
On the Worst-case Communication Overhead for Distributed Data Shuffling

Mohamed Adel Attia Ravi Tandon
Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ 85721
E-mail:{madel, tandonr}@email.arizona.edu

Abstract— Distributed learning platforms for processing large
scale data-sets are becoming increasingly prevalent. In typical
distributed implementations, a centralized master node breaks
the data-set into smaller batches for parallel processing across
distributed workers to achieve speed-up and efficiency. Several
computational tasks are of sequential nature, and involve
multiple passes over the data. At each iteration over the data,
it is common practice to randomly re-shuffle the data at the
master node, assigning different batches for each worker to
process. This random re-shuffling operation comes at the cost
of extra communication overhead, since at each shuffle, new
data points need to be delivered to the distributed workers.

In this paper, we focus on characterizing the information the-
oretically optimal communication overhead for the distributed
data shuffling problem. We propose a novel coded data delivery
scheme for the case of no excess storage, where every worker
can only store the assigned data batches under processing.
Our scheme exploits a new type of coding opportunity and
is applicable to any arbitrary shuffle, and for any number of
workers. We also present information theoretic lower bounds
on the minimum communication overhead for data shuffling,
and show that the proposed scheme matches this lower bound
for the worst-case communication overhead.

I. INTRODUCTION

Processing of large scale data-sets over a large number of
distributed servers is becoming increasingly prevalent. The
parallel nature of distributed computational platforms such
as Apache Spark [1], Apache Hadoop [2], and MapReduce
[3] enables the processing of data-intensive tasks common
in machine learning and empirical risk analysis. In typical
distributed systems, a centralized node which has the entire
data-set assigns different parts of the data to distributed
workers for iterative processing.

Several practical computational tasks are inherently se-
quential in nature, in which the next iteration (or pass over
the data) is dependent on the previous iteration. Of particular
relevance are sequential optimization algorithms such as
incremental gradient descent, stochastic gradient descent,
and random reshuffling. The convergence of such iterative
algorithms depends on the order in which the data-points
are processed, which in turn depends on the skewness of
the data. However, the preferred ordering of data points is
unknown apriori and application dependent. One commonly
employed practice is to perform random reshuffling, which
involves multiple passes over the whole data set with dif-
ferent orderings at each iteration. Random reshuffling has
recently been shown to have better convergence rates than
stochastic gradient descent [4], [5].

Implementing random reshuffling in a distributed setting
comes at the cost of an extra communication overhead,

since at each iteration random data assignment is done for
the distributed workers, and these data points need to be
communicated to the distributed workers. This leads to a
fundamental trade-off between the communication overhead,
and storage at each worker. On one extreme case when each
worker can store the whole data-set, no communication is
necessary for any shuffle. On the other extreme, when the
workers are just able to store the batches under processing,
which is refereed to as the no-excess storage case, the
communication overhead is expected to be maximum.

Main Contributions: The main focus of this work is char-
acterizing the information theoretic optimal communication
overhead for the no-excess storage case. The main contribu-
tions of this paper are summarized as follows:

• We present an information theoretic formulation of the
problem, and develop a novel approach of describing the
communication problem through a shuffling matrix which
describes the data-flow across the workers.

• We next present a novel coded-shuffling scheme which
exploits a new type of coding opportunity in order to
reduce the communication overhead, in contrast to existing
approaches. Our scheme is applicable to any arbitrary shuffle,
and for any number of distributed workers.

• We present information theoretic lower bounds on the
communication overhead as a function of the shuffle matrix.
Moreover, we show that the proposed scheme matches this
lower bound on the worst-case communication overhead,
thus characterizing the information theoretically optimal
worst-case communication necessary for data shuffling.

Related work: The benefits of coding to reduce communi-
cation overhead of shuffling were recently investigated in
[6], which proposes a probabilistic coding scheme. However,
[6] focuses on using the excess storage at the workers to
increase the coding opportunities and reduce the average
communication overhead. In our recent work [7], we pre-
sented the optimal worst-case communication overhead for
any value of storage for two and three distributed workers. In
another interesting line of work, Coded MapReduce has been
proposed in [8], to reduce the communication between the
mappers and reducers. However, the focus of this paper is
significantly different, where we study the communication
between the centralized master node and the distributed
workers, motivated by the random reshuffling problem as
initiated in [6].

II. SYSTEM MODEL

We consider a master-worker distributed system, where a
master node possesses the entire data-set. The master node
sends batches of the data-set to the distributed workers over a
shared link in order to locally calculate some function or train
a model in a parallel manner. The local results are then fed-
back to the master node, for iterative processing. In order to
enhance the statistical performance of the learning algorithm,
the data-set is randomly permuted at the master node before
each epoch of the distributed algorithm, and then the shuffled
data-points are transmitted to the workers.

