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Local List Recovery of High-rate Tensor Codes & Applications

Brett Hemenway

Abstract—In this work, we give the first construction
of high-rate locally list-recoverable codes. List-recovery
has been an extremely useful building block in coding
theory, and our motivation is to use these codes as such
a building block. In particular, our construction gives
the first capacity-achieving locally list-decodable codes
(over constant-sized alphabet); the first capacity achiev-
ing globally list-decodable codes with nearly linear time
list decoding algorithm (once more, over constant-sized
alphabet); and a randomized construction of binary codes
on the Gilbert-Varshamov bound that can be uniquely
decoded in near-linear-time, with higher rate than was
previously known.

Our techniques are actually quite simple, and are
inspired by an approach of Gopalan, Guruswami, and
Raghavendra (Siam Journal on Computing, 2011) for
list-decoding tensor codes. We show that tensor powers
of (globally) list-recoverable codes are ‘approximately’
locally list-recoverable, and that the ‘approximately’ mod-
ifier may be removed by pre-encoding the message with
a suitable locally decodable code. Instantiating this with
known constructions of high-rate globally list-recoverable
codes and high-rate locally decodable codes finishes the
construction.

I. INTRODUCTION

List-recovery refers to the problem of decoding error
correcting codes from “soft” information. More pre-
cisely, given a code C' : ¥* — ¥", which maps length-
k messages to length-n codewords, an («, ¥, L)-list-
recovery algorithm for C is provided with a sequence
of lists S1,...,5, C X of size at most ¢ each, and is
tasked with efficiently returning all messages = € %<
so that C'(z); ¢ S; for at most « fraction of the
coordinates ¢; the guarantee is that there are no more
than L such messages. The goal is to design codes C'
which simultaneously admit such algorithms, and which
also have other desirable properties, like high rate (that
is, the ratio k/n, which captures how much information
can be sent using the code) or small alphabet size |%|.
List-recovery is a generalization of list-decoding, which
is the situation when the lists S; have size one: we refer
to (a, 1, L)-list-recovery as (a, L)-list-decoding.

List recoverable codes were first studied in the con-
text of list-decoding and soft-decoding. The celebrated
Guruswami-Sudan list-decoding algorithm [GS99] is in
fact a list-recovery algorithm, as are several more recent
list-decoding algorithms [GRO8], [GW11], [Kopl5],
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[GX13]. Initially, list recoverable codes were used as
stepping stones towards constructions of list decodable
and uniquely decodable codes [GIO1], [GI0O2], [GIO3],
[GIO4]. Since then, list recoverable codes have found
additional applications in the areas of compressed sens-
ing, combinatorial group testing, and hashing [INR10],
[NPR12], [GNP'13], [HIOS15].

Locality is another frequent desideratum in coding
theory. Loosely, an algorithm is “local” if information
about a single coordinate z; of a message x of C' can
be determined locally from only a few coordinates of a
corrupted version of C(z). Locality, and in particular
local list-decoding, has been implicit in theoretical
computer science for decades: for example, local list-
decoding algorithms are at the heart of algorithms
in cryptography [GL89], learning theory [KM93], and
hardness amplification and derandomization [STVO1].

A local list-recovery algorithm returns a list
Aj, ..., Ar of randomized local algorithms, and each
of these algorithms takes an index 7 € [k] as input, and
has oracle access to the lists S, ..., S,. The algorithm
then makes at most () queries to this oracle (that is,
it sees at most () different lists .S;), and must return
a guess for x;, where z is a message whose encoding
C'(x) agrees with many of the lists. The guarantee is that
for all such z—that is, for all  whose encoding C(z)
agrees with many of the lists—there exists (with high
probability) some A; so that for all 4, A;(i) = x; with
probability at least 2/3. The parameter @ is called the
query complexity of the local list-recovery algorithm.

One reason to study local list-recoverability is that
list-recovery is a very useful building block throughout
coding theory. In particular, the problem of constructing
high rate locally list-recoverable codes (of rate arbi-
trarily close to 1, and or at least non-decreasing in ¢)
has been on the radar for a while, because such codes
would have implications in local list-decoding, global
list-decoding, and classical unique decoding.

In this work, we give the first constructions of high-
rate locally list-recoverable codes. As promised, these
lead to several applications throughout coding theory.
Our construction is actually quite simple, we show that
the list-decoding algorithm of [GGR11] for tensor codes
can be modified to provide local recovery algorithm.
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A. Results

We highlight our main results below—we will elab-
orate more on these results and their context within
related literature next in Section II.

High-rate local list-recovery. Our main technical
contribution is the first constructions of high-rate locally
list-recoverable codes: Theorem V.5 give the formal
statements. If we do not require an efficient recovery
procedure, we can guarantee high-rate list recovery
with query complexity n'/* (for constant ¢, say n%001),
constant alphabet size and constant output list size.
Theorem V.5 on the other hand gives an explicit and
efficient version, at the cost of a slightly super-constant
output list size (which depends on log™ n).

For those familiar with the area, it may be somewhat
surprising that this was not known before: indeed, as
discussed below in Section II, we know of locally list
recoverable codes (of low rate), and we also know of
high-rate (globally) list-recoverable codes. One might
think that our result is lurking implicitly in those
earlier works. However, it turns out that it is not so
simple: as discussed below, existing techniques for
locally or globally list-recoverable codes do not seem
to work for this problem. Indeed, some of those prior
works [HW15], [KMRS16], [GKO™'17] (which involve
the current authors) began with the goal of obtaining
high-rate locally list-recoverable codes and ended up
somewhere else.

