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Abstract We construct universal prediction systems in the spirit of Popper’s falsifiability
and Kolmogorov complexity and randomness. These prediction systems do not depend on
any statistical assumptions (but under the IID assumption they dominate, to within the usual
accuracy, conformal prediction). Our constructions give rise to a theory of algorithmic com-
plexity and randomness of time containing analogues of several notions and results of the
classical theory of Kolmogorov complexity and randomness.
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1 Introduction

In this paper we consider the problem of predicting the labels, assumed to be binary, of a se-
quence of objects. This is an online version of the standard problem of binary classification.
Namely, we will be interested in infinite sequences of observations

ω = (z1, z2, . . .) = ((x1, y1), (x2, y2), . . .) ∈ (X × 2)∞
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(also called infinite data sequences), where X is an object space and 2 := {0, 1} is the
label space. For simplicity, we will assume that the object space X is a given finite set
of, say, binary strings (the intuition being that finite objects can always be encoded as bi-
nary strings). The elements 1 and 0 of the label space are often interpreted as “true” and
“false”.

Finite sequences σ ∈ (X × 2)∗ of observations will be called finite data sequences. If
σ1, σ2 are two finite data sequences, their concatenation will be denoted (σ1, σ2); σ2 is also
allowed to be an element of X × 2. A standard partial order on (X × 2)∗ is defined as
follows: σ1 � σ2 means that σ1 is a prefix of σ2; σ1 � σ2 means that σ1 � σ2 and σ1 �= σ2.
The smallest element in this order (the empty data sequence) is denoted �. We say that
finite data sequences σ1 and σ2 are comparable if σ1 � σ2 or σ2 � σ1.

We use the notation N := {1, 2, . . .} for the set of positive integers and N0 :=
{0, 1, 2, . . .} for the set of nonnegative integers. The length of a finite data sequence σ is the
number l ∈ N0 such that σ ∈ (X × 2)l . If ω ∈ (X × 2)∞ and l ∈ N0, ωl ∈ (X × 2)l is the
prefix of ω of length l.

We will also use the notation σ1 � σ2 and |σ | for finite binary sequences σ1, σ2, σ ∈ 2∗.
A situation is a concatenation (σ, x) ∈ (X × 2)∗ × X of a finite data sequence σ and an

object x; our task in the situation (σ, x) is to be able to predict the label of the new object x
given the sequence σ of labelled objects. Given a situation s = (σ, x) and a label y ∈ 2, we
let (s, y) stand for the finite data sequence (σ, (x, y)), which is the concatenation of s and
y.

Our notation for binary logarithm will be log.
An earlier conference version of this paper was published in the Proceedings of the

Fifth Symposium on Conformal and Probabilistic Prediction and Their Applications (COPA
2016, Madrid, April 2016) under the title “Universal probability-free conformal prediction”
[16].

1.1 The contents of this paper

This paper is, to some degree, a result of our attempts to understand the philosophical prob-
lem of prediction. It has two components, philosophical and mathematical, and the latter
is more or less independent of the former. The main goal of the remainder of this section
is to provide a road map for our mathematical readers who do not share our philosophy of
science, so that the latter does not get in their way. The four key mathematical concepts
introduced in this paper are:

– universal prediction system (Sections 2–6),
– time complexity (Sections 6–7),
– a priori time semimeasure (Section 8),
– time randomness (Section 9).

In the remaining sections we will explore (rather superficially) various connections between
these key concepts.

We start from a toy formalization of the philosophical notion of a law of nature in Sec-
tion 2 and the most basic way of using laws of nature for prediction in Section 3. The
notion of a strong prediction system introduced in Section 3 has only philosophical interest
in this paper, and this section can be safely skipped by our mathematical readers. The no-
tion of a weak prediction system introduced in the following Section 4 is more convenient
from the mathematical point of view since there exists a universal weak prediction system,
as shown in Section 5. Section 6 introduces the notion of complexity for weak prediction



Universal probability-free prediction 49

systems and uses it to strengthen the property of universality of the universal prediction
system.

The reader who is not interested in prediction can start from the mathematical notion
of laws of nature in Section 2 and the definition of their complexity in the second part of
Section 6, which will prepare her to reading Section 7 about time complexity (apart from
the theorem describing connections with universal prediction).

The definition of the a priori time semimeasure in Section 8 is self-contained and does
not depend on the previous sections. This section contains simple connections between the
a priori time semimeasure and time complexities.

Section 9 devoted to time randomness is the nexus of this paper. Time randomness is
defined in terms of time complexity (another natural definition would be in terms of a priori
time semimeasure) and serves as the basis for prediction under conditions of considerable
noise (including connections with conformal prediction).

The last two Sections 10 and 11, explain connections of the key mathematical con-
cepts of this paper with the theories of conformal prediction and Kolmogorov complexity,
respectively.

2 Laws of nature as prediction systems

Not for nothing do we call the laws of
nature “laws”: the more they prohibit,
the more they say.

The Logic of Scientific Discovery
KARL POPPER

According to Popper’s [7] view of the philosophy of science, scientific laws of nature
should be falsifiable: some finite sequences of observations should disagree with such a
law, and if so, we should be able to detect the disagreement. (Popper often preferred to
talk about scientific theories or statements instead of laws of nature. He did not discuss
the computational details of detecting disagreement; for him, it was just something that
we see straight away.) The empirical content of a law of nature is the set of its potential
falsifiers ([7], Sections 31 and 35). We start from formalizing this notion in our toy setting,
interpreting the requirement that we should be able to detect falsification as that we should
be able to detect it eventually.

Formally, we define a law of nature L to be a recursively enumerable prefix-free subset
of (X × 2)∗ (where prefix-free means that σ1 /∈ L whenever σ2 ∈ L and σ1 � σ2). In-
tuitively, these are the potential falsifiers, i.e., sequences of observations prohibited by the
law of nature. The requirement of being recursively enumerable is implicit in the notion of a
falsifier, and the requirement of being prefix-free reflects the fact that extensions of prohib-
ited sequences of observations are automatically prohibited and there is no need to mention
them in the definition (see, however, Remark 2 below). It is convenient to allow the vacuous
law of nature ∅.

A law of nature L gives rise to a prediction system: in a situation s = (σ, x) it predicts
that the label y ∈ 2 of the new object x will be an element of

�L(s) := {y ∈ 2 | (s, y) /∈ L} . (1)
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There are three possibilities in each situation s:

• The law of nature makes a prediction, either 0 or 1, in situation s when the prediction
set (1) is of size 1, |�L(s)| = 1.

• The prediction set is empty, |�L(s)| = 0, which means that the law of nature is about
to be falsified (and we can even say that it has been falsified already).

• The law of nature refrains from making a prediction when |�L(s)| = 2. This can
happen in two cases:

– the law of nature was falsified in past: σ ′ ∈ L for some σ ′ � σ ;
– the law of nature has not been falsified as yet and allows (σ, (x, y)) for both

y = 0 and y = 1.

Remark 1 The counterpart of our notion of a law of nature in probability theory is that of a
stopping time.