We assume a master node which has access to the entire
data-set A = [xT1 , x

T
2 , . . . , x

T
N]T of size Nd bits, i.e., A is a

matrix containing N data points, denoted by x1, x2, . . . , xN ,
where d is the dimensionality of each data point. Treating the
data points {xn} as independent and identically distributed
(i.i.d.) random variables, we have

H(xn) = d, ∀n ∈ {1, . . . , N}, H(A) = Nd. (1a)

At each iteration, indexed by t, the master node di-
vides the data-set A among K distributed workers, given
as At1, A

t
2, . . . , A

t
K , where the batch Atk is designated to

be processed by worker wk, and these batches correspond
to the random permutation of the data-set, πt : A →
{At1, . . . , AtK}. Note that these data chunks are disjoint, and
span the whole data-set, i.e.,

Ati ∩Atj = φ, ∀i 6= j, (2a)

At1 ∪At2 ∪ . . . ∪AtK = A, ∀t. (2b)

Hence, the entropy of any batch Atk is given as

H(Atk) =
1

K
H(A) =

N

K
d , ∀k ∈ {1, . . . ,K}. (3)

After getting the data batch, each worker locally computes
a function (as an example, this function could correspond to
the gradient or sub-gradients of the data points assigned to
the kth worker) fk(Atk), in iteration t,. The local functions
from the K workers are processed later at the master node,
to get an estimate of the function ft(A). For processing
purposes, the data block Atk is needed to be stored by the
worker while processing, therefore, we assume that worker
wk has a cache Ztk with storage capability of size sd bits, for
some real number s, that must at least store the data block Atk
at time t, i.e., if we consider Ztk and Atk as random variables
then the storage constraint is given by

H(Ztk) = sd ≥ H(Atk), ∀k ∈ {1, . . . ,K}. (4)

For the scope of this paper, we focus on the setting of
no-excess storage, corresponding to s = N/K, in which
each worker can exactly store 1/K fraction of the entire
data, i.e., it only stores s = N/K data points which are
assigned to it in that iteration, therefore, the cache content
at time t for worker wk is given by Ztk = Atk, and the
relationship in (4) is satisfied with equality. Henceforth, we
drop the notation Ztk as the cache content and use the notation
for the data batch Atk instead since they are the same for the

no-excess storage setting. In the next epoch t+1, the data-set
is randomly reshuffled at the master node according to the
random permutation πt+1 : A→ {At+1

1 , At+1
2 , . . . , At+1

K }.
The main communication bottleneck occurs during Data

Delivery since the master node needs to communicate some
function of the data to all the workers X(πt,πt+1) of size
R(πt,πt+1)d bits, where R(πt,πt+1) is the rate of the shared
link based on the shuffle (πt, πt+1). Each worker wk should
be able to extract the data points designated for it out of the
incoming data, X(πt,πt+1) from the master node as well as
its locally stored data, i.e., Atk.

We next proceed to describe the data delivery mechanism,
and the associated encoding and decoding functions. The
main process then can be divided into 2 phases, namely
the data delivery phase and the storage update phase as
described next: in the data delivery phase, the master node
sends some function of the data to all the workers. Each
worker should be able to extract the data points designated
for it out of the incoming data from the master node as well
as the data stored in its local cache storage. In the cache
update phase, each worker stores the required data points
for processing purposes, that can also be useful in reducing
the communication overhead in subsequent epochs.

At time t+1, the master node sends a function of the data
batches for the subsequent shuffles (πt, πt+1), X(πt,πt+1) =
φ(At1, . . . , A

t
K , A

t+1
1 , . . . , At+1

K) = φ(πt,πt+1)(A) over the
shared link, where φ is the data delivery encoding function

φ :
[
2
N
K d
]2K
→ [2R(πt,πt+1)d]. (5)

Since X(πt,πt+1) is a function of the data set A, we have

H
(
X(πt,πt+1)|A

)
= 0, (6a)

H
(
X(πt,πt+1)

)
= R(πt,πt+1)d. (6b)

Each worker wk should decode the desired batch At+1
k out

of the transmitted function X(πt,πt+1), and the data stored in
the previous time slot denoted as Atk. Therefore, the desired
data is given by At+1

k = ψ(X(πt,πt+1), A
t
k), where ψ is the

decoding function at the workers

ψ : [2R(πt,πt+1)d]× [2sd]→ [2
N
K d], (7)

which also gives us the decodability constraint as follows

H
(
At+1
k |Atk, X(πt,πt+1)

)
= 0 , ∀k ∈ {1, . . . ,K}. (8)

The update procedure for the no-excess storage setting is
rather straightforward: worker wk keeps the part that does not
change in the new shuffle, i.e., At+1

k ∩Atk. Then it removes
the remaining part of its previously stored content, i.e., Atk \
At+1
k , and stores instead the new part, i.e, At+1

k \Atk.
Our goal in this work is to characterize the informa-

tion theoretic bounds for optimal communication overhead
R∗(πt,πt+1)

(K) for any arbitrary number of workers K, and
any arbitrary shuffle (πt, πt+1), defined as

R∗(πt,πt+1)
(K) = min

(φ,ψ)
R

(φ,ψ)
(πt,πt+1)

(K), (9)

where R
(φ,ψ)
(πt,πt+1)

(K) is the rate of an achievable scheme

defined by the encoding, and decoding functions (φ, ψ).
Subsequently, the optimal worst-case overhead is defined as

R∗worst-case(K) = max
(πt,πt+1)

R∗(πt,πt+1)
(K). (10)

III. PROPERTIES OF DISTRIBUTED DATA SHUFFLING

Before presenting our main results on the communica-
tion overhead of shuffling, we present some fundamental
properties that are satisfied for any two consecutive data
shuffles give by πt : A → {At1, . . . , AtK}, and πt+1 : A →
{At+1

1 , . . . , At+1
K }. We start with the following definitions.

