
Information Theoretic Limits of Data Shuffling for
Distributed Learning
Mohamed Adel Attia Ravi Tandon

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ, 85721
Email: {madel, tandonr}@email.arizona.edu

Abstract—Data shuffling is one of the fundamental building
blocks for distributed learning algorithms, that increases the
statistical gain for each step of the learning process. In each
iteration, different shuffled data points are assigned by a central
node to a distributed set of workers to perform local computa-
tions, which leads to communication bottlenecks. The focus of
this paper is on formalizing and understanding the fundamental
information-theoretic tradeoff between storage (per worker) and
the worst-case communication overhead for the data shuffling
problem. We completely characterize the information theoretic
tradeoff for K = 2, and K = 3 workers, for any value of storage
capacity, and show that increasing the storage across workers
can reduce the communication overhead by leveraging coding.
We propose a novel and systematic data delivery and storage
update strategy for each data shuffle iteration, which preserves
the structural properties of the storage across the workers, and
aids in minimizing the communication overhead in subsequent
data shuffling iterations.

I. INTRODUCTION

Distributed computing systems for large data-sets have
gained a lot of interest recently as they enable the processing of
data-intensive tasks for machine learning, model tracing, and
data analysis over a large number of commodity machines,
and servers (e.g., Apache Spark [1], and MapReduce [2]).
Generally speaking, a master node, which has the entire data-
set, sends data blocks to be processed at distributed worker
nodes. The workers subsequently respond with locally com-
puted functions to the master node for the desired data analysis.
This enables the processing of many terabytes of data over
thousands of distributed servers in a time efficient manner.

One of the core elements in distributed learning algorithms
is data shuffling [3]. Before each iteration of the learning
process, the entire data is randomly shuffled before being
assigned to the worker nodes. This shuffling operation enables
the worker nodes to process different data batches at each
iteration, which presents large statistical gains [4], [5]. The
statistical advantages provided by data shuffling come at the
unavoidable cost of the communication overhead between the
master and the worker nodes which must be incurred for every
shuffling iteration. Thus, there exists a fundamental tradeoff
between the communication overhead and the storage capacity
of each worker node. To exemplify this tradeoff, consider two
extreme scenarios: an ideal scenario in which the storage at the
distributed workers is large enough to store the entire data-set,
thus no communication has to be done from the master node
for any shuffle. On the other extreme, when the storage is just
enough to store the batch under processing, the communication
load is expected to be maximum.

The focus of this paper is on formalizing and understand-
ing this fundamental information-theoretic tradeoff between

storage and the worst-case communication overhead for the
data shuffling problem. Each iteration of data shuffling can be
divided into two phases: data delivery, and storage update. In
the data delivery phase, depending on the shuffled data points,
the master node communicates a function of the data to the
workers, so that each worker obtains its assigned data points.
The second phase is termed as the storage update phase, which
as shown in this paper is extremely critical in reducing the
communication overhead of subsequently shuffling iterations.
We next summarize the main contributions of this paper:

• We first present an information-theoretic formulation of
the data shuffling problem involving both data delivery and
update phases, accounting for the respective constraints and
formalizing the tradeoff between worst-case communication
overhead and the storage capacity of distributed workers.

• We also completely characterize this tradeoff for K = 2
and K = 3 workers, for any value of storage capacity. One of
the most interesting aspects of the result for K = 3 worker
problem is the design of data delivery and storage update
algorithms. In particular, for data delivery phase, we show that
transmitting coded data from the master node to the workers
can significantly reduce the communication overhead. More
interestingly, the proposed storage update algorithm maintains
the structural properties of the storage at the workers over
time. This structural invariance placement is extremely critical
in leveraging the gains of coding for different shuffles.

Related Work: In the past few years, there has been a
flurry of research acitivity in understanding the benefits of
coding for caching starting from the work of Maddah-Ali and
Niesen [6] who showed that exploiting multi-casting opportu-
nities by coding can reduce the communication for caching. In
[7], coding for MapReduce was proposed in order to reduce the
communication cost between mappers and reducers, however
the underlying focus of [7] is significantly different than the
problem considered in this work, where we care about the
communication between the master node and the workers. The
paper most closely related to this work is [8], where the idea
of coding for data shuffling problem is presented to reduce the
communication overhead between the master node and worker
nodes. [8] provides a probabilistic scheme of leveraging coding
based on a random storage placement. In contrast to [8], in
this paper we provide a deterministic and systematic storage
update scheme, which increases the coding opportunities in the
delivery phase. The underlying metric used here is the worst-
case communication cost over all the possible shuffles, unlike
the average cost considered in [8]. Finally, we also present the
first information theoretic lower bounds on the communication
overhead for the data shuffling problem.