Remark 2 Our definition of a law of nature is the one that appears to us to lead to the
simplest and richest theory, but there are several viable alternatives. Let us say that a subset
L of (X × 2)∗ is an upset if the conjunction of σ1 ∈ L and σ1 � σ2 implies σ2 ∈ L. It is
clear that the definition of laws of nature as upsets L whose frontier

{σ ∈ L | ∀σ ′ � σ : σ ′ /∈ L}
is recursively enumerable is completely equivalent to ours; talking about frontiers of upsets
rather than upsets is a matter of taste. We can both narrow down and widen up this definition
in a natural way. The most restrictive definition discussed in this remark identifies a law of
nature with a computable upset L in (X × 2)∗ that is strongly co-continuable, in the sense
of satisfying

∀σ /∈ L ∀x ∈ X ∃y ∈ 2 : (σ, (x, y)) /∈ L

(which is equivalent to the prediction set (1) never being empty unless the law has been fal-
sified). A slightly less restrictive definition is to identify a law of nature with a computable
upset that is weakly co-continuable, in the sense of satisfying

∀σ /∈ L ∃(x, y) ∈ (X × 2) : (σ, (x, y)) /∈ L.

(Notice that a subset of (X × 2)∗ is a weakly co-continuable upset if and only if it can
be represented as the set of all finite data sequences all of whose infinite continuations are
elements of a given open subset of (X × 2)∞; this gives a natural one-to-one correspon-
dence between the weakly co-continuable upsets and the open sets in (X×2)∞.) The main
reasons we do not impose either of the conditions of co-continuability are that we opt for
simpler definitions and that empty prediction sets are common in conformal prediction. A
serious disadvantage of definitions involving the requirement of computability is that, in
non-trivial cases, they do not allow constructing universal objects (such as universal pre-
diction systems in Section 5 below). Dropping the two conditions of co-continuability and
relaxing computability to recursive enumerability of the frontier, we obtain our definition.
Further relaxing the requirement of computability, we can define a law of nature as a re-
cursively enumerable upset. This is a natural definition that fits our intuition behind laws
of nature even better than our official definition does; it also allows us to define univer-
sal predictions systems (as in Theorems 1 and 3 below). However, we do not know how to
connect it with natural counterparts of the standard notions of Kolmogorov complexity, a
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priori semimeasure, and randomness (as we do for our definition in Sections 7–9). And our
official definition still covers the practically important case of computable upsets.

3 Strong prediction systems

The notion of a law of nature is static; experience tells us that laws of nature eventually fail
and are replaced by other laws. Popper represented his picture of this process by formulas
(“evolutionary schemas”) similar to

PS1 → TT1 → EE1 → PS2 → · · · (2)

(introduced in his 1965 talk on which [8], Chapter 6, is based and also discussed in several
other places in [8] and [9]). In response to a problem situation PS, scientists create a tentative
theory TT and then subject it to attempts at error elimination EE, whose success leads to
a new problem situation PS, after which scientists come up with a new tentative theory
TT, etc. In our toy version of this process, tentative theories are laws of nature, problem
situations are situations in which our current law of nature becomes falsified, and there are
no active attempts at error elimination (so that error elimination simply consists in waiting
until the current law of nature becomes falsified).

If L and L′ are laws of nature, we define L � L′ to mean that for any σ ′ ∈ L′ there exists
σ ∈ L such that σ � σ ′. To formalize the philosophical picture (2), we define a strong
prediction system L to be a nested sequence L1 � L2 � · · · of laws of nature L1, L2, . . .

that are jointly recursively enumerable, in the sense of the set {(σ, n) ∈ (X×2)∗ ×N | σ ∈
Ln} being recursively enumerable.

The interpretation of a strong prediction system L = (L1, L2, . . .) is that L1 is the initial
law of nature used for predicting the labels of new objects until it is falsified; as soon as it
is falsified we start looking for and then using for prediction the following law of nature L2
until it is falsified in its turn, etc. Therefore, the prediction set in a situation s = (σ, x) is
natural to define as the set

�L(s) := {
y ∈ 2 | (s, y) /∈ ∪∞

n=1Ln

}
. (3)

As before, it is possible that �L(s) = ∅.
Fix a situation s = (σ, x) ∈ (X × 2)∗ × X. Let n = n(s) be the largest integer such that

σ has a prefix in Ln. It is possible that n = 0 (when s does not have such prefixes), but if
n ≥ 1, s will also have prefixes in Ln−1, . . . , L1, by the definition of a strong prediction
system. Then Ln+1 will be the current law of nature; all earlier laws, Ln,Ln−1, . . . , L1,
have been falsified. The prediction (3) in situation s is then interpreted as the set of all labels
y that are not prohibited by the current law Ln+1.

In the spirit of the theory of Kolmogorov complexity, we would like to have a universal
prediction system. However, we are not aware of any useful notion of a universal strong
prediction system. Therefore, in the next section we will introduce a wider notion of a
prediction system that does not have this disadvantage.

4 Weak prediction systems

A weak prediction system L is defined to be a sequence (not required to be nested in any
sense) L1, L2, . . . of laws of nature Ln ⊆ (X× 2)∗ that are jointly recursively enumerable.
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Remark 3 Popper’s evolutionary schema (2) was the simplest one that he considered; his
more complicated ones, such as

PS1

↗TTa → EEa → PS2a → · · ·
→TTb → EEb → PS2b → · · ·
↘

TTc → EEc → PS2c → · · ·
(cf. [8], pp. 243 and 287), give rise to weak rather than strong prediction systems.

In the rest of this paper we will omit “weak” in “weak prediction system”. The most
basic way of using a prediction system L for making a prediction in situation s = (σ, x) is
as follows. Decide on the maximum number N of errors you are willing to make. Ignore all
Ln apart from L1, . . . , LN in L, so that the prediction set in situation s is

�N
L (s) := {y ∈ 2 | ∀n ∈ {1, . . . , N} : (s, y) /∈ Ln} .

Notice that this way we are guaranteed to make at most N mistakes: making a mistake
eliminates at least one law in the list of unfalsified laws among {L1, . . . , LN }.

Similarly to the theory of conformal prediction (see, e.g., [15]), another way of packaging
L’s prediction in situation s is, instead of choosing the threshold (or level) N in advance, to
allow the user to apply her own threshold: in a situation s, for each y ∈ 2 report the attained
level

πs
L(y) := min {n ∈ N | (s, y) ∈ Ln} ∈ N ∪ {∞} (4)

(with min ∅ := ∞). The user whose threshold is N will then consider y ∈ 2 with πs
L(y) ≤

N as prohibited in s. Notice that the function (4) is upper semicomputable (for a fixed L).
The strength of a prediction system L = (L1, L2, . . .) at level N ∈ N is determined by

its N -part

L≤N :=
N⋃

n=1

Ln. (5)

At level N , the prediction system L prohibits y ∈ 2 as continuation of a situation s if and
only if (s, y) ∈ L≤N .

We will also use the limit

L<∞ :=
∞⋃

n=1

Ln (6)

of (5). Notice that L<∞ uniquely determines L if L is a strong prediction system, but the
analogous statement for weak prediction systems is false.

