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Abstract—New opportunities exist for applications such as
disaster incident response that can benefit from the convergence
of Internet of Things (IoT) and cloud computing technologies.
Particularly, new paradigms such as Mobile Edge Computing
(MEC) are becoming feasible to handle the data deluge occurring
in the network edge to gain insights that assist in real-time
decision-making. In this paper, we study the potential of MEC
to address application issues related to energy management on
constrained IoT devices with limited power sources, while also
providing low-latency processing of visual data being generated
at high resolutions. Using a facial recognition application that is
important in disaster incident response scenarios, we analyze
the tradeoffs in computing policies that offload visual data
processing (i.e., to an edge cloud or a core cloud) at low-to-
high workloads, and their impact on energy consumption under
different visual data consumption requirements (i.e., users with
thick clients or thin clients). From our empirical results obtained
from experiments with our facial recognition application on a
realistic edge and core cloud testbed, we show how MEC can
provide flexibility to users who desire energy conservation over
low-latency or vice versa in the visual data processing.

Keywords—IoT-based applications, cloud computing, energy
awareness, visual data processing, mobile edge cloud

I. INTRODUCTION

The Internet of Things (IoT) is becoming increasingly

relevant for innovations in smart city applications such as

manufacturing and public safety. Mobile devices, wearable

smart devices and sensors are being connected with diverse

network connectivity options (e.g., austere infrastructure, Gi-

gabit network speeds at the network edge), and applications

can benefit from the insights in the data from these IoT

devices. Especially for applications such as disaster incident

response or law enforcement, visual data (e.g., high-resolution

images, video clips) from IoT devices needs to be processed

in real-time. Relevant insights from the data can help incident

commanders to quickly analyze scenes and deploy resources

(e.g., paramedics, ambulances, medical supplies) [1]. Through

convergence with cloud computing technologies, IoT-based

application data can be handled at large scale from multiple

network edge sites with on-demand computation capabilities.

However, it is not always reasonable to assume that fully

functional computing/networking infrastructure, and unlimited

power sources exist to handle the visual data processing needs.

In natural disaster situations involving earthquakes, hurricanes,

or man-made disasters involving terrorism, edge infrastructure
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may be lost and computation for disaster incident response

decision-making might require relying on constrained mobile

devices in terms of computing, networking or power resources.

One important IoT-based application we can envisage that is

useful involves facial recognition technology, which provides

fast and accurate identification when high-resolution image

data, and high-performance computing/networking exist to

match against a large/distributed database of images. The

identification can help find ‘lost persons’ or identify ‘bad

actors’ [2] in disaster scenes, if achieved in real-time and

through processing of a high volume of images at the network

edge on a limited power budget.
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Fig. 1: Illustration of disaster scene related visual data processing by use of
wireless network, mobile edge and core cloud resources to upload images and
request processed images using sophisticated computer vision algorithms.

Figure 1 shows an illustration of how new paradigms of

Mobile Edge Computing (MEC) [3], [4] are emerging that

allow for upload of raw images and download requests of pro-

cessed images in the exemplar facial recognition application

context. MEC architectures allow for distributed computing in

Radio Access Networks (RANs) by having cellular operators

to cooperate application developers and content providers.

Using MEC, we can augment critical infrastructure by having

the cloud computing resources more distributed and accessible

close to the wireless network-edge. For instance, it allows for a

base station infrastructure or ‘cloudlets’ to handle computation

requests from mobile devices that are in the geographic

vicinity [5], [6]. This provides options to offload computation

tasks from IoT devices to address application issues related to

energy management on constrained IoT devices with limited

power sources, while also providing low-latency processing

of visual data using sophisticated computer vision algorithms.

However, there is a need for better understanding on the

MEC paradigm potential in terms of its benefits or limitations

when edge clouds are used with a core cloud that may

have: (a) undesirably long round-trip times, (b) intermittent

connectivity, or (c) excessive congestion, as in the case of

austere or adverse network edge environments.
In this paper, we aim to study the potential of the MEC

paradigm by using the context of a facial recognition ap-



plication in a disaster incident response scenario. Our goal

is to adopt MEC within the facial recognition application

framework and analyze the tradeoffs in computing policies

that offload visual data processing (i.e., to an edge or a

core cloud) at low-to-high workloads, and their impact on

energy consumption under different visual data consumption

requirements.