978-1-5090-1328-9/16/$31.00 ©2016 IEEE

II. SYSTEM MODEL

We assume a master node which has access to the entire
data-set A = [xT1 , x

T
2 , . . . , x

T
N]T of size Nd bits, i.e., A is a

matrix containing N data points, denoted by x1, x2, . . . , xN ,
where d is the dimensionality of each data point. Treating A,
and its data points xn as random variables, we therefore have
the entropies of these random variables as

H(A) = N ×H(xn) = Nd, ∀n ∈ {1, 2, . . . , N}. (1)

At each iteration, indexed by t, the master node divides
the data-set A into K data batches given as At1, A

t
2, . . . , A

t
K ,

where the batch Atk is designated to be processed by worker
wk, and these batches correspond to the random permutation
of the data-set, πt : A→ {At1, . . . , AtK}. Note that these data
chunks are disjoint, and span the whole data-set, i.e.,

Ati ∩Atj = ϕ, ∀i ̸= j, (2a)
At1 ∪At2 ∪ . . . ∪AtK = A, ∀t. (2b)

Hence, the entropy of any batch Atk is given as

H(Atk) =
1

K
H(A) =

N

K
d, ∀k ∈ {1, . . . ,K}. (3)

After getting the data batch, each worker locally computes
a function (as an example, this function could correspond to
the gradient or sub-gradients of the data points assigned to the
worker). The local functions from theK workers are processed
subsequently at the master node. We assume that each worker
wk has a storage Ztk of size Sd bits, for a real number S. For
processing purposes, the assigned data blocks are needed to
be stored by the workers, therefore, each worker wk must at
least store the data block Atk at time t. If we consider Ztk as
a random variable then the storage constraint is given by

H(Ztk) = Sd ≥ H(Atk), ∀k ∈ {1, . . . ,K}. (4)

According to (3) and (4), we get the minimum storage per
worker S ≥ N

K . We also have the processing constraint as

H(Atk|Ztk) = 0, ∀k ∈ {1, . . . ,K}. (5)

In the next epoch t+1, the data-set is randomly reshuffled
at the master node according to a random permutation πt+1 :
A → {At+1

1 , At+1
2 , . . . , At+1

K }. The main communication
bottleneck occurs during Data Delivery since the master node
needs to communicate the new data batches to the workers.
Trivially, if the storage (per worker) exceeds Nd bits, i.e.,
S ≥ N , then each worker can store the whole data-set, and no
communication has to be done between the master node and
the workers for any shuffle. Therefore from the constraint on
minimum storage per worker, we can write the possible range
for storage as N

K ≤ S ≤ N .

We next proceed to describe the data delivery mechanism,
and the associated encoding and decoding functions. The main
process can be divided into 2 phases, namely the data delivery
phase and the storage update phase as described next:

A. Data Delivery Phase

At time t+1, the master node sends a function of the data
batches for the subsequent shuffles (πt, πt+1), X(πt,πt+1) =
ϕ(At1, . . . , A

t
K , A

t+1
1 , . . . , At+1

K) = ϕ(πt,πt+1)(A) over the
shared link, where ϕ is the data delivery encoding function

ϕ :
[
2

N
K d
]2K

→ [2R(πt,πt+1)d], (6)

where R(πt,πt+1) is the rate of the shared link based on the
shuffles (πt, πt+1). Therefore, we have

H
(
X(πt,πt+1)|A

)
= 0, H

(
X(πt,πt+1)

)
= R(πt,πt+1)d. (7)

Each worker wk should decode the desired batch At+1
k out of

the transmitted function X(πt,πt+1), and the data stored in the
previous time slot denoted as Ztk. Therefore, the desired data is
given by At+1

k = ψ(X(πt,πt+1), Z
t
k), where ψ is the decoding

function at the workers

ψ : [2R(πt,πt+1)d]× [2Sd] → [2
N
K d], (8)

which can be written in terms of a decodability constraint, at
each worker as follows

H
(
At+1
k |Ztk, X(πt,πt+1)

)
= 0, ∀k ∈ {1, . . . ,K}. (9)

B. Storage Update Phase

At each iteration, every worker updates its stored content as
follows: the new storage content Zt+1

k is a function of the old
storage content Ztk as well as transmitted function X(πt,πt+1),
i.e., Zt+1

k = µ(X(πt,πt+1), Z
t
k), where µ is the update function

µ : [2R(πt,πt+1)d]× [2Sd] → [2Sd]. (10)