Remark 4 In motivating our definitions we have referred to views expressed in Karl Pop-
per’s writings. Similar views have been held by many other philosophers. Popper himself
regarded his evolutionary schemas as improvements and rationalizations of the Hegelian
dialectical schema. Charles Peirce’s views were particularly close to Popper’s. He was as
emphatic as Popper in insisting on the importance of falsification of laws of nature (as he
said, “the scientific spirit requires a man to be at all times ready to dump his whole cartload
of beliefs, the moment experience is against them” [6, pp. 46–47]). His version of Popper’s
evolutionary schema (2) is

belief – surprise – doubt – inquiry – belief

(as presented by Misak in [5, p. 11]).
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5 Universal prediction

There is the logical disjunction: Either
an intrinsically improbable event will
occur, or, the prediction will [. . . ] be
verified.

Statistical Methods and Scientific
Inference

RONALD FISHER

The following theorem says that there exists a universal prediction system, in the sense
that it is stronger than any other prediction system if we ignore a multiplicative increase in
the number of errors made.

Theorem 1 There is a universal prediction system U , in the sense that for any prediction
system L there exists a constant c > 0 such that, for any N ,

L≤N ⊆ U≤cN . (7)

Proof LetL1,L2, . . . be a recursive enumeration of all prediction systems; their component
laws of nature will be denoted (Lk

1, L
k
2, . . .) := Lk . (Formally, we require the set {(σ, n, k) ∈

(X × 2)∗ × N
2 | σ ∈ Lk

n} to be recursively enumerable and the sequence L1,L2, . . . to
contain all prediction systems.) For each n ∈ N, define the nth component Un of U =
(U1, U2, . . .) as follows. Let the binary representation of n be

(
a, 0, 1k−1

)
= (a, 0, 1, . . . , 1),

where a is a binary string (starting from 1) and the number of 1s in the 1, . . . , 1 is k−1 ∈ N0
(this sentence is the definition of a = a(n) and k = k(n) in terms of n). If the binary
representation of n does not contain any 0s, a and k are undefined, and we set Un := ∅.
Otherwise, set

Un := Lk
A,

where A ∈ N is the number whose binary representation is a. In other words, U consists of
the components of Lk , k ∈ N; namely, Lk

1 is placed in U as U3×2k−1−1 and then Lk
2, L

k
3, . . .

are placed at intervals of 2k:

U3×2k−1−1+2k(n−1) = Lk
n, n = 1, 2, . . . .

It is easy to see that

Lk≤N ⊆ U≤3×2k−1−1+2k(N−1), (8)

which is stronger than (7).

Let us fix a universal prediction system U . We can equivalently rewrite (7) as the
inclusion between the extreme terms of

�cN
U (s) = {

y ∈ 2 | (s, y) /∈ U≤cN

} ⊆ {
y ∈ 2 | (s, y) /∈ L≤N

} = �N
L (s), (9)

for all situations s. Intuitively, (9) says that the prediction sets output by the universal pre-
diction system are at least as precise as the prediction sets output by any other prediction
system L if we ignore a constant factor in specifying the level N .
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In terms of the attained level (4), Theorem 1 says that, as a function of s and y, πs
U (y)

does not exceed πs
L(y) to within a constant factor. Indeed, assuming that c ∈ N in (7),

πs
L(y) = min {n ∈ N | (s, y) ∈ Ln} = max

{
N ∈ N0 | (s, y) /∈ L≤N

} + 1

≥ max
{
N ∈ N0 | (s, y) /∈ U≤cN

} + 1

= 1

c
max

{
N ′ ∈ cN0 | (s, y) /∈ U≤N ′

} + 1

≥ 1

c
max

{
N ′ ∈ N0 | (s, y) /∈ U≤N ′

}

= 1

c
min {n ∈ N | (s, y) ∈ Un} − 1

c
= 1

c
πs
U (y) − 1

c
,

which implies

πs
L(y) ≥ 1

2c
πs
U (y) (10)

when πs
U (y) ≥ 2; and when πs

U (y) = 1, (10) follows from πs
L(y) ≥ 1.

If we are in a situation s = (σ, x) and one of the two πs
U (y) (corresponding to y = 0

or y = 1) is a small number, we can predict the other label: e.g., if πs
U (0) is small, we can

predict that the label of x is 1, and we then have Fisher’s disjunction: either our prediction
is correct, or a rare event has occurred.

6 Complexity of prediction systems and laws of nature

In this section we will see how the constant c in Theorem 1 depends on the prediction system
L. The dependence will be in terms of the algorithmic complexity of L, which we will now
define.

A description language for prediction systems is a function F mapping 2∗ to the set of
all prediction systems such that the set

{
(d, σ, n) ∈ 2∗ × (X × 2)∗ × N | σ ∈ Fn(d)

}

is recursively enumerable, where Fn(d) is the nth law of nature in F(d), i.e., Fn(d) := Ln

when F(d) = (L1, L2, . . .). Notice that the domain of F is 2∗ rather than a subset of 2∗,
which is unusual for the theory of algorithmic complexity. The effective domain dom(F ) of
a description language F for prediction systems is

dom(F ) := {d | F(d) �= (∅, ∅, . . .)}. (11)

A prefix-free description language for prediction systems is a description language F for
prediction systems such that dom(F ) is prefix-free.

The complexity of a prediction system L with respect to a description language F for
prediction systems is defined by

CF (L) := min {|d| | L = F(d)} ,

|d| standing for the length of d.
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Theorem 2 There is a description language U for prediction systems that is universal in
the sense that for any description language F for prediction systems there exists a constant
c such that, for any prediction system L,

CU(L) ≤ CF (L) + c. (12)

There is a prefix-free description language U ′ for prediction systems that is universal in the
sense that for any prefix-free description language F for prediction systems there exists a
constant c such that, for any prediction system L,

CU ′(L) ≤ CF (L) + c.

Proof We will use the same (very standard) argument as in Theorem 1 and will only prove
(12). Let Fk , k = 1, 2, . . . be a recursive enumeration of the description languages for
prediction systems (meaning that the set

{
(d, σ, n, k) ∈ 2∗ × (X × 2)∗ × N

2 | σ ∈ Fk
n (d)

}

is recursively enumerable and that each description language for prediction systems belongs
to the sequence F 1, F 2, . . .). Let 1k0d serve as a description of Fk(d) under U (where 1k

stands for the binary sequence (1, . . . , 1) consisting of k 1s).

Let us fix a universal description languageU for prediction systems, callCU(L) the plain
complexity ofL, and abbreviateCU(L) to C(L). Analogously, we fix a universal prefix-free
description language U ′, call CU ′(L) the prefix complexity of L, and abbreviate CU ′(L) to
K(L).

The following theorem makes (7) uniform in L showing how c depends on L.

Theorem 3 There is a constant c > 0 such that, for any prediction system L and any
N ∈ N, the universal prediction system U satisfies

L≤N ⊆ U≤c2K(L)N . (13)

Proof Define a prediction system V as the sequence (V1, V2, . . .) of laws of nature such
that Vn := U ′

n′(d), where U ′ is the universal prefix-free description language for prediction
systems, and n′ ∈ N and d ∈ 2∗ are defined given n as follows:

– d is the suffix (if it exists) of the binary representation of n such that
←−
d belongs to

dom(U ′) (where ←−
d is the mirror image of d:

∣∣∣
←−
d

∣∣∣ = |d| and the bits of ←−
d are the same

as the bits of d but written in the opposite order);
– the binary representation of n′ is the prefix (if non-empty) of the binary representation

of n left after removing its suffix d.

