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Abstract—In this work, we give the first construction
of high-rate locally list-recoverable codes. List-recovery
has been an extremely useful building block in coding
theory, and our motivation is to use these codes as such
a building block. In particular, our construction gives
the first capacity-achieving locally list-decodable codes
(over constant-sized alphabet); the first capacity achiev-
ing globally list-decodable codes with nearly linear time
list decoding algorithm (once more, over constant-sized
alphabet); and a randomized construction of binary codes
on the Gilbert-Varshamov bound that can be uniquely
decoded in near-linear-time, with higher rate than was
previously known.

Our techniques are actually quite simple, and are
inspired by an approach of Gopalan, Guruswami, and
Raghavendra (Siam Journal on Computing, 2011) for
list-decoding tensor codes. We show that tensor powers
of (globally) list-recoverable codes are ‘approximately’
locally list-recoverable, and that the ‘approximately’ mod-
ifier may be removed by pre-encoding the message with
a suitable locally decodable code. Instantiating this with
known constructions of high-rate globally list-recoverable
codes and high-rate locally decodable codes finishes the
construction.

I. INTRODUCTION

List-recovery refers to the problem of decoding error

correcting codes from “soft” information. More pre-

cisely, given a code C : Σk → Σ
n, which maps length-

k messages to length-n codewords, an (α, ℓ, L)-list-

recovery algorithm for C is provided with a sequence

of lists S1, . . . , Sn ⊂ Σ of size at most ℓ each, and is

tasked with efficiently returning all messages x ∈ Σ
k

so that C(x)i /∈ Si for at most α fraction of the

coordinates i; the guarantee is that there are no more

than L such messages. The goal is to design codes C
which simultaneously admit such algorithms, and which

also have other desirable properties, like high rate (that

is, the ratio k/n, which captures how much information

can be sent using the code) or small alphabet size |Σ|.
List-recovery is a generalization of list-decoding, which

is the situation when the lists Si have size one: we refer

to (α, 1, L)-list-recovery as (α, L)-list-decoding.

List recoverable codes were first studied in the con-

text of list-decoding and soft-decoding. The celebrated

Guruswami-Sudan list-decoding algorithm [GS99] is in

fact a list-recovery algorithm, as are several more recent

list-decoding algorithms [GR08], [GW11], [Kop15],

[GX13]. Initially, list recoverable codes were used as

stepping stones towards constructions of list decodable

and uniquely decodable codes [GI01], [GI02], [GI03],

[GI04]. Since then, list recoverable codes have found

additional applications in the areas of compressed sens-

ing, combinatorial group testing, and hashing [INR10],

[NPR12], [GNP+13], [HIOS15].

Locality is another frequent desideratum in coding

theory. Loosely, an algorithm is “local” if information

about a single coordinate xi of a message x of C can

be determined locally from only a few coordinates of a

corrupted version of C(x). Locality, and in particular

local list-decoding, has been implicit in theoretical

computer science for decades: for example, local list-

decoding algorithms are at the heart of algorithms

in cryptography [GL89], learning theory [KM93], and

hardness amplification and derandomization [STV01].

A local list-recovery algorithm returns a list

A1, . . . , AL of randomized local algorithms, and each

of these algorithms takes an index i ∈ [k] as input, and

has oracle access to the lists S1, . . . , Sn. The algorithm

then makes at most Q queries to this oracle (that is,

it sees at most Q different lists Si), and must return

a guess for xi, where x is a message whose encoding

C(x) agrees with many of the lists. The guarantee is that

for all such x—that is, for all x whose encoding C(x)
agrees with many of the lists—there exists (with high

probability) some Aj so that for all i, Aj(i) = xi with

probability at least 2/3. The parameter Q is called the

query complexity of the local list-recovery algorithm.

One reason to study local list-recoverability is that

list-recovery is a very useful building block throughout

coding theory. In particular, the problem of constructing

high rate locally list-recoverable codes (of rate arbi-

trarily close to 1, and or at least non-decreasing in ℓ)

has been on the radar for a while, because such codes

would have implications in local list-decoding, global

list-decoding, and classical unique decoding.

In this work, we give the first constructions of high-

rate locally list-recoverable codes. As promised, these

lead to several applications throughout coding theory.

Our construction is actually quite simple, we show that

the list-decoding algorithm of [GGR11] for tensor codes

can be modified to provide local recovery algorithm.

58th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/17 $31.00 © 2017 IEEE

DOI 10.1109/FOCS.2017.27

204



A. Results

We highlight our main results below—we will elab-

orate more on these results and their context within

related literature next in Section II.

High-rate local list-recovery. Our main technical

contribution is the first constructions of high-rate locally

list-recoverable codes: Theorem V.5 give the formal

statements. If we do not require an efficient recovery

procedure, we can guarantee high-rate list recovery

with query complexity n1/t (for constant t, say n0.001),

constant alphabet size and constant output list size.

Theorem V.5 on the other hand gives an explicit and

efficient version, at the cost of a slightly super-constant

output list size (which depends on log∗ n).

For those familiar with the area, it may be somewhat

surprising that this was not known before: indeed, as

discussed below in Section II, we know of locally list

recoverable codes (of low rate), and we also know of

high-rate (globally) list-recoverable codes. One might

think that our result is lurking implicitly in those

earlier works. However, it turns out that it is not so

simple: as discussed below, existing techniques for

locally or globally list-recoverable codes do not seem

to work for this problem. Indeed, some of those prior

works [HW15], [KMRS16], [GKO+17] (which involve

the current authors) began with the goal of obtaining

high-rate locally list-recoverable codes and ended up

somewhere else.

This raises the question: why might one seek high-

rate locally list-recoverable error correcting codes in

the first place? The motivation is deeper than a desire

to add adjectives in front of “error correcting codes.”