This implies the following storage-update constraint

H(Zt+1
k |Ztk, X(πt,πt+1)) = 0, ∀k ∈ {1, . . . ,K}. (11)

The excess storage, if any, can be used to store oppor-
tunistically a function of the remaining data batches. Since
the shuffling process at each time is done randomly, all the
remaining batches are of equal importance. Consequently, the
amount of excess storage, given by (S − N

K)d bits, is divided
equally among the remaining K − 1 batches. For the scope
of this work, we assume that the placement of the excess
storage is uncoded, which means that (S−N

K)

K−1 d bits of the
excess storage are dedicated to store a function of only one
of the remaining K − 1 batches. We give the notation At+1

i,k ,
where i ̸= k, as the part of data that worker wk stores about
At+1
i in the excess storage at time t+1. Considering At+1

i,k as
a random variable, then

H(At+1
i,k) =

(
S − N

K

K − 1

)
d, H(At+1

i,k |Zt+1
k) = 0, (12)

for k, i ∈ {1, . . . ,K}, and i ̸= k.

We next define the worst-case communication as follows:

Definition 1 (Worst-Case Communication). For any achiev-
able scheme characterized by the functions (ϕ, ψ, µ), the
worst-case communication overhead over all possible consec-
utive data shuffles (πt, πt+1) is defined as

R
(ϕ,ψ,µ)
worst-case(K,S) = max

(πt,πt+1)
R

(ϕ,ψ,µ)
(πt,πt+1)

(K,S). (13)

Our goal in this work is to characterize the optimal worst-
case communication R∗

worst-case(K,S) defined as

R∗
worst-case(K,S) = min

(ϕ,ψ,µ)
R

(ϕ,ψ,µ)
worst-case(K,S). (14)

We next present a claim which shows that the optimal com-
munication R∗ (for any shuffle including the worst-case) is a
convex function of the storage S:

Claim 1. R∗ is a convex function of S, where S is the available
storage at each worker.

Proof: Claim 1 follows from a simple memory sharing
argument which shows that for any two available storage
values S1 and S2, if (S1, R

∗(K,S1)), and (S2, R
∗(K,S2)) are

achievable optimal schemes, then for any storage S̄ = αS1 +
(1−α)S2, 0 ≤ α ≤ 1, there is a scheme which achieves a com-
munication overhead of R̄ = αR∗(K,S1)+(1−α)R∗(K,S2).

This is done as follows: First, we divide the data-set A
across d dimensions into 2 batches namely; A(α), and A(1−α)

of dimensions αd, and (1 − α)d, for each point respectively.
Then, we divide the storage for every worker wk into 2 parts
namely; Z(α)

k , and Z
(1−α)
k of size S1αd, and S2(1 − α)d,

respectively. The former batch A(α) will be shuffled among
the former part of the storage Z

(α)
k to achieve the point

(S1, R
∗(K,S1)), while the latter batch A(1−α) will be shuffled

among the latter part of the storage Z(1−α)
k to achieve the point

(S2, R
∗(K,S2)). Therefore, the total achievable load is given

by

H(X) = R∗(K,S1)αd+R∗(K,S2)(1− α)d = R̄d. (15)

We next note that the optimal communication rate R∗(K, S̄)
is upper bounded by R̄(K, S̄), the rate of the memory sharing
scheme, which completes the proof.

III. MAIN RESULTS

Theorem 1. For the distributed shuffling problem with K = 2
workers of storage Sd bits each, and a data-set of size Nd bits,
the optimal communication versus storage tradeoff is given by

R∗
worst-case(2, S) = N − S,

N

2
≤ S ≤ N. (16)

Theorem 2. For a distributed shuffling problem system with
K = 3 workers, the optimal communication versus storage
tradeoff is given by

R∗
worst-case(3, S) =

{
7N
6 − 3S

2 ,
N
3 ≤ S ≤ 2N

3
N
2 − S

2 ,
2N
3 < S ≤ N

. (17)

One interesting implication of Theorem 2 for K = 3
workers is that the corner point (2N3 ,

N
6) as in Fig. 1 is better

than memory sharing between the two points (N3 ,
2N
3), and

(N, 0), which falls on the line connecting the two points,
i.e., memory sharing here is not optimal, and coding can be
leveraged to reduce the communication overhead.