As part of our paper contributions, we particularly consider

visual data consumption for users with thin client or thick

client configurations; thin client configuration at a user as-

sumes all of the processed images are stored and viewed at

a remote cloud resource, whereas thick client configuration

assumes processed images are downloaded and further post-

processed at the mobile user device level. When available,

we assume the core cloud has the option to provide multiple

compute instances which can help in parallel processing

of visual data workloads, versus having limited edge cloud

resources that process the workloads in a sequential manner.

Further, we consider cases where compression is used in the

image transfers, which could save bandwidth consumption in

austere networks, but increases the energy consumption that

could have a negative impact on the power-constrained IoT

device or edge cloud side with limited power sources.

To provide a flexible option for IoT-based applications to

decide whether to offload the visual data processing to an edge

cloud or a core cloud for the above user requirement cases, we

present a novel ‘decision-making algorithm’. Our algorithm

handles cases where a hard real-time processing need exists or

a varying scale of visual data processing workload needs to be

handled at the network-edge, while meeting user requirements

that are energy conscious or demand fast processing.

We evaluate our energy-aware and low-latency MEC frame-

work featuring the facial recognition application and our

decision-making algorithm with experiments in a realistic

edge and core cloud testbed. For the edge cloud, we use a

campus server, and we use the GENI Cloud resource [7] for

the core cloud. We leverage the Android-based PowerTutor

utility [8] to profile and estimate energy consumption (Metric:

Joules) of our facial recognition application that is based on

OpenCV [9] within the testbed. Our experiment results show

how MEC can provide flexibility to users who desire energy

conservation over low-latency (Metric: Processing Time) or

vice versa in visual IoT-based application data processing.

We compare cases where using thin client or thick client

configurations are more effective at low-to-high visual data

processing workloads, and how offloading policies could affect

the energy efficiency or low latency user requirements.

The remainder of paper is organized as follows: Section

II reviews related work. In Section III, we present our facial

recognition application and a MEC framework for studying

computation offloading policies to balance tradeoffs in energy

efficiency and low-latency processing of low-to-high scale

workloads from IoT devices. Realistic GENI Cloud testbed

experiments and results discussion are described in Section

IV. Section V concludes the paper.

II. RELATED WORKS

Computation Offloading Decision-Making. Existing litera-

ture on computation offloading can be classified under two

categories of work. First set of works such as [10], [11]

consider the concept of “program partition”, which involves

offloading parts of a given processing task onto edge servers,

and other parts of the task run on user devices. Specifically,

they propose offline heuristic algorithms to support a large-

scale mobile application and thereby reduce the completion

time for all application users. A second set of works, such

as [12], [13] consider a “migration” strategy that offloads the

entire application onto an edge server. Specifically, the authors

in [12] create a device classification for prioritizing compu-

tation that is based on the channel and base station resource

allocation status. In [13], the authors use a Markov decision

process to dynamically offload computation within services.

If offloading is not a viable option, authors in works such

as [14], [15] propose “load shedding”, a prevalent data-stream

management technique. Load shredding involves automatically

either dropping or adapting the quality of packets on the

edge device. Our work differs from existing works due to the

energy-awareness and low-latency user requirements handling

we address that flexibly allows visual data processing to occur

either at the edge cloud or in the core cloud depending on the

tradeoffs involved.

Visual Data Consumption. To display visual data from a

remote system, it is common to use either thin client or

thick client solutions. A thin client [16] can typically run

on local computer hardware (e.g., keyboard, mouse, display)

that is able to remotely connect to a remote desktop that is

either cloud-hosted or on a remote server. The computation

burden in this case will reside on the server side, and screen

scrapes are sent to the client. A thick client, on the other

hand, can be assumed to be a fully functional computer or

device that possess computing resources that are significant for

post-processing visual data based on user drill-down or zoom

in/out. According to [17], a stateless thick client might still

require periodic connection and computation assistance from

the cloud or a remote server. Regardless, user satisfaction in

terms of image rendering quality and interaction depends on

the session latency that depends on the network bandwidth

and computational resources at the client/server sides. The

authors in [18] found from real-world measurements that

even with good bandwidth of 100 Mbps, the latency in thin

clients still falls in range of 33-100 ms across different cities.

Moreover, they recommend the use of “cloudlet” or “Mobile

Edge Computing” architectures as a suitable solution to lower

end-to-end latency. Our work builds upon this recommendation

in our visual data processing workflow that is part of the MEC

architecture based facial recognition application.

