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Abstract—Searchable Encryption (SE) has been extensively 
examined by both academic and industry researchers. While 
many academic SE schemes show provable security, they usually 
expose some query information (e.g., search patterns) to achieve 
high efficiency. However, several inference attacks have exploited 
such leakage, e.g., a query recovery attack can convert opaque 
query trapdoors to their corresponding keywords based on some 
prior knowledge. On the other hand, many proposed SE schemes 
require significant modification of existing applications, which 
makes them less practical, weak in usability, and difficult to 
deploy. In this paper, we introduce a secure and practical SE 
scheme with provable security strength for cloud applications, 
called IDCrypt, which improves the search efficiency and 
enhanced the security strength of SE using symmetric 
cryptography. We further point out the main challenges in 
securely searching on multiple indexes and sharing encrypted 
data between multiple users. To address the above issues, we 
propose a token-adjustment scheme to preserve the search 
functionality among multi-indexes, and a key sharing scheme 
which combines Identity-Based Encryption (IBE) and Public-Key 
Encryption (PKE). Our experimental results show that the 
overhead of IDCrypt is fairly low. 
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I. INTRODUCTION 

According to Cloud Security Alliance (CSA) report [1], 
data breach is one of the top threats in cloud computing. In the 
first half of 2016, there were 974 publicly disclosed data 
breaches, which led to the loss of 554 million data records [2]. 
A promising solution to this issue is to encrypt sensitive data 
before outsourcing to a cloud service. 

However, the encryption that protects user data hinders the 
search functionality of cloud applications. To address this issue, 
many Searchable Encryption (SE) schemes have been 
proposed, which usually consists of the following steps: A user 
generates its encrypted documents and a searchable encrypted 
index. The encrypted documents and the encrypted index are 
then outsourced to the cloud. To search a keyword, the user 

generates a so-called trapdoor. With the trapdoor, the cloud 
can search on the encrypted index and return related documents. 
With such steps, many proposed SE schemes require 
significant modifications of existing application and query 
interface customization, which makes them difficult to deploy 
in practice. 

SE constructions usually try to exploit the trade-offs among 
functionality, security, and efficiency [3]. Song et al. [4] 
proposed the first practical SE construction. However, it shows 
a low efficiency and does not introduce a formal definition of 
SE security. Goh [5] proposed a secure index scheme that 
guaranteed the index security but not trapdoors; its search time 
is linear with the number of documents. Curtmola et al. [6] 
proposed the first sub-linear scheme which is more suitable for 
a static document set than a dynamic one. They introduced two 
new SE security definitions requiring that nothing should be 
leaked from the search process beyond the search and access 
patterns, which are widely used in current SE schemes [3]. As 
far as we know, there is no practical SE scheme that hides 
query access patterns. While the Oblivious RAM (ORAM) [7] 
can be used to support SE functions without leaking any 
information, it is not efficient for large-scale practical use. 

In recent years, several inference attacks have been 
designed to exploit access pattern disclosures with prior 
knowledge. Islam et al. [8] proposed the first inference attack 
against SE schemes based on the leakage of access patterns. 
Cash et al. [9] exploited the leakage profiles of various SE 
schemes to infer sensitive information about queries and 
documents. However, these attacks require knowing almost all 
the documents as prior knowledge to achieve a high recovery 
rate of queries.  

In this paper, we propose a secure and practical Symmetric 
Searchable Encryption (SSE) scheme, called IDCrypt, for 
protecting sensitive information in the cloud. In the IDCrypt 
architecture, we deploy an index server that can be configured 
using off-the-shelf index-based search engines [10-11] to 
provide search functions on encrypted documents, which 



 

improves search efficiency and security strength of SE. 
IDCrypt achieves provable security and can mitigate the above 
inference attacks effectively. We further point out the main 
challenges in securely searching different indexes and sharing 
encrypted data among multi-users, summarized as follows:  

(i) Searching encrypted data across different indexes. A 
scenario is that user u1 (who always uses secure search function 
on its own index I1) wants to search the encrypted data on 
another index I2 that is encrypted by another user u2. 

(ii) Encrypted data sharing between multi-users. A typical 
scenario is that user u1 wants to send an encrypted message to 
user u2. How to securely share encrypted data and keys among 
different users is another difficult challenge. 

To address above challenges, a token adjustment scheme is 
proposed in this paper to preserve the search functionality 
when a user searching on different indexes encrypted with 
different keys. Moreover, we design a Two-Layer Encryption 
Scheme (TLES), which combines Identity-Based Encryption 
(IBE) and Public-Key Encryption (PKE), to securely share 
secret keys between different users. We have evaluated the 
proposed schemes, and our experimental results show that the 
extra overhead of IDCrypt is fairly low. 

In summary, the main contributions of this paper are: 

1) We proposed a practical symmetric SE scheme with 
provable security strength, called IDCrypt, to improve the 
search efficiency and enhance the security of SE. It 
achieves provable security and can effectively mitigate 
the inference attacks on SE. The SSE schemes on 
IDCrypt are compatible with off-the-shelf index-based 
search engines, which can be easily deployed in practice. 
They can also support advanced SE functions, including 
multi-keyword ranked SE and dynamic SE. 

2) We propose a token-adjustment search scheme to preserve 
the search functionality when a user need to search 
indexes encrypted by different keys.  

3) We design a Two-Layer Encryption Scheme (TLES), 
which combines Identity-Based Encryption (IBE) and 
Public-Key Encryption (PKE), in order to share secret 
keys between different users securely and efficiently. 

The remainder of this paper is structured as follows. In 
Section 2, we discuss the security definitions of SE and 
inference attacks on SE schemes. In Section 3, we introduce 
our IDCrypt architecture and depict its security analysis in 
detail. We present the token-adjustment search scheme in 
Section 5, and develop the TLES scheme in Section 6. We 
show the implementation of IDCrypt and evaluate its 
performance in Section 7. Related works are summarized in 
Section 8. We further conclude this paper and discuss our 
future work in Section 9. 

II. BACKGROUND 

In this section, we introduce the basic concepts used in this 
paper, and present the background information of the security 
definitions of SE and inference attacks on SE schemes. 

A. Terminology & Preliminary 

n — The total number of documents in a collection 
D = {D1, D2, …, Dn} — A collection of n documents 
ID(Di) — The identifier of document Di 
D(w) — The ordered list consisting of the identifiers of all 
documents in D that contain the keyword w 
m — The total number of keywords in a dictionary 
W ={w1, w2,…, wm} — The set of keywords in a dictionary 
Q — A series of queries, each represents a query q 
I – The search index for document set D 
Bilinear Map. Let ܩଵ and ܩଶ be two cyclic groups of order ݌, 
for some large prime ܩ .݌ଵ is the group of points of an elliptic 
curve over ܨ௤ , and ܩଶ  is a subgroup of ܨ	௤మ

∗ . A mapping 

ଵܩ	:̂݁ 	ൈ	ܩଵ → ଶܩ	  is said to be bilinear if ݁̂ሺܽܲ, ܾܳሻ ൌ
	݁̂ሺܲ, ܳሻ௔௕ for all ܲ, ܳ	 ∈ ,ܽ and all	ଵܩ	 ܾ ∈ ܼ. 
Security of Pseudo-Random Function. A pseudo-random 
function f: {0, 1}s ൈ {0, 1}n → {0, 1}m is computable in 
polynomial time and for all probabilistic polynomial-time 
adversaries A, all polynomials p and sufficiently large s: 

 
Security of Symmetric Encryption. A symmetric encryption 
scheme E’ = (K, E, D) is secure against chosen-ciphertext 
attacks if for all probabilistic polynomial-time adversaries A, 
all polynomials p and sufficiently large s: 

 
with the restrictions that |m0| = |m1|, and A cannot query D 
with c. 
Symmetric Searchable Encryption (SSE): A SSE scheme is 
a collection of four polynomial-time algorithms as follows: 

Keygen(1s): a probabilistic key generation algorithm that 
takes a security parameter s, and returns a secret key k. It is run 
by the user to setup the scheme.  

