On the Worst-case Communication Overhead for Distributed Data Shuffling

Mohamed Adel Attia

Ravi Tandon

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ 85721
E-mail:{madel, tandonr}@email.arizona.edu

Abstract— Distributed learning platforms for processing large
scale data-sets are becoming increasingly prevalent. In typical
distributed implementations, a centralized master node breaks
the data-set into smaller batches for parallel processing across
distributed workers to achieve speed-up and efficiency. Several
computational tasks are of sequential nature, and involve
multiple passes over the data. At each iteration over the data,
it is common practice to randomly re-shuffle the data at the
master node, assigning different batches for each worker to
process. This random re-shuffling operation comes at the cost
of extra communication overhead, since at each shuffle, new
data points need to be delivered to the distributed workers.

In this paper, we focus on characterizing the information the-
oretically optimal communication overhead for the distributed
data shuffling problem. We propose a novel coded data delivery
scheme for the case of no excess storage, where every worker
can only store the assigned data batches under processing.
Our scheme exploits a new type of coding opportunity and
is applicable to any arbitrary shuffle, and for any number of
workers. We also present information theoretic lower bounds
on the minimum communication overhead for data shuffling,
and show that the proposed scheme matches this lower bound
for the worst-case communication overhead.

I. INTRODUCTION

Processing of large scale data-sets over a large number of
distributed servers is becoming increasingly prevalent. The
parallel nature of distributed computational platforms such
as Apache Spark [1], Apache Hadoop [2], and MapReduce
[3] enables the processing of data-intensive tasks common
in machine learning and empirical risk analysis. In typical
distributed systems, a centralized node which has the entire
data-set assigns different parts of the data to distributed
workers for iterative processing.

Several practical computational tasks are inherently se-
quential in nature, in which the next iteration (or pass over
the data) is dependent on the previous iteration. Of particular
relevance are sequential optimization algorithms such as
incremental gradient descent, stochastic gradient descent,
and random reshuffling. The convergence of such iterative
algorithms depends on the order in which the data-points
are processed, which in turn depends on the skewness of
the data. However, the preferred ordering of data points is
unknown apriori and application dependent. One commonly
employed practice is to perform random reshuffling, which
involves multiple passes over the whole data set with dif-
ferent orderings at each iteration. Random reshuffling has
recently been shown to have better convergence rates than
stochastic gradient descent [4], [5].

Implementing random reshuffling in a distributed setting
comes at the cost of an extra communication overhead,

since at each iteration random data assignment is done for
the distributed workers, and these data points need to be
communicated to the distributed workers. This leads to a
fundamental trade-off between the communication overhead,
and storage at each worker. On one extreme case when each
worker can store the whole data-set, no communication is
necessary for any shuffle. On the other extreme, when the
workers are just able to store the batches under processing,
which is refereed to as the no-excess storage case, the
communication overhead is expected to be maximum.

Main Contributions: The main focus of this work is char-
acterizing the information theoretic optimal communication
overhead for the no-excess storage case. The main contribu-
tions of this paper are summarized as follows:

e We present an information theoretic formulation of the
problem, and develop a novel approach of describing the
communication problem through a shuffling matrix which
describes the data-flow across the workers.

e We next present a novel coded-shuffling scheme which
exploits a new type of coding opportunity in order to
reduce the communication overhead, in contrast to existing
approaches. Our scheme is applicable to any arbitrary shuffle,
and for any number of distributed workers.

e We present information theoretic lower bounds on the
communication overhead as a function of the shuffle matrix.
Moreover, we show that the proposed scheme matches this
lower bound on the worst-case communication overhead,
thus characterizing the information theoretically optimal
worst-case communication necessary for data shuffling.

Related work: The benefits of coding to reduce communi-
cation overhead of shuffling were recently investigated in
[6], which proposes a probabilistic coding scheme. However,
[6] focuses on using the excess storage at the workers to
increase the coding opportunities and reduce the average
communication overhead. In our recent work [7], we pre-
sented the optimal worst-case communication overhead for
any value of storage for two and three distributed workers. In
another interesting line of work, Coded MapReduce has been
proposed in [8], to reduce the communication between the
mappers and reducers. However, the focus of this paper is
significantly different, where we study the communication
between the centralized master node and the distributed
workers, motivated by the random reshuffling problem as
initiated in [6].

II. SYSTEM MODEL

We consider a master-worker distributed system, where a
master node possesses the entire data-set. The master node
sends batches of the data-set to the distributed workers over a
shared link in order to locally calculate some function or train
a model in a parallel manner. The local results are then fed-
back to the master node, for iterative processing. In order to
enhance the statistical performance of the learning algorithm,
the data-set is randomly permuted at the master node before
each epoch of the distributed algorithm, and then the shuffled
data-points are transmitted to the workers.

