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Abstract—Searchable Encryption (SE) has been extensively
examined by both academic and industry researchers. While
many academic SE schemes show provable security, they usually
expose some query information (e.g., search patterns) to achieve
high efficiency. However, several inference attacks have exploited
such leakage, e.g., a query recovery attack can convert opaque
query trapdoors to their corresponding keywords based on some
prior knowledge. On the other hand, many proposed SE schemes
require significant modification of existing applications, which
makes them less practical, weak in usability, and difficult to
deploy. In this paper, we introduce a secure and practical SE
scheme with provable security strength for cloud applications,
called IDCrypt, which improves the search efficiency and
enhanced the security strength of SE using symmetric
cryptography. We further point out the main challenges in
securely searching on multiple indexes and sharing encrypted
data between multiple users. To address the above issues, we
propose a token-adjustment scheme to preserve the search
functionality among multi-indexes, and a key sharing scheme
which combines Identity-Based Encryption (IBE) and Public-Key
Encryption (PKE). Our experimental results show that the
overhead of IDCrypt is fairly low.
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1. INTRODUCTION

According to Cloud Security Alliance (CSA) report [1],
data breach is one of the top threats in cloud computing. In the
first half of 2016, there were 974 publicly disclosed data
breaches, which led to the loss of 554 million data records [2].
A promising solution to this issue is to encrypt sensitive data
before outsourcing to a cloud service.

However, the encryption that protects user data hinders the
search functionality of cloud applications. To address this issue,
many Searchable Encryption (SE) schemes have been
proposed, which usually consists of the following steps: A user
generates its encrypted documents and a searchable encrypted
index. The encrypted documents and the encrypted index are
then outsourced to the cloud. To search a keyword, the user

generates a so-called trapdoor. With the trapdoor, the cloud
can search on the encrypted index and return related documents.
With such steps, many proposed SE schemes require
significant modifications of existing application and query
interface customization, which makes them difficult to deploy
in practice.

SE constructions usually try to exploit the trade-offs among
functionality, security, and efficiency [3]. Song et al. [4]
proposed the first practical SE construction. However, it shows
a low efficiency and does not introduce a formal definition of
SE security. Goh [5] proposed a secure index scheme that
guaranteed the index security but not trapdoors; its search time
is linear with the number of documents. Curtmola et al. [6]
proposed the first sub-linear scheme which is more suitable for
a static document set than a dynamic one. They introduced two
new SE security definitions requiring that nothing should be
leaked from the search process beyond the search and access
patterns, which are widely used in current SE schemes [3]. As
far as we know, there is no practical SE scheme that hides
query access patterns. While the Oblivious RAM (ORAM) [7]
can be used to support SE functions without leaking any
information, it is not efficient for large-scale practical use.

In recent years, several inference attacks have been
designed to exploit access pattern disclosures with prior
knowledge. Islam et al. [8] proposed the first inference attack
against SE schemes based on the leakage of access patterns.
Cash et al. [9] exploited the leakage profiles of various SE
schemes to infer sensitive information about queries and
documents. However, these attacks require knowing almost all
the documents as prior knowledge to achieve a high recovery
rate of queries.

In this paper, we propose a secure and practical Symmetric
Searchable Encryption (SSE) scheme, called IDCrypt, for
protecting sensitive information in the cloud. In the IDCrypt
architecture, we deploy an index server that can be configured
using off-the-shelf index-based search engines [10-11] to
provide search functions on encrypted documents, which



improves search efficiency and security strength of SE.
IDCrypt achieves provable security and can mitigate the above
inference attacks effectively. We further point out the main
challenges in securely searching different indexes and sharing
encrypted data among multi-users, summarized as follows:

(i) Searching encrypted data across different indexes. A
scenario is that user u; (who always uses secure search function
on its own index /;) wants to search the encrypted data on
another index / that is encrypted by another user .

(ii) Encrypted data sharing between multi-users. A typical
scenario is that user #; wants to send an encrypted message to
user u,. How to securely share encrypted data and keys among
different users is another difficult challenge.