It is clear that such n′ and d are unique when they exist; and when they do not exist, set
Vn := ∅. Then the modification

U ′
n(d) ⊆ V≤n2|d|+2|d|−1

of (8) implies, for any prediction system L,

Ln ⊆ V≤n2K(L)+2K(L)−1
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(take as d the shortest description of L under U ′). This implies that (13) holds for some
prediction system V in place of U , which, when combined with the statement of Theorem 1,
implies that (13) holds for our chosen universal prediction system U .

Specializing the notions of plain and prefix complexity for a prediction system to predic-
tion systems of type L = (L,L, . . .), we obtain the notions of plain and prefix complexity
for a law of nature:

C(L) := C((L, L, . . .)),

K(L) := K((L,L, . . .)).

However, since the notion of algorithmic complexity of a law of nature will be used in the
next section as a basis for defining the complexity of time, we will also spell out the simpler
direct definition.

A description language for laws of nature is a function F mapping 2∗ to the set of
prefix-free subsets of (X × 2)∗ such that the set

{
(d, σ ) ∈ 2∗ × (X × 2)∗ | σ ∈ F(d)

}

is recursively enumerable. We will usually omit “for laws of nature”. Notice that, for any
description language F and any description d ∈ 2∗, F(d) is a law of nature (formally, we
use “description” to mean elements of 2∗; informally, descriptions serve as arguments for
description languages). The effective domain dom(F ) of a description language F is

dom(F ) := {d | F(d) �= ∅}.
A prefix-free description language is a description language F such that dom(F ) is prefix-
free.

The complexity of a law of nature L with respect to a description language F is defined
by

CF (L) := min {|d| | L = F(d)} .

The analogue of Theorem 2 continues to hold for laws of nature; we fix a universal descrip-
tion language U , call CU(L) the plain complexity of L, and abbreviate CU(L) to C(L); and
we fix a universal prefix-free description language U ′, call CU ′(L) the prefix complexity of
L, and abbreviate CU ′(L) to K(L).

This is a corollary of Theorem 3 for laws of nature:

Corollary 1 There is a constant c > 0 such that, for any law of nature L, the universal
prediction system U satisfies

L ⊆ U≤c2K(L) . (14)

Proof We again regard laws of nature L as a special case of prediction systems identifying
L with L := (L,L, . . .). It remains to apply Theorem 3 to L setting N := 1.

A simple counting argument shows that the dependence of the right-hand side of (13) on
the complexity of L is approximately correct and cannot be significantly improved (if the
difference between plain and prefix complexities is ignored). To state this argument in its
strongest form, we will introduce a new piece of notation: for each infinite data sequence
ω ∈ (X × 2)∞,

�(ω) :=
{
ωl | l ∈ N0

}
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is the set of all finite prefixes of ω. Theorem 3 says that there is a constant c > 0 such that,
for any K,N ∈ N, any infinite data sequence ω, and any prediction system L satisfying
K(L) ≤ K ,

L≤N ∩ �(ω) ⊆ U≤c2KN ∩ �(ω). (15)

The inclusion in (15) compares the predictive powers of L and U only along the infinite
data sequence ω.

Theorem 4 There is a constant c > 0 such that, for any K,N ∈ N and any infinite data
sequence ω, there exists a prediction system L satisfying C(L) ≤ K and

L≤N ∩ �(ω) � U≤c2KN ∩ �(ω). (16)

Proof Let Lk , k ∈ N, be the strong prediction system such that Lk
<∞ (defined by (6))

consists of finite data sequences whose length is divisible by 2k−1 but not divisible by 2k

(what is essential is that different Lk make errors on disjoint sets of finite data sequences).
Take any K,N ∈ N and any ω ∈ (X × 2)∞. Set K ′ := K − a for some constant a ∈ N,
to be chosen later. The set U≤2K′

N
∩ �(ω) contains at most 2K ′

N elements; therefore, (16)

will be satisfied for c := 2−a , for some L := Lk and k ≤ 2K ′ + 1. It remains to notice that
C(Lk) ≤ K ′ + O(1) ≤ K provided a is sufficiently large.

We have the following corollary of Theorem 4 for laws of nature showing the tightness
(to within the difference between C and K) of Corollary 1.

Corollary 2 There is a constant c > 0 such that, for any K ∈ N and any infinite data
sequence ω, there exists a law of nature L satisfying C(L) ≤ K and

L ∩ �(ω) � U≤c2K ∩ �(ω).

Proof Specialize Theorem 4 to the case N := 1 and define L to be the first element of the
prediction system L. The additive constant implicit in the definition of the plain complexity
C(L) can be incorporated into the constant c, as we did in the proof of Theorem 4.

Analogously to (7) and (9), we can rewrite (13) and (14) as

�c2K(L)N
U (s) ⊆ �N

L (s) (17)

and

�c2K(L)

U (s) ⊆ �L(s), (18)

respectively, for all situations s; (17) and (18) indicate the dependence of the constant factor
in (9) on L.

Remark 5 ([13]) This is a natural modification of our definition of prefix-free description
languages: a description language F for laws of nature is prefix-correct if, for all d1, d2 ∈
2∗,

d1 � d2 =⇒ F(d1) ⊆ F(d2).

There is a universal prefix-correct description language U ′′ in the sense that CU ′′ ≤ CF +
O(1) for any prefix-correct description language F . Let us fix such a U ′′ and call K ′(F ) :=
CU ′′(F ) the intermediate complexity of F .
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7 Time complexity of finite data sequences

The plain time complexity and prefix time complexity of a finite data sequence σ are defined
by

C(σ ) := min
L�σ

C(L), (19)

K(σ ) := min
L�σ

K(L), (20)

respectively, where L ranges over the laws of nature. (We will explain the terminology later
in this section.) We have to modify the notation C and K slightly since we would like to be
able to use the standard notation C(σ) and K(σ) for the Kolmogorov complexity (plain and
prefix) of σ ; we will also use C(n) and K(n) to denote the Kolmogorov complexity (plain
or prefix) of an integer n.

The following simple result is useful for discussing the interpretation of C(σ ) andK(σ ).

Theorem 5 For any finite data sequence σ ,

C(σ ) ≤ C(|σ |) + O(1), (21)

K(σ ) ≤ K(|σ |) + O(1). (22)

Proof If F is any description language (prefix-free or not) for nonnegative integers, we can
define a description language F ′ for laws of nature by setting

F ′(d) :=
{

(X × 2)F(d) if F(d) is defined
∅ if not.

Since

CF ′
(
(X × 2)|σ |) = CF (|σ |),

(21) follows by setting F := U and (22) follows by setting F := U ′.

Theorem 5 gives a trivial bound on the time complexity of σ : it is the complexity of the
length of σ (i.e., of the time of the last observation in σ assuming that the observations are
taken at times 1, 2, . . .). We can say that both C(σ ) and K(σ ) measure the complexity of
the time of the last observation in σ when we are given the observations themselves as an
oracle (with the observations disclosed sequentially, so that we can’t just count them). As
we will see later (see Theorems 6 and 10 below), these measures of complexity can be used
to determine whether being in the situation of having just observed the last observation in
σ is a rare event.1 For the purpose of prediction, having such a measure of complexity is
important since our prediction system can be forgiven for giving a wrong prediction when
a rare event happens (cf. the epigraph about “Fisher’s disjunction” to Section 5).