We assume a master node which has access to the entire
data-set A = [z, 22 ... 2T)7 of size Nd bits, i.e., Ais a
matrix containing /N data points, denoted by x1, 2, ..., TN,
where d is the dimensionality of each data point. Treating the
data points {x, } as independent and identically distributed
(i.i.d.) random variables, we have

H(zp)=d, Vne{l,...,N}, H(A)=Nd. (la)

At each iteration, indexed by ¢, the master node di-
vides the data-set A among K distributed workers, given
as A}, AL, ... Al where the batch A} is designated to
be processed by worker wg, and these batches correspond
to the random permutation of the data-set, 7 : A —

{Al,..., A% }. Note that these data chunks are disjoint, and
span the whole data-set, i.e.,
AiNAj=¢, Vi#], (2a)
AtuAbu.. UAY = A, Yt (2b)
Hence, the entropy of any batch AY is given as
1 N
H(AY) = —H(A) = —d ked{l,...,K}.
(k) K () K 7V € {)) } (3)

After getting the data batch, each worker locally computes
a function (as an example, this function could correspond to
the gradient or sub-gradients of the data points assigned to
the kth worker) fi(AL), in iteration ¢,. The local functions
from the K workers are processed later at the master node,
to get an estimate of the function f;(A). For processing
purposes, the data block A} is needed to be stored by the
worker while processing, therefore, we assume that worker
wy, has a cache Z} with storage capability of size sd bits, for
some real number s, that must at least store the data block AZ
at time ¢, i.e., if we consider Z} and A} as random variables
then the storage constraint is given by

H(Z})=sd>H(AL), Vke{l,...,K}. &

For the scope of this paper, we focus on the setting of
no-excess storage, corresponding to s = N/K, in which
each worker can exactly store 1/K fraction of the entire
data, i.e., it only stores s = N/K data points which are
assigned to it in that iteration, therefore, the cache content
at time ¢ for worker wy, is given by Z; = Al and the
relationship in (4) is satisfied with equality. Henceforth, we
drop the notation Z}, as the cache content and use the notation
for the data batch A! instead since they are the same for the

no-excess storage setting. In the next epoch ¢+ 1, the data-set
is randomly reshuffled at the master node according to the
random permutation 7! : A — {ATT AT ALELY

The main communication bottleneck occurs during Data
Delivery since the master node needs to communicate some
function of the data to all the workers X,) of size
Rz, x,,1)d bits, where Rz, .,y is the rate of the shared
link based on the shuffle (7, 7¢41). Each worker wy, should
be able to extract the data points designated for it out of the
incoming data, X, r,,,) from the master node as well as
its locally stored data, i.e., A%.

We next proceed to describe the data delivery mechanism,
and the associated encoding and decoding functions. The
main process then can be divided into 2 phases, namely
the data delivery phase and the storage update phase as
described next: in the data delivery phase, the master node
sends some function of the data to all the workers. Each
worker should be able to extract the data points designated
for it out of the incoming data from the master node as well
as the data stored in its local cache storage. In the cache
update phase, each worker stores the required data points
for processing purposes, that can also be useful in reducing
the communication overhead in subsequent epochs.

At time ¢+ 1, the master node sends a function of the data
batches for the subsequent shuffles (7, 7¢41), Xz, mpp1) =
P(AL, . AL AT LAY = @,) (A) over the
shared link, where ¢ is the data delivery encoding function

2K
Since X(m,erl) is a function of the data set A, we have
H (X(Trtyﬂ'url)lA) =0, (6a)
H (X(Trtxﬂ'url)) = R(ﬂ't,ﬂ't+1)d' (6b)

Each worker w;, should decode the desired batch A};H out
of the transmitted function X, r,), and the data stored in
the previous time slot denoted as A!. Therefore, the desired
data is given by Ay = ¢(X(,,, At), where 1 is the
decoding function at the workers

7Tt+1)7

W : 2) o [22] 2], ™)
which also gives us the decodability constraint as follows
H(AAL, X(epmoy) =0 VE€{1,...,K}. (8)

The update procedure for the no-excess storage setting is
rather straightforward: worker wy, keeps the part that does not
change in the new shuffle, i.e., AL N A%. Then it removes
the remaining part of its previously stored content, i.e., A%\
Afjl, and stores instead the new part, i.e, Af:“l \ Al

Our goal in this work is to characterize the informa-
tion theoretic bounds for optimal communication overhead