III. ENERGY-AWARE AND LOW-LATENCY MEC

FRAMEWORK

In this section, we first describe the facial recognition

technology and our application framework implementation

that is important in disaster incident response when used by

incident commanders and first responders. Following this, we

detail our computation offloading decision-making algorithm

that can handle scalable workloads and energy constraints of

IoT devices that use our facial recognition application.



Fig. 2: Overview of steps in facial recognition for target identification.

A. Application Background and Implementation

Facial recognition technology when used in an application

on a mobile device can help in identifying or verifying a

person’s identity whose digital image is collected from a local

camera/video source. The facial recognition process we use in

our work has several steps as shown in Figure 2 that involve

the digital image at the client side and a larger image sample

dataset at the server side.

To initially detect a human face for a given database of

images within a small amount of time (i.e., with low latency),

we perform a pre-processing step during which we compress

all the input images. After compression, the face region in

each given image is detected and segmented using eigenfaces

techniques described in [19]. With the segmented face infor-

mation, we apply feature extraction using a Histograms-of-

Oriented-Gradients (HoG) [20] feature detector and save all

of the extracted features into a target feature vector. Once

we have the target feature vector information, we perform

matching between target feature vector and multiple feature

vectors of sample candidates in the sample image database

such that each candidate in the database will have a matching

score. In our implementation, this step could consume long

processing times, especially when there are a large number

of candidate images in the database. After calculating all the

individual matching scores, we choose the candidate with the

highest matching score in the final verification result.

Fig. 3: Application GUI - Left Image: test options for user to select, Right
Image: received result from the server side.

Figure 3 shows the graphical user interface of our ap-

plication implementation that is developed for an Android

device using the Java programming language. The facial

recognition process described above has been implemented

using OpenCV [9] for image management and using Python

scripts that utilize Dlib [21], an open source library. To use

this interface and obtain, for instance, the name of the matched

image, a user can choose different computation and image

transfer polices as shown in the right half of Figure 3 such

as: compression on device or server, thin or thick client,

serial or parallel processing. The resulting image of the target

identification along with processing time consumption can be

obtained from the server side as shown in the left half of Figure

3 for single or multiple image uploads from one or more IoT

devices simultaneously.

B. Computation Offloading Decision-Making Algorithm

The thin client or thick client application simply sends the

data from the mobile device to a cloud server to achieve

better results in low-latency processing and the related en-

ergy consumption. However, the decision between offloading

computation to the edge or core cloud depends on the user

requirement and workload scale. Authors in [5] show that the

edge cloud improves response time from 200ms to 80ms and

energy consumption reduced by 30%-40%. However, the core

cloud is helpful because of unlimited resources and parallel

instances to speedup processing. Therefore, we propose an

algorithm to classify the scenario with the user’s choice to

help choose the best visual data processing decision.
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Fig. 4: Illustration showing the flexible policies-based computation offload-
ing decision-making.

The application logic of the image/photo processing is

displayed as Figure 4. After the photo is captured, there

are multiple decisions that will make a difference on the

energy consumption and processing latency. For instance, the

transformation of the photos can be performed in parallel or in



a sequential/serial manner, depending on real-time processing

needs of the users. In addition, the photos can be compressed

before being uploaded to the cloud platform. Obviously, the

photo size will be smaller and thus it takes less bandwidth

to upload but at the expense of additional energy and time

consumption. Without comparison and analysis, it is chal-

lenging to decide whether the overall effect is positive or

negative. The same problems arise when the results are sent

back to the device based on user requirement in the thick

client case. Our experiments seek to evaluate the tradeoffs in

these various conditions under low-to-high workload scales.

The real-time requirement of the application is another factor,

i.e., if the face recognition results are required instantly for

post-processing on the client side, the workflow has to be

optimized. However, if the face recognition results are not

required instantly, the results can be simply shown on the

server instead of transferring the results back to the client side.

In this way, redundant steps can be eliminated and a better

performance can be achieved based on the user requirements

as well as the client/server capabilities.

Workload allocation to the edge cloud or core cloud con-

sidering energy awareness introduces additional challenges for

various scenarios. For example, due to a case where energy

conservation and fast computation time are desired, processing

has to be completed using a cloud platform. However with

the remote processing, the additional energy consumption to

transfer images also affects the processing latency. Compu-

tation offloading onto the edge cloud in this case could save

energy and image transfer time, however the edge cloud might

have limited resources to handle large workload scales or

facilitate parallel processing. The energy and latency metrics

thus should be given different priority (or weight) for different

workloads so that a reasonable strategy can be selected in the

end-to-end steps of the visual data processing.