BuildIndex(K, D): a (possibly probabilistic) algorithm takes 
a secret key k and a document collection D as inputs, and 
outputs an index I. 

Trapdoor(k, w): an algorithm that takes a secret key k and a 
word w as inputs, and outputs a trapdoor Tw. It is run by the 
user to perform a search operation. 

Search(I, Tw): an algorithm that takes an index I and a 
trapdoor Tw for word w as inputs, and returns a search result 
D(w). 

We refer to a sequence of query results (D(w1), ..., D(wi)) of 
a sequence of query keywords (w1, ... ,wi) as an access pattern. 
The search pattern means the information that can be derived 
in the following manner: given two arbitrary queries, knowing 
whether the two searches use the same keyword or not. 
Referring to [6][12], the security strength of common SSE 
schemes follows the real/ideal simulation paradigm. They leak 
certain information to achieve better performance and we 
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quantify the leakage profile by a leakage function L. The 
leakage function takes a sequence of queries Q as input and 
outputs what an adversary learns by taking part in the 
execution of the SE scheme. The SSE scheme is said to be L-
secure if there exists a simulator S, which takes an input L(P) 
with P a history of the protocol and outputs a view S(L(P)) that 
is indistinguishable from the view of an adversary in a real 
execution of the protocol with input P. 

Security of SSE. Let SSE = (KeyGen, Enc, Trapdoor, 
Search, Dec) be a SSE scheme, A is a stateful Probabilistic 
Polynomial-Time (PPT) adversary, S is a stateful PPT 
simulator, L1 and L2 are stateful leakage functions in an ideal 
security game, and s ∈ N denotes the security parameter. We 
define RealA(s) and IdealA,S(s) games as follows: 

RealA(s): the challenger runs KeyGen(1s) to generate a key 
K. A outputs D and receives (I, C) ← EncK(D) from the 
challenger. Then the adversary makes a polynomial number of 
adaptive queries Q, and for each query q of keyword w, 
receives from the challenger a search trapdoor TD ← 
TrapdoorK(w), Finally, A returns a bit b that is output by the 
game. 

IdealA,S(s): A outputs D. Given L1(D), S generates and sends 
a pair (I, C) to A. The adversary makes a polynomial number of 
adaptive queries Q and, for each query q of keyword w, the 
simulator receives L2(D, w) and returns an appropriate trapdoor 
TD. Finally, A returns a bit b that is output by the game. 

We say that SSE is (L1, L2) semantically secure against 
adaptive attacks if, for all (non-uniform) PPT adversaries A, all 
polynomials p and sufficiently large s, there exists a (non-
uniform) PPT simulator S such that 

|Pr[RealA(s) = 1] - Pr[IdealA,S(s) = 1]|< 1/p(s) 

We define (L1, L2) semantically secure against non-adaptive 
attacks in the same way, except that A must choose all of its 
queries at the start in both games. It can only provide security 
if the client's queries are independent of the search index and 
previous query results. 

Common SSE models can be classified into token-based SE 
and index-based SE. Token-based SE scheme can search users' 
encrypted sensitive data without modifying cloud Application 
Programming Interface (API). As shown in Fig.1, a token-
based SE scheme is depicted as follows. 

1) A user extracts keywords from a document Di, generates a 
token for each keyword by deterministically encrypted the 
keyword using a pseudo-random function f (such as 
HMAC) and a secret key k, and encrypts document Di 
using a secret key K. Then the user appends the sorted 
tokens to the ciphertext, and uploads them to the cloud. 

2) When searching for a keyword w, the broker applies the 
keyword to the pseudo-random function f and sends 
generated token TK=fk(w) to the server. 

3) The server can search for the token TK using the original 
search algorithms and return the corresponding encrypted 
data or encrypted document identifiers. 

With the above discussion, we can conclude that besides 
the sizes of the documents and tokens, the L1 leakage in the 
token-based SSE model exposed the information of the number 
of keywords in a document, the document similarity, the 
keyword occurrence pattern and the keyword co-occurrence 
pattern. The L2 leakage exposed the search pattern and the 
access pattern, which can be inferred from the L1 leakage.  

An Index-based SE scheme delegates search capabilities to 
a cloud provider on behalf of a user, which should modify 
cloud API to invoke specific SE libraries. Curtmola, et al. [6] 
first proposed an index-based SSE scheme that lets nothing but 
the search and access patterns be known to the server. For each 
keyword w, it built a posting list consisting of |D(w)| nodes. A 
posting contains an identifier of a document containing w, a 
key used to decrypt the next encrypted posting, and a pointer to 
the next encrypted posting. All postings are encrypted with 
random keys and scrambled in a random order. As shown in 
Fig. 1, the index-based SE scheme contains the following 
important steps: 

1) A user generates a searchable encrypted index I and the 
encrypted documents EK(D) independently, and uploads 
the encrypted index I and the encrypted data EK(D) to the 
cloud. 

2) Then, the user generates the trapdoor TD = fk(w) of a 
keyword w for search. 

3) With the trapdoor TD, the cloud service can search on the 
encrypted index using specific search algorithms and 
return the corresponding encrypted data or encrypted 
document identifiers. 

Based on the security definitions of the symmetric 
encryption E and the pseudo-random function f, we conclude 
that the L1 leakage in the index-based SSE model exposed 
nothing besides the sizes of the documents and indexes. 
However, the L2 leakage exposed the information of search 
patterns and access patterns. From this leakage, we can infer 
keyword occurrence patterns and keyword co-occurrence 
patterns for queried keywords. 

Inference Attacks: Inference attacks on SE schemes often 
use the information of keyword occurrence frequency and 
multi-keyword co-occurrence frequency to guess the query 
keywords or document contents. They usually contain the 
following steps. 

1. An adversary used the leakage information of the SE 
scheme (e.g., search patterns and access patterns) to infer 
the frequency of the query keyword or co-occurrence 
frequency of multiple query keywords. 

2. With prior knowledge of the documents, the adversary 
can count the frequency of plaintext keyword and the co-
occurrence frequency of multi-keywords respectively. 

3. With the plaintext statistics and the query information, 
the adversary designed matching algorithms to invert the 
query keywords. 



 

 
Fig. 1. Searchable encryption system models. 

Islam, Kuzu, and Kantarcioglu (IKK) [8] first initiated the 
inference attacks on SE with the help of access pattern 
disclosure. With sufficient prior knowledge, they convert their 
attack model as an optimization problem and uses simulated 
annealing [13] to find the optimal mapping between query 
trapdoors and keywords. Cash, Grubbs, Perry, and Ristenpart 
(CGPR) [9] proposed a simple and efficient attack algorithm 
to address the same issue as IKK. A Token-based SSE scheme 
encrypted each keyword using deterministic encryption 
algorithms, which leaks token occurrence patterns. From the 
leakage, an adversary can obtain the keyword occurrence 
frequency and multi-keyword co-occurrence frequency in the 
document set. Based on this, Shadow Nemesis [14] launched 
inference attacks on the token-based SE schemes using the 
Weighted Graph Matching (WGM) problem. However, to 
invert an encrypted keyword with a high accuracy, an 
adversary must have sufficient knowledge of the documents in 
the above attacks. 

III. IDCRYPT ARCHITECTURE 

We first provide a high-level system overview of our 
IDCrypt architecture in the following, and then propose two 
easily-deployable SSE schemes that improve the efficiency 
and security of SE with provable security definitions. 

A. System overview 

IDCrypt encrypts the confidential data of a user using a 
proxy before outsourcing it to cloud servers. To support 
encrypted search functions, the proxy of IDCrypt on the client 
side indexes the document data with the document identifier 
that points to the encrypted data in the cloud, and relies on an 
index server to assist in managing and searching on the index, 
thus taking the management burden off the proxy of IDCrypt. 

In particular, the IDCrypt paradigm focuses on usability and 
does not need to modify the cloud API and a user's familiar 
usage patterns. As shown in Fig. 2, IDCrypt consists of the 
following main components: 

 Proxy. A proxy is responsible for encrypting a user's 
confidential data. It is also responsible for generating the 
searchable encrypted index for a document set with 
document identifiers that point to the encrypted 
documents on the cloud. 