’ (K) for any arbitrary number of workers K, and

(7"t,7"t)
any arb+it1rary shuffle (¢, 7m41), defined as

BB O

K) = min
(K) (¢,9)

*
(7Tt777t+1)

where RE¢’w)

m.m+1)(K) is the rate of an achievable scheme

defined by the encoding, and decoding functions (¢,).
Subsequently, the optimal worst-case overhead is defined as

max REK K). (10)

\Tvorst—case(K) = (memer) 7rt,7rt+1)(

III. PROPERTIES OF DISTRIBUTED DATA SHUFFLING

Before presenting our main results on the communica-
tion overhead of shuffling, we present some fundamental
properties that are satisfied for any two consecutive data
shuffles give by m : A — {A,... AL}, and M1 : A —
{AV) ATTTY. We start with the following definitions.

Definition 1 (Shuffle Index): We define

ST &AL N A, (11

as the shuffle index representing the number of data points
that are needed by worker w; at time ¢+ 1, and are available
at worker w; from the previous shuffle ¢.

Definition 2 (Shuffle Matrix): We also define the K x K
shuffle matrix for the permutation pair (7, 7.41) as

2 [smem)] g je (.., (12)

Remark 1: The significance of Sm"m“ is that it is the
number of common data points between At and AU, Thus,
these number of data points do not need to be transmltted to
worker w;, and are not involved in the data delivery process.
Using the definition in (11), together with (2), it follows
readily that

S(ﬂ't’ﬂ't+1)

K}

K () K N
Ty, Tt o t t+1 _ t+1) 2%
T = DA AT = 14T =
i= 1 i=1
(rrmia) _ N N
S T T4l At N At_+1 — At = —, 13
Z LR ETIES e

The properties in (13) imply that the sum of elements across
any row (or column) for the shuffling matrix S™¢ 7™+ is
constant for any shuffle (7, 7¢41) and is equal to .

Remark 2 (Data-flow Conservation Property): We next
state an important property satisfied by any shuffle, namely
the data-flow conservation property:

Z Z S(ﬂ't,ﬂ’ t+1)
i,J :
je{l,, K}\i je{l,...,K}\i
The proof of this property follows directly from (13), and has
the following interesting interpretation: the total number of
new data points that need to be delivered to worker w; (and
are present elsewhere), i.e., D i S; (m’ﬂ’“) is exactly equal
to the total number of data points that worker w; has that
are desired by the other workers, which is >, S(T”’T”“)

Definition 3 (Leftover Index and Leftover Matrix): We
define the leftover index as the number of leftover data-
points needed by worker w; at time ¢ + 1 and available at
w; at time ¢ as

giemer) = (14)

Q?thﬂ't-*—l A S“n't‘ﬂ'rt-f—l

Tt Tt41 Tt Tt41
2,]] S S;)

— min(i S5

15)

The leftover matrix for the permutation pair (7, 7¢41) is

defined as

QreTe & [QZ}’““], i,7€{l,...,K}. (16)
This definition and the significance of the leftover matrix
will become clear in the subsequent sections, when we
describe our proposed coded data delivery scheme. From the
definition in (15), we note that the diagonal entries of the
leftover matrix are all zero.

Remark 3 (Leftover Conservation Property): Analogous
to the data-flow conservation property, we next show that the
leftover indices also satisfy a similar leftover conservation
property, as follows

(7Tt~,‘ﬂ't+1) _ (7Tt777t+1)
Qi,j - Qj,i :

a7
je{1,....K}\s je{1,....K}\i
To prove the above property, we use the definition of

leftovers in (15), to first compute the total leftovers at a
worker w; as follows

z Qz(l:f;t,ﬂt-u) _ Z S7;()7;1,,7T1,+1) (18)
jel{l,.. K\ je(l,... . K\
- Z min(S(‘ITt77rt+1)’ Sj(‘:ﬁ‘ﬂ't-f—l))
Jje{1,...,K}\i

Similarly, we can also write the total number of leftover data
points coming from all other workers to worker w;

Yooarm= 3 sEm a9
Je{l,...,K}\i JE{L,...,KI\i
_ Z min(S(m ﬂ’f+1)’S](7;f ﬂ’f+1))
je{1,....K}\i

From the property in (14), we notice that the quantities in
(18), and (19) are equal and hence we arrive at the proof of
(17). Using the leftover conservation property in (17), we can
show that the sum across rows or columns for the leftover
matrix € is constant for any shuffle (m;, m441).
Subsequently, we refer to Ry, r,.,) as the rate for any
achievable scheme (¢, ¥). We also drop the index (7, 7s4+1)
from S(me:me+1) Q(Tesmet1) R, and X,

Te1)> 5T 41)
IV. MAIN RESULTS

The main contributions of this paper are presented next in
the following three Theorems.

