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Abstract— We consider the problem of secure delivery in a
single-hop caching network with a central server connected
to multiple end-users via an insecure multi-cast link. The
server has a database of a set of files (content) and each
user, which is equipped with a local cache memory, requests
access one of the files. In addition to delivering users’ requests,
the server needs to keep the files (information-theoretically)
secure from an external eavesdropper observing the underlying
communications between the server and users. We focus on an
important class of content placement strategies where the pre-
fetching is required to be uncoded and caches are filled with
uncoded fragments of files. In this paper, we establish the exact
characterization of secure rate-memory trade-off for the worst-
case communication rate through a matching converse under
the constraint of uncoded cache placement where the number
of users is no larger than the number of files in the database.

I. INTRODUCTION

The rapid growth of wireless data usage in the past two
decades required researchers to look for innovative ways
to avoid data congestion especially during peak traffic [1].
Video or Internet data traffic is typically characterized by
asynchronous content reuse, i.e., there are few popular files
which are in high demand among users, but are requested
at arbitrary times. To cater such traffic demands, especially
in applications such as video-on-demand, proactive caching
of popular content during off-peak periods can reduce the
communication load during peak time. This scenario of
caching/storage and delivery, wherein some fragments of
the requested files are cached locally, and the remaining
fragments are delivered by the remote server via separate
unicast transmissions, has been extensively studied in liter-
ature [2], [3]. However, traditional caching schemes are far
from optimal and also, scalability becomes a concern as the
number of users in the system increases.

Using opportunities of multicast delivery and coding,
Maddah-Ali and Niesen proposed an information theoretic
formulation of the caching problem, establishing the approxi-
mate rate-memory tradeoff between the transmission rate and
the cache size [4]. In their scheme, the server communicates
with a set of users with uniform cache size, over a shared link
network, with the caching scheme objective to minimize the
worst case transmission rate over all feasible user demands.
Their coded caching scheme has a significant improvement
over traditional caching schemes and was also proven to
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be optimal under the constraint of uncoded cache place-
memnt [5], [6]. This fundamental understanding of caching
networks heralded a series of interesting results ranging from
proposing improved lower bounds [7]–[9], and achievability
schemes to the application of coded caching scheme on dif-
ferent topologies [10], changing parameters such as different
cache [11], [12], and file size [13], investigating caching in
Device-to-Device (D2D) communication networks [14] as
well as decentralized variations [15]. Some of the notable
developments, results and challenges in these directions are
summarized in [16].

With the advent of new technologies and networks suited
for 5G communication, the study of caching problems with
security constraints in ultra-dense networks is important [17].
Consequently, secure transmission of messages, and their
confidentiality become of one of the important aspects in
caching problems and are investigated in recent works [18]–
[21]. In [18], the concept of secure delivery is introduced
with the goal of securely delivering the files to the users,
while communicating over a public channel which overhears
by an external eavesdropper. In [19], the notion of secretive
caching is presented where any user should only be able
to obtain information about the file it has requested and
not other files requested by the other users. The secretive
constraint models a video-on-demand system in which users
need to pay each time for their requested content and no user
should be able to obtain any information of other files.

Contributions: In this paper we characterize the infor-
mation theoretically optimal secure delivery rate when the
number of files in the server, N , is at least as large as the
number of the users, K, i.e., N ≥ K in the existence of an
external eavesdropper, and under uncoded cache placement
constraint. We find that the secure delivery scheme intro-
duced in [18] is in fact information-theoretically optimal. In
our converse proof, we follow a novel bounding methodology
similar to the recent result in [5], where the optimal uncoded
cache placement problem is considered. The novel part in our
converse proof is introducing the secure delivery constraint.
This additional constraint together with the constraint that
each user should be able to decode its requested file deliver a
new linear programming. Then, we solve the resultant linear
programming subject to problem constraints (file size and
cache constraints) in order to find the best lower bounds
over different regimes of the available storage. Furthermore,
we demonstrate that the obtained lower bound matches with
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Fig. 1. System model for a single-hop caching network with secure delivery.

the achievable bound in [18].
Notations: [n1 : n2] represents the set of all integers

between n1, and n2, i.e., {n1, n1 + 1, . . . , n2}. Throughout
the paper

(
n
k

)
= 0 for k < n, and k, n < 0. We denote the

bold small letters for ordered sets. In order to describe
subsets of ordered sets, we use the subscript to give the
indexes of the elements being chosen from the set, e.g. for
the ordered set a = (a1 . . . , an), a[1:4] = (a1, a2, a3, a4).
We denote random variables (RVs) by capital letters. The
subscript of a set of ordered RVs is used for short notation
of a subset of a set of ordered RVs, e.g., for a set of RVs
X1, . . . , Xn, we use X[2:4] to denote X2, X3, and X4. For
files, the sets in subscript is used to denote the partition of
the file only stored by all the users indexed by the set, while
the sets between parentheses in superscript is the total part of
the file stored at the user indexed with that set, e.g., F ({1,2})

is the union of the parts stored in users 1, and 2 about the
file F , while F{1,2} is the part of F stored at both users 1,
and 2.