This raises the question: why might one seek high-
rate locally list-recoverable error correcting codes in
the first place? The motivation is deeper than a desire
to add adjectives in front of “error correcting codes.”
As we will see below, via a number of reductions that
already exist in the literature, such codes directly lead
to improvements for several other fundamental problems
in coding theory, including fast or local algorithms for
list and unique decoding.

Capacity-achieving locally list-decodable codes. The
first such reduction is an application of an expander-
based technique of Alon, Edmunds, and Luby [AEL95],
which allows us to turn the high-rate locally list-
recoverable codes into capacity achieving locally list-
decodable (or more generally, locally list recoverable)
codes. This gives explicit and efficiently list decodable
codes, and a trade-off between query complexity, alpha-
bet size, and output list size. Specifically, these codes
obtain query complexity Q = n'/! with an output list
size and an alphabet size that grow doubly exponentially
with ¢ (and output list size depends additionally on
log* n). In particular, if we choose ¢ to be constant, we
obtain query complexity n'/*, with constant alphabet
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size and nearly-constant output list size. We may also
choose to take ¢ to be very slowly growing, and this
yields query complexity n°!), with output list and
alphabet size n°(Y) as well. Prior to this work, no
construction of capacity achieving locally list decod-
able codes with query-complexity o(n) was known.
As before, if we do not require efficient recovery, we
can guarantee capacity achieving locally list decodable
codes with query complexity n%9%! (say), constant
alphabet size and constant output list size. The details
of this construction are in the full version.

Near-linear time capacity-achieving list-decodable
codes. An efficiently list decodable capacity achieving
locally list-decodable code can also be globally list-
decoded. Indeed, we just repeat the local decoding
algorithm (which can be done in time nPW/1)y a few
times, for all n coordinates, and take majority vote at
each coordinate. Thus, our previous result implies ex-
plicit, capacity-achieving, list-decodable codes (or more
generally, list recoverable codes) that can be (globally)
list-decoded (or list-recovered) in time n*TO1/t),

As with the previous point, this result actually allows
for a trade-off: we obtain either decoding time N!0
(say) with constant alphabet size and near-constant
output list size, or decoding time n'T°(1) at the cost
of increasing the alphabet and output list size to n°().
Previous capacity achieving list-decoding algorithms
required at least quadratic time for recovery. The details
of this construction are in the full version.

Near-linear time unique decoding up to the Gilbert
Varshamov bound. Via a technique of Thomme-
sen [Tho83] and Guruswami and Indyk [GIO4],
our near-linear time capacity-achieving list-recoverable
codes give a randomized construction of low-rate (up to
0.02) binary codes approaching the Gilbert-Varshamov
(GV) bound, which admit near-linear time (n!to()
algorithms for unique decoding up to half their distance.
Previous constructions which could achieve this either
required at least quadratic decoding time, or else did
not work for rates larger than 1074,

Our approach (discussed more below) is modular;
given as an ingredient any (globally) high-rate list-
recoverable code (with a polynomial time recovery
algorithm), it yields high-rate (efficiently) locally list-
recoverable code. To achieve the results advertised
above, we instantiate this with either a random (non-
efficient) linear code or with the (efficient) Algebraic
Geometry (AG) subcodes of [GK16b]. Any improve-
ments in these ingredient codes (for example, in the out-
put list size of AG codes, which is near-constant but not
quite) would translate immediately into improvements



in our constructions. The details of this construction are
in the full version.

II. RELATED WORK

As mentioned above, list decoding and recovery,
local decoding, and local list decoding and recovery,
have a long and rich history in theoretical computer
science. We mention here the results that are most
directly related to ours mentioned above.

High-rate local list recovery.: Our main technical
contribution is the construction of high-rate locally list-
recoverable codes. There are two lines of work that are
most related to this: the first is on local list recovery,
and the second on high-rate (globally) list-recoverable
codes.

Local list-decoding (which is a special case of local
list recovery) first arose outside of coding theory, moti-
vated by applications in complexity theory. For exam-
ple, the Goldreich-Levin theorem in cryptography and
the Kushilevitz-Mansour algorithm in learning theory
are local list-decoding algorithms for Hadamard codes.
Later, Sudan, Trevisan and Vadhan [STVO01], motivated
by applications in pseudorandomness, gave an algorithm
for locally list-decoding Reed-Muller codes. Neither
Hadamard codes nor the Reed-Muller codes of [STVO01]
are high-rate. However, similar ideas can be used to lo-
cally list-decode lifted codes [GK16a], and multiplicity
codes [Kop15], which can be seen as high-rate variants
of Reed-Muller codes. These algorithms work up to the
so-called Johnson bound.

Briefly, the Johnson bound says that a code of dis-
tance ¢ is (v, L)-list-decodable, for reasonable L, when
a < 1—+/1 — 0. This allows for high rate list decodable
codes when ¢ is small, but there exist codes which are
more list-decodable: the list-decoding capacity theorem
implies that there are codes of distance § which are
(a, L)-list-decodable for «v approaching the distance .
The “capacity-achieving” list-decodable codes that we
have been referring to are those which meet this latter
result, which turns out to be optimal.