As we will see below, via a number of reductions that

already exist in the literature, such codes directly lead

to improvements for several other fundamental problems

in coding theory, including fast or local algorithms for

list and unique decoding.

Capacity-achieving locally list-decodable codes. The

first such reduction is an application of an expander-

based technique of Alon, Edmunds, and Luby [AEL95],

which allows us to turn the high-rate locally list-

recoverable codes into capacity achieving locally list-

decodable (or more generally, locally list recoverable)

codes. This gives explicit and efficiently list decodable

codes, and a trade-off between query complexity, alpha-

bet size, and output list size. Specifically, these codes

obtain query complexity Q = n1/t with an output list

size and an alphabet size that grow doubly exponentially

with t (and output list size depends additionally on

log∗ n). In particular, if we choose t to be constant, we

obtain query complexity n1/t, with constant alphabet

size and nearly-constant output list size. We may also

choose to take t to be very slowly growing, and this

yields query complexity no(1), with output list and

alphabet size no(1) as well. Prior to this work, no

construction of capacity achieving locally list decod-

able codes with query-complexity o(n) was known.

As before, if we do not require efficient recovery, we

can guarantee capacity achieving locally list decodable

codes with query complexity n0.001 (say), constant

alphabet size and constant output list size. The details

of this construction are in the full version.

Near-linear time capacity-achieving list-decodable

codes. An efficiently list decodable capacity achieving

locally list-decodable code can also be globally list-

decoded. Indeed, we just repeat the local decoding

algorithm (which can be done in time nO(1/t)) a few

times, for all n coordinates, and take majority vote at

each coordinate. Thus, our previous result implies ex-

plicit, capacity-achieving, list-decodable codes (or more

generally, list recoverable codes) that can be (globally)

list-decoded (or list-recovered) in time n1+O(1/t).

As with the previous point, this result actually allows

for a trade-off: we obtain either decoding time N1.001

(say) with constant alphabet size and near-constant

output list size, or decoding time n1+o(1) at the cost

of increasing the alphabet and output list size to no(1).

Previous capacity achieving list-decoding algorithms

required at least quadratic time for recovery. The details

of this construction are in the full version.

Near-linear time unique decoding up to the Gilbert

Varshamov bound. Via a technique of Thomme-

sen [Tho83] and Guruswami and Indyk [GI04],

our near-linear time capacity-achieving list-recoverable

codes give a randomized construction of low-rate (up to

0.02) binary codes approaching the Gilbert-Varshamov

(GV) bound, which admit near-linear time (n1+o(1))

algorithms for unique decoding up to half their distance.

Previous constructions which could achieve this either

required at least quadratic decoding time, or else did

not work for rates larger than 10−4.

Our approach (discussed more below) is modular;

given as an ingredient any (globally) high-rate list-

recoverable code (with a polynomial time recovery

algorithm), it yields high-rate (efficiently) locally list-

recoverable code. To achieve the results advertised

above, we instantiate this with either a random (non-

efficient) linear code or with the (efficient) Algebraic

Geometry (AG) subcodes of [GK16b]. Any improve-

ments in these ingredient codes (for example, in the out-

put list size of AG codes, which is near-constant but not

quite) would translate immediately into improvements
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in our constructions. The details of this construction are

in the full version.

II. RELATED WORK

As mentioned above, list decoding and recovery,

local decoding, and local list decoding and recovery,

have a long and rich history in theoretical computer

science. We mention here the results that are most

directly related to ours mentioned above.

High-rate local list recovery.: Our main technical

contribution is the construction of high-rate locally list-

recoverable codes. There are two lines of work that are

most related to this: the first is on local list recovery,

and the second on high-rate (globally) list-recoverable

codes.

Local list-decoding (which is a special case of local

list recovery) first arose outside of coding theory, moti-

vated by applications in complexity theory. For exam-

ple, the Goldreich-Levin theorem in cryptography and

the Kushilevitz-Mansour algorithm in learning theory

are local list-decoding algorithms for Hadamard codes.

Later, Sudan, Trevisan and Vadhan [STV01], motivated

by applications in pseudorandomness, gave an algorithm

for locally list-decoding Reed-Muller codes. Neither

Hadamard codes nor the Reed-Muller codes of [STV01]

are high-rate. However, similar ideas can be used to lo-

cally list-decode lifted codes [GK16a], and multiplicity

codes [Kop15], which can be seen as high-rate variants

of Reed-Muller codes. These algorithms work up to the

so-called Johnson bound.

Briefly, the Johnson bound says that a code of dis-

tance δ is (α, L)-list-decodable, for reasonable L, when

α ≤ 1−
√
1− δ. This allows for high rate list decodable

codes when δ is small, but there exist codes which are

more list-decodable: the list-decoding capacity theorem

implies that there are codes of distance δ which are

(α, L)-list-decodable for α approaching the distance δ.

The “capacity-achieving” list-decodable codes that we

have been referring to are those which meet this latter

result, which turns out to be optimal.

Like many list-decoding algorithms, the algorithms

of [STV01], [Kop15], [GK16a] can be used for list-

recovery as well (indeed, this type of approach was re-

cently used in [GKO+17] to obtain a local list-recovery

algorithm for Reed-Muller codes.) However, as men-

tioned above they only work up to the Johnson bound

for list-decoding, and this holds for list-recovery as well.

However, for list-recovery, the difference between the

Johnson bound and capacity is much more stark. Quan-

titatively, for (α, ℓ, L)-list-recovery, the Johnson bound

requires α ≤ 1 −
√
ℓ(1− δ), which is meaningless

unless δ is very large; this requires the rate of the code to

be small, less than 1/ℓ. In particular, these approaches

do not give high-rate codes for list-recovery, and the

Johnson bound appears to be a fundamental bottleneck.

The second line of work relevant to high-rate local

list-recovery is that on high-rate global list-recovery.