II. PROBLEM SETUP

We consider a single-hop content delivery network with
a central server connected to K users through a noiseless
multicast link. An external wiretapper can observe com-
munications from the server to the users and intends to
eavesdrop the files as shown in Figure 1. We assume that
a user can request access to any one of the files at a given
time. In addition to satisfying users’ demands, messages
sent over the multicast link must be kept information-
theoretically secure from the external wiretapper. The central
server has a database of N independent files denoted by
F = {F1, F2, . . . , FN}, where each file is of size L ∈ N
bits and is uniformly distributed over

[
1 : 2L

]
. Each user

is equipped with a cache memory of size MF bits for some
1 ≤ M ≤ N , where M is the normalized cache memory size.
In order to satisfy the security constraint, a randomness in
the form of keys are introduced, which occupy a fragment of
each user’s cache. Subsequently, these keys can be used in
the delivery phase to achieve information-theoretically secure
delivery. For this, the server generates a set of orthogonal
keys denoted by K (which are also independent of files) to
be shared with the users.

A secure caching scheme has two key phases of operation,

namely the content placement phase and the secure content
delivery phase.

Content Placement Phase: Each user k ∈ [1 : K] stores
a combination of bits from each file

Qk � φk

(
F[1:N ]

)
, (1)

where φk is the caching function at user k

φk :
[
1 : 2L

]N →
[
1 : 2�MDL�

]
, (2)

as well as some keys shared with the server, denoted as
K(k) ⊆ K of size MkL bits, where M = MD + MK .
Therefore, the cache content of user k is Zk = Qk∪K(k). For
uncoded placement of the files in which each user is allowed
to cache any subset of bits of the files in an uncoded manner,
Zk is given as

Zk =
(
F

(k)
1 , . . . , F

(k)
N ,K(k)

)
, (3)

where F
(k)
n is the combination of bits of file Fn stored at

the cache Zk.
To generalize the cache placement, let us define Fn,W as

the part of file Fn, for n ∈ [1 : N ], that is only stored at the
cache of the users given by the set W . Also, we define KW
as the key shared only among the cache of the users given
by the set W . Therefore, generally each file Fn, similarly the
keys K, is composed of 2K partitions for W ∈ 2[1:K], where
2[1:K] is the power set containing all the possible subsets of
the set [1 : K] including the empty set, i.e.,

Fn = ∪
W⊆[1:K]

Fn,W , (4)

K = ∪
W⊆[1:K]

KW . (5)

Also, if we consider Fn,W , and KW as random variables,
then the following entropies can be written

H(Fn,W) = |Fn,W |L, H(KW) = |KW |L, (6)

where |Fn,W |, and |KW | are the size of the partition Fn,W ,
and the keys KW normalized by the file size L.

For the file size constraint, we have

N =
1

L
H(F[1:N ])

(a)
=

1

L

N∑

n=1

∑

W⊆[1:K]

H(Fn,W)

(b)
=

K∑

t=0

N∑

n=1

∑

W⊆[1:K]:
|W|=t

|Fn,W | =
K∑

t=0

xt, (7)

where (a), and (b) follow from (4), and (6), respectively, and
xt ≥ 0 is defined as

xt �
N∑

n=1

∑

W⊆[1:K]: |W|=t

|Fn,W |, t ∈ [0 : K]. (8)

For the cache memory constraint, we have,

KM ≥ 1

L

K∑

k=1

H(Zk)
(a)
=

1

L

K∑

k=1

H
(
F

(k)
[1:N ],K

(k)
)



(b)
=

1

L

K∑

k=1

(
H
(
F

(k)
[1:N ]

)
+H

(
K(k)

))

(c)
=

1

L

N∑

n=1

∑

W⊆[1:K]:
W6=φ

|W|H(Fn,W) +
1

L

∑

W⊆[1:K]:
W6=φ

|W|H(KW)

(d)
=

K∑

t=1

t




N∑

n=1

∑

W⊆[1:K]:
|W|=t

|Fn,W |+
∑

W⊆[1:K]:
|W|=t

|KW |




(e)
=

K∑

t=0

txt +
K∑

t=1

tyt, (9)

where (a) follows from (3), (b) is due to the fact that the
keys are independent of the files, (c) follows from (4), and
the fact that when summing the contents in the caches, the
partition Fj,W is summed |W| number of times, (d) follows
from (6), and yt ≥ 0 in (e) is defined as

yt ,
∑

W⊆[1:K]: |W|=t
|KW |, t ∈ [0 : K]. (10)

