\ji/orst—case(gﬁ S) TradeOH fOI‘ K S 3

A
el
<
g &
58 2N
éc 3
=]
-
g 6
Q
O 0 O >
0 N/3 2N/3 N S

Storage per Worker

Fig. 1. The worst-case communication overhead is depicted versus different
values of storage for K = 3 workers. The shaded grey region is the
information theoretically optimal tradeoff.

case when the workers can store the whole data-set. In this
case, no communication is necessary, i.e., (S, R*) = (V,0) is
achievable.

The point corresponding to S = % is not trivial, where
each worker can only store half of the data-set. Let us assume
the data batches at time ¢ for the workers wq, and wy are Af,
and A%, respectively. These batches should be stored at the
corresponding workers, which are just enough to store them,
ie, Zi = A}, and Z§ = AL. Recall that these batches are
equally sized of %d bits. For the next iteration ¢ + 1, the data
is randomly shuffled at the master node such that the new
batches are AL, and AL, also of the same equal size .
In the delivery phase, the master node sends

X(m,erl) = Atl D At2 (18)

worker wy uses X(x, r,.,) and Z} = Af to decode A}, and get
access to the whole data-set A = {A}, AL} = {AlT! ALTY,
The storage update is only storing the desired batch A’i“. The
same procedure applies for wy. Note that this choice of the
transmitted function in (18) works for any possible shuffling,
which gives a constant communication load H (X (x, r,,,)) =
&d, and hence the corner point (4, 5) is achievable.

With the achievability of the corner points, any point in
between for any real number S can be simply achieved by
memory sharing (see Claim 1). Therefore, the upper bound
for the optimal worst-case communication rate is given by

R\Tvorst-case(z S) S N - Sﬂ

Remark 1 (From worst-case to any shuffle). If there is an
overlap between Af and A} for k € {1,2}, then for § = &,
the communication cost of the above scheme can be further
improved by sending

gSSSN. (19)

ey = (AN AT e A\ 4T, Qo)
where A% \ ALT! represents the part of the old batch A% at
worker wg, which is not needed any more in the new batch
At For an overlap |AL N A}™'| = b data points, where b

is an integer number b € {0, ..., 5}, then the we achieve the

corner point (4, £ —b), with the worst-case rate when b = 0.

B. Converse for K = 2 workers

In this section, we present an information theoretic lower
bound for the worst-case communication rate which matches
the above scheme for K = 2 workers.

Remark 2 (Basic idea for the converse). Since we do not
know a priori the shuffle that gives the worst-case communi-
cation, we assume first a shuffle (7, 7m;11) with the optimal
rate R} , and then we lower bound R} . Since

(7, m41) . (e, mey1)
the opt1ma1 worst-case rate is larger than the rate for any
shuffle, i.e., Ryorstcase = F(x, r,,,) the lower bound found
over R’(*m miiy) SEIVES also as a lower bound for the worst-
case communication Ry e case- 1he novel part in our proof
is choosing the right shuffle which leads to the optimal lower
bound (also see Section V-B for the application of this idea to

the converse proof for Theorem 2).

Now let us assume the data is shuffled such that AY™' =
AL, and AL = A, then from decodability constraint in (9):

(A§+1|ZI7X(7T1,,7T1,+1)) = H(A5|ZfﬂX(7rt,7rt+1)) =0. (21)
Hence, we can find that H(A|Zf, X(rymisr)) = 0 as follows

H(A|Zf’ (A§7At|Z1a

(e, 7"t+1)) 7\'t~,‘ﬂ't+1))

(b)
< H(A§|Z§aX(7rt,7rt+1)) + H(A5|Z57X(Trt,7rt+1))

(c) d

< H(AYUZ) + HATYZL X) D0, 22)
where (a) follows from (2), (b) follows from the fact that
H(A,B|C) < H(A|C)+H(B|C), (c) is because conditioning
reduces entropy, and (d) is from (5) and (21). We next prove
the lower bound as follows

(@) (b)
Nd = H(A) = H(A|Z{,X(ﬂ.t7ﬂ.t+1)) +I(A, Zf,X(ﬂ.“erl))