Like many list-decoding algorithms, the algorithms
of [STVO1], [Kopl5], [GK16a] can be used for list-
recovery as well (indeed, this type of approach was re-
cently used in [GKO™17] to obtain a local list-recovery
algorithm for Reed-Muller codes.) However, as men-
tioned above they only work up to the Johnson bound
for list-decoding, and this holds for list-recovery as well.
However, for list-recovery, the difference between the
Johnson bound and capacity is much more stark. Quan-
titatively, for («, ¢, L)-list-recovery, the Johnson bound
requires o« < 1 — 4/¢(1 —§), which is meaningless
unless ¢ is very large; this requires the rate of the code to
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be small, less than 1/¢. In particular, these approaches
do not give high-rate codes for list-recovery, and the
Johnson bound appears to be a fundamental bottleneck.
The second line of work relevant to high-rate local
list-recovery is that on high-rate global list-recovery.
Here, there are two main approaches. The first is a line
of work on capacity achieving list-decodable codes (also
discussed more below). In many cases, the capacity
achieving list-decoding algorithms for these codes are
also high-rate list-recovery algorithms [GROS], [GW11],
[Kop15], [GX13]. These algorithms are very global:
they are all based on finding some interpolating polyno-
mial, and finding this polynomial requires querying al-
most all of the coordinates. Thus, it is not at all obvious
how to tweak these sorts of algorithms to achieve locally
list-recoverable codes. The other line of work on high-
rate global list-recovery is that of [HW15], which stud-
ies high-rate list-recoverable expander codes. While that
algorithm is not explicitly local, it’s not as clearly global
as those previously mentioned (indeed, expander codes
are known to have some locality properties [HOW15]).
However, that work could only handle list-recovery with
no errors—that is, it returns codewords that agree with
all of the lists .S;, rather than a large fraction of them—
and adapting it to handle errors seems like a challenging
task.
Capacity achieving locally list decodable codes.:
As mentioned above, one reason to seek high-rate
codes is because of a transformation of Alon, Edmunds,
and Luby [AEL95], recently highlighted in [KMRS16],
which can, morally speaking, turn any high-rate code
with a given property into a capacity achieving code
with the same property.! This allows us to obtain capac-
ity achieving locally list-decodable (or more generally,
locally list recoverable) codes. This technique has been
used frequently over the years [GIO1], [GIO2], [GIO3],
[GI04], [HW15], [KMRS16], [GKO™"17], and in par-
ticular [GKO™17] used it for local list recovery. We
borrow this result from them, and this immediately gives
our capacity achieving locally list-decodable codes.
Once we have these, they straightforwardly extend
to near-linear time capacity-achieving (globally) list-
decodable (or more generally, locally list recoverable)
codes, simply by repeatedly running the local algorithm
on each coordinate.
Capacity-achieving list-decodable codes.: We de-
fined list-decodability above as a special case of list-
recovery, but it is in fact much older. List-decodability

'We note however that this transformation does not apply to the
property of list decoding, but just list recovery, and therefore we
cannot use existing constructions of high-rate locally list decodable
codes [Kopl5], [GK16a] as a starting point for this transformation.



has been studied since the work of Elias and Wozencraft
[Eli57], [Woz58] in the late 1950s, and the combi-
natorial limits are well understood. The list-decoding
capacity theorem, mentioned earlier, states that there
exist codes of rate approaching 1 — H,(a) which are
(o, L)-list-decodable for small list size L, where H,(«)
is the g-ary entropy function (when ¢ is large we have
1 — Hy(a) = 1 — «). Moreover, any code of rate larger
than that must have exponentially large list size.

The existence direction of the list-decoding capacity
theorem follows from a random coding argument, and
it wasn’t until the Folded Reed-Solomon Codes of
Guruswami and Rudra [GROS8] that we had explicit
constructions of codes which achieved list-decoding
capacity. Since then, there have been many more con-
structions [Gurl0], [GW11], [Kop15], [DL12], [GX12],
[GX13], [GK16b], aimed at reducing the alphabet size,
reducing the list size, and improving the speed of the
recovery algorithm. We show the state-of-the-art in
Table I below, along with our results.

Unique decoding up to the Gilbert-Varshamov
bound.: The Gilbert-Varshamov (GV) bound [Gil52],
[Var57] is a classical achievability result in coding
theory. It states that there exist binary codes of relative
distance ¢ € (0,1) and rate p approaching 1 — Hz(J),
where Hs is the binary entropy function. The proof is
probabilistic: for example, it is not hard to see that a
random linear code will do the trick. However, finding
explicit constructions of codes approaching the GV
bound remains one of the most famous open problems
in coding theory. While we cannot find explicit con-
structions, we may hope for randomized constructions
with efficient algorithms, and indeed this was achieved
in the low-rate regime through a few beautiful ideas
by Thommesen [Tho83] and follow-up work by Gu-
ruswami and Indyk [GIO4].

Thommesen gave an efficient randomized construc-
tion of concatenated codes approaching the GV bound.
Starting with a Reed-Solomon code over large alphabet,
the construction is to concatenate each symbol with an
independent random linear code. Later, [GI04] showed
that these codes could in fact be efficiently decoded up
to half their distance, in polynomial time, up to rates
about 10~%. Their idea was to use the list recovery
properties of Reed-Solomon codes. The algorithm is
then to list decode the small inner codes by brute force,
and to run the efficient list-recovery algorithm for Reed-
Solomon on the output lists of the inner codes: the
combinatorial result of Thommesen ensures that the
output list will contain a message that corresponds to
the transmitted codeword.
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In their work, [GI04] used the Guruswami-Sudan
list recovery algorithm [GS99]. After decades of
work [Ale02], [BB10], [CH11], [BHNW13], [CINT15],
this algorithm can now be implemented to run in near-
linear time, and so we already can achieve near-linear
time unique decoding near the GV bound, up to rates
about 10~%. The reason for the bound on the rate is
that the Guruswami-Sudan algorithm only works up
to the aforementioned Johnson bound, which means
it cannot tolerate as much error as capacity-achieving
list-recoverable codes. It was noted by Rudra [Rud07]
that replacing the Reed-Solomon codes with a capacity
achieving list recoverable code (such as folded Reed-
Solomon codes) can improve this rate limit up to about
0.02. However, those capacity achieving list recovery
algorithms were slower (as in Table I), and this increases
the running time back to at best quadratic.