IV. PROOF OF THEOREM 1 (K = 2 WORKERS)

A. Achievability for K = 2 workers

We start with the achievablity of the corner points S = N
and S = N

2 . The point S = N is trivial and represents the

Tradeoff forK = 3

O
p
ti
m
a
l
W
o
rs
t-
c
a
se

C
o
m
m
u
n
ic
a
t
io
n
O
v
e
r
h
e
a
d

R
∗

worst-case
(3, S)

S0
0

N/3 2N/3 N

N

6

2N

3

Cache Storage per Worker

Fig. 1. The worst-case communication overhead is depicted versus different
values of storage for K = 3 workers. The shaded grey region is the
information theoretically optimal tradeoff.

case when the workers can store the whole data-set. In this
case, no communication is necessary, i.e., (S,R∗) = (N, 0) is
achievable.

The point corresponding to S = N
2 is not trivial, where

each worker can only store half of the data-set. Let us assume
the data batches at time t for the workers w1, and w2 are At1,
and At2, respectively. These batches should be stored at the
corresponding workers, which are just enough to store them,
i.e., Zt1 = At1, and Zt2 = At2. Recall that these batches are
equally sized of N2 d bits. For the next iteration t+1, the data
is randomly shuffled at the master node such that the new
batches are At+1

1 , and At+1
2 , also of the same equal size N

2 d.
In the delivery phase, the master node sends

X(πt,πt+1) = At1 ⊕At2. (18)

worker w1 uses X(πt,πt+1) and Z
t
1 = At1 to decode At2, and get

access to the whole data-set A = {At1, At2} = {At+1
1 , At+1

2 }.
The storage update is only storing the desired batch At+1

1 . The
same procedure applies for w2. Note that this choice of the
transmitted function in (18) works for any possible shuffling,
which gives a constant communication load H(X(πt,πt+1)) =
N
2 d, and hence the corner point (N2 ,

N
2) is achievable.

With the achievability of the corner points, any point in
between for any real number S can be simply achieved by
memory sharing (see Claim 1). Therefore, the upper bound
for the optimal worst-case communication rate is given by

R∗
worst-case(2, S) ≤ N − S,

N

2
≤ S ≤ N. (19)

Remark 1 (From worst-case to any shuffle). If there is an
overlap between Atk and At+1

k for k ∈ {1, 2}, then for S = N
2 ,

the communication cost of the above scheme can be further
improved by sending

Xany-shuffle
(πt,πt+1)

= (At1 \At+1
1)⊕ (At2 \At+1

2), (20)

where Atk \ At+1
k represents the part of the old batch Atk at

worker wk, which is not needed any more in the new batch
At+1
k . For an overlap |Atk ∩ At+1

k | = b data points, where b
is an integer number b ∈ {0, . . . , N2 }, then the we achieve the
corner point (N2 ,

N
2 − b), with the worst-case rate when b = 0.

B. Converse for K = 2 workers

In this section, we present an information theoretic lower
bound for the worst-case communication rate which matches
the above scheme for K = 2 workers.

Remark 2 (Basic idea for the converse). Since we do not
know a priori the shuffle that gives the worst-case communi-
cation, we assume first a shuffle (πt, πt+1) with the optimal
rate R∗

(πt,πt+1)
, and then we lower bound R∗

(πt,πt+1)
. Since

the optimal worst-case rate is larger than the rate for any
shuffle, i.e., R∗

worst-case ≥ R∗
(πt,πt+1)

, the lower bound found
over R∗

(πt,πt+1)
serves also as a lower bound for the worst-

case communication R∗
worst-case. The novel part in our proof

is choosing the right shuffle which leads to the optimal lower
bound (also see Section V-B for the application of this idea to
the converse proof for Theorem 2).

Now let us assume the data is shuffled such that At+1
1 =

At2, and A
t+1
2 = At1, then from decodability constraint in (9):

H(At+1
1 |Zt1, X(πt,πt+1)) = H(At2|Zt1, X(πt,πt+1)) = 0. (21)

Hence, we can find that H(A|Zt1, X(πt,πt+1)) = 0 as follows

H(A|Zt1, X(πt,πt+1))
(a)
= H(At1, A

t
2|Zt1, X(πt,πt+1))

(b)

≤ H(At1|Zt1, X(πt,πt+1)) +H(At2|Zt1, X(πt,πt+1))

(c)

≤ H(At1|Zt1) +H(At+1
1 |Zt1, X(πt,πt+1))

(d)
= 0, (22)

where (a) follows from (2), (b) follows from the fact that
H(A,B|C) ≤ H(A|C)+H(B|C), (c) is because conditioning
reduces entropy, and (d) is from (5) and (21). We next prove
the lower bound as follows

Nd
(a)
= H(A)

(b)
= H(A|Zt1, X(πt,πt+1)) + I(A;Zt1, X(πt,πt+1))

(c)
= H(Zt1, X(πt,πt+1))−H(Zt1, X(πt,πt+1)|A)
(d)