Theorem 1: The optimal communication overhead R*(K)

for a shuffle characterized by a shuffle matrix S = [S; ;] is
upper bounded as
K-1 K
S Z Z Inax(Si,j,Sj,i)
i=1j=i+1
— max Z QkJ. (20)
Je{1,... K}\{k}
Theorem 2: The optimal communication overhead

R*(K), for any arbitrary shuffle matrix S =

bounded as
K-1 K
K)> 3 Y Sous,
i=1 j=i+1

[Si ;] is lower

2

Sfor any permutation o: {1,..., K} — {01,...,0K} of the

K workers.

Theorem 3: The information theoretically optimal worst-
case communication overhead for data shuffling is given by

K-1

Riorst-case (K) = <K> N. 22)

V. PROOF OF THEOREM 1 (UPPER BOUND)

In this section, we present an achievable scheme for the
shuffling process, which gives an upper bound on the com-
munication overhead as stated in Theorem 1. We consider
the random reshuffling process (¢, m41), characterized by
a shuffle matrix S = [S; ;], from time ¢ given by the data
batches A%, AL, ... A%, to time ¢ + 1 given by the data
batches Atl'H, Ag‘“, e A'};H.

We first describe the main idea of our scheme through a
representative example.

Example 1: Consider K = 3 workers (denoted as
{wi, w2, w3}) and N = 15 be the total number of data
points. Consider the following shuffle matrix S = [5; ;]:

Sl,l Sl,g 51,3 2 1 2
S=| 821 S22 So3 |=1]2 1 2 (23)
S31 Ss2 S3s 1 3 1

The numbers in the diagonal represents the data points that
remains unchanged across the workers, therefore, they do not
participate in the communication process (see Remark 1).
For uncoded communication, the number of transmitted data
points would be the sum of all non-diagonal entries, i.e.,
Runcoded = 11.

We first show how coding can be utilized to further reduce
the communication overhead. For this example, worker w;
needs S>; = 2 data points from wy. Let us denote these
points as {:rgli, a:g?} At the same time, wo needs Sy 2 =1
data point from w; (denoted as z; 2). Instead of uncoded
transmission, the master node can send a coded symbol
J’gli + 21,2 which is simultaneously useful for both w,, and
wsy as follows: wy has z o, then it subtracts from the coded
symbol to get the needed data-point xéli Similarly, wsy gets
Z1,2 using xéli and xgli ~+21,2. This coded symbol is refereed
to as an order-2 symbol, since it is useful for two workers
at the same time.

By exploiting all such pairwise coding opportunities, we
can send a total of 4 order 2 symbols as follows: one
coded symbol for {wi,wy}, one for {wy, w3}, and two
for {wq,w3}. After having exhausted all pairwise coding
opportunities, there are still some remaining data points,
which we call as leftovers. The leftover matrix (defined in
(15) and (16)), contains the number of leftover symbols after
combining the order 2 symbols, is given as

Q1 Qo s 0 0 1
Q=] Qo1 Qs Qs |=]1 0 0 24)
Q31 Q32 Q33 010

If the remaining 3 leftover symbols (sum of all non-zero

elements of {2) are sent uncoded, then, the total rate would be
Rpaired-coding = Rcoded-orderZ + Runcoded—leftovers =4+3=T,
therefore, Rpaired—coding < Runcoded-

We now describe the main idea behind our proposed
coding scheme which exploits a new type of coding op-
portunity as follows. Till this end, for each worker, we
combine its incoming leftover symbols with its outgoing
leftover symbols. By the leftover conservation property, these
two are equal. Then, we have the three coded symbols as
follows

{z31+212, T12+x23, T23+x31} (25)

The key observation is that any two out of these three coded
symbols are enough for all the workers to get the remaining
leftovers. Two workers decode the needed points in one step,
while the ignored worker decodes in two steps.

For example, if the master node transmits the first two
coded symbols, i.e., 31 + x1,2 and 12 + x2 3, then the
decoding works as follows: w;, and ws have x;, and
T9,3, respectively, then they can get the needed ones, x3 1,
and z; 9, respectively. Worker ws, however, decodes its
desired symbol through a two step procedure as follows:
since it has 3 1, then it can get x; » from the first symbol
23,1 + x1,2 in the first step. In the second step, from the
second symbol x; o + 3 3, it then uses x1 2 to finally obtain
the needed data point 3. As a summary, we are able
to send 3 leftovers in 2 coded symbols only. Therefore,
communication overhead of the proposed scheme reduces to
Rproposed—coded = Rcoded-order2 + Rcoded-leftovers = 4 + 2 = 6,
i'e‘7 Rproposed—coded < Rpaired—coding'

We next present our proposed scheme for a general shuffle
matrix and arbitrary number of workers K, which can be
described in the following two phases, namely the first phase
of transmitting order-2 symbols, and the second phase, which
is what we call the leftover combining phase.