Here, there are two main approaches. The first is a line

of work on capacity achieving list-decodable codes (also

discussed more below). In many cases, the capacity

achieving list-decoding algorithms for these codes are

also high-rate list-recovery algorithms [GR08], [GW11],

[Kop15], [GX13]. These algorithms are very global:

they are all based on finding some interpolating polyno-

mial, and finding this polynomial requires querying al-

most all of the coordinates. Thus, it is not at all obvious

how to tweak these sorts of algorithms to achieve locally

list-recoverable codes. The other line of work on high-

rate global list-recovery is that of [HW15], which stud-

ies high-rate list-recoverable expander codes. While that

algorithm is not explicitly local, it’s not as clearly global

as those previously mentioned (indeed, expander codes

are known to have some locality properties [HOW15]).

However, that work could only handle list-recovery with

no errors—that is, it returns codewords that agree with

all of the lists Si, rather than a large fraction of them—

and adapting it to handle errors seems like a challenging

task.

Capacity achieving locally list decodable codes.:

As mentioned above, one reason to seek high-rate

codes is because of a transformation of Alon, Edmunds,

and Luby [AEL95], recently highlighted in [KMRS16],

which can, morally speaking, turn any high-rate code

with a given property into a capacity achieving code

with the same property.1 This allows us to obtain capac-

ity achieving locally list-decodable (or more generally,

locally list recoverable) codes. This technique has been

used frequently over the years [GI01], [GI02], [GI03],

[GI04], [HW15], [KMRS16], [GKO+17], and in par-

ticular [GKO+17] used it for local list recovery. We

borrow this result from them, and this immediately gives

our capacity achieving locally list-decodable codes.

Once we have these, they straightforwardly extend

to near-linear time capacity-achieving (globally) list-

decodable (or more generally, locally list recoverable)

codes, simply by repeatedly running the local algorithm

on each coordinate.

Capacity-achieving list-decodable codes.: We de-

fined list-decodability above as a special case of list-

recovery, but it is in fact much older. List-decodability

1We note however that this transformation does not apply to the
property of list decoding, but just list recovery, and therefore we
cannot use existing constructions of high-rate locally list decodable
codes [Kop15], [GK16a] as a starting point for this transformation.
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has been studied since the work of Elias and Wozencraft

[Eli57], [Woz58] in the late 1950s, and the combi-

natorial limits are well understood. The list-decoding

capacity theorem, mentioned earlier, states that there

exist codes of rate approaching 1 − Hq(α) which are

(α, L)-list-decodable for small list size L, where Hq(α)
is the q-ary entropy function (when q is large we have

1−Hq(α) ≈ 1−α). Moreover, any code of rate larger

than that must have exponentially large list size.

The existence direction of the list-decoding capacity

theorem follows from a random coding argument, and

it wasn’t until the Folded Reed-Solomon Codes of

Guruswami and Rudra [GR08] that we had explicit

constructions of codes which achieved list-decoding

capacity. Since then, there have been many more con-

structions [Gur10], [GW11], [Kop15], [DL12], [GX12],

[GX13], [GK16b], aimed at reducing the alphabet size,

reducing the list size, and improving the speed of the

recovery algorithm. We show the state-of-the-art in

Table I below, along with our results.

Unique decoding up to the Gilbert-Varshamov

bound.: The Gilbert-Varshamov (GV) bound [Gil52],

[Var57] is a classical achievability result in coding

theory. It states that there exist binary codes of relative

distance δ ∈ (0, 1) and rate ρ approaching 1 −H2(δ),
where H2 is the binary entropy function. The proof is

probabilistic: for example, it is not hard to see that a

random linear code will do the trick. However, finding

explicit constructions of codes approaching the GV

bound remains one of the most famous open problems

in coding theory. While we cannot find explicit con-

structions, we may hope for randomized constructions

with efficient algorithms, and indeed this was achieved

in the low-rate regime through a few beautiful ideas

by Thommesen [Tho83] and follow-up work by Gu-

ruswami and Indyk [GI04].

Thommesen gave an efficient randomized construc-

tion of concatenated codes approaching the GV bound.

Starting with a Reed-Solomon code over large alphabet,

the construction is to concatenate each symbol with an

independent random linear code. Later, [GI04] showed

that these codes could in fact be efficiently decoded up

to half their distance, in polynomial time, up to rates

about 10−4. Their idea was to use the list recovery

properties of Reed-Solomon codes. The algorithm is

then to list decode the small inner codes by brute force,

and to run the efficient list-recovery algorithm for Reed-

Solomon on the output lists of the inner codes: the

combinatorial result of Thommesen ensures that the

output list will contain a message that corresponds to

the transmitted codeword.

In their work, [GI04] used the Guruswami-Sudan

list recovery algorithm [GS99]. After decades of

work [Ale02], [BB10], [CH11], [BHNW13], [CJN+15],

this algorithm can now be implemented to run in near-

linear time, and so we already can achieve near-linear

time unique decoding near the GV bound, up to rates

about 10−4. The reason for the bound on the rate is

that the Guruswami-Sudan algorithm only works up

to the aforementioned Johnson bound, which means

it cannot tolerate as much error as capacity-achieving

list-recoverable codes. It was noted by Rudra [Rud07]

that replacing the Reed-Solomon codes with a capacity

achieving list recoverable code (such as folded Reed-

Solomon codes) can improve this rate limit up to about

0.02. However, those capacity achieving list recovery

algorithms were slower (as in Table I), and this increases

the running time back to at best quadratic.

The recent work [GKO+17] also applied these tech-

niques to give locally decodable codes approaching the

Gilbert-Varshamov bound. These have query complexity

nβ , and so in particular can be easily adapted to give a

global decoding algorithm with running time O(n1+β).
However, the rate up to which the construction works

approaches zero exponentially quickly in 1/β.