Data Delivery Phase: Each user k reveals its re-
quest/demand dk which can be any of the N files. The
users’ demand vector is given by d = (d1, d2, . . . , dK),
where d ∈ [1 : N ]

K . The server generates the input Xd as a
function of the files and the keys

Xd , ψd

(
F[1:N ],K

([1:K])
)
, (11)

and sends it over the shared link to the users, where ψd for
the demand vector d

ψd :
[
1 : 2L

]N ×K →
[
1 : 2bRdLc

]
, (12)

is the encoding function and Rd is the server transmission
rate. A secure caching scheme consists of NK encoding
functions. Upon receiving Xd, each user k ∈ [1 : K] gen-
erates an estimate of the requested file F̂dk as a function of
its cache content Zk, and the received messages from the
server Xd

F̂dk , µd,k(Xd, Zk), (13)

where µd,k is the decoding function

µd,k :
[
1 : 2bMLc

]
×
[
1 : 2bRdLc

]
→
[
1 : 2L

]
. (14)

A caching scheme with secure delivery comprises of
KNK decoding functions. In the following, we define a se-
cure achievable rate-memory tradeoff for a demand vector d,
and the rate-memory tradeoff for the worst case transmission
rate.

Definition 1 (Achievable Rate-Memory Tradeoff): The
rate-memory tradeoff (M,Rd) is securely achievable for
a demand vector d if there exists a caching scheme with
secure delivery such that for some εL → 0, and δL → 0
as L→∞ (large enough file size L), the following two
conditions are satisfied.

Decodability Constraint: Each user should be able to

decode its requested file from the server transmission and
its cache contents, which gives the following condition

H(Fk|Zk, Xd) ≤ εL, ∀k ∈ [1 : K]. (15)

Secure Delivery Constraint: Messages sent over the
shared link must not reveal any information about any of
the requested files at the external eavesdropper, i.e.,

I(F1, F2, . . . , FN ;Xd) ≤ δL. (16)
Definition 2 (Worst-Case Transmission Rate): For any

achievable scheme characterized by the functions (φ, ψ, µ),
the rate-memory tradeoff for the worst-case transmission
rate over all feasible demands d is defined as

R(φ,ψ,µ)
wc (M) = max

d∈[1:N ]K
Rd(M). (17)

We are interested in minimizing the worst-case transmission
rate among all the caching scheme. Therefore, we can define
the optimal worst-case transmission rate as

R∗wc(M) = min
(φ,ψ,µ)

R(φ,ψ,µ)
wc (M). (18)

III. MAIN RESULTS AND DISCUSSIONS

In this section, we present the main results and provide
an example of a basic caching network with secure delivery
constraint to explain the intuition behind the converse proof
and highlight the main ideas.

Theorem 1: For a secure caching setting with K end
users, a database of N files and with cache size constraint
of M files at each user, the delivery and key distribution
schemes presented in [18] under the constraint of uncoded
cache placement and N ≥ K is optimal. The optimal worst-
case communication load for this setting is

R∗wc(M) = K

(
1− M − 1

N − 1

)(
1

1 +KM−1
N−1

)
, (19)

for M ∈
{
N−1
K t+ 1 : t ∈ [0 : K]

}
. Furthermore, for M 6∈{

N−1
K t+ 1 : t ∈ [0 : K]

}
, R∗wc(M) is the lower convex en-

velope of its values at M ∈
{
N−1
K t+ 1 : t ∈ [0 : K]

}
.

The achievability follows from the results in [18], and
hence we focus on the proof of the converse, i.e., a lower
bound on R∗wc(M). The complete proof of the converse is
presented in Section IV. In the following, we present the
achievability and converse proofs for the example of K = 3
users and database of N = 3 files to highlight the key aspects
and intuition behind the ideas involved in the proofs. Finally,
we show that the worst case communication load R∗wc(M)
in Theorem 1 is optimal for this setting.