A. Phase 1: Order-2 symbols

First we start by transmitting order-2 symbols, that are
useful for two workers at the same time. If we consider two
workers w;, and w;, then worker w; has some data points for
worker w;, given by AINA'!, which are 5; ; = [AfN ALY
data points in total. Similarly, w; has S; ; data points for w;.
Now, if we take all the data points x; ; € Aﬁ a A;H, and
combine them with the points z;; € A} N A to transmit
order-2 symbols jointly useful for w;, and w;, then we are
limited by min(S; ;,.S;,;) number of order-2 symbols for the
pair (¢, 7). Therefore, we can transmit total number of order-
2 symbols for all possible (4, j) pairs of workers as follows

K-1 K
Rphase 1 = Z Z min(Si,jv‘Sj,i)'

i=1 j=i+1

(26)

B. Phase 2: Coded Leftover Communication

Now, we consider a coded approach for sending the
leftovers after combining the order-2 symbols at phase 1.
For a pair of workers (3, j), after combining min(S; ;,S;;)

symbols in phase 1, then we still have Q;; = 5;; —
min(S; ;,5;,:) leftover symbols that are still needed to be
transmitted from w; to w;. Similarly, the leftovers form w;
to w; is given by Q;; = S;; — min(S; ;,S;:). We notice
that if S@j > Sj,i, then Qi,j = Sl,] S],z > 0, and Qjﬂ‘ =0,

and vice versa. This gives us the following properties

Qij +jS = maX(Q”,Q) = |Si7j — Sj7i|7

min(€; ;,Q;,;) = 0. 27

Clearly, if S; ; = S, then Q; ; = Q;; = 0, and there are
no leftover symbols for the pair (7, j). The property in (27)
states that if a worker w; has some data points for w; in
its leftovers (£; ; # 0), then w; has nothing in its leftovers
needed by w; (€2;; = 0). Using the leftover data conservation
property in (17), we first state the following claim:

Claim 1: After combining the order-2 symbols in phase 1,
the total number of symbols at a worker w; needed by other
workers (outgoing leftovers) is equal to the total number of
data points needed by the worker w; from other workers
(incoming needed points).

As a simple scheme, we can use Claim 1 to combine all
the leftovers with the needed data points for every worker
w;. Therefore, each worker can use its own outgoing leftover
data points to get the desired incoming points. However, it
is obvious that this coded scheme achieves the same rate as
if we are sending the leftovers uncoded.

We next present the following claim which is one of the
novel contributions of this paper:

Claim 2: If we combine the leftovers with the needed data
points for any K —1 workers, then under a certain combining
condition (stated below) for the remaining ignored worker,
say wyg, it can get its own needed data points without the
need of being combined with its own leftovers.

Before presenting the proof of Claim 2, we first state the
combining condition. In order to ignore a worker wy from
combining its leftovers with the needed points, the following
condition must be satisfied while combining the leftovers
with the needed points for other non-ignored workers:

Definition 4: (Leftover Combining Condition for Ignoring
wy) The needed data-points at the ignored worker wy
from leftovers of other workers x; 1, and independently the
leftovers at wy, needed by other workers xy, ; should only be
combined with the data-points x;; as follows

{frk,j + T4, Tji +I17k} (28)

In order to understand the combining condition, we use the
following example. Let us consider the following three types
of leftover data points: (i) a data point x; that is needed
by an ignored worker wy, and is available at worker w;; (ii)
a data point xy ; that is a leftover at wy, and is needed by
worker w;; and (iii) a data point z; ; that is a leftover at w;,
and is needed by worker w;.

In order for wy to decode x;; using the leftover xy ;,
the leftover coded combining condition should be satisfied
as follows

e While combining the leftovers with the needed points
of w; at the master node, the needed data point xj, ; (from

w;’s perspective) should only be combined with the leftover
data point x;; as follows:

Tk,j +xj,i~ (29)

e While combining the leftovers with the needed points
of w; at the master node, the leftover data point x; ,, (from
w;’s perspective) should only be combined with the needed
data point x;; as follows:

Tji+ Tig- (30)

From the above coded combining, we notice the following:
1) Workers w;, and wy still can decode the needed points x; ;,
and xy, ;, respectively. 2) Worker wy, decodes in two steps:
First, it uses xy, ; to get x;; from the coded symbol in (29).
In the next step, from the second coded symbol in (30) it
uses x;; to decode the needed data point x; j.