Using exactly the same approach as these previ-

ous works, we may plug in our capacity achieving

near-linear-time list-recooverable codes to obtain binary

codes approaching the GV bound, which are uniquely

decodable up to half their distance in time n1+o(1), and

which work with rate matching Rudra’s, ρ = 0.02.

Remark II.1. It is natural to ask whether our result

can, like [GKO+17], give locally decodable codes on

the GV bound of higher rate. The main barrier is that

our locality guarantees are for local decoding rather

than local correction. It is an interesting open question

whether one can use our techniques to extend the results

of [GKO+17] to higher rates.

List-decodability and local properties of tensor

codes.: Our codes are constructed by taking tensor

products of existing constructions of globally list-

recoverable codes. Our approach is inspired by that

of [GGR11], who study the list-decodability of tensor

codes, although they do not address locality. It should

be noted that the local testing properties of tensor codes

have been extensively studied [BS06], [Val05], [CR05],

[DSW06], [GM12], [BV09], [BV15], [Vid11], [Mei09],

[Vid13]. Local properties of tensor codes have also been

studied in the context of derandomization [MV05]. To

the best of our knowledge, ours is the first work to study

the local (list) decodability of tensor codes, rather than
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Code Reference Construction Alphabet size List size Decoding time

Folded RS codes, deriva-
tive codes

[GR08],
[GW11],
[Kop15]

Explicit poly(n) poly(n) nO(1/ε)

Folded RS subcodes [DL12] Explicit poly(n) O(1) n2

(Folded) AG subcodes [GX12], [GX13] Monte Carlo O(1) O(1) nc

AG subcodes [GK16b] Explicit O(1) exp(exp((log∗ n)2)) nc

Tensor codes This work Explicit O(1) exp(exp(exp(log∗ n))) n1.001

Table I
CONSTRUCTIONS OF LIST-DECODABLE CODES THAT ENABLE (α, L) LIST DECODING UP TO RATE ρ = 1−Hq(α)− ε, FOR CONSTANT ε.

WE HAVE SUPPRESSED THE DEPENDENCE ON ε, EXCEPT WHERE IT APPEARS IN THE EXPONENT ON n IN THE DECODING TIME. ABOVE, c IS

AN UNSPECIFIED CONSTANT. IN THE ANALYSIS OF THESE WORKS, IT IS REQUIRED TO TAKE c ≥ 3. IT MAY BE THAT THESE APPROACHES

COULD BE ADAPTED (WITH FASTER LINEAR-ALGEBRAIC METHODS) TO USE A SMALLER CONSTANT c, BUT IT IS NOT APPARENT; IN

PARTICULAR WE CANNOT SEE HOW TO TAKE c < 2.

local testability.

III. OVERVIEW OF TECHNIQUES

Our main technical contribution is the construction of

high-rate locally list-recoverable codes. While these are

powerful objects, and result in new sub-linear and near-

linear time algorithms for fundamental coding theoretic

tasks, our techniques are actually quite simple (at least

if we take certain previous works as a black box). We

outline our approach below.

Our main ingredient is tensor codes, and the anal-

ysis given by Gopalan, Guruswami, and Raghevendra

in [GGR11]. Given a linear code C : Fk → F
n, consider

the tensor code C ⊗C : Fk×k → F
n×n; we will define

the tensor product formally in Definition IV.6, but for

now, we will treat the codewords of C ⊗ C as n × n
matrices with the constraints that the rows and columns

are all codewords of the original code C.

In [GGR11], it is shown that the tensor code C⊗C is

roughly as list-decodable as C is. That work was primar-

ily focused on combinatorial results, but their techniques

are algorithmic, and it is these algorithmic insights that

we leverage here. The algorithm is very simple: briefly,

we imagine fixing some small combinatorial rectangle

S × T ⊆ [n] × [n] of “advice.” Think of this advice

as choosing the symbols of the codeword indexed by

those positions. By alternately list decoding rows and

columns, it can be shown that this advice uniquely

determines a codeword c of C ⊗ C. Finally, iterating

over all possible pieces of advice yields the final list.

Inspired by their approach, our Main Technical

Lemma V.2 says that if C is list-recoverable, then not

only C ⊗ C is also list-recoverable, but in fact it is

(approximately) locally list-recoverable. To understand

the intuition, let us describe the algorithm just for C⊗C,

although our actual codes will require a higher tensor

power C⊗t. Suppose that C is list-recoverable with

output list size L. First, imagine fixing some advice

J := (a1, . . . , am) ∈ [L]m for some (small integer)

parameter m. This advice will determine an algorithm

ÃJ which attempts to locally decode some message that

corresponds to a close-by codeword c of C⊗C, and the

list we finally return will be the list of all algorithms

ÃJ obtained by iterating over all possible advice.

Now, we describe the randomized algorithm ÃJ , on

input (i, i′) ∈ [n]× [n].2 Recall, ÃJ is allowed to query

the input lists at every coordinate, and must produce a

guess for the codeword value indexed by (i, i′). First,

ÃJ chooses m random rows of [n] × [n]. These each

correspond to codewords in C, and ÃJ runs C’s list-

recovery algorithm on them to obtain lists L1, . . . ,Lm

of size at most L each. Notice that this requires querying

mn coordinates, which is roughly the square root of

the length of the code (which is n2). Then, ÃJ will

use the advice a1, . . . , am to choose codewords from

each of these lists, and we remember the i′’th symbol

of each of these codewords. Finally, ÃJ again runs C’s

list-recovery algorithm on the i′’th column, to obtain

another list L. Notice that our advice now has the same

form as it does in [GGR11]: we have chosen a few

symbols of a codeword of C. Now ÃJ chooses the

codeword in L that agrees the most with this advice.

The i′’th symbol of this codeword is ÃJ ’s guess for the

(i, i′) symbol of the tensor codeword.