Example 1: Consider the caching network with K = 3
users, a database of N = 3 files and with normalized cache
memory size of 1 ≤M ≤ 3 at each user. The server can
communicate with the users over an insecure shared link
and there is an external wiretapper intending to eavesdrop
the files using the server transmission. In the following, we
first state the achievability scheme for this setting and then
we present the novel converse proof.
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Achievability Scheme:

From Theorem 1, we have M ∈ 3−1
3 t+ 1 for t ∈ {0, 1, 2}

which gives M ∈ {1, 5/3, 7/3, 3}, the possible cache sizes
for each user. The cases t = 0 and t = 3 are trivial. When
t = 0, or, equivalently M = 1, the server shares an individual
key of size L bits with each user. Then, in the delivery phase,
the server encrypts the requested file by each user using
the key shared with that user and sends it over the shared
link. Therefore, in this case, the pair (M,Rd) = (1, 3) is
achievable. For the case t = 3 (M = 3), all the files can be
stored in the cache memory of each user and subsequently
(M,Rd) = (3, 0) is achievable. For t ∈ {1, 2}, we use the
secure coded caching scheme in [18] as in Figures 2a, and
2b. Each file Fn is partitioned into

(
3
t

)
fragments so that

Fn = ∪
W⊆[1:3]:|W|=t

Fn,W , ∀n ∈ [1 : 3] (20)

where the size of each subfile is L/
(
3
t

)
. In the cache

placement phase, the server stores the subfiles Fn,W in the
cache of user k if k ∈ W . In order to satisfy the secure
delivery constraint, the server generates an independent key
of size L/

(
3
t

)
for every subset W of t+1 users. Then, KW

is stored in the cache of user k if k ∈ W . When t = 1, the
contents of users’ caches are

Z1 =
{
F1,{1}, F2,{1}, F3,{1},K{1,2},K{1,3}

}
,

Z2 =
{
F1,{2}, F2,{2}, F3,{2},K{1,2},K{2,3}

}
,

Z3 =
{
F1,{3}, F2,{3}, F3,{3},K{1,3},K{2,3}

}
. (21)

Therefore, the total used memory at each user is M = 5
3L

bits which does not violate the cache memory constraint.
Similarly, for the case t = 2, the contents of each user’s
cache is as follows

Z1 =
{
F1,{1,2}, F2,{1,2}, F3,{1,2}, F1,{1,3}, F2,{1,3}, F3,{1,3},

K{1,2,3}
}
,

Z2 =
{
F1,{1,2}, F2,{1,2}, F3,{1,2}, F1,{2,3}, F2,{2,3}, F3,{2,3},

K{1,2,3}
}
,

Z3 =
{
F1,{1,3}, F2,{1,3}, F3,{1,3}, F1,{2,3}, F2,{2,3}, F3,{2,3},

K{1,2,3}
}
, (22)

where the size of each fragment of files and each key is L/3,
and the total used memory at each user is M = 7

3L bits. In

the delivery phase, the demands are revealed to the server.
Without loss of generality, let us assume that d = (1, 2, 3).
Then, the server needs to securely deliver the fragments of
file requested by that user and not stored in its cache. When
t = 1, the server sends the messages

Xd =





F1,{2} ⊕ F2,{1} ⊕K{1,2},

F1,{3} ⊕ F3,{1} ⊕K{1,3},

F2,{3} ⊕ F3,{2} ⊕K{2,3},

over the shared link. The total number of bits sent by the
server over the shared link in this case is 3 × L/3 = L
bits. Therefore, the rate-memory pair (M,Rd) = (5/3, 1) is
achievable. Now, for t = 2, the server sends the following
message over the shared link

Xd = F1,{2,3} ⊕ F2,{1,3} ⊕ F3,{1,2} ⊕K{1,2,3}, (23)

to the users. In this case, the total number of bits that
the server sends over the shared link is L/3 bits and the
rate-memory pair (M,Rd) = (7/3, 1/3) is achievable. In
the above, we showed that the set of rate-memory pairs
{(1, 3), (5/3, 1), (7/3, 1/3), (3, 0)} are achievable. As shown
in Figure 2c, using the memory-sharing, we can achieve the
linear curves 6−3M , 8/3−M , and 3/2−M/2 between the
rate-memory pairs {(1, 3) , (5/3, 1)}, {(5/3, 1) , (7/3, 1/3)},
and {(7/3, 1/3) , (3, 0)}, respectively.

Converse Proof:
The file size, and the cache size constraints are given in

(7), and (9), respectively, for this example as
3∑

t=0

xt = 3, (24)

3∑

t=0

txt +

3∑

t=1

tyt ≤ 3M. (25)

We define σ : (1, 2, 3) → (σ1, σ2, σ3) as a permutation
of the ordered set (1, 2, 3). Using the decoding constraint in
(15), we can establish the following bound

H(F[1:3]) = I(Xd, Z[1:3];F[1:3]) +H(F[1:3]|Xd, Z[1:3])

(a)

≤ H(Xd, Z[1:3])−H(Xd, Z[1:3]|F[1:3]) + 3εL



= H(Xd, Z[1:3])−H(Xd, F
([1:3])
[1:3] ,K([1:3])|F[1:3]) + 3εL

= H(Xd, Z[1:3])−H(K([1:3])|F[1:3])