 Index server. An index server is responsible for 
managing the index data and executing the search 
operations. 

 

Fig. 2. IDCrypt architecture. 

IDCrypt assumes that the processing in a proxy is 
trustworthy and secure, namely the data within the proxy is 
transmitted in clear texts. Besides, since IDCrypt indexes the 
plaintext data inside the proxy with identifiers pointing to 
encrypted data at cloud servers, it has to protect the proxy from 
external accesses and attacks. 

The pathways outside a user’s proxy, including the cloud 
servers, the index server and other proxies are considered 
untrusted and need to be protected. As shown in Fig. 2, the 
sensitive data is encrypted by the proxy before passed to the 
outside, thus effectively preventing the cloud servers and the 
index server from stealing private information. In addition, 
even if the cloud servers and the index server collude, they 
cannot recover the plaintexts because they cannot get the 
corresponding keys that are located in the user’s proxy. 
Outside the proxy, even if the user's account is stolen by an 
attacker, the attacker can only access encrypted data, because 
the encrypted data does not go through the proxy and there is 
no decryption process. 

B. The SSE-I scheme 

To construct an efficient inverted index over the keywords 
in a document set, IDCrypt locates the index server at an 
online third-party service provider. IDCrypt encrypts the 
searchable index to prevent the third-party provider’s 
snooping, and protect privacy information (e.g., searchable 
keywords and document identifiers), as shown in Algorithm 1. 
The procedures of the SSE-I scheme are as follows: 
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1) For each document in a document set, the proxy first 
extracts keywords from the document, and generates 
searchable tokens by deterministically encrypting the 
extracted keywords.  

3) Then, the proxy gets the document identifiers that point to 
the encrypted documents in the cloud. It maps the tokens 
of a document with corresponding document identifiers 

respectively. 

3) Finally, the proxy indexes the searchable tokens with their 
encrypted document identifiers, and uploads the 
encrypted index to the index server. 

4) When a user performs a search operation for a keyword, the 
proxy sends the corresponding token of the keyword to 
the index server; the index server performs the search 
operation and returns the encrypted document identifiers.  

5) After decrypted by the proxy, the document identifiers can 
be used to request the encrypted documents from the 
cloud servers. 

The index structure of the SSE-I scheme is shown in Fig. 3. 
For each keyword w ∈ W, a linked posting list L(t) with length 
|D(w)| is built, in which t is the corresponding token of 
keyword w. Each item of L(t) consists of an encrypted 
document identifier ID(Di) of Di that contains the keyword w. 
The entries of a look-up table Wt are tuples ൏value, address൐, 
in which the value field is used to locate the corresponding 
posting list by a pseudo-random function H. That is, when a 
keyword is queried, we use its corresponding token value to 
locate its posting list. 

When a user initiates a query request, the proxy analyzes 
the request to get the query keyword. The proxy then 
generates the corresponding token of the keyword and sends a 
request with the token to the index server. With the token, the 
index server searches on the index and returns the 
corresponding encrypted document identifiers. After 

decrypting the encrypted document identifiers, the proxy can 
request cloud servers for corresponding encrypted documents. 
When receiving the data, the proxy decrypts it and returns the 
plaintext data to the end user. In this way, the SSE-I scheme 
hides the access pattern to a certain extent since document 
identifiers are encrypted, such that an adversary can not 
deduce the keyword co-occurrence frequency from the query 
results. However, it leaks the number of documents in which a 
keyword appears. We emphasize that the sizes of documents 
and the index will also be leaked, which is common and not 
mentioned in our security definations. 

 

 
Fig. 3. Index structure of the SSE-I scheme. 

 
Theorem 3.1. The SSE-I scheme is adaptively (L1, L2) 

secure, in which the L1 leakage exposed the number of 
searchable tokens, the occurrence count of each keyword (the 

number of encrypted document identifiers of each token). The 
L2 leakage exposed search patterns, and the occurrence counts 
of query keywords from access patterns, which can be 



 

deduced from L1 leakage. 
Proof: For the proof, we follow the security definition of 

SSE [6][12]. We say our SSE-I scheme is (L1, L2) semantically 
secure against adaptive attacks if, for all (non-uniform) PPT 
adversaries A, all polynomials p and sufficiently large s, there 
exists a (non-uniform) PPT simulator S that can simulate the 
encrypted index I and ciphertexts EK(D) with a probability 
negligibly close to 1. 

At a high level, the PPT simulator S builds a simulated 
encrypted index I* and a simulated sequence of ciphertexts 
E*K(D) using the information that it receives from L1 leakage, 
which includes the number of searchable tokens, and the 
occurrence count of each keyword. The ideal index I* can be 
constructed similarly to a real index, except that the encrypted 
document identifiers are replaced by random strings and the 
output tokens of the pseudo-random functions are replaced by 
random values. 

Generating posting lists L*: For each keyword w and its 
occurrence count |D(w)|, S generates |D(w)| random strings 
and sets them as a posting list for w.  

Generating look-up table W*: For each keyword w, S 
generates a random string t and lets H(t) point to the posting 
list of w. S records the correspondence between w and t. 

Generating query trapdoor T*: For the query keyword w, S 
sets its trapdoor T* as t corresponds to the keyword w. 

The security of the symmetric encryption and the security 
of pseudo-random function guarantee that the resulting 
encrypted index I* = {W*, L*} is indistinguishable from a real 
encrypted index, and the resulting trapdoor T* is 
indistinguishable from a real trapdoor. 

The simulated document encryptions E*K(D) are simulated 
in the same manner (i.e., replacing ciphertexts by random 
strings) and the security of the symmetric encryption 
guarantees indistinguishability. This completes the proof of 
the theorem. ■ 

Our SSE-I scheme is very efficient, in which the time 
complexity of index building is O(N), where N = ∑ ሻ|௪ݓሺܦ| , 
the time complexity of searching is O(1), and the index size is 
o(m+n), where m is the total number of keywords, n is the 
total number of documents. Besides, the scheme hides 
keyword co-occurrence patterns, as all document identifiers 
are encrypted to random values. However, the scheme 
exposed the number of documents in which a keyword 
appears, which may be exploited by an adversary to infer 
some queries if the adversary has sufficient knowledge of the 
documents. In the following, we design a scheme called SSE-
II that can hide keyword occurrence frequencies. 

C. SSE-II scheme 

In our SSE-II scheme, we pad the length of the posting list 
of each keyword to a fixed number c. We can determine the 
number c according to the most frequent keyword in a 
document set. Before building the index for a document set, 
we need to count the occurrence number of the most frequent 
keyword. An alternative way is setting the number c as the 
total number of documents. This method is more efficient at 
the cost of more space. After determining the number c, for 
each keyword, if its occurrence number is less than c, we pad 

the length of its posting list to c with random strings. Our 
BuildIndex algorithm of SSE-II scheme is shown in Algorithm 
2, and the Keygen, Trapdoor and Search algorithms are the 
same with the ones in SSE-I scheme. 

Theorem 3.2. The SSE-II scheme is adaptively (L1, L2) 
secure, where L1 leakage exposes the number of searchable 
tokens, and L2 leakage exposes the search pattern. 

The proof of this theorem is similar to that of Theorem 3.1; 
except that in the process of generating posting lists, for each 
keyword w, the simulator S generates c random strings and 
sets them as a posting list for w. 

In our SSE-II scheme the time complexity of index 
building is O(cn), the time complexity of searching is O(1), 
and the index size is o(m+cn), where m is the total number of 
keywords, and n is the total number of documents. Besides, 
the scheme hides the number of documents in which a 
keyword appears and the keyword co-occurrence patterns, as 
all document identifiers are encrypted to random values. So 
our SSE-II scheme can mitigate the inference attacks on SE 
even if an adversary has complete knowledge of the 
documents. Note that after receiving the search result of a 
keyword, the proxy should filter the padded random strings 
after decryption in the SSE-II scheme. 