Definition 1 (Shuffle Index): We define

S
(πt,πt+1)
i,j , |Ati ∩At+1

j |, (11)

as the shuffle index representing the number of data points
that are needed by worker wj at time t+1, and are available
at worker wi from the previous shuffle t.

Definition 2 (Shuffle Matrix): We also define the K ×K
shuffle matrix for the permutation pair (πt, πt+1) as

S(πt,πt+1) ,
[
S
(πt,πt+1)
i,j

]
, i, j ∈ {1, . . . ,K}. (12)

Remark 1: The significance of Sπt,πt+1

i,i is that it is the
number of common data points between Ati, and At+1

i . Thus,
these number of data points do not need to be transmitted to
worker wi, and are not involved in the data delivery process.
Using the definition in (11), together with (2), it follows
readily that

K∑
i=1

S
(πt,πt+1)
i,j =

K∑
i=1

|Ati ∩At+1
j | = |At+1

j | =
N

K
,

K∑
j=1

S
(πt,πt+1)
i,j =

K∑
j=1

|Ati ∩At+1
j | = |Ati| =

N

K
. (13)

The properties in (13) imply that the sum of elements across
any row (or column) for the shuffling matrix Sπt,πt+1 is
constant for any shuffle (πt, πt+1) and is equal to N

K .

Remark 2 (Data-flow Conservation Property): We next
state an important property satisfied by any shuffle, namely
the data-flow conservation property:∑

j∈{1,...,K}\i
S
(πt,πt+1)
j,i =

∑
j∈{1,...,K}\i

S
(πt,πt+1)
i,j . (14)

The proof of this property follows directly from (13), and has
the following interesting interpretation: the total number of
new data points that need to be delivered to worker wi (and
are present elsewhere), i.e.,

∑
j 6=i S

(πt,πt+1)
j,i is exactly equal

to the total number of data points that worker wi has that
are desired by the other workers, which is

∑
j 6=i S

(πt,πt+1)
i,j .

Definition 3 (Leftover Index and Leftover Matrix): We
define the leftover index as the number of leftover data-
points needed by worker wj at time t + 1 and available at
wi at time t as

Ω
πt,πt+1

i,j , S
πt,πt+1

i,j −min(S
πt,πt+1

i,j , S
πt,πt+1

j,i). (15)

The leftover matrix for the permutation pair (πt, πt+1) is

defined as

Ωπt,πt+1 , [Ω
πt,πt+1

i,j], i, j ∈ {1, . . . ,K}. (16)
This definition and the significance of the leftover matrix
will become clear in the subsequent sections, when we
describe our proposed coded data delivery scheme. From the
definition in (15), we note that the diagonal entries of the
leftover matrix are all zero.

Remark 3 (Leftover Conservation Property): Analogous
to the data-flow conservation property, we next show that the
leftover indices also satisfy a similar leftover conservation
property, as follows∑

j∈{1,...,K}\i
Ω

(πt,πt+1)
i,j =

∑
j∈{1,...,K}\i

Ω
(πt,πt+1)
j,i . (17)

To prove the above property, we use the definition of
leftovers in (15), to first compute the total leftovers at a
worker wi as follows∑
j∈{1,...,K}\i

Ω
(πt,πt+1)
i,j =

∑
j∈{1,...,K}\i

S
(πt,πt+1)
i,j (18)

−
∑

j∈{1,...,K}\i
min(S

(πt,πt+1)
i,j , S

(πt,πt+1)
j,i).

Similarly, we can also write the total number of leftover data
points coming from all other workers to worker wi∑
j∈{1,...,K}\i

Ω
(πt,πt+1)
j,i =

∑
j∈{1,...,K}\i

S
(πt,πt+1)
j,i (19)

−
∑

j∈{1,...,K}\i
min(S

(πt,πt+1)
i,j , S

(πt,πt+1)
j,i).

From the property in (14), we notice that the quantities in
(18), and (19) are equal and hence we arrive at the proof of
(17). Using the leftover conservation property in (17), we can
show that the sum across rows or columns for the leftover
matrix Ω is constant for any shuffle (πt, πt+1).

Subsequently, we refer to R(πt,πt+1) as the rate for any
achievable scheme (φ, ψ). We also drop the index (πt, πt+1)
from S(πt,πt+1), Ω(πt,πt+1), R(πt,πt+1), and X(πt,πt+1).

IV. MAIN RESULTS

The main contributions of this paper are presented next in
the following three Theorems.

Theorem 1: The optimal communication overhead R∗(K)
for a shuffle characterized by a shuffle matrix S = [Si,j] is
upper bounded as

R∗(K) ≤
K−1∑
i=1

K∑
j=i+1

max(Si,j , Sj,i)

−max
k

∑
j∈{1,...,K}\{k}

Ωk,j . (20)

Theorem 2: The optimal communication overhead
R∗(K), for any arbitrary shuffle matrix S = [Si,j] is lower
bounded as

R∗(K) ≥
K−1∑
i=1

K∑
j=i+1

Sσi,σj , (21)

for any permutation σ: {1, . . . ,K} → {σ1, . . . , σK} of the
K workers.