≤ H(Zt1) +H(X(πt,πt+1))
(e)

≤ Sd+R∗
(πt,πt+1)

d, (23)

where (a) follows from (1), (b), and (c) follow from the fact
that I(A;B) = H(A)−H(A|B) = H(B)−H(B|A) as well
as (22), (d) is due to the fact that H(A,B) ≤ H(A) +H(B)
and the fact that the Zt1 and X(πt,πt+1) are functions of the
whole data-set A, i.e., H(Zt1, X(πt,πt+1)|A) = 0, and (e)
follows from (4) and (7). Hence, from Remark 2, the lower
bound for the worst-case rate is characterized as

R∗
worst-case(2, S) ≥ N − S,

N

2
≤ S ≤ N. (24)

Hence, the proof of Theorem 1 is complete from (19) and (24).

V. PROOF OF THEOREM 2 (K = 3 WORKERS)

A. Achievability for K = 3 workers

From Fig. 1, the achievability involves three corner points:
S = N

3 , S = 2N
3 , and S = N . Achieving the point (N, 0) is

trivial. The scheme for the point S = N
3 is similar to the point

S = N
2 in the K = 2 worker case, where each worker can only

store the desired data batches. Similar to (18) the transmission
at time t + 1 is X(πt,πt+1) = {At1 ⊕ At2, A

t
2 ⊕ At3}, which is

sufficient for each worker to access all the data-set and store
what it needs, achieving the corner point (N3 ,

2N
3).

In this section, we focus on the achievability of the corner
point

(
2N
3 ,

N
6

)
, which is perhaps the most interesting aspect

of this result. For each worker wk at time t, k ∈ {1, 2, 3}, half
of the storage (N/3 points) is used to store the desired batch
Atk, while the remaining half (excess storage of N/3 points) is
used opportunistically in order to minimize the communication
overhead by storing some parts of the remaining batches given
by the sub-batches Ati,k, i ∈ {1, 2, 3} \ k.

These parts will be formed as follows: if we consider the
data batch Atk assigned for wk of N3 points, each point x ∈ Atk
is divided across d dimensions into two equal subdivisions
labeled as x(i), i ∈ {1, 2, 3} \ k. Then, each one of these
subdivisions x(i) is placed in the corresponding sub-batch Atk,i
(the part of x ∈ Atk stored in the excess storage of wi). For
instance, At1 (of size N

3) stored in the processing half of the
storage of worker w1 is divided into two equal non-overlapping
parts At1 = {At1,2, At1,3} (of size N

6 each). Worker w2 will use
half of its excess storage to store At1,2, while worker w3 will
use half of its excess storage to store At1,3.

The storage update procedure we present here maintains
the above structural property of the stored data over time. The
consequence of such structural invariance is that for any data
point is required to be at a worker, at least half of this point is
guaranteed to be already present at the worker, which decreases
the communication overhead of the shuffling process.

Data Delivery: With this placement strategy, for the subse-
quent shuffles (πt, πt+1), the transmitted function is given as

X(πt,πt+1) = (At+1
1 \Zt1)⊕ (At+1

2 \Zt2)⊕ (At+1
3 \Zt3). (25)

We claim that the above transmission is sufficient for all
the three workers to obtain the required new points for any
shuffle. Without loss of generality, let us consider worker w1.
According to (25), for w1 to obtain the needed points not
available in its storage, At+1

1 \ Zt1, it must have At+1
2 \ Zt2

and At+1
3 \ Zt3 in its storage Zt1. This is indeed the case and

can be proved according to the following argument:

In the following, we prove that At+1
2 \Zt2 ∈ Zt1, and using

the same argument we can show that At+1
3 \Zt3 ∈ Zt1. Consider

a data point x ∈ At+1
2 , which is newly assigned to worker w2

at time t + 1 and is not fully present in its storage Z(t)
2 , i.e.,

x ̸∈ At2. Therefore, there are two possibilities: a) x ∈ At1
was being processed by worker w1 at time t, which directly
implies that x is already available at w1; or b) x ∈ At3 was
being processed by worker w3 at time t, which implies that
the sub-divisions of x are {x(1), x(2)} and the needed part by
w2, x(1) = x ∩ (At+1

2 \ Zt2), is available at w1 by definition
(since x(2) is the subdivision that is already present at w2).

According to (25), the worst-case scenario for this scheme
happens if there is no overlap between Atk and At+1

k (com-
pletely new assignments). However, half of each data point
x ∈ At+1

k is already stored in the excess storage at wk, labeled
x(k), then the worst-case rate of At+1

k \ Ztk and eventually
X(πt,πt+1) is N

6 , achieving the corner point (2N3 ,
N
6).