(o)
= H(Z17X(7rt,7rt+1)) - H(ZfaX (e, 7rt+1)|A)

(23)

where (a) follows from (1), (b), and (¢) follow from the fact
that I(A; B) = H(A) — H(A|B) = H(B) — H(B|A) as well
as (22), (d) is due to the fact that H(A, B) < H(A)+ H(B)
and the fact that the Z{ and X, .,y are functions of the
whole data-set A, ie., H(Z}, X(x, x,)|A) = 0, and (e)
follows from (4) and (7). Hence, from Remark 2, the lower
bound for the worst-case rate is characterized as

(d)
< H(Zf) +H(X(7Tt,ﬂ’t+1) < Sd+R(7Tt 7Tt+1)d

,S) >N -8, (24)

WO rst-case (

gSSSN.

Hence, the proof of Theorem 1 is complete from (19) and (24).
V. PROOF OF THEOREM 2 (K = 3 WORKERS)
A. Achievability for K = 3 workers

From Fig. 1 the achlevablhty 1nvolves three corner pornts
S = N .S = 3 , (N,0) is
tr1v1a1 The scheme for the pomt S = g is similar to the point
S = 2 in the K = 2 worker case, where each worker can only
store the desired data batches. Similar to (18) the transmission
at time ¢ + 1 is X(r, »,) = {A} & A}, A} @ A%}, which is
sufficient for each worker to access all the data-set and store

what it needs, achieving the corner point (N Qév)

In this section, we focus on the achievability of the corner
point (28, &), which is perhaps the most interesting aspect
of this result. For each worker wy, at time ¢, k € {1,2, 3}, half
of the storage (N/3 points) is used to store the desired batch
A, while the remaining half (excess storage of N/3 points) is
used opportunistically in order to minimize the communication
overhead by storing some parts of the remaining batches given

by the sub-batches Af,, i € {1,2,3}\ k.

These parts will be formed as follows if we consider the
data batch A!, assigned for wy, of ¥ 3 points, each point x € Al
is divided across d dimensions 1nto two equal subd1v151ons
labeled as ("), i € {1,2,3} \ k. Then, each one of these
subdivisions z(*) is placed in the corresponding sub-batch A;H
(the part of x € Al stored in the excess storage of w;). For
instance, A} (of size %) stored in the processing half of the
storage of worker w is divided into two equal non-overlapping
parts A} = {Af 5, A} ;} (of size & each). Worker w, will use
half of its excess storage to store Aig, while worker w3 will

use half of its excess storage to store Aj ;.

The storage update procedure we present here maintains
the above structural property of the stored data over time. The
consequence of such structural invariance is that for any data
point is required to be at a worker, at least half of this point is
guaranteed to be already present at the worker, which decreases
the communication overhead of the shuffling process.

Data Delivery: With this placement strategy, for the subse-
quent shuffles (¢, 7¢41), the transmitted function is given as
AT\ zZD) e (A3 Z) &

Xrpmin) = (ATH\ Z5). (25)

We claim that the above transmission is sufficient for all
the three workers to obtain the required new points for any
shuffle. Without loss of generality, let us consider worker ws .
Accordlng to (25), for w; to obtain the needed points not
available in its storage, A7™!\ Z¢, it must have ALt \ Z}
and AL\ Z% in its storage Z!. This is indeed the case and
can be proved according to the following argument:

In the following, we prove that A5™\ Z € Z¢, and using
the same argument we can show that AtH\Z t € Z%. Consider
a data point z € AtJrl which is newly assigned to Worker Wy

at time ¢ + 1 and is not fully present in its storage Zé), ie.,
x ¢ AL. Therefore, there are two possibilities: a) x € Al
was being processed by worker w; at time ¢, which directly
implies that z is already available at ws; or b) x € AL was
being processed by worker ws at time ¢, which implies that
the sub-divisions of 2 are {z(1), 2(?)} and the needed part by
wy, M) =z N (ASTH\ Z%), is available at w; by definition
(since z(?) is the subdivision that is already present at w,).