Theorem 3: The information theoretically optimal worst-
case communication overhead for data shuffling is given by

R∗worst-case(K) =

(
K − 1

K

)
N. (22)

V. PROOF OF THEOREM 1 (UPPER BOUND)

In this section, we present an achievable scheme for the
shuffling process, which gives an upper bound on the com-
munication overhead as stated in Theorem 1. We consider
the random reshuffling process (πt, πt+1), characterized by
a shuffle matrix S = [Si,j], from time t given by the data
batches At1, A

t
2, . . . , A

t
K , to time t + 1 given by the data

batches At+1
1 , At+1

2 , . . . , At+1
K .

We first describe the main idea of our scheme through a
representative example.

Example 1: Consider K = 3 workers (denoted as
{w1, w2, w3}) and N = 15 be the total number of data
points. Consider the following shuffle matrix S = [Si,j]:

S =

 S1,1 S1,2 S1,3

S2,1 S2,2 S2,3

S3,1 S3,2 S3,3

 =

 2 1 2
2 1 2
1 3 1

 (23)

The numbers in the diagonal represents the data points that
remains unchanged across the workers, therefore, they do not
participate in the communication process (see Remark 1).
For uncoded communication, the number of transmitted data
points would be the sum of all non-diagonal entries, i.e.,
Runcoded = 11.

We first show how coding can be utilized to further reduce
the communication overhead. For this example, worker w1

needs S2,1 = 2 data points from w2. Let us denote these
points as {x(1)2,1, x

(2)
2,1}. At the same time, w2 needs S1,2 = 1

data point from w1 (denoted as x1,2). Instead of uncoded
transmission, the master node can send a coded symbol
x
(1)
2,1 + x1,2 which is simultaneously useful for both w1, and
w2 as follows: w1 has x1,2, then it subtracts from the coded
symbol to get the needed data-point x(1)2,1. Similarly, w2 gets
x1,2 using x(1)2,1 and x(1)2,1+x1,2. This coded symbol is refereed
to as an order-2 symbol, since it is useful for two workers
at the same time.

By exploiting all such pairwise coding opportunities, we
can send a total of 4 order 2 symbols as follows: one
coded symbol for {w1, w2}, one for {w1, w3}, and two
for {w2, w3}. After having exhausted all pairwise coding
opportunities, there are still some remaining data points,
which we call as leftovers. The leftover matrix (defined in
(15) and (16)), contains the number of leftover symbols after
combining the order 2 symbols, is given as

Ω =

 Ω1,1 Ω1,2 Ω1,3

Ω2,1 Ω2,2 Ω2,3

Ω3,1 Ω3,2 Ω3,3

 =

 0 0 1
1 0 0
0 1 0

 (24)

If the remaining 3 leftover symbols (sum of all non-zero

elements of Ω) are sent uncoded, then, the total rate would be
Rpaired-coding = Rcoded-order2 +Runcoded-leftovers = 4 + 3 = 7,
therefore, Rpaired-coding < Runcoded.

We now describe the main idea behind our proposed
coding scheme which exploits a new type of coding op-
portunity as follows. Till this end, for each worker, we
combine its incoming leftover symbols with its outgoing
leftover symbols. By the leftover conservation property, these
two are equal. Then, we have the three coded symbols as
follows

{x3,1 + x1,2, x1,2 + x2,3, x2,3 + x3,1}. (25)

The key observation is that any two out of these three coded
symbols are enough for all the workers to get the remaining
leftovers. Two workers decode the needed points in one step,
while the ignored worker decodes in two steps.

For example, if the master node transmits the first two
coded symbols, i.e., x3,1 + x1,2 and x1,2 + x2,3, then the
decoding works as follows: w1, and w2 have x1,2, and
x2,3, respectively, then they can get the needed ones, x3,1,
and x1,2, respectively. Worker w3, however, decodes its
desired symbol through a two step procedure as follows:
since it has x3,1, then it can get x1,2 from the first symbol
x3,1 + x1,2 in the first step. In the second step, from the
second symbol x1,2 +x2,3, it then uses x1,2 to finally obtain
the needed data point x2,3. As a summary, we are able
to send 3 leftovers in 2 coded symbols only. Therefore,
communication overhead of the proposed scheme reduces to
Rproposed-coded = Rcoded-order2 +Rcoded-leftovers = 4 + 2 = 6,
i.e., Rproposed-coded < Rpaired-coding.

We next present our proposed scheme for a general shuffle
matrix and arbitrary number of workers K, which can be
described in the following two phases, namely the first phase
of transmitting order-2 symbols, and the second phase, which
is what we call the leftover combining phase.