Storage Update: Now, we present a deterministic storage
update strategy, which maintains the structural properties of
the storage at time t. Without loss of generality, let us analyze

Storage at w1

A
t

1

A
t

2,1
A

t

3,1

x
(2)

1 x
(3)

1

x
(1)

2
x
(1)

3

A
t

2

A
t

1,2
A

t

3,2

Storage at w2

x
(2)

3
x
(2)

1

x
(1)

2 x
(3)

2
x
(1)

3

x
(3)

1

x
(2)

3

x
(3)

2

Storage at w3

A
t

3

A
t

1,3
A

t

2,3d
a
t
a
-s
e
t w1

w2

w3

(Shuffle at time t)

x
(2)

1
x
(3)

1

x
(1)

2
x
(3)

2

x
(1)

3 x
(2)

3

(a)

excess

storage

processing

w1

w2

w3
d
a
t
a
-s
e
t

(Shuffle at time t+ 1)

x
(1)

1
x
(3)

1

x
(1)

2
x
(2)

2

x
(3)

3 x
(2)

3

(b)

Storage at w1 Storage at w2 Storage at w3

excess

storage

processing

x
(3)

3
x
(2)

3
x
(1)

1
x
(3)

1
x
(1)

2 x
(2)

2

x
(1)

1
x
(3)

1
x
(1)

2
x
(2)

2
x
(3)

3
x
(2)

3
A

t+1

3,1
A

t+1

2,1

A
t+1

1 A
t+1

2
A

t+1

3

A
t+1

1,2
A

t+1

3,2
A

t+1

1,3 A
t+1

2,3

Fig. 2. Above the dotted line is the data under processing, and below is the excess storage used to reduce the communication overhead. (a) The storage
placement for the shuffle at time t of a data-set with N = 3 data points, for K = 3 workers, and storage S = 2N

3
= 2 points. Each data points is divided

into two equal sub-divisions to maintain the structurally invariant placement, such that each worker obtains the data point under processing as well as half of
each of the two remaining points. (b) The storage update at time t + 1. We can notice that this process maintains the structural properties. In order to update
the storage at time t+ 1, we need the delivery of the coded symbol {x(2)

3 ⊕ x
(3)
1 ⊕ x

(1)
2 }.

a data point x = {x(2), x(3)} ∈ At+1
1 . The update procedure

is done according to the following three cases at time t

• Case 1: x = {x(2), x(3)} ∈ At1. In this case, since the point
x was already being processed at worker w1 at time t, hence
no storage update is necessary at time t+1 for this point across
workers.

• Case 2: x = {x(1), x(3)} ∈ At2, x
(1) ∈ At2,1, x

(3) ∈ At2,3.
After receiving x(3) from the delivery phase, worker w1 stores
the full-point x in At+1

1 . For worker w3, x(3) leaves At2,3 and
enters At+1

1,3 , and we can notice that x(3) remains within the
excess storage of Zt+1

3 . Worker w2 removes the data point x
from the processing batch At+1

2 , and stores x(1) in At+1
1,2 after

relabelling it as x(2) (now stored at the excess storage of w2),
i.e., it simply moves one half of x in its excess storage.

• Case 3: x = {x(1), x(2)} ∈ At3, x
(1) ∈ At3,1, x

(2) ∈ At3,2.
This case is similar to case 2, where w1 stores x in At+1

1 and
removes x(1) from At+1

3,1 , worker w2 moves x(2) into At+1
1,2

instead of At3,2, and worker w3 removes x from At+1
3 and

stores x(1) (now labeled as x(3)) in At+1
1,3 .

Example 1 (N = 3, K = 3, S = 2N
3 = 2). Let us now

take a representative example depicted in Fig. 2 to illustrate
our proposed data-delivery and storage-update phases for the
corner point (2N3 ,

N
6). Consider a system with K = 3 workers,

and N = 3 data points, {x1, x2, x3}. We assume that storage
per worker is S = 2N

K = 2 points, i.e., each worker can store
one extra data point in addition to the one under processing.
We first clarify the color code used in this example to indicate
the data point assigned to a certain worker labeled with these
colors: blue for x1, red for x2, and yellow for x3.

At time t, consider the dataset is shuffled such that At1 =
x1, At2 = x2, and At3 = x3. The corresponding storage
placement at time t in Fig. 2(a) is as follows: After using
half the storage to store the desired data point (which can be
depicted in this example as the desired color), each data point
is divided equally among the unintended workers (depicted in
this example as the unintended colors). For example, if we
take the batch At1 = x1 = {x(2)1 , x

(3)
1 }, worker w2 stores

At1,2 = x
(2)
1 , and worker w3 stores At1,3 = x

(3)
1 .