−H(Xd|K([1:3]), F[1:3]) + 3εL
(b)
= H(Xd, Z[1:3])−H(K([1:3])) + 3εL
(c)
= H(Xd) +H(Zσ1

|Xd) +H(Zσ2
|Xd, Zσ1

)

+H(Zσ3 |Xd, Zσ1 , Zσ2)−H(K([1:3])) + 3εL
(d)

≤ R∗dL−H(K([1:3])) +H(F
(σ1)
[1:3] ) +H(K(σ1))

+H(F
(σ2)
dσ[2:3]

|F (σ1)
dσ[2:3]

) +H(K(σ2)|K(σ1))

+H(F
(σ3)
dσ3
|F (σ[1:2])

dσ3
) +H(K(σ3)|K(σ[1:2])) + 3εL

(e)
= R∗dL−H(K([1:3])) +H(K([1:3])) +H(Fdσ1 |F

(σ1)
dσ1

)

+H(Fdσ2 |F
(σ[1:2])

dσ2
) +H(Fdσ3 |F

([1:3])
dσ3

) + 3εL, (26)

where (a) follows from the decodability constraint in (15),
(b) is due to the facts that the keys are independent of files,
and Xd is a function of the files and keys as given in (11),
(c) from the chain rule of entropy, (d) follows from the
cache content in (3), and the fact that conditioning reduced
entropy, and (e) follows from the chain rule of entropy.
Hence, following Remark 1 we obtain a lower bound on
R∗wc as follows

R∗wc + 3εL/L ≥
1

L
H(Fdσ1 |F

(σ1)
dσ1

) +
1

L
H(Fdσ2 |F

(σ[1:2])

dσ2
)

+
1

L
H(Fdσ3 |F

([1:3])
dσ3

)

(a)
=

1

L
H(Fd1,φ, Fd1,σ2 , Fd1,σ3 , Fd1,σ[2:3]

)

+
1

L
H(Fd2,φ, Fd2,σ3

) +
1

L
H(Fd3,φ)

(b)
= |Fd1,φ|+ |Fd1,σ2

|+ |Fd1,σ3
|+ |Fd1,σ[2:3]

|
+ |Fd2,φ|+ |Fd2,σ3

|+ |Fd3,φ|, (27)

where (a), and (b) follow from (4), and (6), respectively.

For all the 3! permutations σ, and all the 3! possible
demand vectors d, we get 3! × 3! = 36 lower bounds.
Summing them up, we obtain the following bound

36R∗wc ≥ 36
3∑

j=1

(|Fj,φ|) + 12
3∑

j=1

(|Fj,1|+ |Fj,2|+ |Fj,3|)

+ 4
3∑

j=1

(
|Fj,{1,2}|+ |Fj,{2,3}|+ |Fj,{1,3}|

)
− 3× 36εL/L,

(28)

which can also be written using the definition in (8) as

R∗wc ≥ x0 +
1

3
x1 +

1

9
x2 − 3εL/L. (29)

For secure delivery, we obtain the following constraint for
some demand vector d = (d1, d2, d3)

H(Fdj |F (j)
[1:3]) = I(Fdj ;K

(j), Xd|F (j)
[1:3]) +H(Fdj |Zj , Xd)

(a)

≤ I(Fdj ;Xd|F (j)
[1:3]) + I(Fdj ;K

(j)|Xd, F
(j)
[1:3]) + εL

(b)

≤ δL +H(K(j)|Xd, F
(j)) + εL ≤ H(K(j)) + δL + εL,

(30)

which is also known as the Shannon constraint for perfect
secrecy [22], where the size of the message needed to be
transmitted securely to a user j, i.e., H(Fdj |F (j)

[1:3]), must
be less than the size of the keys stored at that user, i.e.,
H(K(j)), where (a) follows from the decodability constraint
in (15), and (b) is obtained using the secrecy constraint in
(16). Therefore, from (4), and (6) we have

∑

W⊆[1:3]\j
|Fdj ,W | ≤

∑

W⊆[1:3]: j∈W
|KW |+

δL + εL
L

. (31)

This bound can be obtained for dj ∈ [1 : 3], and j ∈ [1 : 3]
to get 9 different constraints, and then by summing them up
we arrive to
3∑

j=1

∑

W⊆[1:3]\j

3∑

k=1

|Fk,W | ≤ 3

3∑

j=1

∑

W⊆[1:3]:
j∈W

|KW |+ 9
δL + εL
L

,

(32)

which can be simplified using (8), and (10) to

3x0 + 2x1 + x2 ≤ 3(y1 + 2y2 + 2y3) + 9
δL + εL
L

. (33)