A. Phase 1: Order-2 symbols

First we start by transmitting order-2 symbols, that are
useful for two workers at the same time. If we consider two
workers wi, and wj , then worker wi has some data points for
worker wj , given by Ati∩At+1

j , which are Si,j = |Ati∩At+1
j |

data points in total. Similarly, wj has Sj,i data points for wi.
Now, if we take all the data points xi,j ∈ Ati ∩ At+1

j , and
combine them with the points xj,i ∈ Atj ∩ At+1

i to transmit
order-2 symbols jointly useful for wi, and wj , then we are
limited by min(Si,j , Sj,i) number of order-2 symbols for the
pair (i, j). Therefore, we can transmit total number of order-
2 symbols for all possible (i, j) pairs of workers as follows

RPhase 1 =
K−1∑
i=1

K∑
j=i+1

min(Si,j , Sj,i). (26)

B. Phase 2: Coded Leftover Communication

Now, we consider a coded approach for sending the
leftovers after combining the order-2 symbols at phase 1.
For a pair of workers (i, j), after combining min(Si,j , Sj,i)

symbols in phase 1, then we still have Ωi,j = Si,j −
min(Si,j , Sj,i) leftover symbols that are still needed to be
transmitted from wi to wj . Similarly, the leftovers form wj
to wi is given by Ωj,i = Sj,i − min(Si,j , Sj,i). We notice
that if Si,j > Sj,i, then Ωi,j = Si,j−Sj,i > 0, and Ωj,i = 0,
and vice versa. This gives us the following properties

Ωi,j + Ωj,i = max(Ωi,j ,Ωj,i) = |Si,j − Sj,i|,
min(Ωi,j ,Ωj,i) = 0. (27)

Clearly, if Si,j = Sj,i, then Ωi,j = Ωj,i = 0, and there are
no leftover symbols for the pair (i, j). The property in (27)
states that if a worker wi has some data points for wj in
its leftovers (Ωi,j 6= 0), then wj has nothing in its leftovers
needed by wi (Ωj,i = 0). Using the leftover data conservation
property in (17), we first state the following claim:

Claim 1: After combining the order-2 symbols in phase 1,
the total number of symbols at a worker wi needed by other
workers (outgoing leftovers) is equal to the total number of
data points needed by the worker wi from other workers
(incoming needed points).

As a simple scheme, we can use Claim 1 to combine all
the leftovers with the needed data points for every worker
wi. Therefore, each worker can use its own outgoing leftover
data points to get the desired incoming points. However, it
is obvious that this coded scheme achieves the same rate as
if we are sending the leftovers uncoded.

We next present the following claim which is one of the
novel contributions of this paper:

Claim 2: If we combine the leftovers with the needed data
points for any K−1 workers, then under a certain combining
condition (stated below) for the remaining ignored worker,
say wk, it can get its own needed data points without the
need of being combined with its own leftovers.

Before presenting the proof of Claim 2, we first state the
combining condition. In order to ignore a worker wk from
combining its leftovers with the needed points, the following
condition must be satisfied while combining the leftovers
with the needed points for other non-ignored workers:

Definition 4: (Leftover Combining Condition for Ignoring
wk) The needed data-points at the ignored worker wk
from leftovers of other workers xi,k, and independently the
leftovers at wk needed by other workers xk,j should only be
combined with the data-points xj,i as follows

{xk,j + xj,i, xj,i + xi,k} . (28)
In order to understand the combining condition, we use the

following example. Let us consider the following three types
of leftover data points: (i) a data point xi,k that is needed
by an ignored worker wk, and is available at worker wi; (ii)
a data point xk,j that is a leftover at wk, and is needed by
worker wj ; and (iii) a data point xi,j that is a leftover at wi,
and is needed by worker wj .

In order for wk to decode xi,k using the leftover xk,j ,
the leftover coded combining condition should be satisfied
as follows
• While combining the leftovers with the needed points

of wj at the master node, the needed data point xk,j (from

wj’s perspective) should only be combined with the leftover
data point xj,i as follows:

xk,j + xj,i. (29)

• While combining the leftovers with the needed points
of wi at the master node, the leftover data point xi,k (from
wi’s perspective) should only be combined with the needed
data point xj,i as follows:

xj,i + xi,k. (30)

From the above coded combining, we notice the following:
1) Workers wi, and wj still can decode the needed points xj,i,
and xk,j , respectively. 2) Worker wk decodes in two steps:
First, it uses xk,j to get xj,i from the coded symbol in (29).
In the next step, from the second coded symbol in (30) it
uses xj,i to decode the needed data point xi,k.

C. Proof of Claim 2

Now we need to prove formally the decodability at the
ignored worker wk. In order to complete the proof, we need
to show that the number of intermediate points the ignored
worker wk can get in the first step of decoding; are enough
to decode the needed points in the next step of the decoding
process.

We start by partitioning the leftover data points Ωi,j into
non-overlapping (K − 2) parts Ω

(`)
i,j , ` ∈ {1, 2, . . . ,K} \

{i, j}, where Ω
(`)
i,j ≤ Ωi,j is defined as the number of inter-

mediate (unintended since ` 6= {i, j}) data points originally
needed by wj that w` can get using its own leftovers needed
for wi (through wi).

Therefore, Ωi,j can be written as

Ωi,j =
∑

`∈{1,...,K}\{i,j}
Ω

(`)
i,j . (31)

As shown in Figure 1, wK for example uses its own
leftovers needed by w1 (through w1), i.e., ΩK,1 points, to
get unintended points (labelled with blue) that are needed by
the other workers {2, 3, . . . ,K−1}, i.e., Ω

(K)
1,2 , . . . ,Ω

(K)
1,K−1.