At time t + 1 in Fig. 2(b), the data is randomly shuffled
again such that the new batches are: At+1

1 = x3, At+1
2 = x1,

and At+1
3 = x2. We take this particular shuffle since it

represents one of the possible worst cases, where every worker

is assigned a completely different batch. According to the
previous storage content shown in Fig. 2(a), worker w1 already
has x(1)3 but still needs x(2)3 , which is stored at w2 and w3.
Similarly, worker w2 needs x(3)1 which is stored at w1 and
w3, and worker w3 needs x(1)2 which is stored at w1 and
w2. Following the data delivery as in (25), the master node
transmits:

X(πt,πt+1) = x
(2)
3 ⊕ x

(3)
1 ⊕ x

(1)
2 . (26)

Each worker has two out of these three subdivisions, therefore
it can decode the remaining needed one. The rate of this
transmission is R = 1

2 , which is N
6 where N = 3.

For the storage update in Fig. 2(b), we only discuss the
changes in At+1

1 and the corresponding At+1
1,2 , and At+1

1,3 .
The storage update of the remaining parts can be done in
a similar manner. From the delivery phase and the previous
storage, worker w1 gets x3 (labeled yellow) and stores it in
the processing half At+1

1 (above the dotted line). Worker w2

already has a part of At+1
1 , x(2)3 (labeled yellow), which was

previously stored as At3,2. Therefore, it remains in the excess
storage (below the dotted line) as At+1

1,2 . Worker w3 already has
x3 previously labeled as At3, so it keeps in its excess storage
the part that is not stored in At+1

1,2 , i.e., x(1)3 , to be stored in
At+1

1,3 , after relabelling it to x(3)3 (now stored in w3).

Using the achievability of the three corner points for K =
3, and Claim 1, we get an upper bound on R∗

worst-case(3, S) as

R∗
worst-case(3, S) ≤

{
7N
6 − 3S

2 ,
N
3 ≤ S ≤ 2N

3
N
2 − S

2 ,
2N
3 < S ≤ N

. (27)

B. Converse for K = 3 workers

We now present the information theoretic lower bounds
for the three-worker case, which matches the above scheme.
Following Remark 2, we first assume subsequent data shuffles
at times {t, t+1, t+2} such that At+1

1 = At2, and A
t+2
1 = At3,

then from the decodability constraint in (9), we have

H(At2|Zt1, X(πt,πt+1)) = H(At3|Zt+1
1 , X(πt+1,πt+2)) = 0.

(28)

Hence, in a similar proof to (22) we get

H(A|Zt1, X(πt,πt+1), X(πt+1,πt+2))

(a)
= H(At1, A

t
2, A

t
3|Zt1, Zt+1

1 , X(πt,πt+1), X(πt+1,πt+2))

(b)

≤ H(At1|Zt1) +H(At2|Zt1, X(πt,πt+1))+

H(At3|Zt1, Zt+1
1 , X(πt,πt+1), X(πt+1,πt+2))

(c)
= H(At3|Zt1, Zt+1

1 , X(πt,πt+1), X(πt+1,πt+2))
(d)
= 0, (29)

where (a) follows from (2) and the storage update constraint
in (11), (b) follows from the fact that H(A,B,C|D) ≤
H(A|D) +H(B|D) +H(C|D), and also the fact that condi-
tioning reduces entropy, (c) from (5) and (28), and (d) from
(28). Now, using (29) we can find the upper bound as follows

Nd
(a)
= H(A)

(b)
= I(A;Zt1, X(πt,πt+1), X(πt+1,πt+2))

(c)
= H(Zt1, X(πt,πt+1), X(πt+1,πt+2))

−H(Zt1, X(πt,πt+1), X(πt+1,πt+2)|A)
(d)

≤ H(Zt1) +H(X(πt,πt+1)) +H(X(πt,πt+1))

(e)

≤ Sd+R∗
(πt,πt+1)

d+R∗
(πt+1,πt+2)

d, (30)

where (a) follows from (1), (b), and (c) follow from (29),
and due to the fact that I(A;B) = H(A) − H(A|B) =
H(B) − H(B|A), (d) is due to the fact that H(A,B,C) ≤
H(A) +H(B) +H(C) and the fact that Zt1, X(πt,πt+1), and
X(πt+1,πt+2) are all functions of the whole data-set A, and (e)
follows from (4) and (7). Hence, following Remark 2, we get
a lower bound for the worst-case rate characterized as

R∗
worst-case(3, S) ≥

N − S

2
,
N

3
≤ S ≤ N. (31)

The lower bound in (31) matches the upper bound obtained in
(27) for the range 2N

3 ≤ S ≤ N .