By using (33) in (25), we get

3M + 3
δL + εL
L

≥ x1 + 2x2 + 3x3 +
1

3
(3x0 + 2x1 + x2)

=
1

3
(3x0 + 5x1 + 7x2 + 9x3)

(a)
= 3 +

2

3
(x1 + 2x2 + 3x3), (34)

where (a) follows directly from (24), which gives the fol-
lowing constraint

x1 + 2x2 + 3x3 ≤
9

2
(M − 1) +

9

2

δL + εL
L

, (35)

To summarize, the constraints (24), (29), and (35) provide
3 different lower bounds over R∗wc by eliminating the variable
pairs (x0, x1), (x1, x2), and (x2, x3). To eliminate (x0, x1),
we first substitute by x0 in (24) into (29) to get the following
constraint

R∗wc + 3εL/L ≥ 3− 2

3
x1 −

8

9
x2 − x3. (36)

Next, by bounding x1 using (35), we can bound R∗wc in (36)
as follows

R∗wc + 3
δL + εL
L

≥ 6− 3M +
4

9
x2 + x3

(a)

≥ 6− 3M, (37)

where (a) since x2, x3 ≥ 0, which gives the bound
R∗wc ≥ 6− 3M as L→∞. Similarly, by eliminating
the pairs (x1, x2), and (x2, x3), we obtain two more
bounds R∗wc ≥ 8/3−M , and R∗wc ≥ 3/2−M/2, respec-



tively, which match the achievable scheme of [18] and is
shown in Figure 2c. For comparison, we also plot the optimal
rate-memory tradeoff for the insecure setting (i.e., no secrecy
constraint) in Figure 2c.

IV. GENERAL PROOF OF CONVERSE

In this section, we present an information theoretic lower
bound for the worst-case communication rate for any N , and
K where N ≥ K. We show that the lower bound matches
with the upper bound in (19) and the delivery and key
distribution schemes introduced in [18] for secure delivery
caching is optimal under the uncoded cache placement.

Remark 1 (Basic idea for the converse): We assume a
sequence of different demands. A lower bound over the
optimal rate for a certain demand vector d, R∗d, serves also
as a lower bound for the worst-case since the optimal worst-
case rate is larger than or equal to the rate for any demand,
i.e., R∗wc ≥ R∗d. We then average out all the obtained lower
bounds based on the chosen demands The novel part in our
proof is choosing the right demands which lead to the optimal
lower bound.

We start by considering the demand vector d =
(d1, d2, . . . , dK) of different files, such that di ∈ [1 : N ],
and di 6= dj , ∀i 6= j. This is true when N ≥ K. We also
consider a permutation of the user indexes given as σ : (1 :
K) → (σ1, . . . , σK), the user of index σk is requesting the
file Fdσk . We first use the decodability constraint in (15) to
get the following bound:

H(F[1:N ]) = I(F[1:N ];Xd, Z[1:K]) +H(F[1:N ]|Xd, Z[1:K])

≤ I(F[1:N ];Xd, Z[1:K]) +H(F[1:N ]|Xd, Z[1:K], Fd) +KεL

≤ I(F[1:N ];Xd, Z[1:K]) +H(F[1:N ]\d|Z[1:K]) +KεL

≤ H(Xd, Z[1:K])−H(Xd, Z[1:K]|F[1:N ])

+H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

= H(Xd, Z[1:K])−H(K([1:K]))

+H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

= H(Xd) +
K∑

i=1

H(Zσi |Zσ[1:i−1]
, Xd)−H(K([1:K]))

+H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

≤ R∗dL+
K∑

i=1

H(Zσi |Zσ[1:i−1]
, Xd, F[dσ1 :dσi−1

])

−H(K([1:K])) +H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

≤ R∗dL+
K∑

i=1

H(F
(σi)
[1:N ]\dσ[1:i−1]

,K(σi)|Zσ[1:i−1]
)

−H(K([1:K])) +H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

≤ R∗dL+
K∑

i=1

K∑

j∈[1:N ]\dσ[1:i−1]

H(F
(σi)
j |F (σ[1:i−1])

j )

+
K∑

i=1

H(K(σi)|K(σ[1:i−1]))−H(K([1:K]))

+H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

= R∗dL+
∑

j∈[1:N ]\d

K∑

i=1

H(F
(σi)
j |F (σ[1:i−1])

j ) +KεL

+
K∑

j=1

j∑

i=1

H(F
(σi)
dσj
|F (σ[1:i−1])

dσj
) +H(F[1:N ]\d|F ([1:K])

[1:N ]\d)

= R∗dL+H(F
([1:K])
[1:N ]\d) +

K∑

j=1

H(F
(σ[1:j])

dσj
)