According to (25), the worst-case scenario for this scheme
happens if there is no overlap between A% and AL™' (com-
pletely new assignments). However, half of each data point
LS A ! is already stored in the excess storage at wy,, labeled
xR, then the worst-case rate of ALt \ Z! and eventually
X Fon Ny,

achieving the corner point (=3-, &

N
7Tt77rt+1) IS 6 ’ 76

Storage Update: Now, we present a deterministic storage
update strategy, which maintains the structural properties of
the storage at time ¢. Without loss of generality, let us analyze

(2) (3)
4= Xy 5 W1 Ai x(lg) X(S)
> | S e S ¢
(a) g (1) x(23) Wo A (1) (.1.)
< | PR @ Il [

Storage at w;

gl L i A‘“_
N 1 2

) : w b
3 e []

processing

I T
» o[]

Storage at wy

LN

excess

Storage at wy

i 3
s

storage

processing

AL) <@ 4}

2 2 3 3
D e o I R S N

Storage at wy

(Shuffle at time t + 1)

Fig. 2.

excess

Storage at wo Storage at ws storage

Above the dotted line is the data under processing, and below is the excess storage used to reduce the communication overhead. (a) The storage

placement for the shuffle at time ¢ of a data-set with N = 3 data points, for K = 3 workers, and storage S = % = 2 points. Each data points is divided
into two equal sub-divisions to maintain the structurally invariant placement, such that each worker obtains the data point under processing as well as half of
each of the two remaining points. (b) The storage update at time ¢ + 1. We can notice that this process maintains the structural properties. In order to update

the storage at time ¢ 4 1, we need the delivery of the coded symbol {xéQ)
a data point z = {x(2), I(S)} € Atl'H . The update procedure
is done according to the following three cases at time ¢

e Case 1: x = {2(®) (3} € AL. In this case, since the point
x was already being processed at worker w; at time ¢, hence
no storage update is necessary at time ¢+ 1 for this point across
workers.

e Case 2: z = {z() 2@} ¢ AL, (D) ¢ Ay, x® ¢ AS
After receiving () from the delivery phase worker w; stores
the full-point « in A{™!. For worker ws, 2(3) leaves A} 2.3 and

enters A1}, and we can notice that #(3) remains within the

excess storage of Z§+1. Worker wy removes the data point x
from the processing batch A5, and stores () in AT, after

relabelling it as 2@ (now stored at the excess storage of wo),
i.e., it simply moves one half of x in its excess storage.

o Case 3: v = {z(V, 2@} € A%, 2 € AL, 2@ € AL,
This case is similar to case 2, where wy stores 2 in Al+1 and
removes () from ALY, worker wy moves z(?) into AfY)

instead of A% ,, and worker w3 removes z from ALY and
stores () (now labeled as 2®) in AT

Example 1 (N=3, K=3,S=2Y = 2). Let us now
take a representative example depicted in Fig. 2 to illustrate
our proposed data delivery and storage-update phases for the
corner point (TS). Consider a system with K = 3 workers,
and N = 3 data points, {x1,z2,z3}. We assume that storage
per worker is S = % = 2 points, i.e., each worker can store
one extra data point in addition to the one under processing.
We first clarify the color code used in this example to indicate
the data point assigned to a certain worker labeled with these
colors: blue for x1, red for x2, and yellow for xgs.

At time t, consider the dataset is shuffled such that A} =
x1, Ay = x5, and AL = x3. The corresponding storage
placement at time t in Fig. 2(a) is as follows: After using
half the storage to store the desired data point (which can be
depicted in this example as the desired color), each data point
is divided equally among the unintended workers (depicted in
this example as the unintended colors). For example, if we
take the batch A} = z; = {x?),xgg)}, worker wso stores
Al, = 2$?, and worker ws stores Alz= 2

At time ¢t 4+ 1 in Fig. 2(b), the data is randomly shuffled
again such that the new batches are: A = x3, AtJrl =z,
and ALTY = 25, We take this partlcular shufﬂe since it
represents one of the possible worst cases, where every worker

o2 &2V},

is assigned a completely different batch. According to the

previous storage content shown in Fig. 2(a), worker w; already
but still needs :cg2), which is stored at wo and ws.
Similarly, worker ws needs :UES) which is stored at w; and

which is stored at w; and

(1)
w3, and worker ws needs x,

wy. Following the data delivery as in (25), the master node
transmits:

has xgl)

X 2@ 0 o® @ 2. 26)

Tet1)
Each worker has two out of these three subdivisions, therefore

it can decode the remaining needed one. The rate of this
transmission is R = % which is % where N = 3.