Remark 6 The length of a finite data sequence σ can be interpreted as the physical time
of the last observation in σ . In probability theory, physical time is often changed; e.g., it
can be replaced by intrinsic time reflecting the intensity at which various events happen
(in a probability-free setting, this was done in, e.g., [14], where physical time was replaced

1For the reader familiar with Shafer’s [11, Section 1.7] distinction between Humean and Moivrean events,
we are talking about events of the former kind.
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by quadratic variation). The stopping times (see Remark 1) corresponding to physical time
consist of all finite data sequences of the same length. For the more general notion of time,
we can regard the last observations in the finite data sequences in an arbitrary stopping time
(law of nature) as happening at the same moment in time. This is another justification for
calling (19)–(20) the time complexity of σ .

Remark 7 In the usual jargon of Kolmogorov complexity, we can say that the complexity
(either plain or prefix) of σ is the minimal complexity (of the same kind) of a binary program
that enumerates some prefix-free set containing σ .

The following theorem describes a connection with the universal prediction system;
remember that log is binary logarithm.

Theorem 6 There is a constant c > 0 such that, for all N ,

{σ | C(σ ) ≤ logN − c} ⊆ U≤N ⊆ {σ | C(σ ) ≤ logN + c}. (23)

Proof To check the left-hand inclusion in (23), it suffices to define a prediction system L
such that, for all finite data sequences σ , σ ∈ L≤2k+1 where k := C(σ ). Let U be the
universal description language for laws of nature: CU = C. We can set L := (L1, L2, . . .),
where Ln is defined to be F(d) for d obtained from the binary representation of n by
removing the leading 1.

To check the right-hand inclusion in (23), it suffices to define a description language
F for laws of nature such that CF (σ) ≤ logN whenever σ ∈ U≤N , for any N . Define
F(d), where d ∈ 2∗, as Un, where n is the natural number whose binary representation is 1
followed by d. If σ ∈ U≤N , σ will belong to a law of nature whose description is of length
at most �logN�, which completes the proof of this inclusion.

We can interpret (23) by saying that U≤N coincides with {σ | C(σ ) ≤ logN} if we
are allowed to vary the threshold logN by adding a constant (positive or negative); this
qualification is natural as time complexity is defined only to within an additive constant.

The next result gives an even simpler connection.

Theorem 7 When s ∈ (X × 2)∗ × X ranges over the situations and y ∈ 2 over the labels,

logπs
U (y) = C((s, y)) + O(1).

Proof This follows immediately from (23):

logπs
U (y) = min{log n | (s, y) ∈ Un} = min{logN | (s, y) ∈ U≤N }

= min{logN | C((s, y)) ≤ logN} + O(1) = C((s, y)) + O(1),

where n and N range over N.

And the following theorem gives obvious connections between the two complexities.

Theorem 8

C(σ ) ≤ K(σ ) + O(1)

K(σ ) ≤ C(σ ) + 2 logC(σ ) + O(1).
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Proof The first inequality follows from the fact that a prefix-free description language is
a description language. The second inequality follows from the fact that any description
d can be turned into a prefix-free description by prefixing it by the following prefix-free
description of the length |d| of d: double each bit of the binary representation of |d| and add
the string (0, 1) as suffix.

Remark 8 ([13]) We can complement (19) and (20) by K′(σ ) := minL�σ K ′(L), where K ′
is as defined in Remark 5. We will refer to K′(σ ) as the intermediate time complexity of σ ;
notice that

C − O(1) ≤ K′ ≤ K + O(1).

8 A priori time semimeasure

We can also define an analogue of Levin’s a priori semimeasure (see, e.g., [12], Sec-
tion 7.33) for time. A time semimeasure is a function P : (X × 2)∗ → [0, 1] such that, for
all infinite data sequences ω,

∞∑

l=0

P(ωl) ≤ 1.

Theorem 9 There is a largest to within a constant factor lower semicomputable time
semimeasure.

Proof It is easy to check that there exists a sequence Pk , k = 1, 2, . . ., of semicom-
putable time semimeasures that is jointly lower semicomputable, in the sense of the function
(k, σ ) �→ Pk(σ ) being lower semicomputable, and universal, in the sense of containing
every lower semicomputable time semimeasure. For any such sequence, the average

M :=
∞∑

k=1

2−kPk

will be a largest to within a constant factor lower semicomputable time semimeasure.

Let us fix a largest to within a constant factor lower semicomputable time semimeasure
M and call it the a priori time semimeasure. We will use the notation M for the standard a
priori semimeasure on N0; it is well known that − logM coincides with prefix complexity
K to within an additive constant (see, e.g., [12], Theorem 7.29). For the time counterparts
of M and K we will only state a weaker result.

Theorem 10 C − O(1) ≤ − logM ≤ K + O(1).

Proof To check the inequality − logM ≤ K+ O(1), it suffices to check that 2−K is a time
semimeasure (its lower semicomputability follows from the upper semicomputability ofK).
Fix an infinite data sequence ω. For each l, let Ll be the simplest, in the sense of K, law of
nature containing ωl . By the definition of a law of nature all Ll are pairwise distinct, and so
we have ∞∑

l=0

2−K(ωl) =
∞∑

l=0

2−K(Ll) ≤
∑

L

2−K(L) ≤ 1, (24)
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where the last sum is over all laws of nature L (the last inequality is obvious, but a detailed
proof can be found in, e.g., [12], Theorem 7.27).

To check the opposite inequality C ≤ − logM+O(1), it suffices to define a description
language F for laws of nature such that minL�σ CF (L) ≤ − logM(σ ) + O(1). For each
threshold k ∈ N0, we can enumerate (in a computable manner) all data sequences σ satis-
fying M(σ ) > 2−k (as M is lower semicomputable, we will be able to detect M(σ ) > 2−k

eventually); let σ1, σ2, . . . be such an enumeration (the sequence σ1, σ2, . . . can be finite
and even empty, as it is for k = 0). Order the 2k binary strings in 2k lexicographically.
For n = 1, 2, . . .: assign to σn as its description the smallest element of 2k that does not
serve as description for any of σ1, . . . , σn−1 that is comparable with σn w.r. to � (in par-
ticular, σ1 has 0k = (0, . . . , 0) as its description). Since, for each infinite data sequence ω,
M(ωl) > 2−k holds for at most 2k (and even 2k −1) ls, we will never run out of descriptions
when following this procedure. Define F(d), where d ∈ 2k , to be the set of all σ having d

as their description; by construction, F(d) is a law of nature and F is a description language
(remember that the procedure is repeated for all k ∈ N0). Since

M(σ ) > 2−k =⇒ CF (σ) ≤ k

for all σ ∈ (X × 2)∗ and k ∈ N0, we have CF ≤ − logM + 1 and, therefore, C ≤
− logM + O(1).

In fact, Alexander Shen pointed out that the standard connection between M and K ,
K = − logM +O(1), does not carry over to their time counterparts. (Shen’s observation is
a version of another standard result in the theory of Kolmogorov complexity.)

Theorem 11 (A. Shen) It is not true that K = − logM + O(1).