The above idea gives a code of length n which

is locally list-recoverable with query complexity on

the order of
√
n. This algorithm for C ⊗ C extends

straightforwardly to C⊗t, with query complexity n1/t.

2The algorithm ÃJ we describe decodes codeword symbols instead
of message symbols, but since the codes we use are systematic this
algorithm can also decode message symbols.
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The trade-off is that the output list-size also grows with

t. Thus, as we continue to take tensor powers, the

locality improves, while the output list-size degrades;

this allows for the trade-off between locality and output

list-size mentioned in the introduction.

One issue with this approach is that this algorithm

may in fact fail on a constant fraction of coordinates

(i, i′) (e.g., when a whole column is corrupted). To get

around this, we first encode our message with a high-

rate locally decodable code, before encoding it with the

tensor code. For this, we use the codes of [KMRS16],

which have rate that is arbitrarily close to 1, and which

are locally decodable with exp(
√
log n) queries. This

way, instead of directly querying the tensor code (which

may give the wrong answer a constant fraction of the

time), we instead use the outer locally decodable code

to query the tensor code: this still does not use too many

queries, but now it is robust to a few errors.

The final question is what to use as a base code.

Because we are after high-rate codes we require C to be

high-rate (globally) list recoverable. Moreover, since the

tensor operation inflates the output list size by quite a

lot, we require C to have small (constant or very slowly

growing) output list size. Finally, we need C to be

linear to get a handle on the rate of the tensor product.

One possible choice is random linear codes, and these

give a non-explicit and non-efficient construction with

constant output list size. Another possible choice is

the Algebraic Geometry subcodes of [GX13], [GK16b]

which give explicit and efficient construction but with

slowly growing output list size. However, we cannot

quite use these latter codes as a black box, for two

reasons. First, the analysis in [GX13] only establishes

list-decodability, rather than list-recoverability. Fortu-

nately, list-recoverability follows from exactly the same

argument as list-decodability. Second, these codes are

linear over a subfield, but are not themselves linear,

while our arguments require linearity over the whole

alphabet. Fortunately, we can achieve the appropriate

linearity by concatenating the AG subcode with a small

list-recoverable linear code, which exists by a proba-

bilistic argument.

To summarize, our high-rate locally list-recoverable

code is given by these ingredients: to encode a message

x, we first encode it with the [KMRS16] locally decod-

able code. Then we encode this with a t-fold tensor

product of a random linear code or a modified AG

subcode and we are done. We go through the details of

the argument sketched above in Section V; but first, we

introduce some notation and formally define the notions

that we will require.

IV. DEFINITIONS AND PRELIMINARIES

For a prime power q we denote by Fq the finite

field of q elements. For any finite alphabet Σ and

for any pair of strings x, y ∈ Σ
n, the relative dis-

tance between x and y is the fraction of coordinates

i ∈ [n] on which x and y differ, and is denoted by

dist(x, y) := |{i ∈ [n] : xi ̸= yi}| /n. For a positive

integer ℓ we denote by
(
Σ

ℓ

)
the set containing all subsets

of Σ of size ℓ, and for any pair of strings x ∈ Σ
n

and S ∈
(
Σ

ℓ

)n
we denote by dist(x, S) the fraction

of coordinates i ∈ [n] for which xi /∈ Si, that is,

dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. Throughout the

paper, we use exp(n) to denote 2Θ(n). Whenever we

use log, it is to the base 2.

A. Error-correcting codes

Let Σ be an alphabet and k, n be positive integers

(the message length and the block length, respec-

tively). A code is an injective map C : Σk → Σ
n. The

elements in the domain of C are called messages and

the elements in the image of C are called codewords.

If F is a finite field and Σ is a vector space over F, we

say that C is F-linear if it is a linear transformation over

F between the F-vector spaces Σ
k and Σ

n. If Σ = F

and C is F-linear, we simply say that C is linear. The

generating matrix of a linear code C : Fk → F
n is

the matrix G ∈ F
n×k such that C(x) = G · x for any

x ∈ F
k. We say that a code C : Σk → Σ

n is systematic

if any message is the prefix of its image, that is, for any

x ∈ Σ
k there exists y ∈ Σ

n−k such that C(x) = (x, y).
The rate of a code C : Σ

k → Σ
n is the ratio

ρ := k
n . The relative distance dist(C) of C is the

minimum δ > 0 such that for every pair of distinct

messages x, y ∈ Σ
k it holds that dist(C(x), C(y)) ≥ δ.

For a code C : Σ
k → Σ

n of relative distance δ, a

given parameter α < δ/2, and a string w ∈ Σ
n, the

problem of decoding from α fraction of errors is the

task of finding the unique message x ∈ Σ
k (if any)

which satisfies dist(C(x), w) ≤ α.

The best known general trade-off between rate and

distance of codes is the Gilbert-Varshamov bound,

attained by random (linear) codes. For x ∈ [0, 1] let

Hq(x) denote the q-ary entropy function.

Theorem IV.1 (Gilbert-Varshamov (GV) bound,

[Gil52], [Var57]). For any prime power q, 0 ≤ δ <
1 − 1

q , 0 ≤ ρ < 1 −Hq(δ), and sufficiently large n, a

random linear code C : Fρn
q → F

n
q of rate ρ has relative

distance at least δ with probability at least 1−exp(−n).

B. List decodable and list recoverable codes

List decoding is a paradigm that allows one to correct

more than δ/2 fraction of errors by returning a small
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list of messages that correspond to close-by codewords.

More formally, for α ∈ [0, 1] and an integer L we say

that a code C : Σk → Σ
n is (α, L)-list decodable if

for any w ∈ Σ
n there are at most L different messages

x ∈ Σ
k which satisfy that dist(C(x), w) ≤ α.