Algorithm 1 shows our energy and latency aware steps

in computation offload colorbluedecision-making. The main()

function gets executed first to check whether the user needs

to receive the final results from the server as in the thick

client case; or whether thin client assumptions are relevant

on the user side. Once a decision on either the thin or thick

client is made, two operations occur subsequently. Firstly,

create Thread() ensures that the mobile device is creating

multiple threads to start UDP sessions if we have multiple

server instances provisioned in the core cloud as represented

by variable number of servers. Based on the need, the value

of number of servers can be configured for parallel or serial

transfer to server. Consequently, serial transfers frequently

consume less energy, but result in longer processing times.

Secondly, function Offload decision() chooses among ‘with’

or ‘without’ image compression options for sending the data

to the edge or core cloud depending on the scale of workload

and the real-time processing user requirement. If the workload

is large which means either the number of images or their

resolution is high, the mobile devices will send data directly

to the core cloud. Note that image compression will help if

the workload is low and the user requires energy conservation.

Moreover, to avoid the overloading the edge cloud, the mobile

device could periodically monitor edge/core cloud resources

Algorithm 1: Offload decision-making

Data: Device info: RAM , processor, memory capacity
Data: Load info: resolution, size of load
Data: User requirements: Download, Battery Saving
Result: The efficient way to save energy and achieve

low-latency processing
function create_Thread ()

/* Create multiple threads on the mobile device to send
load balanced data to different servers for processing */
send ←
device_thread_create(processor, {size of load,
number of servers});

end
function Offload_decision (EdgeServer)

/*Decide when and where to offload computation and
transfer data */
if User_Requirement() then

compress();
end
if Workload.isLow() then

sendToEdge();
else

sendToCore();
end
transmit();

end
function main ()

/* Decide best client configuration */
if Download_result then

Thick_client();
else

Thin_client();
end
create Thread();
Offload_decision();

end

and check for availability before transferring data.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our energy-aware and low-

latency MEC framework featuring the facial recognition ap-

plication and our decision-making algorithm with experiments

in a realistic edge and core cloud testbed.

Fig. 5: Testbed edge cloud is a server on Mizzou campus and our core cloud
includes 10 GENI server instances at New York University (NYU) campus.



Experimental Settings Figure 5 shows our experimental

testbed setup where we use a local U. of Missouri server

resource [7] for an edge cloud, and we use 10 GENI server

instances at New York University (NYU) campus for the core

cloud. Our edge cloud server has 70GB of RAM, 12 cores

with a bandwidth of approximately 90 Mbps. Each of the core

cloud servers have 1 core and 1 GB of RAM, and we connect

to them at a bandwidth of approximately 900 Mbps. We use

ASUS Zenpad tablet with 2 GB RAM, 1.33 GHz Atom Z3735

processor and 8 hours of battery life (when under common

use) as our mobile device that runs the facial recognition

application described in Section III.

Comparison methods and metrics. We compare cases where

thin client or thick client configurations are used. Particu-

larly, our thin client configuration at a user assumes all of

the processed images are stored and viewed at a remote

cloud resource, whereas a thick client configuration assumes

processed images are downloaded and further post-processed

at the mobile device level. We start our experiments by

offloading application threads on the mobile device to the

cloud computation layer for remote processing as shown in

Figure 5. We vary the processing workload from 100 to 1000

images of 2048 x 1536 pixels size that are transferred to

the remote server side using the UDP protocol. We also use

different MEC policies including parallel (Par) processing

versus serial or sequential (Seq) and data compression (C)

versus no compression (NC) policy. We use the Android-

based PowerTutor utility [8] to profile and estimate energy

consumption of our facial recognition application (Metric:

Joules) within the testbed setup. Our end-to-end processing

time includes the time needed for an image export/import

to edge or core cloud and its remote processing (Metric:

Processing Time in Seconds).