The recent work [GKO™17] also applied these tech-
niques to give locally decodable codes approaching the
Gilbert-Varshamov bound. These have query complexity
n?, and so in particular can be easily adapted to give a
global decoding algorithm with running time O(n!*#).
However, the rate up to which the construction works
approaches zero exponentially quickly in 1//3.

Using exactly the same approach as these previ-
ous works, we may plug in our capacity achieving
near-linear-time list-recooverable codes to obtain binary
codes approaching the GV bound, which are uniquely
decodable up to half their distance in time n'+°("), and
which work with rate matching Rudra’s, p = 0.02.

Remark IL.1. It is natural to ask whether our result
can, like [GKO117], give locally decodable codes on
the GV bound of higher rate. The main barrier is that
our locality guarantees are for local decoding rather
than local correction. It is an interesting open question
whether one can use our techniques to extend the results
of [GKO™'17] to higher rates.

List-decodability and local properties of tensor
codes.: Our codes are constructed by taking tensor
products of existing constructions of globally list-
recoverable codes. Our approach is inspired by that
of [GGR11], who study the list-decodability of tensor
codes, although they do not address locality. It should
be noted that the local festing properties of tensor codes
have been extensively studied [BS06], [Val05], [CROS5],
[DSWO06], [GM12], [BV09], [BV15], [Vid11], [Mei09],
[Vid13]. Local properties of tensor codes have also been
studied in the context of derandomization [MVO05]. To
the best of our knowledge, ours is the first work to study
the local (list) decodability of tensor codes, rather than



Code Reference Construction | Alphabet size List size Decoding time
Folded RS codes, deriva- | [GROS], Explicit poly(n) poly(n) nO@/e)
tive codes [GW11],

[Kop15]
Folded RS subcodes [DL12] Explicit poly(n) o(1) 2
(Folded) AG subcodes [GX12], [GX13] Monte Carlo O(1) o(1) ¢
AG subcodes [GK16b] Explicit O(1) exp(exp((log* n)?)) n®
Tensor codes This work Explicit o(1) exp(exp(exp(log* n))) n1-001

Table I

CONSTRUCTIONS OF LIST-DECODABLE CODES THAT ENABLE (¢, L) LIST DECODING UP TO RATE p = 1 — Hy(a) — €, FOR CONSTANT €.
WE HAVE SUPPRESSED THE DEPENDENCE ON &, EXCEPT WHERE IT APPEARS IN THE EXPONENT ON 7 IN THE DECODING TIME. ABOVE, ¢ IS
AN UNSPECIFIED CONSTANT. IN THE ANALYSIS OF THESE WORKS, IT IS REQUIRED TO TAKE ¢ > 3. IT MAY BE THAT THESE APPROACHES
COULD BE ADAPTED (WITH FASTER LINEAR-ALGEBRAIC METHODS) TO USE A SMALLER CONSTANT ¢, BUT IT IS NOT APPARENT; IN
PARTICULAR WE CANNOT SEE HOW TO TAKE ¢ < 2.

local testability.

III. OVERVIEW OF TECHNIQUES

Our main technical contribution is the construction of
high-rate locally list-recoverable codes. While these are
powerful objects, and result in new sub-linear and near-
linear time algorithms for fundamental coding theoretic
tasks, our techniques are actually quite simple (at least
if we take certain previous works as a black box). We
outline our approach below.

Our main ingredient is fensor codes, and the anal-
ysis given by Gopalan, Guruswami, and Raghevendra
in [GGR11]. Given a linear code C' : F* — F™, consider
the tensor code C @ C : Fkxk _ Fnxn. we will define
the tensor product formally in Definition IV.6, but for
now, we will treat the codewords of C ® C as n X n
matrices with the constraints that the rows and columns
are all codewords of the original code C'.

In [GGR11], it is shown that the tensor code C®C is
roughly as list-decodable as C' is. That work was primar-
ily focused on combinatorial results, but their techniques
are algorithmic, and it is these algorithmic insights that
we leverage here. The algorithm is very simple: briefly,
we imagine fixing some small combinatorial rectangle
S x T C [n] x [n] of “advice.” Think of this advice
as choosing the symbols of the codeword indexed by
those positions. By alternately list decoding rows and
columns, it can be shown that this advice uniquely
determines a codeword ¢ of C' ® C'. Finally, iterating
over all possible pieces of advice yields the final list.

Inspired by their approach, our Main Technical
Lemma V.2 says that if C' is list-recoverable, then not
only C' ® C' is also list-recoverable, but in fact it is
(approximately) locally list-recoverable. To understand
the intuition, let us describe the algorithm just for C®QC,
although our actual codes will require a higher tensor
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power C®!, Suppose that C is list-recoverable with
output list size L. First, imagine fixing some advice
J = (a1,...,amy) € [L]™ for some (small integer)
parameter m. This advice will determine an algorithm
Ay which attempts to locally decode some message that
corresponds to a close-by codeword c of C'®C, and the
list we finally return will be the list of all algorithms
A obtained by iterating over all possible advice.