For list decoding concatenated codes it is useful to

consider the notion of list recovery where one is given

as input a small list of candidate symbols for each of the

codeword coordinates, and is required to output a list

of messages such that the corresponding codewords are

consistent with the input lists. More concretely, for α ∈
[0, 1] and integers ℓ, L we say that a code C : Σk → Σ

n

is (α, ℓ, L)-list recoverable if for any S ∈
(
Σ

ℓ

)n
there

are at most L different messages x ∈ Σ
k which satisfy

that dist(C(x), S) ≤ α.

It is well-known that 1−Hq(α) is the list decoding

capacity, that is, any q-ary code of rate above 1−Hq(α)
cannot be list decoded from α fraction of errors with

list size polynomial in the block length, and on the other

hand, a random q-ary (linear) code of rate below 1 −
Hq(α) can be list decoded from α fraction of errors with

small list size. The following corollary follows from

Theorem 5.3 and Lemma 9.6 in [Gur01].

Corollary IV.2. There is a constant c so that the

following holds. Choose ρ ∈ [0, 1], ε > 0, and a

positive integer ℓ. Suppose that q is a prime power

which satisfies

q ≥ max{(1−ρ−ε)−c(1−ρ−ε)/ε, (ρ+ε)−c(ρ+ε)/ε, ℓc/ε}.

Then for sufficiently large n, a random linear code

C : F
ρn
q → F

n
q of rate ρ is (1 − ρ − ε, ℓ, qcℓ/ε)-list

recoverable with probability at least 1− exp(−n).

C. Locally decodable codes

Intuitively, a code C is said to be locally decodable

if, given a codeword C(x) that has been corrupted by

some errors, it is possible to decode any coordinate of

the corresponding message x by reading only a small

part of the corrupted version of C(x). Formally, it is

defined as follows.

Definition IV.3 (Locally decodable code (LDC)). We

say that a code C : Σ
k → Σ

n is (Q,α)-locally

decodable if there exists a randomized algorithm A
that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [k], and

also gets oracle access to a string w ∈ Σ
n that is

α-close to some codeword C(x).
• Query complexity: A makes at most Q queries to

the oracle w.

• Output: A outputs xi with probability at least 2
3 .

Remark IV.4. The success probability of 2
3 can be

amplified using sequential repetition; amplifying the

success probability to 1 − e−t requires increasing the

query complexity by a multiplicative factor of O(t).

Locally list decodable and list recoverable codes.:

The following definition generalizes the notion of lo-

cally decodable codes to the setting of list decoding /

recovery.

Definition IV.5 (Locally list recoverable code). We say

that a code C : Σ
k → Σ

n is (Q,α, ℓ, L)-locally list

recoverable if there exists a randomized algorithm A
that satisfies the following requirements:

• Preprocessing: A outputs L randomized algo-

rithms A1, . . . , AL.

• Input: Each Aj takes as input a coordinate i ∈ [k],

and also gets oracle access to a string S ∈
(
Σ

ℓ

)n
.

• Query complexity: Each Aj makes at most Q
queries to the oracle S.

• Output: For every codeword C(x) that is α-

close to S, with probability at least 2
3 over the

randomness of A the following event happens:

there exists some j ∈ [L] such that for all i ∈ [k],

Pr[Aj(i) = xi] ≥
2

3
,

where the probability is over the internal random-

ness of Aj .

We say that A has preprocessing time Tpre if A
outputs the description of the algorithms A1, . . . , AL

in time at most Tpre, and has running time T if each

Aj has running time at most T . Finally, we say that C
is (Q,α, L)-locally list decodable if it is (Q,α, 1, L)-
locally list recoverable.

D. Tensor codes

A main ingredient in our constructions is the tensor

product operation, defined as follows.

Definition IV.6 (Tensor codes). Let C1 : Fk1 → F
n1 ,

C2 : F
k2 → F

n2 be linear codes, and let G1 ∈
F
n1×k1 , G2 ∈ F

n2×k2 be the generating matrices of

C1, C2 respectively. Then the tensor code C1 ⊗ C2 :
F
k1×k2 → F

n1×n2 is defined as (C1 ⊗ C2)(M) =
G1 ·M ·GT

2 .

The codewords of C1⊗C2 are n1×n2 matrices over

F whose columns belong to the code C1 and whose rows

belong to the code C2.

For a linear code C, let C⊗1 := C and C⊗t :=
C ⊗ C⊗(t−1). If C has rate ρ and relative distance δ

then C⊗t has rate ρt and relative distance δt (see e.g.

[Sud01], [DSW06]).
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V. HIGH-RATE LOCALLY LIST RECOVERABLE CODES

In Section V-A we show that high-rate tensor codes

are approximately locally list recoverable, namely there

exists a short list of local algorithms that can recover

most of the coordinates of messages that correspond to

near-by codewords. We then observe in Section V-B that

by pre-encoding the message with a locally decodable

code, the former codes can be turned into locally list

recoverable codes for which the local algorithms can

recover all the coordinates of messages that correspond

to near-by codewords. Finally, we show in Section V-C

how to instantiate the codes used in the process in order

to obtain high-rate locally list recoverable codes with

good performance.

A. Approximate local list recovery

To describe our approximate local list recovery al-

gorithm it will be more convenient to require that the

local algorithms recover codeword symbols as opposed

to message symbols3.

Definition V.1 (Approximately locally list recoverable

code). We say that a code C : Σ
k → Σ

n is

(Q,α, ε, ℓ, L)-approximately locally list recoverable

if there exists a randomized algorithm A that satisfies

the following requirements:

• Preprocessing: A outputs L deterministic algo-

rithms A1, . . . , AL.

• Input: Each Aj takes as input a coordinate i ∈ [n],

and also gets oracle access to a string S ∈
(
Σ

ℓ

)n
.

• Query complexity: Each Aj makes at most Q
queries to the oracle S.