 

D. Advanced Searchable Encryption Functions 

In this section, we discuss the advanced search functions 
[3][15] that can be implemented efficiently in our SSE 
schemes, including multi-keyword ranked SE and dynamic SE. 
Multi-keyword ranked SE: In a multi-keyword ranked SE, a 
user wants to seek k documents with the highest relevance 
scores on the query vector Q from a document set D. To rank 
the documents which contain more than one keyword of the 
query vector Q, we use the following equation to compute the 
relevance scores of matched documents, in which	ܶܨሺ݅ݓ,ݑ) 
means the normalized Term Frequency (TF) value of keyword Commented [YD7]: the page number is wrong since page 6. 
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௜ݓ  in ݑܦ , and ܨܦܫሺݓ௜ሻ  represents the normalized Inverse 
Document Frequency (IDF) value of keyword ݓ௜ in ܦ. 
ሻࡽ,࢛ࡰሺࢋ࢘࢕ࢉࡿ . The function calculates the relevance score 
between query vector ܳ and a document ܦ௨.  

,௨ܦሺ݁ݎ݋ܿܵ ܳሻ ൌ ௨ܦ ∙ ܳ ൌ 	 ෍ ௨,௪೔ܨܶ ൈ ௪೔ܨܦܫ
௪೔∈ௐ೜

 

In the index building process, we need to add a TF value in 
each item of a posting list to represent the frequency of a 
keyword in a document. Besides, we compute an IDF value of 
each distinct keyword in all the documents, and attach it to the 
corresponding token of the look-up table. When performing a 
multi-keyword ranked query, we execute the following 
procedures: 
1. For each keyword in the query Q, the index server 

returns all the encrypted identifiers in its posting list. 
2. On receiving the return results, a proxy decrypts them to 

get all the related document identifiers and 
corresponding TF/IDF values.  

3. If a query is an “or” query, we compute the score of each 
document identifier according to Equation 1 and return 
the document identifiers having the top k scores; If the 
query is an “and” query, we first select the documents 
which contain all the keywords in the query, and then 
compute the scores of selected documents. 

Dynamic SE: According to Kamara et al. [12], a practical SE 
scheme should be dynamic. It can support update operations 
that add files to an existing index or delete files from the index. 
In a dynamic SE scheme, new terms can be added to a 
dictionary of an index, and the posting lists of the index can be 
updated for existing terms. 

For our SSE schemes, an inverted index is built as shown 
in Fig. 4. However, performing an in-place update on the main 
inverted index in the index server directly is time-consuming 
[15]. To add new documents quickly, we maintain two 
indexes: a large main index stored in the index server and a 
small auxiliary index that points to new documents and is kept 
in the proxy. When the auxiliary index is larger than a 
threshold, it is merged into the main index in the index server. 
In the SSE-II scheme, when merging the auxiliary index into 
the main index, we also need to pad the lengths of posting lists 
in the auxiliary index to a fixed number (the occurrence 
number of the most frequent keyword or the number of 
documents). There are several typical operations in our 
dynamic SSE schemes. 
• Search: The operations are processed on both the main 

index and the auxiliary index, and then the results are 
merged. 

• Add:  When adding a new document, the proxy will build 
the auxiliary index for the document. 

• Delete: When a document is deleted, an invalidation bit 
vector stored in the proxy will be updated to indicate that 
the document has been deleted. Then the proxy will filter 
out the deleted documents according to the vector before 
returning the search result. 

• Update: If a document is updated, it will be deleted and 
re-inserted. 

When a large proportion of documents have been deleted 
from a document set, we need to generate a new index of the 
remaining documents to replace the old index for saving 
storage space. The off-line re-index process is depicted as 
follows: 
1. For each token of an index, the proxy initiates a 
query to the index server with the token. 
2. After receiving and decrypting the search results, the 
proxy validates each document identifier against the 
invalidation bit vector stored in the proxy, and removes the 
document identifiers that have been deleted. 
3. The building of the new index is completed when all 
the search tokens in the old index have been processed, and all 
the invalid document identifiers have been deleted from the 
posting lists. In the SSE-II scheme, we also need to pad the 
length of each posting list in the new index to a fixed number. 
4. Finally, the proxy encrypts and uploads the new 
index to the index server, and removes the old index. Then 
subsequent queries are performed on the new index instead of 
the old index. 

 
• Fig. 4 Dynamic search in our SSE scheme 

IV. ENCRYPTED SEARCH ON MULTI-INDEXES 

In practice, a user may have different document sets in 
different cloud applications, so the indexes of different 
document sets may be encrypted using different keys. When a 
user wants to search for all document sets, he must generate 
multiple distinct search tokens for a keyword, and send all of 
them to the index server. In another case, there are multi-users 
in a cloud application. The documents of different users and 
their indexes are encrypted with different keys. Many efficient 
SSE schemes [4-6] assume that a search trapdoor is encrypted 
using a single key, and they are suitable for a single-user 
scenario. If a user u1 wants to delegate another user to search 
its documents for a keyword, one approach is that user u1 
sends the request instead of the other user, and then sends the 
result to the other user. However, when the same request is 
repeated many times by other users, this approach is 
inefficient for user u1. Another alternative method is exposing 
the key of user u1 to other users, but this approach allows 
other users to search for the keywords other than they 
requested. To address this issue, we design a token-adjustment 
search scheme, presented in the following.  



 

A. Token-adjustment search 

In our token-adjustment search scheme, if a user wants to 
search for a keyword in a set of indexes, in which each index 
is encrypted with a different key, the user only needs to 
provide a single search token for that keyword to the index 
server. The index server, in turn, returns each encrypted 
identifier of a document that contains the keyword. 

We assume user Alice’s own key is k1, and the index I that 
Alice searches for is encrypted with key k2 by user Bob. Alice 
computes a search token for a keyword w using key k1, 
denoted t1. If the corresponding token of w of the index I in 
the index server is t2 instead of t1, the index server must adjust 
the search token t1 to t2. 

The token-adjustment search scheme allows the index 
server to perform the adjustment. In the first place, the index 
owner must provide a delta, which is a cryptographic value 
that enables the index server to adjust a search token from one 
key to another key. We use ∆ t1→t2 to denote the delta that 
allows the index server to adjust t1 to t2. Note that these deltas 
can be reused for subsequent search operations, so the index 
owner needs to generate the deltas only once. For example, if 
Bob delegates a search right of a keyword to Alice, he needs 
to provide one delta to the index server, such that the index 
server will be able to adjust the token t1 from Alice to a 
searchable token t2 using the token adjustment search scheme.  

B. Cryptographic construction 

We construct the token adjustment search scheme based on 
the key derivation algorithm proposed by Atallah et al [16], in 
which a delta between two keys k1and k2 is defined as follows: 

∆ki→kj = kj ⊕f(ki, Lj ) 
where Lj is a public label associated with kj, ⊕ is the XOR 
operator and f is a pseudo-random function. Referring to 
Equation 2, our token-adjustment search algorithm is depicted 
as follows: 

Token-adjustment search algorithm. Given two tokens ti 
and tj that are encrypted by different keys for keyword w, a 
delta between ti and tj is defined as ∆ti→tj = tj⊕f(ti, Lj), where 
Lj is a public label associated with the keyword w, ⊕ is the 
XOR operator, and f is a pseudorandom function, which can 
be implemented using a cryptographic hash function such as 
HMAC. 

Based on the token-adjustment search algorithm, the 
procedure of the token-adjustment search scheme is depicted 
as follows: 

1. If Alice wants to search a keyword w on the index I built 
by Bob, she sends a request to Bob with the value f(ti, Lj), in 
which ti is the token of w computed by Alice, Lj is a publicly 
available label associated with the keyword w. 

2. On receiving the request, Bob checks whether Alice has 
the right to search for w. If passed, Bob computes the delta 
value ∆ti→tj = tj⊕f(ti, Lj) with the corresponding token tj of w. 
Finally, it uploads the delta to the index server. 

3. In the subsequent searches, if Alice wants to search for 
the keyword w, she can send the value ti to the index server, 
then the index server can adjust the value to tj by computing f(ti, 

Lj), then obtaining tj = ∆ti→tj ⊕ f(ti, Lj) = tj ⊕f(ti, Lj) ⊕f(ti, Lj), 
thus the index server can search the token tj on the index I built 
by Bob. 