C. Proof of Claim 2

Now we need to prove formally the decodability at the
ignored worker wy. In order to complete the proof, we need
to show that the number of intermediate points the ignored
worker wy, can get in the first step of decoding; are enough
to decode the needed points in the next step of the decoding
process.

We start by partitioning the leftover data points Qi,j into
non-overlapping (K 2) parts QEZJ), ¢ e {1,2,....,K}\
{i,7}, where Q(i.j <8 ; is defined as the number of inter-
mediate (unintended since ¢ # {4, j}) data points originally
needed by w; that w, can get using its own leftovers needed
for w; (through w;).

Therefore, €2; ; can be written as

Q= >oaf
ee{1,.... K\ {u,5}

As shown in Figure 1, wg for example uses its own
leftovers needed by w; (through w;), i.e., Qg 1 points, to
get unintended points (labelled with blue) that are needed by
the other workers {2,3,..., K —1}, i.e., Q§§)7 R Qﬁ{ll.
Therefore, the total number of unintended (intermediateS data
points recovered by wg using Qg ; data points is

Qi1 = ZQ(K).

Generally, through the combined symbols for w;, the number
of unintended data points which worker w, can obtain is

O]
Q; ;.

€1y

(32)

(33)

Let us assume now without loss of generality, that the
ignored worker is the last worker wg . As shown in Figure 1,
the ignored worker wg cannot get the needed data-points
(colored chunks above the dotted lines) directly. Instead, wg

K-1
uses its leftovers > K,i to get first unintended intermedi-

i=1
ate points (blue labelled points lej) through w1, red labelled

Coded combining for

Coded combining for

Coded combining for

Worker wg ignored

w1 w2 WK -1
Lo [P
Q1 =0 Q9 D Qi (k-1) D hx (&)
e I P
Qa1 D Gaa=0 Qs (k1) @ [N @
bt n ok t o)
o, & o S
gL | o« t an
Qr-2).k-n | |D Ux_ny x| |
Step 2 | VI
wg uses Intermediate _ _ o 11/1]1]
points to get f s t [I
the needed points Qxe—n1 EB|-| Q)2 EBl:I Qic—1),(K-1) = 0 x| e
Step 1 T - k) — o 922) . ' |
wy uses leftovers to s @E () Qs oL Q;Ag ”1\ - ol | D=0 '
et Intermediate points o | I mm o l//LLLLLLLEEEIiE
g P l D oy l | D (U l D 1) k)

Fig. 1.

The leftover combining process after ignoring wg . Below the solid line is the first step of decoding for the ignored worker where wy gets

intermediate points using its leftover points. Above the solid line is the second step of decoding, where wg uses the intermediate points to decode the

needed points.

points Q() through wy, etc.), which are shown below the
solid hne 1n the Figure.

In order for wg to make use of the intermediate symbols
QEIJ{), {(G,5) € {1,...,K — 1},i # j}, every symbol
x;,; of them should be paired up with data points useful
for wg in the coded combining for wj, i.e, x;; + 7, K,
which is satisfying the combining constraint in Definition 4.
Following the relation in (33), the actual total number of
unintended symbols wy can get in the first step of decoding

is given by

K-1 K-1
D=3 > ey
i=1 i=1 j={1,...K—1}\{i}
= 98 (34)
(i,5)e{1,....K—1}
i

Using the unintended symbols that wg gets through w;
and are originally needed by wj, i.e., QE G it should be
able to decode the needed symbols Q§}(As an example,
wp gets the blue unintended data points Qgg), .. ng}g 1
through wy, then these data points are used to get the blue
labelled needed points QS}(, cee Qﬁ?_l x as shown above

the solid line in Figure 1.

The minimum number of unintended symbols wx needs to
decode out of ; ; points in the first step, should be enough

to decode (equal to) the needed part ol ;) in the next step

of decoding. From the unintended data recovery condition in
(33), QY)K is given by

Qﬁk =, — (35)

={1

(@
Q5

s K=13\{4,5}
Therefore, the total number of unintended symbols that

the worker wg should at least have in order to decode all
the needed points in the next step is given by

K-1
>)
K= Z K
=1 (i,j)e{;._.,K_l}
i#j
= Q- NC
o Z i,j Z .
(6,5)€{1,....K—1} (i,5,0)€{1,....K—1}
73 i
SID SRR VD DR
(el K1} (i,4.0)€{1,.... K1}
7 i
¢
(i’j)E{l;.l.,Kfl} e{l, K11\ (i}
i#]
¢y A o
(i,j)e{1¥._.,K_1}
¥

where (a) follows from (31), (b) follows from the constraint

in (35), (¢) by switching the sum indices, and (d) from the
definition in (31). From (34) and (36), it now follows that the
total number of intermediate points the ignored worker wpg
can decode in the first step is exactly equal to the minimum
number it must decode in order to get the needed points in
the second step, which completes the proof of Claim 2.