Now, we describe the randomized algorithm A J, on
input (i,4') € [n] x [n].? Recall, A; is allowed to query
the input lists at every coordinate, and must produce a
guess for the codeword value indexed by (i,i). First,
Aj chooses m random rows of [n] x [n]. These each
correspond to codewords in C, and A; runs C’s list-
recovery algorithm on them to obtain lists Lq,...,L;,
of size at most L each. Notice that this requires querying
mn coordinates, which is roughly the square root of
the length of the code (which is n?). Then, A; will
use the advice aq,...,a,, to choose codewords from
each of these lists, and we remember the i"’th symbol
of each of these codewords. Finally, A; again runs C’s
list-recovery algorithm on the 7"’th column, to obtain
another list £. Notice that our advice now has the same
form as it does in [GGR11]: we have chosen a few
symbols of a codeword of C. Now A; chooses the
codeword in L that agrees the most with this advice.
The ¢"’th symbol of this codeword is A ;’s guess for the
(i,1") symbol of the tensor codeword.

The above idea gives a code of length m which
is locally list-recoverable with query complexity on
the order of \/n. This algorithm for C' ® C extends
straightforwardly to C®*, with query complexity n'/?.

2The algorithm A 7 we describe decodes codeword symbols instead
of message symbols, but since the codes we use are systematic this
algorithm can also decode message symbols.



The trade-off is that the output list-size also grows with
t. Thus, as we continue to take tensor powers, the
locality improves, while the output list-size degrades;
this allows for the trade-off between locality and output
list-size mentioned in the introduction.

One issue with this approach is that this algorithm
may in fact fail on a constant fraction of coordinates
(i,3") (e.g., when a whole column is corrupted). To get
around this, we first encode our message with a high-
rate locally decodable code, before encoding it with the
tensor code. For this, we use the codes of [KMRS16],
which have rate that is arbitrarily close to 1, and which
are locally decodable with exp(y/logn) queries. This
way, instead of directly querying the tensor code (which
may give the wrong answer a constant fraction of the
time), we instead use the outer locally decodable code
to query the tensor code: this still does not use too many
queries, but now it is robust to a few errors.

The final question is what to use as a base code.
Because we are after high-rate codes we require C' to be
high-rate (globally) list recoverable. Moreover, since the
tensor operation inflates the output list size by quite a
lot, we require C' to have small (constant or very slowly
growing) output list size. Finally, we need C to be
linear to get a handle on the rate of the tensor product.
One possible choice is random linear codes, and these
give a non-explicit and non-efficient construction with
constant output list size. Another possible choice is
the Algebraic Geometry subcodes of [GX13], [GK16b]
which give explicit and efficient construction but with
slowly growing output list size. However, we cannot
quite use these latter codes as a black box, for two
reasons. First, the analysis in [GX13] only establishes
list-decodability, rather than list-recoverability. Fortu-
nately, list-recoverability follows from exactly the same
argument as list-decodability. Second, these codes are
linear over a subfield, but are not themselves linear,
while our arguments require linearity over the whole
alphabet. Fortunately, we can achieve the appropriate
linearity by concatenating the AG subcode with a small
list-recoverable linear code, which exists by a proba-
bilistic argument.

To summarize, our high-rate locally list-recoverable
code is given by these ingredients: to encode a message
x, we first encode it with the [KMRS16] locally decod-
able code. Then we encode this with a ¢-fold tensor
product of a random linear code or a modified AG
subcode and we are done. We go through the details of
the argument sketched above in Section V; but first, we
introduce some notation and formally define the notions
that we will require.
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IV. DEFINITIONS AND PRELIMINARIES

For a prime power ¢ we denote by IF, the finite
field of g elements. For any finite alphabet > and
for any pair of strings x,y € X", the relative dis-
tance between x and y is the fraction of coordinates
i € [n] on which x and y differ, and is denoted by
dist(z,y) := |{i € [n]: x; # y;}| /n. For a positive
integer ¢ we denote by (*) the set containing all subsets
of X of size ¢, and for any pair of strings z € X"
and S € (%)n we denote by dist(z,S) the fraction
of coordinates i € [n] for which z; ¢ S;, that is,
dist(z,S) := |{i € [n] : z; ¢ S;}| /n. Throughout the
paper, we use exp(n) to denote 2°(™). Whenever we
use log, it is to the base 2.

A. Error-correcting codes

Let > be an alphabet and k,n be positive integers
(the message length and the block length, respec-
tively). A code is an injective map C : ¥ — Y. The
elements in the domain of C' are called messages and
the elements in the image of C' are called codewords.
If F is a finite field and X is a vector space over F, we
say that C is F-linear if it is a linear transformation over
F between the F-vector spaces ©¥ and X" If ¥ = F
and C is F-linear, we simply say that C is linear. The
generating matrix of a linear code C : F¥ — F" is
the matrix G € F™"*¥ such that C(z) = G - z for any
x € F*. We say that a code C' : ¥ — X" is systematic
if any message is the prefix of its image, that is, for any
x € XF there exists y € X" % such that C(z) = (z,v).