For a user, different keywords of his documents have 
different labels; for a common keyword, different users have 
different tokens encrypted with different keys. In this way, a 
user can control which keyword can be searched by which 
user. So our token-adjustment search scheme can realize fine-
grained access control. 

V. ENCRYPTED DATA SHARING BETWEEN PROXIES 

The data is encrypted at the proxy, namely the secret key is 
located in the proxy. So only the proxy can decrypt the 
encrypted data. A typical scenario is that user u1, on premise 
of proxy P1, wants to share a file with user u2, who is under 
another proxy P2. When user u2 receives the encrypted file 
from the cloud, it is encrypted by proxy P1. So the problem is 
how to share encrypted data between different proxies. 

To address the above issue, secret key sharing is an 
obvious solution. However, the secret key must be shared 
securely, and the receiver must provide a credential that is 
trusted by both parties. To do this, an IBE scheme [17] can 
achieve implicit certification, but has a private-key escrow 
problem, namely the Private Key Generator (PKG) can 
decrypt the encrypted data of the user. Alternatively, a PKE 
scheme does not have a private key escrow issue, but is 
inefficient in the case of revoking lots of certificates or 
bringing many third-party queries for certificate status [18]. 
We combine IBE and PKE to realize a Two-Layer Encryption 
Scheme (TLES), which adopts their unique advantages to 
address their deficiencies. Finally, we design a practical 
prototype system and perform performance evaluations. 

To realize TLES, we deploy a control node acts as the PKG 
of an IBE scheme. When a proxy is initialized, the proxy 
authenticates to the control node using its own PKE public key 
and its identity ID. After authentication, the control node issues 
an IBE private key corresponding to the identity ID. The 
control node is also responsible for initializing and updating 
the basic information of a proxy, such as proxy ID, proxy 
public key, etc. A proxy can query some related attributions 
(e.g., proxy ID and proxy public key) of another proxy from 
the control node. 

When a data block is encrypted at a proxy, a metadata, 
including key ID, proxy ID, magic data, header length, etc., is 
attached to the encrypted data. A magic tag is a symbol string 
used to identify the encrypted data, so the decryption process 
can find the ciphertext easily. The proxy records the key ID 
that marks the relationship between the encrypted data and its 
corresponding key. The decryption process first locates the 
ciphertext according to the magic tag in the metadata. It then 
obtains the corresponding key according to the key ID and 
decrypts the ciphertext to restore plaintext data. Let the identity 
ID of the proxy denote its IBE publics key, d denote the IBE 
private key, PK denote the PKE public key, and SK denote the 
PKE private key. As shown in Fig. 5, the procedure of TLES 
scheme between different proxies is presented as follows: 



 

1-3) Proxy B receives the ciphertext encrypted by proxy A 
from the cloud. 

4-8) Proxy B obtains the metadata of the ciphertext. After 
getting some necessary information from the control node, it 
finds Proxy A according to proxy ID in the metadata and then 
requests the key from proxy A with parameters. The parameters 
include the key ID and (possibly) the proxy B’s time parameter 
tB. 

9) After obtaining some information about Proxy B if 
necessary, Proxy A double encrypts the requested key with 
parameters tB, proxy B’s identity IDB, broker B’s PKI public 
key PKB, and forwards the encrypted key to proxy B. 

10) Proxy B uses the IBE private key dB and the PKI 
private key SKB to decrypt received messages and obtains the 
corresponding key. Then the proxy B decrypts the ciphertext 
with the decrypted key to obtain plaintext data. 

Fig. 5. Encrypted data sharing between proxies. 

Referring to [17], our concrete TLES algorithm based on 
the Bilinear Map is shown as follows: 
 Setup: The control node generates the system parameters 
params = ൏ ,ݍ ݊, ܲ, ௣ܲ௨௕, ,ܩ ܪ ൐and master-key ݏ. After setup, 
the control node exports params to a file and forwards it to 
proxies. 

 Step 1: The pairings are constructed on the curve 
ଶݕ 	ൌ ଷݔ	 	൅ ݔ	  over the field ܨ௤  for a prime ݍ	 ൌ
	3	ሺ݉݀݋	4ሻ. We generate prime ݍ by the formula  ݍ ൅ 1 ൌ
ݐ ∗ ݄, in which t is a prime and h is a multiple of 12. For 
efficiency, t has the form 2௔ 	െ 2௕ 	െ 1 for  integer a and b,  
0	 ൏ 	ܾ	 ൏ 	ܽ. For security strength, we set the length of 
	ݐ ൌ 160  bits, the length of ݍ	 ൌ 512  bits. Let ܧ  be the 
elliptic curve defined by ݕଶ 	ൌ 	 ଷݔ 	൅  ௤. Choose anܨ over ݔ	
arbitrary ܲ	 ∈  .௤ܨ	/	ܧ	

 Step 2: Pick a random ݏ ∈ ܼ௤∗  and set ௣ܲ௨௕ 	ൌ  .ܲݏ	

 Step 3: Choose a cryptographic hash function ܪ ∶
௤మܨ	 	→ 	 ሼ0, 1ሽ

௡  for ݊ . Choose a cryptographic hash 
function ܩ ∶ 	 ሼ0,1ሽ∗ →  The security analysis will view .ݍܨ	
,as random oracles. The message space is ሼ0 ܩ and ܪ 1ሽ௡. 
The ciphertext space is ܧ	/	ܨ௤ 	ൈ 	ሼ0,1ሽ௡. 

Extract: For a given string ܦܫ	 ∈ 	 ሼ0, 1ሽ∗ from the proxy 
identity and time parameters, generate a private key ݀  as 
follows: 

 Step 1: Map ܦܫ to a point ܳூ஽ ∈  .௤ܨ	/	ܧ

 Step 2: Set the private key ݀ூ஽  to be ݀ூ஽ 	ൌ ூ஽ܳݏ	 , 
where ݏ is the master key. 

The control node then encrypts the private key d using 
proxy’s PKE public key and forwards it to the proxy. The 
proxy decrypts it to get the private key d. 

Encrypt: Encrypt ܯ	 ∈ 	 ሼ0, 1ሽ௡  under the public key ܦܫ 
and public key ܲܭ஻:  

 Step 1: Map ܦܫ into a point ܳூ஽,  

 Step 2: choose a random ݎ	 ∈ 	ܼ௤, and  

 Step 3: set ܥଵ 	ൌ	൏ 	ܯ,ܲݎ ⊕ ሺ݃ூ஽ܪ	
௥ ሻ ൐ , where 

݃ூ஽ ൌ ݁̂൫ܳூ஽, ௣ܲ௨௕൯ ∈   ,௤ܨ

 Step 4: Encrypts ܲݎ with the broker PKE public key 
஻ܭܲ , set the ciphertext to be ܥ	 ൌ	൏ ܯ,ሻܲݎ௉௄ಳሺܧ ⊕
ሺ݃ூ஽ܪ

௥ ሻ ൐. 