Therefore, the total number of unintended (intermediate) data
points recovered by wK using ΩK,1 data points is

ΩK,1 =
K−1∑
j=2

Ω
(K)
1,j . (32)

Generally, through the combined symbols for wi, the number
of unintended data points which worker w` can obtain is

Ω`,i =
∑

j={1,...,K}\{i,`}
Ω

(`)
i,j . (33)

Let us assume now without loss of generality, that the
ignored worker is the last worker wK . As shown in Figure 1,
the ignored worker wK cannot get the needed data-points
(colored chunks above the dotted lines) directly. Instead, wK

uses its leftovers
K−1∑
i=1

ΩK,i to get first unintended intermedi-

ate points (blue labelled points Ω
(K)
1,j through w1, red labelled

Worker wK ignored

��. . .

...

...

. . .

w1

Coded combining for

w2

Coded combining for

wK�1

Coded combining for

. . .

��

��

��

...

��

��

��

...

��

��

⌦2,1

⌦3,1

⌦(K�1),1

⌦1,2

⌦3,2

⌦(K�1),2

⌦1,(K�1)

⌦2,(K�1)

⌦(K�2),(K�1)

...

. . .
..� ...

.. �� ...
..

⌦K,1 ⌦K,2 ⌦K,(K�1)

⌦
(K)
1,2

⌦
(K)
1,3

⌦
(K)
1,(K�1)

⌦
(K)
2,1

⌦
(K)
2,3

⌦
(K)
2,(K�1)

⌦
(K)
(K�1),1

⌦
(K)
(K�1),2

⌦
(K)
(K�1),(K�2)

⌦
(2)
1,K

⌦
(3)
1,K

⌦
(K�1)
1,K

⌦
(K�1)
2,K

⌦
(3)
2,K

⌦
(1)
2,K ⌦

(1)
(K�1),K

⌦
(1)
(K�1),K

⌦
(K�2)
(K�1),K

⌦1,1 = 0

⌦2,2 = 0

⌦(K�1),(K�1) = 0

�

...

�

�

�

⌦1,K

⌦2,K

⌦(K�2),K

⌦(K�1),K

⌦K,K = 0

���

...

���

���

���

⌦1,K

⌦2,K

⌦(K�2),K

⌦(K�1),K

⌦K,K = 0

Step 1

get Intermediate points

wK u ses l ef tov er s to

Step 2

th e need ed points

wK u ses I nter m ed ia te
points to get

Fig. 1. The leftover combining process after ignoring wK . Below the solid line is the first step of decoding for the ignored worker where wK gets
intermediate points using its leftover points. Above the solid line is the second step of decoding, where wK uses the intermediate points to decode the
needed points.

points Ω
(K)
2,j through w2, etc.), which are shown below the

solid line in the Figure.
In order for wK to make use of the intermediate symbols

Ω
(K)
i,j , {(i, j) ∈ {1, . . . ,K − 1}, i �= j}, every symbol

xi,j of them should be paired up with data points useful
for wK in the coded combining for wj , i.e, xi,j + xj,K ,
which is satisfying the combining constraint in Definition 4.
Following the relation in (33), the actual total number of
unintended symbols wK can get in the first step of decoding
is given by

K−1∑
i=1

ΩK,i =

K−1∑
i=1

∑
j={1,...,K−1}\{i}

Ω
(K)
i,j

=
∑

(i,j)∈{1,...,K−1}
i�=j

Ω
(K)
i,j . (34)

Using the unintended symbols that wK gets through wi

and are originally needed by wj , i.e., Ω
(K)
i,j , it should be

able to decode the needed symbols Ω
(i)
j,K . As an example,

wK gets the blue unintended data points Ω
(K)
1,2 , . . . ,Ω

(K)
1,K−1

through w1, then these data points are used to get the blue
labelled needed points Ω

(1)
2,K , . . . ,Ω

(1)
K−1,K as shown above

the solid line in Figure 1.
The minimum number of unintended symbols wK needs to

decode out of Ωi,j points in the first step, should be enough
to decode (equal to) the needed part Ω(i)

j,K in the next step

of decoding. From the unintended data recovery condition in
(33), Ω(i)

j,K is given by

Ω
(i)
j,K = Ωi,j −

∑
�={1,...,K−1}\{i,j}

Ω
(i)
j,�. (35)

Therefore, the total number of unintended symbols that
the worker wK should at least have in order to decode all
the needed points in the next step is given by

K−1∑
j=1

Ωj,K
(a)
=

∑
(i,j)∈{1,...,K−1}

i�=j

Ω
(i)
j,K

(b)
=

∑
(i,j)∈{1,...,K−1}

i�=j

Ωi,j −
∑

(i,j,�)∈{1,...,K−1}
i�=j �=�

Ω
(i)
j,�

(c)
=

∑
(i,j)∈{1,...,K−1}

i�=j

Ωi,j −
∑

(i,j,�)∈{1,...,K−1}
i�=j �=�

Ω
(�)
i,j

=
∑

(i,j)∈{1,...,K−1}
i�=j

Ωi,j −
∑

�∈{1,...,K−1}\{i,j}
Ω

(�)
i,j


(d)
=

∑
(i,j)∈{1,...,K−1}

i�=j

Ω
(K)
i,j , (36)

where (a) follows from (31), (b) follows from the constraint

in (35), (c) by switching the sum indices, and (d) from the
definition in (31). From (34) and (36), it now follows that the
total number of intermediate points the ignored worker wK
can decode in the first step is exactly equal to the minimum
number it must decode in order to get the needed points in
the second step, which completes the proof of Claim 2.