Hence, the total communication overhead of phase 2 is the
total of all leftover symbols (except the ignored worker k),
and is given as:

ignoring wy leftovers at w;
Rphase 2 = Z Z Qisj (37
ie{l,....KI\{k} je{1,...K}\{i}
K
S SNED SRR PR SR ¥
=1 je{l,.. 7K}\{i} Je{1,... . K}\{k}
K i—1
=ZZQJ+Z Zﬁu 2. Dy
i=2 j=1 i=1 j=i+1 je{1,.... K}\{k}
(38)
()K—l K K— K
L Z Z Z Z Qg
i=1 j=i+1 i=1 j=i Je{L,... . K}\{k}
(39)
K-1 K
= Z (Qi,j+Qj,i)_ Z Qk,j (40)
i=1 j=i+1 JE{L,.... K\ {k}
K—-1 K
O3S max(Q,, 20— > @y (4D
i=1 j=i+1 Je{1,....K}\{k}

where (a) follows by swapping the indices j and i in the first
summand, and (b) follows from the property of leftovers in

(27), which states that that min(€2; ;,€Q; ;) =

Hence, the total communication overhead of the proposed
scheme is the total number of transmitted symbols over
Phases 1 and 2, which is the sum of (26), and (41), and
is given by

R(K) = RPhase 2+ RPhase 2
K-1 K K-1 K
= Z Z min Sl_]?SL) Z ma‘X(QZ7]7Q]77‘)
=1 j=i i=1 j=i+1
_ Z Q.
Je{l,.. . KI\{k}
K K
@ Z Z max(S; ;j,S5;) — Z Qij, (42)
i=1j=i Je{1, . KI\{k}

where (a) follows from the property in (27). In order to get
the lowest possible rate for this scheme, which is also an
upper bound for the optimal communication overhead, the
choice of the ignored worker wj can be optimized to have

the maximum number of leftovers, which is given by

RY(K)

K-1 K
< mkin Z max Sz,j, Sj,i) - Z Q5
i=1j=i+1 JE{L,.... K\ {k}
K-1 K
Z max(S; ;,S5;) — max Z Qg5
i=1 j=i+1 JE{L,.... K}\{k}
(43)

This completes the proof of Theorem 1.

VI. PROOF OF THEOREM 2 (LOWER BOUND)

In this section, we present the lower bound on the optimal
communication overhead for any arbitrary random shuffle
between two subsequent epochs ¢, and t+1 given by a shuffle

matrix S = [S; ;], as stated in Theorem 2.
NdY H(A)
O rA; AL, AL X))+ H(AJAL, ... AL, X)
@H(A;...,At LX) — H(AL,..., AL, X|A)
H(AL AL, AL X)
() K-1
e
H(AL ,X)+ ZH (AL |AL .. AL LX)
=1
H(AL)))+ ZH JASTL AR
@ Nd Nd t . At+l t+1
< G7 tRd+ ; [K—I(A AL A
K-1
=Nd+Rd— Y I(AL;ALTL .. ALY, (44)
=1

where (a) follows from (3), (b) and (c¢) are due to the fact
that [(A; B) = H(A) — H(A|B) = H(B) — H(BJ|A), and
from (2b) where the data-batches at any time span A, (d)
from (2b) and (6a), where the data-batches and X are all
functions of the data-set A, and o is any permutation of the
the set {1,..., K}, (e) from the chain rule of entropy, (f)
from the decoding constraint in (8), the fact that conditioning
reduces entropy, and the fact H(A, B) < H(A)+H(B), and
(g) from (3), (6b), and the fact H(A|B) = H(A)—I(A; B).
By rearranging the inequality in (44), we arrive at

S

-1
Rd> Y I(AL ; ALH

Git17

t+1
Agd)

i

=

-1

K-1 K
)= DD Seioyd (45)

i=1 j=i+1

K
> I(A]

j=i+1

LAt
Al

I
—

i
Therefore, the lower bound on the communication overhead

is given by R*(K) > i > So,.0,» completing the proof
i=1 j=it+1
of Theorem 2.

VII. PROOF OF THEOREM 3

In this section, we prove the optimality of our proposed
scheme for the worst-case shuffle, which describes the max-
imum communication overhead across all possible shuffles.