The rate of a code C : ¥*¥ — X" is the ratio
p := £ The relative distance dist(C) of C is the
minimum § > 0 such that for every pair of distinct
messages x,y € X it holds that dist(C'(z), C(y)) > 6.
For a code C' : ¥F — X" of relative distance J, a
given parameter o < §/2, and a string w € X", the
problem of decoding from « fraction of errors is the
task of finding the unique message x € X* (if any)
which satisfies dist(C'(z),w) < o

The best known general trade-off between rate and
distance of codes is the Gilbert-Varshamov bound,
attained by random (linear) codes. For x € [0, 1] let
H,(x) denote the g-ary entropy function.

Theorem 1IV.1 (Gilbert-Varshamov (GV) bound,
[Gil52], [Var57]). For any prime power ¢, 0 < § <

— % 0 < p<1—Hy9), and sufficiently large n, a
random linear code C': F9"™ — [y of rate p has relative
distance at least § with probability at least 1—exp(—n).

B. List decodable and list recoverable codes

List decoding is a paradigm that allows one to correct
more than 0/2 fraction of errors by returning a small



list of messages that correspond to close-by codewords.
More formally, for « € [0,1] and an integer L we say
that a code C : X¥ — X" is («, L)-list decodable if
for any w € X" there are at most L different messages
x € ¥* which satisfy that dist(C(z),w) < .

For list decoding concatenated codes it is useful to
consider the notion of list recovery where one is given
as input a small list of candidate symbols for each of the
codeword coordinates, and is required to output a list
of messages such that the corresponding codewords are
consistent with the input lists. More concretely, for o €
[0,1] and integers ¢, L we say that a code C : % — ¥»
is (o, ¢, L)-list recoverable if for any S € (3)" there
are at most L different messages = € ¥* which satisfy
that dist(C(x), S) < a.

It is well-known that 1 — H,(«) is the list decoding
capacity, that is, any g-ary code of rate above 1—H,(«)
cannot be list decoded from « fraction of errors with
list size polynomial in the block length, and on the other
hand, a random g-ary (linear) code of rate below 1 —
H () can be list decoded from « fraction of errors with
small list size. The following corollary follows from
Theorem 5.3 and Lemma 9.6 in [GurO1].

Corollary IV.2. There is a constant ¢ so that the
following holds. Choose p € [0,1], ¢ > 0, and a
positive integer (. Suppose that q is a prime power
which satisfies

g > max{(1—p—e)~ P79/ (pte)rFelle peley.

Then for sufficiently large n, a random linear code
C : F" — Fy of rate pis (1 — p —¢,4, q°t/®)-list
recoverable with probability at least 1 — exp(—n).

C. Locally decodable codes

Intuitively, a code C is said to be locally decodable
if, given a codeword C(x) that has been corrupted by
some errors, it is possible to decode any coordinate of
the corresponding message x by reading only a small
part of the corrupted version of C(z). Formally, it is
defined as follows.

Definition IV.3 (Locally decodable code (LDC)). We
say that a code C' : ¥¥ — ¥" is (Q,«)-locally
decodable if there exists a randomized algorithm A
that satisfies the following requirements:

o Input: A takes as input a coordinate i € [k], and
also gets oracle access to a string w € X" that is
a~close to some codeword C(z).

o Query complexity: A makes at most () queries to
the oracle w.

o Output: A outputs x; with probability at least %
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Remark IV4. The success probability of % can be
amplified using sequential repetition; amplifying the
success probability to 1 — e~! requires increasing the
query complexity by a multiplicative factor of O(%).

Locally list decodable and list recoverable codes.:
The following definition generalizes the notion of lo-
cally decodable codes to the setting of list decoding /
recovery.

Definition IV.5 (Locally list recoverable code). We say
that a code C : ¥ — X" is (Q,a,/, L)-locally list
recoverable if there exists a randomized algorithm A
that satisfies the following requirements:

o Preprocessing: A outputs L randomized algo-
rithms Aq,..., Ap.
Input: Each A; takes as input a coordinate i € [k],
and also gets oracle access to a string S € (%)n
Query complexity: Each A; makes at most
queries to the oracle S.
Output: For every codeword C(z) that is a-
close to S, with probability at least % over the
randomness of A the following event happens:
there exists some j € [L] such that for all ¢ € [k],

2
l‘i] Z ga

Pr[A; (i)

where the probability is over the internal random-
ness of A;.

We say that A has preprocessing time Ty if A
outputs the description of the algorithms A;,..., Ay
in time at most Tp, and has running time 7" if each
A; has running time at most 7". Finally, we say that C
is (@, a, L)-locally list decodable if it is (Q, «, 1, L)-
locally list recoverable.

D. Tensor codes

A main ingredient in our constructions is the tensor
product operation, defined as follows.

Definition IV.6 (Tensor codes). Let C; : Fk1 — Fn1,
Cy : FF2 — F72 be linear codes, and let G; €
Fraxki Gy € Fn2XF2 be the generating matrices of
C1, Cs respectively. Then the tensor code C; ® C :
Fhixkz _ Frixnz jg defined as (C; ® Co)(M)
G- M-GY.

The codewords of C; ® Cy are n1 X no matrices over
F whose columns belong to the code C; and whose rows
belong to the code Cs.

For a linear code C, let C®! := C and C®!' =
C @ C®t=1D_If C has rate p and relative distance &
then C®! has rate p' and relative distance &' (see e.g.
[Sud01], [DSWO6]).