Decrypt: Decrypt ܯ	with the PKI private key ܵܭ஻ and the 
private key d: 

 Step 1: Let ܥ	 ൌ	൏ ܯ,ሻܲݎ௉௄ಳሺܧ ሺ݃ூ஽௥ܪ⊕ ሻ ൐ , 
Decrypts ܧ௉௄ಳሺܲݎሻ with the broker PKI private key ܵܭ஻ , 
set ܷ	 ൌ ሻሻܲݎ௉௄ಳሺܧௌ௄ಳሺܦ	 	ൌ  .ܲݎ	

 Step 2: Let ܥଵ 	ൌ൏ 	ܷ, ܸ	 ൐ be a ciphertext encrypted 
using the IBE public key ܦܫ. Decrypt ܥଵ using the private 
key d: ܸ	 ⊕ ,ሺ݁̂ሺ݀ூ஽	ܪ	 ܷሻሻ 	ൌ  .ܯ	

As mentioned above, TLES effectively ensures the secure 
transmission of secret keys, and only the proxy that matches 
the identity ܦܫ can get the keys. With time parameter t, it can 
effectively update the IBE private key of the proxy to improve 
security. Even if the control node has the IBE private key d of 
a proxy, it cannot recover ܲݎ  because it does not have the 
PKE private key ܵܭ஻ of the proxy. To get ܪ ,ܯሺ݃ூ஽

௥ ሻ must be 



 

obtained, since ݎ is random, the control node cannot achieve 
its goal. If a malicious proxy replaces the public key ܲܭ஻, thus 
it has the corresponding PKE private key, which can get ܲݎ, 
but it has not the IBE corresponding private key d, 
,ሺ݁̂ሺ݀ூ஽	ܪ ܷሻሻ  cannot be calculated, thus it cannot restore 
ܯ .The security definitions of TLES scheme is shown in 
Appendix A. Our basic TLES scheme mentioned above is a 
one-way encryption secure scheme. According to [17], we can 
use a scheme from Fujisaki-Okamoto [19] to convert it to be 
secure against adaptive chosen-ciphertext attack conveniently. 

VI. PERFORMANCE EVALUATION 

In this section we focus on three main questions. First, 
how much developer effort is required to construct our SSE 
schemes. Second, can our SSE schemes mitigate the inference 
attacks with the complete knowledge of the documents. Third, 
what are the performance overheads of IDCrypt on search 
operations and key sharing between different proxies. 

A. Developer effort 

For index construction, search and sharing scenarios, 
commonly used open source search engines such as Elastic 
Search [10] can be integrated into our system. We can manage 
the complexity of distributed systems well with the help of 
Elastic Search. 

As shown in Fig 6, there exist multiple nodes in the 
IDCrypt system. IDCrypt builds the index in a node of a proxy, 
and balances the index data across the nodes of an index 
server to spread the index data and search load. The index 
server performs the search operation and returns the search 
results. It routes a search request from any proxy to the nodes 
that hold the index data, and returns the aggregated results to 
the proxy. 

 
• Fig. 6 IDCrypt system 

Elastic Search provides a distributed system on top of 
Lucene [11]. We also build the index of a document set in a 
proxy with the help of Lucene. Fig. 7 shows a traditional 
process of index building, in which an original file is first 
processed to a document structure that contains multiple fields. 
The fields are parsed to create keyword-docID pairs. When the 
size of keyword-docID pairs is sufficient large, the keyword–
docID pairs with the same keyword are collected respectively 
to build a postings list of the keyword, where a posting is 
simply a docID. A docID is an integer which can be used to 
find the corresponding document contents. However, in our 
SSE scheme, as the data is encrypted and stored in the cloud, 
we need to map the docID to the document identifier that 
points to the encrypted data in the cloud. We do not need to 

manage the content of the original file, such that we can build 
the index easily and flexibly. As mentioned earlier, we 
generate the corresponding tokens for extracted keywords and 
encrypt the docID to a random value when processing each 
document, and store the searchable tokens and encrypted 
docIDs in the index. 

In order to save memory or disk space, these docIDs that 
we just discussed are best stored in integer form, such that 
they can be compressed efficiently in the index. For instance, 
the posting lists of an index containing the integral docIDs can 
be compressed with delta-encoding [15]. To save time and 
space, in our SSE schemes, when a document is processed, its 
document identifier can be mapped to an integer range 
according to the number of keywords in the document. When 
extracting a keyword from the document, we make the docID 
plus one instead of encrypting the docID, and then build the 
token-docID pair. In this way we can construct an index of a 
document set securely and efficiently, and compress the index 
using the off-the-shelf algorithms in Lucene project. 

 
• Fig. 7 Index building process 

In the scenario of key sharing, the control node is deployed 
on a separate virtual machine. The communications between a 
broker/proxy and a control node is mainly implemented by 
socket transmission. We generate the PKI key pair with 
OpenSSL library [20]. We use elliptic curves to implement 
IBE, and invoke the PBC library [21] for bilinear pairings. 

 

B. Security evaluation on our SSE schemes 

We empirically investigate the security of our SSE 
schemes by comparing them with Curtmola’s construction. 
We use the count attack scheme [9] to infer the keywords of 
opaque query trapdoors, in which the adversary has the 
complete knowledge of all the documents. While it is 
unrealistic for an adversary to know all documents of a user in 
normal cases, this may happen sometimes. For example, a user 
has a set of emails stored at an email server, and it decides to 
encrypt all the emails using a SE scheme. 

We use the online-available Enron [22] email set as the 
dataset. We chose the emails of the “_sent_mail” folder of 78 
employees, resulting in 30,109 messages. A message is 
considered as a document. We extract the keywords in each 
document using the standard Porter stemming algorithm [23]; 
then remove stop-words [24] and duplicate keywords. There 
exist 49,982 unique keywords in the 30,109 documents. We 
then establish a fixed-size keyword universe from the 
keywords by taking the most frequent 5000 keywords. Fig. 8 
shows the query recovery results of the count attack against 
Curtmola’s scheme and our schemes. We run attacks on each 
scheme in the same setup with the adversary having no access 



 

to any queries. For the fixed number of keyword universe, we 
vary the number of query keywords from 500 to 3000. 

As the results show, an adversary can invert the most 
query trapdoors against Curtmola’s construction, because it 
exposed search and access patterns. In this scheme, an 
adversary can deduce the keyword occurrence frequency and 
the keyword co-occurrence frequency over the keywords that 
have been queried. According to the count attack algorithm, 
for each search trapdoor, the adversary first counts the number 
of documents in its query result, and then tries to find a unique 
keyword appeared in the same number of plaintext documents. 
If the keyword is found, then it can be mapped to the trapdoor 
directly. We called this the first round attack. In the second 
round attack, the adversary uses the keyword co-occurrence 
frequency to deduce other mappings between keywords and 
trapdoors. Based on the already-built mappings, given an 
unknown trapdoor q, the adversary first selects the candidate 
keywords that appeared in the same number of plaintext 
documents as the length of query result of q. Then, to filter the 
candidate keyword set of q, for each pair of mapped keyword-
trapdoor pair w’ and q’, the adversary computes the count c1 of 
documents in which w and w’ both appear in plaintext 
documents, and the count c2 of documents which both the 
query q and q’ hit in query results. If c1 is not equal to c2, then 
the keyword w will be removed from the candidate keyword 
set. Finally, if only one keyword meeting all the conditions is 
left, then it can be mapped to q. 

In our SSE-I scheme, an adversary can invert a quite small 
portion of queried trapdoors, as the scheme only leaks the 
keyword occurrence frequency Information in the query 
results. The adversary can only perform the first round attack 
with such leakage. In particular, our SSE-II scheme leaks no 
information about the keyword occurrence frequency or the 
keyword co-occurrence frequency, thus the adversary can 
invert no search trapdoors. From Fig. 8 we can conclude that, 
when the size of the keyword vocabulary is fixed, even if only 
a few query trapdoors are inverted in the first round attack in 
Curtmola’s scheme, then almost all trapdoors can be mapped 
to their plaintext keywords in the second round attack. 
However, in our SSE schemes, the number of identified 
trapdoors does not increase after the first round attack. 

 
• Fig. 8 Query recovery results in different constructions 

C. Performance overheads of IDCrypt 

In this section we test the overheads of search and key 
sharing operations. The configurations of our test virtual 
machines are Intel 2.5 GHz dual-core with 4 GB of memory, 
the uplink speed is approximately 1 MB/s, and the downlink 
speed is approximately 7.5 MB/s. We use a macro-
benchmarking framework Rally [25] to benchmark the search 
efficiency of our SSE scheme. Table I shows that, as the size 
and number of files increase, the index storage overhead 
grows slowly, and the search performance decreases lightly. 
Even for large file collections, for example, a size of 2.2GB, 
the index consumes just about 1.7GB storage space, and the 
search performance is about 11 operations per second. 