Proof Suppose that, in fact, K = − logM + O(1). Fix an object x ∈ X and two labels
a, b ∈ Y. Set A := (x, a) ∈ Z, α := (A,A, . . .) ∈ Z∞, and B := (x, b) ∈ Z. For each
n ∈ N, consider the following n finite data sequences:

αnBα1, αnBα2, . . . , αnBαn.

Since there is a time semimeasure P satisfying P(αnBαk) = 1/n, for all n ∈ N and
all k = 1, . . . , n, we have M(αnBαk) ≥ 1/(cn), for all n ∈ N and all k = 1, . . . , n,
c standing for a positive universal constant (with different occurrences of c referring to
possibly different positive universal constants). By our assumption, 2−K(αnBαk) ≥ 1/(cn),
for all n ∈ N and all k = 1, . . . , n. Remember that

∑
L 2−K(L) ≤ 1, where the sum is over

all laws of nature (we have already used this: see (24)). The series
∑

L 2−K(L) contains at
least n terms 2−K(L) ≥ 1/(cn) (since laws of natures containing αnBαk and αnBαk′

are
necessarily different when k �= k′). The series is positive, and so its sum will not change if
we rearrange its terms. Let us sort them in the decreasing order. The nth largest term will be
at least 1/(cn), and therefore

∑
n 1/n = ∞ implies

∑
L 2−K(L) = ∞. This contradiction

concludes the proof.

Remark 9 ([1]) As shown by Mikhail Andreev, it is also not true thatK′ = − logM+O(1),
where K′ is intermediate time complexity, as defined in Remark 8. The proof is much more
difficult and can be found in [1].
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9 Time randomness

In the usual theory of Kolmogorov complexity the notion of algorithmic randomness is
as important as that of algorithmic complexity (and perhaps was the main motivation be-
hind Kolmogorov’s introduction of algorithmic complexity). There are many versions of
algorithmic randomness, and in this paper we will briefly discuss only the time analogue
of Kolmogorov’s original definition |σ | − C(σ) of the randomness deficiency of a binary
string σ of length |σ | (given, somewhat implicitly, in [3], Section 4) and, later on (see
Theorem 13), the time analogue of Martin-Löf’s [4] definition of randomness.

The time randomness deficiency of a finite data sequence σ ∈ (X × 2)∗ is defined to be

D(σ ) := log |σ | − C(σ ).

(We take log |σ | instead of Kolmogorov’s |σ | in view of Theorem 5: whereas the trivial
upper bound on plain Kolmogorov complexity is C(σ) ≤ |σ | + O(1), the trivial upper
bound on plain time complexity is

C(σ ) ≤ C(|σ |) + O(1) ≤ log |σ | + O(1).)

Informally, we can rewrite (23) as

U≤N ≈ {σ | C(σ ) ≤ logN}.
We could have defined the universal prediction system by

U ′
m := {σ | C(σ ) ≤ m}

(with m in place of logN ). This definition would be especially useful in situations with-
out noise where we can expect to make a finite number of prediction errors over an infinite
data sequence. In situations where there is noise at a more or less constant level for each
observation (which is typical under the assumption, prevalent in machine learning and non-
parametric statistics, that the observations are independent and identically distributed), it
may be more useful to replace C by D and set, for each threshold m ∈ N0,

�m := {σ | D(σ ) > m}.
The corresponding prediction sets are

��m(s) := {y ∈ 2 | (s, y) /∈ �m} = {y ∈ 2 | D((s, y)) ≤ m} .

In a situation s = (σ, x), the prediction system �m predicts that the label y ∈ 2 of x will
be an element of ��m(s). The following simple result shows that the rate at which this
prediction system makes errors is less than 2−m.

Theorem 12 For each infinite data sequence ω = ((x1, y1), (x2, y2), . . .), each l ∈ N, and
each m ∈ N0,

∣∣∣
{
i ∈ {1, . . . , l} | yi /∈ ��m(ωi−1, xi)

}∣∣∣ =
∣∣∣
{
i ∈ {1, . . . , l} | ωi ∈ �m

}∣∣∣ < 2−ml.

Proof If the prediction system �m makes an error when predicting yi , i.e., yi /∈
��m(ωi−1, xi), we have D(ωi) > m, and so

C(ωi) < log i − m ≤ log l − m.

The number of such i does not exceed the number of all descriptions of length less than
log l − m, i.e., does not exceed 2log l−m − 1 < 2−ml.
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In the rest of this section we will explore more systematically prediction systems of the
type �m. (Notice that, formally, they are not even weak prediction systems as defined in
Section 4.) A randomness-type prediction system is a jointly enumerable family 	 of sets
	m ⊆ (X × 2)∗ of finite data sequences such that:

– 	m are nested: 	0 ⊇ 	1 ⊇ 	2 ⊇ · · · ;
– for all m ∈ N0, l ∈ N, and ω ∈ (X × 2)∞,

∣∣∣
{
i ∈ {1, . . . , l} | ωi ∈ 	m

}∣∣∣ ≤ 2−ml. (25)

Theorem 12 says that � is a randomness-type prediction system. It is easy to see that there
is a universal randomness-type prediction system:

Theorem 13 There exists a randomness-type prediction system D such that, for any
randomness-type prediction system 	, there exists c ∈ N such that, for all m ∈ N0,
	m+c ⊆ Dm.

Proof Notice that we can enumerate all randomness-type prediction systems 	1,	2, . . .,
in the sense that there is a recursively enumerable set

	 ⊆ (X × 2)∗ × N
2

such that:

1. For any k, the sequence (	k
m)∞m=1, where

	k
m := {

σ ∈ (X × 2)∗ | (σ,m, k) ∈ 	
}

is a randomness-type prediction system.
2. Any randomness-type prediction system coincides, for some k, with the sequence

(	k
m)∞m=1.

(The existence of such 	 follows from the existence of such a set 	′ when item 1 is ignored
and the fact that we can enumerate the elements of 	′ one by one including each of them
into 	 if and only if the inclusion does not violate item 1.) We can then combine all these
randomness-type prediction systems into D setting

Dm :=
∞⋃

k=1

	k
m+k. (26)

We will get a randomness-type prediction system, since

∣
∣∣
{
i ∈ {1, . . . , l} | ωi ∈ Dm

}∣
∣∣ =

∣∣∣∣∣

∞⋃

k=1

{
i ∈ {1, . . . , l} | ωi ∈ 	k

m+k

}
∣∣
∣∣∣

≤
∞∑

k=1

∣∣∣
{
i ∈ {1, . . . , l} | ωi ∈ 	k

m+k

}∣∣∣

≤
∞∑

k=1

2−m−kl = 2−ml,

and this system is obviously universal.
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Let us fix a randomness-type prediction systemD satisfying the condition in Theorem 13
and call it the universal randomness-type prediction system; set, for any situation s and any
m ∈ N0,

�Dm(s) := {y ∈ 2 | (s, y) /∈ Dm} .

A crude connection of D with our previous definition is given in the following theorem.

Theorem 14 There exists c > 0 such that, for any finite data sequence σ ∈ (X×2)l−1 (for
any l ∈ N), any x ∈ X, and any threshold m ∈ N,

�cl2−mm2

U ((σ, x)) ⊆ �Dm((σ, x)). (27)

This theorem asserts that the prediction set output by the universal prediction system is
at least as precise as the prediction set output by the universal randomness-type prediction
system if we increase slightly the allowed percentage of errors: from 2−m to c2−mm2. It
involves not just multiplying by a constant (as in, e.g., (9)) but also the term m2, which is
logarithmic in the allowed percentage of errors 2−m for Dm.