+H(F[1:N ]\d|F ([1:K])
[1:N ]\d) +KεL

= R∗dL+H(F[1:N ]\d) +
K∑

j=1

H(F
(σ[1:j])

dσj
) +KεL, (38)

which gives a lower bound over R∗d, which is also a lower
bound over R∗wc following Remark 1 as follows

R∗wc +KεL/L ≥
1

L

K∑

j=1

H
(
Fdσj |F

(σ[1:j])

dσj

)

(a)
=

K∑

j=1

∑

W⊆[σj+1:σK ]

|Fdσj ,W |, (39)

where (a) follows from (4), and (6). Next, for each j
we obtain N different bounds for dj ∈ [1 : N ]. Then, by
summing up all the N bounds we have

R∗wc +KεL/L ≥
1

N

N∑

n=1

K∑

j=1

∑

W⊆[σj+1:σK ]

|Fn,W |. (40)

As we obtain the above bound for some permutation of
the users σ, we can obtain a total of K! different bounds for
all different permutations, and then average them to get the
following bound

R∗wc +KεL/L ≥
1

NK!

N∑

n=1

K∑

j=1

∑

σ∈[K!]

∑

W⊆[σj+1:σK ]

|Fn,W |

=
1

NK!

K∑

t=0

N∑

n=1

K∑

j=1

∑

σ∈[K!]

∑

W⊆[σj+1:σK ]:
|W|=t

|Fn,W |.

(41)

Due to symmetry, for each value of t ∈ [0 : K] in the
above summation, the coefficients of |Fj,W | are equal for
each j ∈ [1 : N ], and |W| = t . Therefore, the coefficient of
|F1,[1:t]| is the same as the coefficient of xt ≥ 0 defined as

xt =
N∑

j=1

∑

W⊆[1:K]: |W|=t
|Fj,W |, t ∈ [0 : K]. (42)

Next, we find the coefficient of |F1,[1:t]|. We first notice that
for a fixed value of t, and n = 1, to obtain [1 : t] ⊆ σ[j+1:K],
we must have K − j ≥ t. Then, we have σ1, σ2, . . . , σj 6∈
[1 : t], which gives the number of permutations σ where
[1 : t] ⊆ σ[j+1:K] given by K−t!

K−t−j!K − j! =
(
K−j
t

)
/
(
K
t

)
.



Therefore the coefficient of |F1,[1:t]| (hence xt) is given as

1

NK!

K−t∑

j=1

(
K − j
t

)/(
K

t

)
=

1

NK!

K−1∑

i=t

(
i

t

)/(
K

t

)

(a)
=

1

NK!

(
K

t+ 1

)/(
K

t

)
=

K − t
N(t+ 1)

, (43)

where (a) follows from the Pascal’s triangle. Therefore, we
obtain the following bound

R∗wc +KεL/L ≥
1

N

K∑

t=0

K − t
t+ 1

xt. (44)

For secure delivery, we get the following constraint in
steps similar to (30) for a demand vector d:

H(Fdj |F (j)
[1:N ]) = I(Fdj ;K

(j), Xd|F (j)
[1:N ]) +H(Fdj |Zj , Xd)

(a)

≤ I(Fdj ;Xd|F (j)
[1:N ]) + I(Fdj ;K

(j)|Xd, F
(j)
[1:N ]) + εL

(b)

≤ δL +H(K(j)|Xd, F
(j)) + εL ≤ H(K(j)) + δL + εL,

(45)

where (a) follows from the decodability constraint in (15),
and (b) follows from the secrecy constraint in (16). There-
fore, from (4), and (6) we have

∑

W⊆[1:K]\j
|Fdj ,W | ≤

∑

W⊆[1:K]: j∈W
|KW |+

δL + εL
L

. (46)

Summing up over j ∈ [1 : K] we obtain
K∑

j=1

∑

W⊆[1:K]\j
|Fdj ,W | −K

δL + εL
L

≤
K∑

j=1

∑

W⊆[1:K]: j∈W
|KW |

=

K∑

t=1

tyt. (47)

Now, summing up over dj ∈ [1 : N ],

K∑

t=1

tyt ≥
1

N

K∑

t=0

K∑

j=1

N∑

n=1

∑

W⊆[1:K]\j:
|W|=t

|Fn,W | −K
δL + εL
L

.