TABLE I.  SEARCH EFFICIENCY 

Document Count Document Size 
(GB) 

Index Size 
(GB) Query (ops/s) 

9697882 1.212332 0.947194 19.5675  

10716760 1.339540 1.05098 16.1885 

11961342 1.487816 1.17934 14.6774 

13053463 1.624238 1.25526 13.8309 

17647279 2.201861 1.70634 10.9576 

 
Finally, in order to demonstrate the performance of TLES 

scheme between different proxies, we test each process of the 
TLES, including system parameter generation, key issuing, 
key encryption, and key decryption. The average time in each 
process is shown in Table II. We concluded from the results 
that the decryption process including the PKE decryption 
process and the IBE decryption process takes more time than 
the encryption process, but it is negligible and not noticeable 
by a user. Generally speaking, the extra overhead in 
milliseconds level introduced by the IDCrypt is insignificant 
and acceptable for smooth user experience. 

TABLE II.  TIME COST OF EACH PROCESS IN TLES 

 Params Gen Issuing Enc Dec 
Time (ms) 55 22 14 38 

VII. RELATED WORK 

A. Typical Searchable Encryption Schemes 

Song et al. [4] proposed the first practical SE scheme. The 
search operation is simple, but the disadvantages are that the 
cloud requires full-text scanning and the computation is 
proportional to the data size. In addition, the server may use 
statistics to obtain additional user information. 

Goh [5] proposed a secure index method to achieve SE 
using Bloom Filters. However, the Bloom Filter used in this 
scheme has an error rate, which may lead to inaccurate search 
results. It is not a sub-linear scheme. 

Curtmola et al. [6] builds an encrypted search mechanism 
using inverted indexes, increased the search efficiency greatly, 
and improved the security of the encrypted search. It can only 
support exact keyword search and documents can not be 
updated dynamically. Based on this scheme, advanced SE 
functions are further developed, such as [12][26][27]. 
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For multi-user encrypted search, Boneh et al. [28] realized 
the Public Key Encryption with Keyword Search (PEKS) 
algorithm using asymmetric encryption. This scheme led to 
greater performance loss. 

However, all searchable encryption schemes mentioned in 
the above requires to modify the current cloud API. In 
addition, they leak search and access patterns for efficiency, 
which can be exploited by adversaries to get sensitive 
information [8][9]. 

B. Usable Searchable Encryption Systems 

At protect-point A between a user and the client side in Fig. 
2, ShadowCrypt [29] runs in the browser plug-in mode to 
perform encryption and search functions. ShadowCrypt only 
supports text input data, and do not support mobile platform. 
M-Aegis [30] proposes 7.5 layers between users and 
applications based on the mobile platform. M-Aegis only 
supports textual data. The SE functions of [29][30] are based 
on token-based SE scheme which exposed token occurrence 
patterns. An adversary can launch inference attacks on their 
SE schemes with prior knowledge using token occurrence 
patterns, as in [9][14]. 

At protect-point B between the client side and the server 
side in Fig. 2, Mylar [31] protects data from malicious server 
administrators based on the Meteor JavaScript framework, 
affecting the backward compatibility. Mylar used Song’s SE 
scheme [4] to construct their SE functions, which can be 
attacked by recent works [32-33] using leaked information. In 
[32] an adversary can collude with some users to invert a 
query of an honest user, and [33] leverages design or 
implementation issues of [31] to infer sensitive information. 

At protect-point C between the server side and the 
database in Fig. 2, CryptDB [34] encrypts the data before it is 
put into the database, and performs query requests on the 
encrypted data based on Song’s SE scheme [4], thus 
effectively preventing the malicious database administrator. 
However, CryptDB can not prevent the server program 
behaving malicicouly. 

C. Encrypted Key Sharing Schemes 

If the data is encrypted with different keys, ciphertext 
sharing requires corresponding key sharing. Commonly used 
mechanisms for sharing keys are PKE and IBE. Two of the 
most well-known PKE certificate verification schemes are 
Certificate Revocation List (CRL) and Online Certificate 
Status Protocol (OCSP). However, they are both inefficient in 
the case of revoking lots of certificates in real-time [18]. 
Micali proposed "Novomodo" system [35] achieving better 
efficiency, but it brings many third-party queries for 
certification status. To eliminate certificate status queries, IBE 
seems to be an effective way. Shamir [36] proposed the 
identity-based encryption and introduced an identity-based 
signature scheme. However, it is not practical for high-volume 
systems. Boneh [17] proposed a fully functional scheme based 
on the Weil pairing. Nevertheless, IBE itself has a private key 
escrow problem: The private key generator can decrypt the 
ciphertext of a user. To address this, Certificate-Based 
Encryption [18] and Certificate-Less Public Key 

Cryptography [37] combine IBE and PKE to realize double 
encryption, but they do not perform detailed performance 
evaluations. Lewko et al. [38] designed a scheme supporting 
multiple authorized parties. However, it has no practical 
evaluations. For sharing keys securely, we design a practical 
TLES scheme and perform performance evaluations. 

VIII. CONCLUSION AND DISCUSSION 

In this paper, we first conducted a systematic and 
quantitative comparison between index-based SE and token-
based SE schemes. We describe the SSE schemes of our 
IDCrypt architecture in detail and analyze its security. The 
experiments results further show that IDCrypt indeed 
introduces fairly low overhead. To fulfill encrypted search, 
IDCrypt builds search indexes at proxies with the identifiers 
of encrypted data. We also design token-adjustment search 
schemes to search across different indexes. To share encrypted 
data between different proxies, we propose the two layers 
encryption scheme TLES to transmit secret keys. Certainly, 
IDCrypt still faces some technical challenges, and further 
research and improvement are needed. For example, due to the 
wide variety of cloud applications, we need to automatically 
match more protocols and build the index for them to search. 
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APPENDIX 

A. SECURITY OF ONE-WAY ENCRYPTION TLES SCHEME 
To give the security notion of One-Way Encryption (OWE) 

TLES scheme, we first give the security notions of OWE 
Public-Key Encryption (PKE) [19] and OWE Identity-Based 
Encryption (IBE) [17]. 
Security of OWE PKE: Let Π = (K, E, D) be a PKE scheme. 
Let A be a probabilistic polynomial-time adversary. Given a 
sufficiently large s, we say that Π is OWE secure if for every 
PPT adversary A, all polynomials p, the advantage of A is 

< 1/p(s) 
In which MSP represents message spaces determined by s. 
The message x is picked up uniformly from MSP to compute a 
ciphertext y. Then the adversary A outputs a string on input 
(pk, y) as the decryption of y with pk. 
Security of OWE IBE: An identity-based encryption scheme 
is ID-OWE secure if no PPT adversary A has a non-negligible 
advantage in the following game: 
Setup: The challenger takes a security parameter s as input 
and runs the Setup algorithm. It gives the resulting system 
parameters params to the adversary, and keeps the master-key 
private. 
Phase 1: The adversary issues private key extraction queries 
adaptively for ID1, …, IDm. The challenger runs Extract 
algorithm to generate the private key di corresponding to IDi 
and sends di to the adversary. 
Challenge: When Phase 1 is over, the adversary outputs a 
public key ID ് ID1, …, IDm on which to be challenged. The 
challenger picks a random M ∈ M and encrypts it using ID as 
the public key. Then the resulting ciphertext C is sent to the 
adversary. 
Phase 2: The adversary issues more extraction queries 
IDm+1, …, IDn adaptively with the constraint that IDi ് ID. 
The challenger responds as in Phase 1. 
Finally, the adversary outputs a message M’ ∈ M. We say that 
Π is ID-OWE secure if for every PPT adversary A, all 
polynomials p and sufficiently large s, the advantage of A is 

Adv(A) = Pr[M = M’] < 1/p(s) 
 

We are concerned about two different types of attacks 
referring to [18]: 1) by an uncertified client and 2) by the 
certifier, and we define two different games accordingly. In 
Game 1, the adversary has PKE public-private key pair and its 
IBE public key (including identity ID and possibly time 
parameter t), but does not know the IBE private key SKIBE 
corresponding to the public key params. It can make 
extraction and decryption queries. In Game 2, the adversary 
acts as the role of the certifier (PKG). It has the PKE public 
key PK, IBE public key params and its private key SKIBE, but 
does not have the PKE private key SK. It can make decryption 
queries. We say that our TLES scheme is OWE secure if no 
adversary can win either game. 