A. Achievability (Worst-case Shuffle)

We start by using the upper bound described in Theorem 1,
where we use a variation of the expression in (20) by adding
(26), and (37) as follows

()K—l K
R(K) =)")" min(S;;,S;.) +

> i%

i=1 j=i+1 i€{l,.... K}\{k} j=1
K-1 K K-1K
v Win (S0, 50,0) + DD Dovo,
i=1 j=i+1 i=1j=1
K-1 K K-1 K
(2 Z min(So’i’gj7SO-]»’gi) + ZZSJ,;,JJ-
i=1 j=i+1 i=1j=1
K-1K
_ Z min(Sy, 0,,S0,,0;)
i=1 j=1
(d) K=1 K (E)Kle K-1
< Sy o = —=|———]N, 46
; 1:1; o i:lK < K) o

where (a) holds because €2; ; = 0, (b) follows by considering
a permutation o = {071, ...0 } of the workers, where o =
k is the ignored worker, (c) follows from the definition of
Q, ; in (15), (d) is due to the fact that min(S; ;,S;,) > 0,
and (e) from the property in (13). Since this derived upper
bound is found for any arbitrary shuffle, it is also an upper
bound for the optimal worst-case communication overhead.
Hence, we have

. K-1
Rworst—case(K) < (K) N.

B. Converse (Information Theoretic lower bound)

(47)

We start by assuming a particular data shuffle, and then
specialize our lower bound (obtained in Theorem 2) for
this particular shuffle. We use the fact that the worst-case
overhead Ry ct.case(f) is lower bounded by the overhead
of any shuffle R(K), therefore the lower bound found for
this given shuffle works as a lower bound for the worst-case
as well, i.e.,

R\Tvorst—case(K) Z R* (K) . (48)

We assume a data shuffle matrix S described as follows:
For some permutation of the K workers given by o =
{o1,02,..., 0K}, any worker w,,_, at time £+ 1 needs only
all the data points that w,, has from the previous shuffle at
time ¢, which can be described as

N . .
— K> J =1+ 17
SU,;,U]‘ { 0,

otherwise. (49)

Therefore, using the lower bound in Theorem 2 given by
(21), and using (48), the lower bound for this particular
shuffle, and hence the optimal worst-case shuffle, can be

found as
K-1 K
R\Tvorst-case(K) > R (K) 2 Z Z SUMTJ
i=1 j=i+1
-1 K—1
N K—-1
= Zs[,i,am = Z? — (K) N.
i=1 i=1

(50)

From (47), and (50), it follows that the information theoret-
ically optimal worst case communication overhead is

N K-1
worst—case(K) = (K> N.

VIII. CONCLUSION

61V

In this paper, we presented new results on the minimum
necessary communication overhead for the data shuffling
problem. We proposed a novel coded-shuffling scheme which
exploits a new type of coding opportunity, namely coded
leftover combining in order to reduce the communication
overhead. Our scheme is applicable to any arbitrary shuffle,
and for any number of distributed workers. We also pre-
sented an information theoretic lower bound on the optimal
communication overhead that is also applicable for any ar-
bitrary shuffle. Finally, we showed that the proposed scheme
matches this lower bound for the worst-case communication
overhead across all shuffles, and thus characterizes the infor-
mation theoretically optimal worst-case overhead.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2010.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proceedings of IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), May 2010, pp. 1-10.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proceedings of the 6th Symposium on Operating
System Design and Implementation (OSDI), 2004.

[4] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo, “Why Random Reshuf-
fling Beats Stochastic Gradient Descent,” CoRR, vol. abs/1510.08560,
2015. [Online]. Available: http://arxiv.org/abs/1510.08560

[5] S. Ioffe and C. Szegedy, “Batch Normalization Accelerating
Deep Network Training by Reducing Internal Covariate
Shift,” CoRR, vol. abs/1502.03167, 2015. [Online]. Available:

http://arxiv.org/abs/1502.03167

[6] K.Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,”
CoRR, vol. abs/1512.02673, December 2015. [Online]. Available:
http://arxiv.org/abs/1512.02673

[71 M. Attia and R. Tandon, “Information Theoretic
Limits of Data Shuffling for Distributed Learning,”
in Proceedings IEEE Global Communications Conference
(GLOBECOM), Dec. 2016. [Online]. Available: Available:

https://www.dropbox.com/s/Ik00u2nuf7tiogr/GC2016.pdf?d1=0

[8] S.Li, M. A. Maddah-Ali, and S. Avestimehr, “Coded MapReduce,” in
Proceedings of the 53rd Annual Allerton conference on Communication,
Control, and Computing, Monticello, IL, Sep. 2015, pp. 964-971.