Hence, the total communication overhead of phase 2 is the
total of all leftover symbols (except the ignored worker k),
and is given as:

RPhase 2 =

ignoring wk︷ ︸︸ ︷∑
i∈{1,...,K}\{k}

leftovers at wi︷ ︸︸ ︷∑
j∈{1,...,K}\{i}

Ωi,j (37)

=
K∑
i=1

∑
j∈{1,...,K}\{i}

Ωi,j −
∑

j∈{1,...,K}\{k}
Ωk,j

=
K∑
i=2

i−1∑
j=1

Ωi,j +
K−1∑
i=1

K∑
j=i+1

Ωi,j −
∑

j∈{1,...,K}\{k}
Ωk,j

(38)

(a)
=

K−1∑
i=1

K∑
j=i+1

Ωj,i +
K−1∑
i=1

K∑
j=i+1

Ωi,j −
∑

j∈{1,...,K}\{k}
Ωk,j

(39)

=

K−1∑
i=1

K∑
j=i+1

(Ωi,j + Ωj,i)−
∑

j∈{1,...,K}\{k}
Ωk,j (40)

(b)
=

K−1∑
i=1

K∑
j=i+1

max(Ωi,j ,Ωj,i)−
∑

j∈{1,...,K}\{k}
Ωk,j , (41)

where (a) follows by swapping the indices j and i in the first
summand, and (b) follows from the property of leftovers in
(27), which states that that min(Ωi,j ,Ωj,i) = 0.

Hence, the total communication overhead of the proposed
scheme is the total number of transmitted symbols over
Phases 1 and 2, which is the sum of (26), and (41), and
is given by

R(K) = RPhase 2 +RPhase 2

=
K−1∑
i=1

K∑
j=i+1

min(Si,j , Sj,i) +
K−1∑
i=1

K∑
j=i+1

max(Ωi,j ,Ωj,i)

−
∑

j∈{1,...,K}\{k}
Ωk,j

(a)
=

K−1∑
i=1

K∑
j=i+1

max(Si,j , Sj,i)−
∑

j∈{1,...,K}\{k}
Ωk,j , (42)

where (a) follows from the property in (27). In order to get
the lowest possible rate for this scheme, which is also an
upper bound for the optimal communication overhead, the
choice of the ignored worker wk can be optimized to have

the maximum number of leftovers, which is given by

R∗(K)

≤ min
k

 K−1∑
i=1

K∑
j=i+1

max(Si,j , Sj,i)−
∑

j∈{1,...,K}\{k}
Ωk,j


=
K−1∑
i=1

K∑
j=i+1

max(Si,j , Sj,i)−max
k

 ∑
j∈{1,...,K}\{k}

Ωk,j

 .

(43)

This completes the proof of Theorem 1.

VI. PROOF OF THEOREM 2 (LOWER BOUND)

In this section, we present the lower bound on the optimal
communication overhead for any arbitrary random shuffle
between two subsequent epochs t, and t+1 given by a shuffle
matrix S = [Si,j], as stated in Theorem 2.

Nd
(a)
= H(A)

(b)
= I(A;At1, . . . , A

t
K , X) +H(A|At1, . . . , AtK , X)

(c)
= H(At1, . . . , A

t
K , X)−H(At1, . . . , A

t
K , X|A)

(d)
= H(Atσ1

, Atσ2
, . . . , AtσK , X)

(e)
= H(AtσK , X) +

K−1∑
i=1

H(Atσi |Atσi+1
, . . . , AtσK , X)

(f)

≤ H(AtσK) +H(X) +
K−1∑
i=1

H(Atσi |At+1
σi+1

, . . . , At+1
σK)

(g)

≤ Nd

K
+Rd+

K−1∑
i=1

[
Nd

K
− I(Atσi ;A

t+1
σi+1

, . . . , At+1
σK)

]

= Nd+Rd−
K−1∑
i=1

I(Atσi ;A
t+1
σi+1

, . . . , At+1
σK), (44)

where (a) follows from (3), (b) and (c) are due to the fact
that I(A;B) = H(A) −H(A|B) = H(B) −H(B|A), and
from (2b) where the data-batches at any time span A, (d)
from (2b) and (6a), where the data-batches and X are all
functions of the data-set A, and σ is any permutation of the
the set {1, . . . ,K}, (e) from the chain rule of entropy, (f)
from the decoding constraint in (8), the fact that conditioning
reduces entropy, and the fact H(A,B) ≤ H(A)+H(B), and
(g) from (3), (6b), and the fact H(A|B) = H(A)−I(A;B).
By rearranging the inequality in (44), we arrive at

Rd ≥
K−1∑
i=1

I(Atσi ;A
t+1
σi+1

, . . . , At+1
σK)

=
K−1∑
i=1

K∑
j=i+1

I(Atσi ;A
t+1
σj) =

K−1∑
i=1

K∑
j=i+1

Sσi,σjd. (45)

Therefore, the lower bound on the communication overhead

is given by R∗(K) ≥
K−1∑
i=1

K∑
j=i+1

Sσi,σj , completing the proof

of Theorem 2.