For the stora%e update in Fig. 2(b), we onlly discuss the
changes in A{*' and the corresponding A7%', and A7%.
The storage update of the remaining parts can be done’ in
a similar manner. From the delivery phase and the previous
storage, worker wy gets xs (labeled yellow) and stores it in
the processing half Aﬁ“ (above the dotted line). Worker ws
already has a part of Aﬁ“, 2 (labeled yellow), which was
previously stored as A} 3,2- Therefore, it remains in the excess
storage (below the dotted line) as ALY Worker w3 already has
xg previously labeled as A%, so it keeps in its excess storage

the part that is not stored in Atlgl, ie., xgl to be stored in

A’ﬁ,}, after relabelling it to xy (3) (now stored in ws).

Using the achievability of the three corner points for K =
3, and Claim 1, we get an upper bound on Ry ci.case(3:5) as

osemse3,5) <4 8 2 3SR
worst-case\ 9 2) = %_%7 %<S§N'

B. Converse for K = 3 workers

We now present the information theoretic lower bounds
for the three-worker case, which matches the above scheme.
Following Remark 2, we first assume subsequent data shuffles
at times {t,t+1,t+2} such that ALt = A% and AT = AL,
then from the decodability constraint in (9), we have

H(AS‘ZIIE+17 X(ﬂ't+177"t+2)> =0.
(28)

H<At2|Z{’ X(7Tt777t+1)) =

Hence, in a similar proof to (22) we get
H(A|Zit7X(Tft77ft+l)’X(”t+1vﬂt+2))

)
= H(A}, Ay, AG|Z1, 27 Xy o) X

T, Tt41 7rt+1’77t+2))

(b)
< H(At1|Z{) ‘FI{(‘Ayzfa‘Xr(7r,5,7l't+1))+
(At|Zf, Zt-‘rl X(

7Tt;77t+1)’X(77t+1;7Tt+2))
c (d
) H(A |Zt ZtJrl X(Wt777t+1)’X(7Tt+177Tt+2)) :) 07 (29)

where (a) follows from (2) and the storage update constraint
in (11), (b) follows from the fact that H(A, B,C|D) <
H(A|D)+ H(B|D) + H(C|D), and also the fact that condi-
tioning reduces entropy, (¢) from (5) and (28), and (d) from
(28). Now, using (29) we can find the upper bound as follows

(a)
I(A’ Z{’X(m,m+1)7X(7Tt+1,7Ft+2))

NaY)Y
H(Zlv X(Trf,,m+1)’ X(Wt+177rt+2))

(C)
_H(Z{7X(7Tt,7rt+l)’X(‘A)

7Tt+1,TFt+2)
(d)
< H(Z{) + H(X (ryr,0) + H(X (ry 7, 10))

(e . .
< Sd+ Rz @+ R, s (30)

where (a) follows from (1), (b), and (c) follow from (29),
and due to the fact that I(A;B) = H(A) — H(A|B) =
H(B) — H(BJ|A), (d) is due to the fact that H(A, B,C) <
H(A)+ H(B)+ H(C) and the fact that Z{, X(r, ~,,,). and

(res1,me.2) are all functions of the whole data-set A, and (e)
follows from (4) and (7). Hence, following Remark 2, we get
a lower bound for the worst-case rate characterized as

. N-S§ N
worst—case(?’a S) 2 2

g S S<N. (D
The lower bound i 1n (31) matches the upper bound obtained in
(27) for the range 2¥ < S < N.