V. HIGH-RATE LOCALLY LIST RECOVERABLE CODES

In Section V-A we show that high-rate tensor codes
are approximately locally list recoverable, namely there
exists a short list of local algorithms that can recover
most of the coordinates of messages that correspond to
near-by codewords. We then observe in Section V-B that
by pre-encoding the message with a locally decodable
code, the former codes can be turned into locally list
recoverable codes for which the local algorithms can
recover all the coordinates of messages that correspond
to near-by codewords. Finally, we show in Section V-C
how to instantiate the codes used in the process in order
to obtain high-rate locally list recoverable codes with
good performance.

A. Approximate local list recovery

To describe our approximate local list recovery al-
gorithm it will be more convenient to require that the
local algorithms recover codeword symbols as opposed
to message symbols>.

Definition V.1 (Approximately locally list recoverable
code). We say that a code C PILENEED M T
(@, o, e, 4, L)-approximately locally list recoverable
if there exists a randomized algorithm A that satisfies
the following requirements:

Preprocessing: A outputs L deterministic algo-
rithms Aq,..., Ap.

Input: Each A; takes as input a coordinate ¢ € [n],
and also gets oracle access to a string S € (%)n

Query complexity: Each A; makes at most
queries to the oracle S.

Output: For every codeword C(x) that is a-close
to S, with probability at least 1 — £ over the
randomness of A the following event happens:
there exists some j € [L] such that

Pr[4,(5) = C)] = 1-<.

where the probability is over the choice of uniform
random i € [n].

As before, we say that A has preprocessing time
Tore if A outputs the description of the algorithms
Ay, ..., Ap in time at most Ty, and has running time
T if each A; has running time at most 7".

Our main technical lemma is the following.

Lemma V.2 (Main technical). Suppose that C : F¥ —
F™ is a linear code of relative distance § that is
(a, £, L)-(globally) list recoverable. Then for any & > 0,

3In our constructions we shall use systematic codes and so recovery
of codeword symbols will imply also recovery of message symbols.
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the tensor product code C = C® : FK' — Fn' js
(Q, &, &, ¢, L)-approximately locally list recoverable for
a=q- 2500,

log’ L
(a-8)0M) . §Ot2)”

log’ L

(G
Moreover, the approximate local list recovery algorithm
for C has preprocessing time

and if the (global) list recovery algorithm for C runs
in time T then the approximate local list recovery
algorithm for C runs in time

log' L
' (a-8)OM) . g0

The proof of the above lemma will follow from
repeated application of the following technical lemma.

Q=n-

and

L =exp

7o log" L
pre = 10€ 7 - €XP (a - g)O(t) _50(2)

T

Lemma V.3. Suppose that C : F¥ — F" is a linear
code of relative distance ¢ that is («,{, L)-(globally)
list recoverable, and C' F* 5 F" is a linear
code that is (Q', ' e’ ¢, L")-approximately locally list
recoverable. Then for any € > 100¢'/6, the tensor
product code C C®C : Fkxk 5 Foxn’ g
(Q, &, &, ¢, L)-approximately locally list recoverable for

& =5 -min{a’ - 6,0},
~ log(L/a ’
Q_O<(5'o/'52) @
and

i log L - log(L/¢)

(0-a-2)?

e )
Moreover, if the (global) list recovery algorithm for C
runs in time T, and the approximate local list recovery
algorithm for C' has preprocessing time T[ﬁm and runs
in time T', then the approximate local list recovery
algorithm for C has preprocessing time

Tyre =0 (%) (logn +

log L' - log(L
+exp(og og( /5)>’

3o -2
and runs in time
> T+ T.

T.)

pre

T =

log(L/¢)



The proof of Lemma V.2 proceeds by repeated ap-
plication of Lemma V.3 to the code C, and the details
can be found in the full version of this paper.

Lemma V.3, states that there is a randomized al-
gorithm A that outputs a list of (deterministic) local
algorithms A;,..., A7 such that for any codeword
¢ € C ® (' that is consistent with most of the input
lists, with high probability over the randomness of A,
there exists some A; in the output list that computes
correctly most of the coordinates of ¢.

The algorithm A first chooses a uniform random
subset R C [n] of rows of size m := O (}gﬁ%gﬁ)
It then runs for each row r € R, independently,
the approximate local list recovery algorithm A’ for
C’, let A7,..., A}, denote the output algorithms on
row r. Finally, for every possible choice of a single
local algorithm Aj, per each of the rows r € R,
the algorithm A outputs a local algorithm denoted A J
where J := (a,)rer € [L']". The formal definition of
the algorithm A is given in 1.

Algorithm 1 The approximate local list recovery algo-
rithm for C @ C’.
function As((i,i") € [n] x [n])
> Ay receives oracle access to a matrix of lists
> J = (ar)rer € [L']7
for r€ R do
Run A7, on input 7' and oracle access to the
rth row S|{r}><[n’] .
Let ¢ < A} (i').
> ¢ is a candidate for the symbol at position
(r,i") € [n] x [n].
end for
> At this point, we have candidate symbols for
every position in R x {i'}.
Run the (global) list recovery algorithm for C'
on the i'th column S|y iy
Let £ C F™ denote the output list.
Choose a codeword ¢ € £ such that c|g is closest
to (c}.)rcr (breaking ties arbitrarily).
Return: ¢;
end function

The complete analysis of the correctness and com-
plexity of Algorithm 1 can be found in the full version.
B. Local list recovery

Next we show that the approximately locally list
recoverable codes of Lemma V.2 can be turned into
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locally list recoverable codes by pre-encoding the mes-
sage with a locally decodable code.