VII. PROOF OF THEOREM 3

In this section, we prove the optimality of our proposed
scheme for the worst-case shuffle, which describes the max-
imum communication overhead across all possible shuffles.

A. Achievability (Worst-case Shuffle)

We start by using the upper bound described in Theorem 1,
where we use a variation of the expression in (20) by adding
(26), and (37) as follows

R(K)
(a)
=

K−1∑
i=1

K∑
j=i+1

min(Si,j , Sj,i) +
∑

i∈{1,...,K}\{k}

K∑
j=1

Ωi,j

(b)
=

K−1∑
i=1

K∑
j=i+1

min(Sσi,σj , Sσj ,σi) +
K−1∑
i=1

K∑
j=1

Ωσi,σj

(c)
=

K−1∑
i=1

K∑
j=i+1

min(Sσi,σj , Sσj ,σi) +
K−1∑
i=1

K∑
j=1

Sσi,σj

−
K−1∑
i=1

K∑
j=1

min(Sσi,σj , Sσj ,σi)

(d)

≤
K−1∑
i=1

K∑
j=1

Sσi,σj
(e)
=

K−1∑
i=1

N

K
=

(
K − 1

K

)
N, (46)

where (a) holds because Ωi,i = 0, (b) follows by considering
a permutation σ = {σ1, . . . σK} of the workers, where σK =
k is the ignored worker, (c) follows from the definition of
Ωi,j in (15), (d) is due to the fact that min(Si,j , Sj,i) ≥ 0,
and (e) from the property in (13). Since this derived upper
bound is found for any arbitrary shuffle, it is also an upper
bound for the optimal worst-case communication overhead.
Hence, we have

R∗worst-case(K) ≤
(
K − 1

K

)
N. (47)

B. Converse (Information Theoretic lower bound)

We start by assuming a particular data shuffle, and then
specialize our lower bound (obtained in Theorem 2) for
this particular shuffle. We use the fact that the worst-case
overhead R∗worst-case(K) is lower bounded by the overhead
of any shuffle R(K), therefore the lower bound found for
this given shuffle works as a lower bound for the worst-case
as well, i.e.,

R∗worst-case(K) ≥ R∗(K). (48)

We assume a data shuffle matrix S described as follows:
For some permutation of the K workers given by σ =
{σ1, σ2, . . . , σK}, any worker wσi+1 at time t+1 needs only
all the data points that wσi has from the previous shuffle at
time t, which can be described as

Sσi,σj =

{
N
K , j = i+ 1,
0, otherwise.

(49)

Therefore, using the lower bound in Theorem 2 given by
(21), and using (48), the lower bound for this particular
shuffle, and hence the optimal worst-case shuffle, can be

found as

R∗worst-case(K) ≥ R∗(K) ≥
K−1∑
i=1

K∑
j=i+1

Sσi,σj

=
K−1∑
i=1

Sσi,σi+1
=
K−1∑
i=1

N

K
=

(
K − 1

K

)
N.

(50)

From (47), and (50), it follows that the information theoret-
ically optimal worst case communication overhead is

R∗worst-case(K) =

(
K − 1

K

)
N. (51)

VIII. CONCLUSION

In this paper, we presented new results on the minimum
necessary communication overhead for the data shuffling
problem. We proposed a novel coded-shuffling scheme which
exploits a new type of coding opportunity, namely coded
leftover combining in order to reduce the communication
overhead. Our scheme is applicable to any arbitrary shuffle,
and for any number of distributed workers. We also pre-
sented an information theoretic lower bound on the optimal
communication overhead that is also applicable for any ar-
bitrary shuffle. Finally, we showed that the proposed scheme
matches this lower bound for the worst-case communication
overhead across all shuffles, and thus characterizes the infor-
mation theoretically optimal worst-case overhead.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2010.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proceedings of IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), May 2010, pp. 1–10.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proceedings of the 6th Symposium on Operating
System Design and Implementation (OSDI), 2004.

[4] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo, “Why Random Reshuf-
fling Beats Stochastic Gradient Descent,” CoRR, vol. abs/1510.08560,
2015. [Online]. Available: http://arxiv.org/abs/1510.08560

[5] S. Ioffe and C. Szegedy, “Batch Normalization Accelerating
Deep Network Training by Reducing Internal Covariate
Shift,” CoRR, vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,”
CoRR, vol. abs/1512.02673, December 2015. [Online]. Available:
http://arxiv.org/abs/1512.02673

[7] M. Attia and R. Tandon, “Information Theoretic
Limits of Data Shuffling for Distributed Learning,”
in Proceedings IEEE Global Communications Conference
(GLOBECOM), Dec. 2016. [Online]. Available: Available:
https://www.dropbox.com/s/lk00u2nuf7tiogr/GC2016.pdf?dl=0

[8] S. Li, M. A. Maddah-Ali, and S. Avestimehr, “Coded MapReduce,” in
Proceedings of the 53rd Annual Allerton conference on Communication,
Control, and Computing, Monticello, IL, Sep. 2015, pp. 964–971.