 

Game 1: The challenger takes a security parameter s and runs 
the Setup algorithm of IBE. It gives the adversary the resulting 
system parameters params. It keeps the master-key SKIBE to 
itself. Then the adversary interleaves extraction and 
decryption queries with a single challenge query. These 
queries are answered as follows: 
--On extraction query <s,IDi,PK,SK>, the challenger runs 
Extract algorithm to generate the private key di corresponding 
to the public key IDi. It sends di to the adversary. 
--On decryption query <s,ID,PK,SK,C>. The challenger 
responds by running algorithm Extract to generate the private 
key di corresponding to IDi. It then runs algorithm Decrypt to 
decrypt the ciphertext C using the private key di and SK. It 
sends the resulting plaintext to the adversary. 
-- On challenge query <s’,ID’,PK’,SK’>, the challenger picks 
a random M ∈ M and runs Encrypt algorithm to encrypt it 
using ID’ and PK’. Then the resulting ciphertext C’ is sent to 
the adversary.  
Finally, the adversary outputs a message M’ ∈ M. We say 
that the TLES is OWE secure against Game1 if for every PPT 
adversary A, all polynomials p and sufficiently large s, the 
advantage of A is 

Adv(A) = Pr[M = M’] < 1/p(s) 
Proof: Let A be a PPT adversary that has advantage ϵ(s) 
against TLES. Suppose A makes at most qE private key 
extraction queries and at most qD decryption queries. Then 
there is a PPT adversary B that has advantage at least ϵ(s) 
against OWE IBE. Its running time is O(time(A)). 

We construct an adversary B that uses A to gain advantage 
ϵ(s) against OWE IBE. Adversary B interacts with A as 
follows: 
Phase 1: At any time adversary A issues extraction queries, 
adversary B receives the queries and sends them to the IBE 
challenger. The challenger runs algorithm Extract to get the 
private key di corresponding to the public key IDi. It sends di 
to the adversary B, and then B sends it to A. 

At any time adversary A issues decryption queries, the 
adversary B decrypts the ciphertext of ‘rP’ using the private 
key SK to get ‘rP’, then sends remaining data and ‘rP’ to the 
IBE challenger. The challenger responds by running algorithm 
Extract to generate the private key di corresponding to IDi. It 
then decrypts the remaining data using the private key di. It 
sends the resulting plaintext to adversary B, and then B sends 
it to A. 

Once the adversary A decides that Phase 1 is over it 
outputs an identity ID’ on which it wishes to be challenged. 
The only constraint is that ID’ did not appear in any private 
key extraction queries and decryption queries in Phase 1. 

The adversary B sends ID’ to IBE challenge. The IBE 
challenger picks a random M ∈M and encrypts M using ID’. 
It sends C’ as the challenge to the adversary B, Then B 
encrypts ‘rP’ of C’ using PK’ and sends it to A. 
Phase 2: The adversary issues more queries where query qi is 
one of: 
--extraction query in which IDi != ID’. The challenger 
responds as in Phase 1. 

--decryption query in which IDi != ID’ and Ci != C’. The 
challenger responds as in Phase 1. These queries may be asked 
adaptively as in Phase 1. 
Finally, the adversary A outputs a guess M’ and wins the game 
if M = M’. The adversary B outputs the same M’ and wins the 
game if A wins. So, if A is an adversary that has advantage ϵ(s) 
against TLES, then B is an adversary that has advantage ϵ(s) 
against OWE IBE. 
 
Game 2: The challenger takes a security parameter s and runs 
the Setup algorithm of PKE. It gives the adversary the 
resulting PK. It keeps the SK to itself. Then the adversary 
interleaves decryption queries with a single challenge query. 
These queries are answered as follows: 
--On decryption query <s,IDi,params,SKIBE,Ci>, the 
challenger responds by running algorithm Extract to generate 
the private key di corresponding to IDi. It than runs Decrypt 
algorithm to decrypt the ciphertext Ci using the private key SK 
and di. It sends the resulting plaintext to the adversary. 
--On challenge query <s’,ID’,params’,SKIBE’>, the challenger 
picks a random M ∈ M and runs Encrypt algorithm to encrypt 
it using ID’ and PK. Then the resulting ciphertext C’ is sent to 
the adversary.  
Finally, the adversary receives C’ and outputs a message M’ 
∈ M. We say that the TLES is OWE secure against Game2 if 
for every PPT adversary A, all polynomials p and sufficiently 
large s, the advantage of A is 

Adv(A) = Pr[M = M’] < 1/p(s) 
 
Proof: Let A be an adversary that has advantage ϵ(s) against 
TLES. Suppose A makes at most qD decryption queries. Then 
there is an adversary B that has advantage at least ϵ(s) against 
OWE PKE. Its running time is O(time(A)). 

We construct an adversary B that uses A to gain advantage 
ϵ(s) against OWE PKE. Adversary B interacts with A as 
follows: 
Phase 1: The adversary issues decryption queries where query 
qi is: 

At any time adversary A issues decryption queries, the 
adversary B runs algorithm Extract to generate the private key 
di corresponding to the public key IDi. Then B sends 
ciphertext of ‘rP’ to the PKE challenge. The challenge 
decrypts the ciphertext of ‘rP’ using the private key SK. Then 
the PKE challenge sends ‘rP’ to B. B then decrypts the 
remaining data using the private key di and ‘rP’. It sends the 
resulting plaintext to the adversary A. 

Once the adversary A decides that Phase 1 is over, it issues 
a challenge query <s’,ID’,params’,SKIBE’> to the adversary B. 
The adversary B sends the challenge to PKE challenger. The 
challenger picks a random M ∈	 M and encrypts M using PK 
and ID’ then sends C’ to the adversary B, Then B sends C’ to 
A. 
Phase 2: The adversary issues more decryption queries where 
Ci != C’. The PKE challenger responds as in Phase 1. These 
queries may be asked adaptively as in Phase 1. 

Finally, the adversary A outputs a guess M’ and wins the 
game if M = M’. The adversary B outputs the same M’ and 



 

wins the game if A wins. In Game2 the adversary acts as the 
role of the certifier (PKG). It has the IBE public key and its 
private key, but does not have the PKE private key. So, if A is 
an adversary that has advantage ϵ(s) against TLES, then 
adversary B has advantage ϵ(s) in decrypting the ciphertext of 
‘rP’ in C’ without SK, thus B is an adversary that has 
advantage ϵ(s) against OWE PKE. 

 
B. COUNT ATTACK ALGORITHM 

The count attack scheme is shown in Algorithm 3. In line1, 
for each search trapdoor, the adversary first counts the number 
of documents in its query result, and then seeks to find a 
unique keyword appeared in the same number of plaintext 
documents. If the keyword is found, then it can be mapped to 
the trapdoor directly. In line 2, the algorithm builds a query 
co-occurrence counts Cq, where Cq[i, j] represents the number 
of documents query qi and qj both match. Similarly, a keyword 
co-occurrence counts CI can also be built, where CI[i, j] 
represents the number of plaintext documents in which 

keyword wi and keyword wj both appear. 
 
 

Algorithm 3: The Count Attack Algorithm 
Input: query trapdoors T and results, unencrypted keyword index I; 
Output: mapping set between keywords in I and trapdoors in T; 
1 initialize the base mapping set K; 
2 compute query co-occurrence matrix Cq for trapdoors T and 

keyword co-occurrence matrix CI for index I; 
3 while size of K is increasing do 
4  for each unknown trapdoor t ∈ T-K do 
5  build candidate keyword set S = {s : the occurrence count of 

s equals to the occurrence count of t }; 
6  for s ∈ S do 
7  for known base mapping (t’, s’) ∈ K do 
8   if Cq[t, t’] ്CI[s, s’] then 
9    remove s from S; 
10 if one keyword s remains in S then 
11  add (t, s) to K; 
12 return the mapping set K; 
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