Lemma V4. Suppose that C FFr — F™ is a
systematic linear code of rate p and relative dis-
tance § that is (o, £ L) -(globally) list recoverable, and
C : F&F — Fon’ (Q a) locally decodable. Then

C = C®t (C) Fk — F is (Q, &, ¢, L)-locally list
recoverable for & = o - @ - pt - 69,

~ A log' L

Q - Q n (a.a)O(t) ] (p.é)o(tz)’
and

~ log" L

L= exp Og o) |-

(- @)°® - (p-0)

Moreover, the local list recovery algorithm for C has

preprocessing time
log' L >
7| logn,

((a @00 - (p-6)7"

and if the (global) list recovery algorithm for C runs
in time T and the local decoding algorithm for C' runs
in time T then the local list recovery algorithm for C
runs in time

Tpre = €xp

log’ L
(a-@)0® . (p-5)°)

Intuitively, the proof works as follows: to recover the
ith message symbol, z;, run the local decoder of the
inner code C to obtain a set of Q indices in F(*™)" that,
if queried, would allow you to recover x;. Since the code
Cis systematic, those symbols correspond to symbols in
the big code C'. Use the approximate local list recovery
algorithm for C to obtain L guesses for each of these
Q symbols Finally, for each of these L sets of Q

“guesses” run the local decoding algorithm for C to
obtain L guesses for x;. Since C is only approximately
locally list recoverable, there will be a subset of symbols
on which the approximate local list decoder fails, but
by carefully choosing parameters, these errors can be
handled by the local decoding procedure of C.

It is not hard to see that the query complexity of this
algorithm will be () times the query complexity of C'®?,
and the output list size will be the same as that of C'®*,

Below, we outline the algorithm. Let
(A1,---,Ar) « A(-) be the approximate local
list recovery algorithms for C. In Algorithm 2 we
describe the local list Tecovery algorithms Ay,..., Ay
for the code C := C(C).

The analysis of the correctness and running time of
Algorithm 2 can be found in the full version.

T=T+Q-T




Algorithm 2 The local list recovery algorithm for C:=

C®H(O).

function ﬁj(i € [E]) )

> ,Zj receives oracle access to lists S € (]g)n

Run the local decoding algorithm for C on input
1 to obtain a set of () indices that the local decoder
would query.

Let R C [(pn)'] be the subset of indices that
would be queried.

Let R C [n'] be the indices in C' encoding the
indices of R. N

> R exists and |R| = |R| = Q because C is
systematic.

for 7€ R do

Let cgr) + A;(7) (on oracle access to S)
end for R B
Run the local decoder for C' on input {c;r)}

TER
to obtain a guess xl(]) for the ith symbol of the
message
Return: z
end function

€

%

C. Instantiations

In what follows we shall instantiate Lemma V.4 in
two ways. For both, we will use the high-rate LDCs
of [KMRS16] as the code C.

To obtain efficiently encodable (in nearly-linear time)
and efficiently list recoverable (in sub-linear time)
codes, we use a modification of the Algebraic Geometry
subcodes studied in [GX13], [GK16b] as the code C.
These codes have constant alphabet size, but slightly
super-constant output list size, which means that our
efficient construction will as well.

If we do not require efficiency, we can use a random
linear code (via Corollary IV.2) as the code C. This
yields a code C that is not linear-time encodable, nor
efficiently list recoverable, but it does achieve small lo-
cality together with constant alphabet size and constant
output list size.

Theorem V.5 (High-rate locally list recoverable codes,
efficient). There is a constant c so that the following
holds. Choose € > 0 and a positive integer (. Let {t,},,
be a sequence of positive integers, non-decreasing with
n, so that ty is sufficiently large and

elog,(n)

el
For each choice of t choose s = s(t) so that s >
max{1/e¢ c(log¥)t/e} is even. Then there exists an

n =
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infinite family of Fa-linear codes {Cy,}, such that the
following holds. Below, to simplify notation we use t
instead of t,, and s instead of s(t,).

1 C,: ]F(le_a)n — F3. has rate 1 — ¢ and relative
distance at least (Q(g/t))?.

2) Cy is (Q,«a, £, L)-locally list recoverable for o =
(e/t)°0,

Q _ nl/t‘20(\/logn'log log n)e<

t20s
€

-exp(log™ n)+tlog s)

and

2

t°¢
L:exp<exp( i
€

— -exp(log™ n) + tlog s)) .

3) The local list recovery algorithm for C, has
preprocessing time

¢
7}7re =€

and running time

t24s
€

-exp(log* n)+t log s) )

-logn,

T — nO(l/t).QO(wlog n-log log n)e(( ts .exp(log™ n)+log s))

4) C, can be encoded in time

n - 20W/IoERToETogn) 4 4. 14+0(1/1).

In particular, when €0, t, t,s are constant
we get that « Q1), Q = nal/tte® [ =
exp(exp(exp(log' n)), Tpe = log**Dn, T =
n l/t), and encoding time is pltOQ/t)

The proofs of Theorem V.5 as well as the inefficient
construction can be found in the full version.

The technique of [AEL95] can be used to transform
the above codes into capacity-achieving locally list
recoverable codes over a large (but constant) alphabet.
These capacity-achieving codes can then be used to
obtain codes that are encodable in near-linear time and
uniquely decodable up to half the GV bound. The details
are in the full version.
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