• Output: For every codeword C(x) that is α-close

to S, with probability at least 1 − ε over the

randomness of A the following event happens:

there exists some j ∈ [L] such that

Pr
i∈[n]

[Aj(i) = C(x)i] ≥ 1− ε,

where the probability is over the choice of uniform

random i ∈ [n].

As before, we say that A has preprocessing time

Tpre if A outputs the description of the algorithms

A1, . . . , AL in time at most Tpre, and has running time

T if each Aj has running time at most T .

Our main technical lemma is the following.

Lemma V.2 (Main technical). Suppose that C : Fk →
F
n is a linear code of relative distance δ that is

(α, ℓ, L)-(globally) list recoverable. Then for any ε̃ > 0,

3In our constructions we shall use systematic codes and so recovery
of codeword symbols will imply also recovery of message symbols.

the tensor product code C̃ := C⊗t : F
kt → F

nt

is

(Q̃, α̃, ε̃, ℓ, L̃)-approximately locally list recoverable for

α̃ = α · ε̃ · δO(t),

Q̃ = n ·
logt L

(α · ε̃)O(t) · δO(t2)
,

and

L̃ = exp

(
logt L

(α · ε̃)O(t) · δO(t2)

)
.

Moreover, the approximate local list recovery algorithm

for C̃ has preprocessing time

T̃pre = log n · exp

(
logt L

(α · ε̃)O(t) · δO(t2)

)
,

and if the (global) list recovery algorithm for C runs

in time T then the approximate local list recovery

algorithm for C̃ runs in time

T̃ = T ·
logt L

(α · ε̃)O(t) · δO(t2)
.

The proof of the above lemma will follow from

repeated application of the following technical lemma.

Lemma V.3. Suppose that C : Fk → F
n is a linear

code of relative distance δ that is (α, ℓ, L)-(globally)

list recoverable, and C ′ : F
k′ → F

n′

is a linear

code that is (Q′,α′, ε′, ℓ, L′)-approximately locally list

recoverable. Then for any ε̃ ≥ 100ε′/δ, the tensor

product code C̃ := C ⊗ C ′ : F
k×k′ → F

n×n′

is

(Q̃, α̃, ε̃, ℓ, L̃)-approximately locally list recoverable for

α̃ = 1
10 ·min {α′ · δ,α · ε̃},

Q̃ = O

(
log(L/ε̃)

(δ · α′ · ε̃)2

)
·Q′ + n,

and

L̃ = exp

(
logL′ · log(L/ε̃)

(δ · α′ · ε̃)2

)
.

Moreover, if the (global) list recovery algorithm for C
runs in time T , and the approximate local list recovery

algorithm for C ′ has preprocessing time T ′
pre and runs

in time T ′, then the approximate local list recovery

algorithm for C̃ has preprocessing time

T̃pre = O

(
log(L/ε̃)

(δ · α′ · ε̃)2

)
· (log n+ T ′

pre)

+ exp

(
logL′ · log(L/ε̃)

(δ · α′ · ε̃)2

)
,

and runs in time

T̃ = O

(
log(L/ε̃)

(δ · α′ · ε̃)2

)
· T ′ + T.
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The proof of Lemma V.2 proceeds by repeated ap-

plication of Lemma V.3 to the code C, and the details

can be found in the full version of this paper.

Lemma V.3, states that there is a randomized al-

gorithm Ã that outputs a list of (deterministic) local

algorithms Ã1, . . . , ÃL̃ such that for any codeword

c̃ ∈ C ⊗ C ′ that is consistent with most of the input

lists, with high probability over the randomness of A,

there exists some Ãi in the output list that computes

correctly most of the coordinates of c̃.

The algorithm Ã first chooses a uniform random

subset R ⊆ [n] of rows of size m := O
(

log(L/ε̃)
(δ·α′·ε̃)2

)
.

It then runs for each row r ∈ R, independently,

the approximate local list recovery algorithm A′ for

C ′, let Ar
1, . . . , A

r
L′ denote the output algorithms on

row r. Finally, for every possible choice of a single

local algorithm Ar
ar

per each of the rows r ∈ R,

the algorithm Ã outputs a local algorithm denoted ÃJ

where J := (ar)r∈R ∈ [L′]R. The formal definition of

the algorithm ÃJ is given in 1.

Algorithm 1 The approximate local list recovery algo-

rithm for C ⊗ C ′.

function ÃJ ((i, i′) ∈ [n]× [n′])
◃ ÃJ receives oracle access to a matrix of lists

S ∈
(
F

ℓ

)n×n′

◃ J = (ar)r∈R ∈ [L′]R

for r ∈ R do

Run Ar
ar

on input i′ and oracle access to the

rth row S|{r}×[n′] .

Let c′r ← Ar
ar
(i′).

◃ c′r is a candidate for the symbol at position

(r, i′) ∈ [n]× [n′].
end for

◃ At this point, we have candidate symbols for

every position in R× {i′}.

Run the (global) list recovery algorithm for C
on the i′th column S|[n]×{i′}.

Let L ⊆ F
n denote the output list.

Choose a codeword c ∈ L such that c|R is closest

to (c′r)r∈R (breaking ties arbitrarily).

Return: ci
end function

The complete analysis of the correctness and com-

plexity of Algorithm 1 can be found in the full version.

B. Local list recovery

Next we show that the approximately locally list

recoverable codes of Lemma V.2 can be turned into

locally list recoverable codes by pre-encoding the mes-

sage with a locally decodable code.