(48)

Due to symmetry, finding the coefficient of xt in (48) is
equivalent to finding the coefficient of |F1,[1:t]|, which is
non-zero only when j 6∈ [1 : t]. Therefore, we obtain

K∑

t=1

tyt +K
δL + εL
L

≥ 1

N

K∑

t=0

K∑

j=t+1

xt

=
K∑

t=0

K − t
N

xt

(a)
= K − 1

N

K∑

t=0

txt, (49)

where (a) follows from the file size constraint in (7). Using
(49) in the cache size constraint in (9), we arrive at the

following constraint:
K∑

t=0

txt ≤ NK
M − 1

K − 1
+

KN

N − 1

δL + εL
L

. (50)

Finally, letting L → ∞, then εL/L → 0, and δL/L →
0 in (44), and (50). Therefore, we have the following two
constraints as well as the file size constraint in (7)

R∗wc ≥
1

N

K∑

t=0

K − t
t+ 1

xt, (51)

K∑

t=0

txt ≤ NK
M − 1

K − 1
. (52)

To derive the necessary lower bounds on the optimal
worst-case transmission rate R∗wc, we eliminate the pairs
(xj , xj+1), for each j ∈ [0 : K − 1], in the equation (51)
using the equations (7) and (52). First, we use (7) to write
xj as follows

xj = N −
∑

t∈[0:K]\j
xt, (53)

and use it in the bounds (51) and (52) to obtain

R∗wc ≥
1

N

∑

t∈[0:K]\j

K − t
t+ 1

xt +
K − j
N(j + 1)


N −

∑

t∈[0:K]\j
xt




=
K − j
j + 1

+
1

N

∑

t∈[0:K]\j

(
K − t
t+ 1

− K − j
j + 1

)
xt, (54)

and

∑

t∈[0:K]\j
txt + j


N −

∑

t∈[0:K]\j
xt


 ≤ KN

(
M − 1

N − 1

)

∑

t∈[0:K]\j
(t− j)xt ≤ −jN +KN

(
M − 1

N − 1

)
. (55)

Now, we need to eliminate xj+1 from (54). We use (55) to
bound xj+1 as

xj+1 ≤ KN
(
M − 1

N − 1

)
− jN −

∑

t∈[0:K]\{j,j+1}
(t− j)xt. (56)

Then, we use this bound in (54) as follows

R∗wc ≥
K − j
j + 1

+
1

N

∑

t∈[0:K]\{j,j+1}

(
K − t
t+ 1

− K − j
j + 1

)
xt

− 1

N

(
K − j
j + 1

− K − j − 1

j + 2

)
xj+1

(a)

≥ K − j
j + 1

+
K(K + 1)

(j + 1)(j + 2)

(
j − M − 1

N − 1

)

+
1

N

∑

t∈[0:K]\{j,j+1}
λtxt

(b)

≥ K − j
j + 1

+
K(K + 1)

(j + 1)(j + 2)

(
j − M − 1

N − 1

)
(57)



where (a) follows because the coefficient of xj+1 is negative
for all j ∈ [0 : K − 1], and (b) since the coefficient, λt, of
xt > 0 is positive, which can be shown in the following:

λt =
K − t
t+ 1

− K − j
j + 1

+
K + 1

(j + 1)(j + 2)
(j − t)

=
(K + 1)(j − t)(j − t+ 1)

(j + 1)(j + 2)(t+ 1)
, (58)

where K + 1, j + 1, j + 2, t+ 1 > 0 for t ∈ [0 : K − 1],
then we only need to show that (j − t)(j − t + 1) > 0
for t ∈ [0 : K] \ {j, j + 1}. This can be easily checked by
assuming y = j − t, then y(y + 1) is only negative in the
range −1 < y < 0, or j < t < j + 1, which is not in the
range of t in the summation.

In order to show that the lower bound in (57) matches with
the achievable rate given by (19), we consider two values of
memory, M1 = N−1

K j + 1, and M2 = N−1
K (j + 1) + 1,

for some j ∈ [0 : K − 1], which gives the achievable rates
R1 = K−j

j+1 , and R2 = K−j−1
j+2 . By memory sharing, the line

joining these two achievable points is also achieved, which
gives the following upper bounds over R∗wc

R∗wc ≤
K − j
j + 1

+
K(K + 1)

(j + 1)(j + 2)

(
j − M − 1

N − 1

)
, (59)

for j ∈ [0 : K− 1], and M1 ≤M ≤M2, which matches the
lower bounds in (57), and completes the proof of Theorem 1

V. CONCLUSIONS

In this paper, we considered the secure delivery problem
for the uncoded caching problem. We characterized the in-
formation theoretically optimal rate-memory trade-off, where
the number of users is no larger than the number of files
in the server. The achievability part followed the scheme
developed in [18], while the converse proof followed a novel
bounding methodology similar to the recent result in [5],
where our novel contribution was to add the secure delivery
constraint. Future directions include extending our result to
the case when the number of users can be larger than the
number of files.
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