By Theorem 12, Theorem 14 will stay true if we replace the right-hand side �Dm((σ, x))

of (27) by ��m((σ, x)); moreover,

�Dm((σ, x)) ⊆ ��m+c ((σ, x))

for a constant c.

Proof of Theorem 14 Let us replace (27) by the equivalent

σ ∈ Dm =⇒ σ ∈ U≤c|σ |2−mm2 .

Define a prediction system L = (L1, L2, . . .) as, essentially, Dm; formally:

– The law of nature L1 contains only finite data sequences σ ∈ Dm of length at most 2m.
This set if prefix-free by the definition of a randomness-type prediction system: indeed,
(25) shows that, for any infinite data sequence ω, at most 2−m2m = 1 element of L1 is
a prefix of ω.

– The next 2 laws of nature (L2 and L3) contain only finite data sequences σ ∈ Dm of
length in the range 2m + 1 to 2m+1, and we will define them similarly to the proof of
Theorem 10. Enumerate, in a computable manner, all such data sequences σ (σ ∈ Dm

and |σ | ∈ [2m + 1, 2m+1]); let σ1, σ2, . . . be such an enumeration. For n = 1, 2, . . .:
include σn into the law of nature (L2 orL3) with the smallest index that does not already
contain data sequences comparable with σn in the sense of the order � (in particular,
σ1 ∈ L2). Two laws of nature (L2 and L3) are sufficient since, by (25), each infinite
data sequence ω has at most 2−m2m+1 = 2 elements of Dm with length in the range
[2m + 1, 2m+1] (and even [0, 2m+1]) as its prefixes.

– The next 4 laws of nature (L4 to L7) contain only finite data sequences σ ∈ Dm of
length in the range 2m+1 + 1 to 2m+2. Enumerate, in a computable manner, all data se-
quences σ ∈ Dm whose length is in this range; let σ1, σ2, . . . be such an enumeration.
For n = 1, 2, . . .: include σn into the law of nature (L4 to L7) with the smallest index
that does not already contain data sequences comparable with σn in the sense of the or-
der �. We will never run out of the available laws of nature (L4 to L7) by the definition
of a randomness-type prediction system: see (25).

– And so on.
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Any data sequence σ ∈ Dm whose length l is in the range 2m+i−1 + 1 to 2m+i , i ∈ N, will
be included in one of the 2i laws of nature L2i to L2i+1−1, and so

σ ∈ L≤2i+1−1 ⊆ L≤22−m(l−1)−1.

In combination with Theorem 3, we obtain

σ ∈ U≤c12K(L)2−ml

for a constant c1 > 0. Therefore, our task reduces to checking that

2K(m) ≤ c2m
2

for a constant c2 > 0. Since 2−K(m) is the universal semimeasure on the positive integers
(see, e.g., [12], Theorem 7.29), we even have

2K(m) ≤ c3m(logm)(log logm) · · · (log · · · logm),

where the product contains all factors that are greater than 1 (see [10], Appendix A).

Remark 10 The proof shows that the inclusion (27) can be strengthened to

�cl2K(m)−m

U ((σ, x)) ⊆ �Dm((σ, x)).

Next we show how the constant c in Theorem 13 depends on 	. First we give a standard
definition of prefix complexity adapted to randomness-type prediction systems.

A description language for randomness-type prediction systems is a function F mapping
2∗ to the set of all randomness-type prediction systems such that the set

{
(d, σ,m) ∈ 2∗ × (X × 2)∗ × N | σ ∈ Fm(d)

}

is recursively enumerable, where Fm(d) is the mth set in F(d), i.e., Fm(d) := 	m

when F(d) = (	1, 	2, . . .). The effective domain dom(F ) of a description language
F for randomness-type prediction systems is (11). A prefix-free description language
for randomness-type prediction systems is a description language F for randomness-type
prediction systems such that dom(F ) is prefix-free.

The complexity of a randomness-type prediction system 	 with respect to a description
language F for randomness-type prediction systems is defined by

CF (	) := min {|d| | 	 = F(d)} .

Analogously to Theorem 2 (but using the fact that we can enforce item 1 on p. 17) we can
prove:

Theorem 15 There is a description language U for randomness-type prediction systems
that is universal in the sense that for any description language F for randomness-type
prediction systems there exists a constant c such that, for any randomness-type prediction
system 	,

CU(	) ≤ CF (	) + c.

There is a prefix-free description language U ′ for randomness-type prediction systems that
is universal in the sense that for any prefix-free description language F for randomness-type
prediction systems there exists a constant c such that, for any randomness-type prediction
system 	,

CU ′(	) ≤ CF (	) + c.
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We fix a universal description language U for randomness-type prediction systems and
call C(	) := CU(	) the plain complexity of 	. And we fix a universal prefix-free descrip-
tion language U ′ for randomness-type prediction systems and call K(	) := CU ′(	) the
prefix complexity of 	.

Theorem 16 There exists a constant c ∈ N such that, for any randomness-type prediction
system 	 and any m ∈ N0, 	m+K(	)+c ⊆ Dm.

Proof Let U ′ be our chosen universal prefix-free description language for randomness-
type prediction systems. Analogously to the proof of Theorem 13, we can then combine all
randomness-type prediction systems into one system D′ by setting

D′
m :=

⋃

d∈2∗
U ′

m+|d|(d) (28)

(cf. (26)). We again get a randomness-type prediction system:

∣∣∣
{
i ∈ {1, . . . , l} | ωi ∈ D′

m

}∣∣∣ =
∣∣∣∣∣

⋃

d∈2∗

{
i ∈ {1, . . . , l} | ωi ∈ U ′

m+|d|(d)
}
∣∣∣∣∣

≤
∑

d∈dom(U ′)

∣∣∣
{
i ∈ {1, . . . , l} | ωi ∈ U ′

m+|d|(d)
}∣∣∣

≤
∑

d∈dom(U ′)
2−m−|d|l ≤ 2−ml.

The inclusion 	m+K(	) ⊆ D′
m now follows from 	 = U ′(d) for some d ∈ 2K(	). The

addend “ + c” allows us to replace the randomness-type prediction system D′ defined by
(28) by our chosen universal randomness-type prediction system D.

In conclusion of this section we will reword our definition of a universal prediction sys-
tem to make it more similar to that of a universal randomness-type prediction system. A
complexity-type prediction system is a jointly enumerable family 	 of sets 	m ⊆ (X× 2)∗
of finite data sequences such that, for all m ∈ N0 and ω ∈ (X × 2)∞,

∣∣∣
{
i ∈ N | ωi ∈ 	m

}∣∣∣ ≤ 2m. (29)

Theorem 17 There exists a complexity-type prediction system V such that, for any
complexity-type prediction system 	, there exists c ∈ N such that, for all m ∈ N0,
	m ⊆ Vm+c.

Fix a complexity-type prediction system V satisfying the condition in Theorem 17
and call it the universal complexity-type prediction system. The following analogue of
Theorem 6 shows that this is not an essentially new notion.