We next present another lower bound on R*(3,S) which
proves the optimality of our scheme for the range % <S5 <
%. To this end, we now assume a data shuffle such that

ATt = AL, Similar to (22) and (29), we have

H(A|Zf7 Z§7X(7Tf77rf+1)) (A§7 At27 At |Zlv ZZu X(m 7\'{+1))

b
< H(AYZ0) + H(A3128) + H(A51 2}, X 1, 1) €0
(32)
where (a) follows from (2), (b) from the facts that
H(A,B,C|D) < H(A|D) + H(B|D) + H(C|D), and (c)
using (5), and (9). We now proceed to obtain the second lower
bound on Ry st.case as follows

Nd (i)

(c)
= H(Z{v Z27X(7Tt,ﬂ't+1))

(@

(b)
(A) (A Zf’Z27X(7Tt 7Tt+1))
- H(Zla ZQ7X(7Tt77Tt+1)‘A)

H(Z{7X(7Tt77rt+l)) + H(ZE‘Z)1£7X(7Tt77Tt+1))

(i) H(ZlaX(

)

7Tt~,‘ﬂ't+1))
< H(Zy, X) + H(Z3| A}, A5, Ay)
(9)

= H(Z{7X(7Tt)7rt+1)) + H(AtQ,S)

+H(Z§|Z{aX A§7A§aA§,1)

(e, Te41)>

7Tt,1771,+1)

_ N
Sl d, (33)

(h) }
< Sd+ R(m,m+1)d +

where (a) follows from (1), (b), and (c¢) from (32), and due to
the fact that I(A; B) = H(A)— H(A|B) = H(B)— H(B|A),
(d) from the chain rule of entropy and the fact that Z{, Z1,
and X (s, ., are all functions of the whole data-set A, (e)
from (9) where At+1 = A% must be decoded from Z!, and
X(r,, mes1)» and because At and A2 , are stored within Z%,
(f) because COIldlthHlIlg reduces entropy, (g) because after
obtaining A}, A%, and A%, the only remaining part in Z}
is A2)3, and finally (h) follows from @), (7), and (12). From
Remark 2, and by rearranging (33), we get the following bound

N TN 35 N
worst-case (3, 5) = % 2 3 <S <N (34)

Therefore, from (34), and (31), we get the following lower
bound on Ryt case(3:)

* (3S)> %_%’ %SSS% (35)
worst-case |95 = %_§’ % <S<N

Finally, the proof of Theorem 2 follows from (27) and (35).

VI. CONCLUSIONS

In this paper, we presented information theoretic formu-
lation of the data shuffling problem, where we studied the
tradeoff between the worst-case communication overhead and
the storage available at the worker nodes. We completely char-
acterized the optimal worst-case communication for K = 2,
and K = 3 workers with any storage capacity, where we
leveraged excess storage and coding to minimize the com-
munication overhead in subsequent data shuffling iteration. A
systematic storage update and delivery scheme was presented,
which preserves the structural properties of the storage across
workers. Generalizing these results for any number of workers
(K > 3) is part of our ongoing work.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2010.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI), 2004.

[3] O. Shamir, “Without-replacement sampling for stochastic gradient
methods: Convergence results and application to distributed
optimization,” CoRR, vol. abs/1603.00570v2, 2016. [Online]. Available:
https://arxiv.org/abs/1603.00570v2

[4] M. Giirbiizbalaban, A. Ozdaglar, and P. Parrilo, “Why random reshuffling
beats stochastic gradient descent,” CoRR, vol. abs/1510.08560, 2015.
[Online]. Available: https://arxiv.org/abs/1510.08560

[5] S. Ioffe and C. Szegedy, “Batch normalization accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,
2015. [Online]. Available: https://arxiv.org/abs/1502.03167

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867, Feb.
2015.

[7]1 S. Li, M. A. Maddah-Ali, and S. Avestimehr, “Coded MapReduce,” in
Proceedings of the 53rd Annual Allerton conference on Communication,
Control, and Computing, Monticello, IL, Sep. 2015.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in Proceedings
of Neural Information Processing Systems Conference (NIPS), Dec. 2015.