Lemma V.4. Suppose that C : F
ρn → F

n is a

systematic linear code of rate ρ and relative dis-

tance δ that is (α, ℓ, L)-(globally) list recoverable, and

Ĉ : F
k̂ → F

(ρn)t is (Q̂, α̂)-locally decodable. Then

C̃ := C⊗t
(
Ĉ
)
: Fk̂ → F

nt

is (Q̃, α̃, ℓ, L̃)-locally list

recoverable for α̃ = α · α̂ · ρt · δO(t),

Q̃ = Q̂ · n ·
logt L

(α · α̂)O(t) · (ρ · δ)
O(t2)

,

and

L̃ = exp

(
logt L

(α · α̂)O(t) · (ρ · δ)
O(t2)

)
.

Moreover, the local list recovery algorithm for C̃ has

preprocessing time

T̃pre = exp

(
logt L

(α · α̂)O(t) · (ρ · δ)
O(t2)

)
· log n,

and if the (global) list recovery algorithm for C runs

in time T and the local decoding algorithm for Ĉ runs

in time T̂ then the local list recovery algorithm for C̃
runs in time

T̃ = T̂ + Q̂ · T ·
logt L

(α · α̂)O(t) · (ρ · δ)
O(t2)

.

Intuitively, the proof works as follows: to recover the

ith message symbol, xi, run the local decoder of the

inner code Ĉ to obtain a set of Q̂ indices in F
(ρn)t that,

if queried, would allow you to recover xi. Since the code

C is systematic, those symbols correspond to symbols in

the big code C̃. Use the approximate local list recovery

algorithm for C to obtain L guesses for each of these

Q̂ symbols. Finally, for each of these L sets of Q̂
“guesses” run the local decoding algorithm for Ĉ to

obtain L guesses for xi. Since C is only approximately

locally list recoverable, there will be a subset of symbols

on which the approximate local list decoder fails, but

by carefully choosing parameters, these errors can be

handled by the local decoding procedure of Ĉ.

It is not hard to see that the query complexity of this

algorithm will be Q̂ times the query complexity of C⊗t,

and the output list size will be the same as that of C⊗t.

Below, we outline the algorithm. Let

(A1, · · · , AL) ← A(·) be the approximate local

list recovery algorithms for C. In Algorithm 2 we

describe the local list recovery algorithms Ã1, . . . , ÃL

for the code C̃ := C(Ĉ).
The analysis of the correctness and running time of

Algorithm 2 can be found in the full version.
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Algorithm 2 The local list recovery algorithm for C̃ :=
C⊗t(Ĉ).

function Ãj(i ∈ [k̂])

◃ Ãj receives oracle access to lists S ∈
(
F

ℓ

)nt

Run the local decoding algorithm for Ĉ on input

i to obtain a set of Q̂ indices that the local decoder

would query.

Let R ⊆ [(ρn)t] be the subset of indices that

would be queried.

Let R ⊆ [nt] be the indices in C encoding the

indices of R.

◃ R exists and |R| = |R| = Q̂ because C is

systematic.

for r ∈ R do

Let c
(r)
j ← Aj(r) (on oracle access to S)

end for

Run the local decoder for Ĉ on input {c
(r)
j }r∈R

to obtain a guess x
(j)
i for the ith symbol of the

message

Return: x
(j)
i

end function

C. Instantiations

In what follows we shall instantiate Lemma V.4 in

two ways. For both, we will use the high-rate LDCs

of [KMRS16] as the code Ĉ.

To obtain efficiently encodable (in nearly-linear time)

and efficiently list recoverable (in sub-linear time)

codes, we use a modification of the Algebraic Geometry

subcodes studied in [GX13], [GK16b] as the code C.

These codes have constant alphabet size, but slightly

super-constant output list size, which means that our

efficient construction will as well.

If we do not require efficiency, we can use a random

linear code (via Corollary IV.2) as the code C. This

yields a code C̃ that is not linear-time encodable, nor

efficiently list recoverable, but it does achieve small lo-

cality together with constant alphabet size and constant

output list size.

Theorem V.5 (High-rate locally list recoverable codes,

efficient). There is a constant c so that the following

holds. Choose ε > 0 and a positive integer ℓ. Let {tn}n
be a sequence of positive integers, non-decreasing with

n, so that t0 is sufficiently large and

tn ≤
√

ε logq(n)

cℓ
.

For each choice of t choose s = s(t) so that s ≥
max{1/εc, c(log ℓ)t/ε} is even. Then there exists an

infinite family of F2-linear codes {Cn}n such that the

following holds. Below, to simplify notation we use t
instead of tn and s instead of s(tn).

1) Cn : F
(1−ε)n
2s → F

n
2s has rate 1 − ε and relative

distance at least (Ω(ε/t))2t.
2) Cn is (Q,α, ℓ, L)-locally list recoverable for α =

(ε/t)O(t),

Q = n1/t·2O(
√
logn·log logn)·e

(
t
2
ℓs

ε
·exp(log∗ n)+t log s

)

,

and

L = exp

(
exp

(
t2ℓs

ε
· exp(log∗ n) + t log s

))
.

3) The local list recovery algorithm for Cn has

preprocessing time

Tpre = e

(
e

(
t
2
ℓs

ε
·exp(log∗ n)+t log s

))

· log n,

and running time

T = nO(1/t)·2O(
√
logn·log logn)·e((

tℓs

ε
·exp(log∗ n)+log s)).

4) Cn can be encoded in time

n · 2O(
√
logn·log logn) + t · n1+O(1/t).

In particular, when ε, ℓ, tn = t, s are constant

we get that α = Ω(1), Q = n1/t+o(1), L =
exp(exp(exp(log∗ n))), Tpre = log1+o(1) n, T =
nO(1/t), and encoding time is n1+O(1/t).

The proofs of Theorem V.5 as well as the inefficient

construction can be found in the full version.

The technique of [AEL95] can be used to transform

the above codes into capacity-achieving locally list

recoverable codes over a large (but constant) alphabet.

These capacity-achieving codes can then be used to

obtain codes that are encodable in near-linear time and

uniquely decodable up to half the GV bound. The details

are in the full version.
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