Theorem 18 There is a constant c > 0 such that, for all m ∈ N0,

{σ | C(σ ) ≤ m − c} ⊆ Vm ⊆ {σ | C(σ ) ≤ m + c}. (30)
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Proof The left-hand inclusion in (30) is obvious. The right-hand inclusion is witnessed by
the following description language for laws of nature. Enumerate in a computable manner
all finite data sequences σ1, σ2, . . . in Vm. Order all binary strings in 2m lexicographically.
Assign 0m (i.e., the sequence (0, . . . , 0) of length m) to σ1 as its description. For i =
2, 3, . . ., assign to σi as its description the first string in 2m that has not being assigned as
yet to the strings among σ1, . . . , σi−1 that are comparable with σi . The finite data sequences
with the same description now form a law of nature with that description. Repeat for all
m ∈ N0.

The only thing that remains to be checked is that we will never run out of strings in 2m.
Let us check this carefully. It is convenient to think of the elements of 2m as colours, and
our goal is to show that we will never run out of the 2m available colours. We look at the
set (X× 2)∗ of all finite data sequences as a tree (rooted at � and with σ and σ ′ connected
with an edge when σ � σ ′ but there is no σ ′′ such that σ � σ ′′ � σ ′). Siblings are non-
empty finite data sequences that differ only in their last element. Let us fix some stage i of
the construction in the previous paragraph; at the beginning of this stage we have a partial
colouring of the tree (X × 2)∗: the vertices σ1, . . . , σi−1 have been coloured, and our task
is to colour σi . For each vertex σ , let Tσ be the set of all colours used in the tree rooted at
σ , and Pσ be the set of all colours used along the path from the root � to σ (not including
σ ). Notice the following properties of our construction:

1. The colours of comparable vertices are different.
2. If a vertex σ gets colour d, then each smaller color is used either for a predecessor of σ

or for a descendant of σ .
3. If σ is a vertex (coloured or not), then the sets Tσ and Pσ are disjoint (by Property 1),

and Tσ is an initial segment in the complement 2d \ Pσ of Pσ . Indeed, if a colour
appears in Tσ , it is the colour of some vertex σ ′ � σ , and so all smaller colours appear
either before σ ′ (therefore, in Pσ or Tσ ) or after σ ′ (therefore, in Tσ ).

4. The sets Tσ and Tσ ′ for any two siblings σ and σ ′ are comparable with respect to
inclusion. Indeed, they are two initial segments of the same complement.

5. For each vertex σ the total number of colours used in Tσ is minimal, in the sense of
being equal to the maximal number of coloured vertices on the paths in Tσ . This can be
shown by an inductive argument using the previous property.

The last property, in combination with (29), shows that we will have at least one colour left
for σi .

10 Universal conformal prediction under the IID assumption

Up to this point our exposition has been completely probability-free, but in this section we
will consider the special case where the data are generated in the IID manner. For basic
definitions of the theory of conformal prediction see, e.g., [15]. For simplicity, we will only
consider computable conformity measures that take values in the set Q of rational numbers.
Remember that D is the universal randomness-type prediction system, as introduced in the
previous section; let us set Dm := (X × 2)∗ for m < 0 (i.e., we include all finite data
sequences in Dm for negative m).

Theorem 19 Let 
 be a conformal predictor based on a computable conformity measure
taking values in Q. Then there exists c ∈ N such that, for almost all infinite data sequences
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ω = ((x1, y1), (x2, y2), . . .) ∈ (X× 2)∞ and all significance levels ε ∈ (0, 1), from some l

on we will have
�D�− log ε�−c

((ωl−1, xl)) ⊆ 
ε((ωl−1, xl)). (31)

This theorem says that the prediction set output by the universal randomness-type pre-
diction system is at least as precise as the prediction set output by 
, to within the usual
additive constant.

Proof of Theorem 19 Without loss of generality we can and will assume ε ∈ (0, 1/2). For
each such ε set m := �− log ε� − 1. (Intuitively, we replace ε by a new significance level
2−m, which we make at least twice as large as the original ε.) Let 	m be 
2−m

forced to
satisfy (25); formally, 	m contains only finite data sequences σ such that 
2−m

makes an
error when predicting the last label in σ , and 	 is defined by induction first on m and then
on the length of σ as follows: σ is included in 	m if and only if:

– σ is included in all 	i , i < m (this condition is satisfied automatically if m = 1);
– the condition (25) is satisfied, where l is the length of σ and ω is an infinite continuation

of σ .

By the standard validity property of conformal predictors ([15], Corollary 1.1), we will have

�	m((ωl−1, xl)) ⊆ 
ε((ωl−1, xl))

from some l on almost surely.

Remark 11 The proof shows that we can replace the c in (31) by c+K(
), where c now does
not depend on 
 and K(
) is the smallest prefix complexity of the programs for computing
the conformity measure on which 
 is based.

11 The theory of Kolmogorov complexity

In this section we will discuss the theory of Kolmogorov complexity as a special case of our
theory. We obtain the former by taking X and the label space (2 in this paper) of size one.
More generally, the theory of Kolmogorov complexity embeds into our theory when we fix
an object and a label and only consider sequences of identical observations with those object
and label. Therefore, let us fix an element x of X and a label, say 0.

Let o ∈ (X×2)∗ be the infinite data sequence ((x, 0), (x, 0), . . .) consisting of identical
observations (x, 0).

Theorem 20

C(on) = C(n) + O(1), (32)

K(on) = K(n) + O(1),

− logM(on) = − logM(n) + O(1).

Proof We will only prove (32); the other two relations can be proved similarly. Reinterpret-
ing a description of n ∈ N as a description of the law of nature (X × 2)n, we obtain the
inequality ≤ in (32). (Alternatively, we can notice that (32) is a special case of the inequal-
ity ≤ of (21).) And reinterpreting a description of a law of nature L as a description of the
length of the only element of L ∩ �(o), we obtain the inequality ≥ in (32).
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Combining Theorem 20 with the standard fact that K(n) = − logM(n) + O(1) (e.g.,
[12], Theorem 7.29), we can see that Theorem 10 can be improved when restricted to �(o):
in this case − logM = K + O(1). Unfortunately, the equality cannot be extended to all
finite data sequences: see Theorem 11.

12 Conclusion

In this paper we have ignored the computational resources, first of all, the required compu-
tation time and space (memory). Developing versions of our definitions and results taking
into account the time of computations is a natural next step. In analogy with the theory
of Kolmogorov complexity, we expect that the simplest and most elegant results will be
obtained for computational models that are more flexible than Turing machines, such as
Kolmogorov–Uspensky algorithms and Schönhage machines.

An interesting open question is whether Theorem 10 can be improved to − logM =
K + O(1) by modifying the definition of prefix time complexity (Theorem 11 says that a
modification is necessary, and Remark 9 shows that intermediate time complexity does not
work). Another open question is whether plain complexity C can be improved to (or almost
to) prefix complexity K in Theorem 4.

More open questions are raised by the definition of universal randomness-type prediction
systems in Section 9: how can such prediction systems be characterized in terms of other
notions (such as plain and prefix time complexity, time randomness deficiency, and a priori
time semimeasure) introduced in this paper or in terms of similar notions? (In Theorem 14
we gave only the most obvious connection.)
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