We next present another lower bound on R∗(3, S) which
proves the optimality of our scheme for the range N

3 ≤ S ≤
2N
3 . To this end, we now assume a data shuffle such that
At+1

1 = At3. Similar to (22) and (29), we have

H(A|Zt1, Zt2, X(πt,πt+1))
(a)
= H(At1, A

t
2, A

t
3|Zt1, Zt2, X(πt,πt+1))

(b)

≤ H(At1|Zt1) +H(At2|Zt2) +H(At3|Zt1, X(πt,πt+1))
(c)
= 0,

(32)

where (a) follows from (2), (b) from the facts that
H(A,B,C|D) ≤ H(A|D) + H(B|D) + H(C|D), and (c)
using (5), and (9). We now proceed to obtain the second lower
bound on R∗

worst-case as follows

Nd
(a)
= H(A)

(b)
= I(A;Zt1, Z

t
2, X(πt,πt+1))

(c)
= H(Zt1, Z

t
2, X(πt,πt+1))−H(Zt1, Z

t
2, X(πt,πt+1)|A)

(d)
= H(Zt1, X(πt,πt+1)) +H(Zt2|Zt1, X(πt,πt+1))

(e)
= H(Zt1, X(πt,πt+1)) +H(Zt2|Zt1, X(πt,πt+1), A

t
1, A

t
3, A

t
2,1)

(f)

≤ H(Zt1, X(πt,πt+1)) +H(Zt2|At1, At3, At2,1)
(g)
= H(Zt1, X(πt,πt+1)) +H(At2,3)

(h)

≤ Sd+R∗
(πt,πt+1)

d+
S − N

3

2
d, (33)

where (a) follows from (1), (b), and (c) from (32), and due to
the fact that I(A;B) = H(A)−H(A|B) = H(B)−H(B|A),
(d) from the chain rule of entropy and the fact that Zt1, Z

t
2,

and X(πt,πt+1) are all functions of the whole data-set A, (e)
from (9) where At+1

1 = At3 must be decoded from Zt1, and
X(πt,πt+1), and because At1 and At2,1 are stored within Zt1,
(f) because conditioning reduces entropy, (g) because after
obtaining At1, A

t
3, and At2,1, the only remaining part in Zt2

is At2,3, and finally (h) follows from (4), (7), and (12). From
Remark 2, and by rearranging (33), we get the following bound

R∗
worst-case(3, S) ≥

7N

6
− 3S

2
,

N

3
≤ S ≤ N. (34)

Therefore, from (34), and (31), we get the following lower
bound on R∗

worst-case(3, S):

R∗
worst-case(3, S) ≥

{
7N
6 − 3S

2 ,
N
3 ≤ S ≤ 2N

3
N
2 − S

2 ,
2N
3 < S ≤ N

(35)

Finally, the proof of Theorem 2 follows from (27) and (35).

VI. CONCLUSIONS

In this paper, we presented information theoretic formu-
lation of the data shuffling problem, where we studied the
tradeoff between the worst-case communication overhead and
the storage available at the worker nodes. We completely char-
acterized the optimal worst-case communication for K = 2,
and K = 3 workers with any storage capacity, where we
leveraged excess storage and coding to minimize the com-
munication overhead in subsequent data shuffling iteration. A
systematic storage update and delivery scheme was presented,
which preserves the structural properties of the storage across
workers. Generalizing these results for any number of workers
(K > 3) is part of our ongoing work.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2010.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI), 2004.

[3] O. Shamir, “Without-replacement sampling for stochastic gradient
methods: Convergence results and application to distributed
optimization,” CoRR, vol. abs/1603.00570v2, 2016. [Online]. Available:
https://arxiv.org/abs/1603.00570v2

[4] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “Why random reshuffling
beats stochastic gradient descent,” CoRR, vol. abs/1510.08560, 2015.
[Online]. Available: https://arxiv.org/abs/1510.08560

[5] S. Ioffe and C. Szegedy, “Batch normalization accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,
2015. [Online]. Available: https://arxiv.org/abs/1502.03167

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, Feb.
2015.

[7] S. Li, M. A. Maddah-Ali, and S. Avestimehr, “Coded MapReduce,” in
Proceedings of the 53rd Annual Allerton conference on Communication,
Control, and Computing, Monticello, IL, Sep. 2015.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in Proceedings
of Neural Information Processing Systems Conference (NIPS), Dec. 2015.