A. Policy-based Optimization

We start our MEC framework evaluation by discussing its

optimal policy sets (defined by a combination of decision

parameters in Figure 4) that cover diverse user’s demands

and input data scale. Based on energy consumption results in

Figures 6a and 6e, we observe the following policies needed

for the maximum operational time of the mobile device: for

both thin and thick client configurations, we need to use par-

allel processing over non-compressed data. This observation

is due to the fact that data compression significantly utilizes

CPU resources of the mobile device, and the sequential data

offloading further introduces additional energy consumption

for data export/import. Note however in this case, offloading

either to the edge cloud or core cloud has no impact on

the energy consumption within the mobile device. However,

processing time results shown in Figures 6b and 6f indicate

how our optimal MEC policies for the minimum end-to-end

processing time have changed. Particularly, for both thin and

thick client configurations, we now need to use parallel pro-

cessing over compressed data. Moreover, when the workload

scale is low (e.g., ≤ 500 images), we can further speed up

our remote processing by offloading to the edge cloud versus

offloading to the core cloud. This difference is due to the

higher latency of transferring data to the cloud, which degrades

as the workload scale increases; in this case, the edge cloud

needs more time to process all the data than the core cloud.

Note also how in both cases, a sequential offloading policy is

worth simultaneously for both the energy consumption and the

processing time benefits. However, this policy is needed for

live image data (e.g., video streams), where new frames are

sequentially captured. Moreover, for both thin and thick client

configurations, improving interactivity require more energy

consumption in all cases.

B. Engineering Trade-offs and Pareto Optimality

In practice, users can also benefit from considering an

acceptable performance for the reasonable energy consumption

instead of only focusing on a single factor as discussed

previously. Below, we show how different policy selections can

be a part of the Pareto optimal MEC framework strategy for

different application energy consumption and processing time

trade-offs. Specifically, when observing Figures 6c and 6g of

a low workload scale (i.e., when processing ≈300 images),

we can see how parallel processing of both compressed and

non-compressed data at the edge or core cloud are part of the

Pareto optimality for both thin and thick client configurations.

More concretely, using thin client as an example, parallel

processing of both compressed and non-compressed data at

the core cloud could be among the top two optimal solutions.

Overall, both of them could achieve relatively low energy con-

sumption and short end-to-end computation time, but each of

them has special advantages. Processing with compressed data

consumes 65% less computation time compared to processing

of non-compressed data, which requires 46% more energy

consumption. Meanwhile, processing with non-compressed

data may cost 31.5% less energy consumption, but it takes

191.4% more computation time for end-to-end process. In

certain situations, users could choose the optimal solution

based on their specific processing demands. To sum up, all

of these policy combinations do not result in application per-

formance cases that simultaneously degrade in both the energy

consumption and the end-to-end processing time aspects.

The same however does not hold for a high data workload

(i.e., when processing ≈1000 images). Particularly, observing

Figures 6d and 6h, we noticed how parallel processing of

both compressed and non-compressed data at the edge cloud

is not part of the Pareto optimal solution set when a thick

client configuration is used. In this scenario, using parallel

processing of non-compressed data at core cloud is the optimal

solution since it has the lowest energy consumption and third

shortest end-to-end computation time (only consumes 83%

more computation time compared with the shortest solution

but saves 49% energy consumption). The reason for this

result is because of the fact that the edge processing time

dominates higher data export/import latencies to the cloud.

Thus, computation offloading to the edge cloud under a high

data workload for thick clients is always suboptimal to the core

cloud offloading for our facial recognition application context.

V. CONCLUSION

In this paper, we studied how the mobile edge computing

(MEC) paradigm can provide flexibility to users who desire

energy conservation over low-latency or vice versa in visual

IoT-based application data processing. Our work was based on
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(g) Thick Client - Low Workload
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(h) Thick Client - High Workload

Fig. 6: Average energy consumption (a,e) and processing time (b,f) per image with their trade-offs under a low workload of 300 images (c,g) and under a
high workload of 1000 images (d,h) on the IoT device using thin (see top) and thick (see bottom) clients when offloading to the Core or Edge clouds with
parallel (Par) or sequential (Seq) processing policies as well as with data compression (C) or no data compression (NC) policies.

the rationale that computing should happen in the proximity

of data sources, and cloud services especially moved closer to

the network edge can present opportunities to meet user re-

quirements in terms of energy consumption and fast processing

times. Using a facial recognition application that we developed

for use on mobile devices, we were able to demonstrate

cases where thin client or thick client configurations are more

effective at low-to-high visual data processing workloads, and

how offloading policies could affect the energy efficiency or

low latency user requirements. Particularly, we found from the

results that the edge cloud offloading policy for thick clients is

always sub-optimal in comparison to the core cloud offloading

under high workloads. However, it was not the case for thin

clients under similar conditions.
For future work, we plan to investigate advanced algorithms

to make computation offloading decisions considering multiple

edge cloud resources to satisfy user requirements in visual data

processing involving other constraints such as user mobility.
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