To address above challenges, a token adjustment scheme is
proposed in this paper to preserve the search functionality
when a user searching on different indexes encrypted with
different keys. Moreover, we design a Two-Layer Encryption
Scheme (TLES), which combines Identity-Based Encryption
(IBE) and Public-Key Encryption (PKE), to securely share
secret keys between different users. We have evaluated the
proposed schemes, and our experimental results show that the
extra overhead of IDCrypt is fairly low.

In summary, the main contributions of this paper are:

1) We proposed a practical symmetric SE scheme with
provable security strength, called IDCrypt, to improve the
search efficiency and enhance the security of SE. It
achieves provable security and can effectively mitigate
the inference attacks on SE. The SSE schemes on
IDCrypt are compatible with off-the-shelf index-based
search engines, which can be easily deployed in practice.
They can also support advanced SE functions, including
multi-keyword ranked SE and dynamic SE.

2) We propose a token-adjustment search scheme to preserve
the search functionality when a user need to search
indexes encrypted by different keys.

3) We design a Two-Layer Encryption Scheme (TLES),
which combines Identity-Based Encryption (IBE) and
Public-Key Encryption (PKE), in order to share secret
keys between different users securely and efficiently.

The remainder of this paper is structured as follows. In
Section 2, we discuss the security definitions of SE and
inference attacks on SE schemes. In Section 3, we introduce
our IDCrypt architecture and depict its security analysis in
detail. We present the token-adjustment search scheme in
Section 5, and develop the TLES scheme in Section 6. We
show the implementation of IDCrypt and evaluate its
performance in Section 7. Related works are summarized in
Section 8. We further conclude this paper and discuss our
future work in Section 9.

II. BACKGROUND

In this section, we introduce the basic concepts used in this
paper, and present the background information of the security
definitions of SE and inference attacks on SE schemes.

A. Terminology & Preliminary

n — The total number of documents in a collection

D= {D, Ds, ..., D,} — A collection of n documents

ID(D;) — The identifier of document D;

D(w) — The ordered list consisting of the identifiers of all
documents in D that contain the keyword w

m — The total number of keywords in a dictionary

W ={w1, wy,..., wa} — The set of keywords in a dictionary

O — A series of queries, each represents a query ¢

I — The search index for document set D

Bilinear Map. Let G; and G, be two cyclic groups of order p,
for some large prime p. G; is the group of points of an elliptic

Security of Pseudo-Random Function, A pseudo-random
function [f: {0, 1} x {0, 1}" > {0, 1} fis computable in__

polynomial time and for all probabilistic polynomial-time
adversaries 4, all polynomials p and sufficiently large s:

‘PT[ A =1k & {011 ] -

Pr[ A =1 g &R {01} 5 {0,1)m) H< o7

Security of Symmetric Encryption. A symmetric encryption
scheme E’ = (K, E, D) is secure against chosen-ciphertext
attacks if for all probabilistic polynomial-time adversaries 4,
all polynomials p and sufficiently large s:

Pr[h’ =b: K « (#(1%); (mg,my) «ASx0Zr0)
R 2 i (+), Pic (-
b {01 se ¢ ()b ATKOPRO ()] < L
with the restrictions that |m| = |m;|, and 4 cannot query D
with c.
Symmetric Searchable Encryption (SSE): A SSE scheme is
a collection of four polynomial-time algorithms as follows:

Keygen(1*): a probabilistic key generation algorithm that
takes a security parameter s, and returns a secret key . It is run
by the user to setup the scheme.

BuildIndex(K, D): a (possibly probabilistic) algorithm takes
a secret key k and a document collection D as inputs, and
outputs an index /.

Trapdoor(k, w): an algorithm that takes a secret key k and a
word w as inputs, and outputs a trapdoor T),. It is run by the
user to perform a search operation.

Search(l, T,): an algorithm that takes an index / and a
trapdoor 7, for word w as inputs, and returns a search result
Dw).

We refer to a sequence of query results (D(w), ..., D(w;)) of
a sequence of query keywords (wj, ... ,w;) as an access pattern.
The search pattern means the information that can be derived
in the following manner: given two arbitrary queries, knowing
whether the two searches use the same keyword or not.
Referring to [6][12], the security strength of common SSE
schemes follows the real/ideal simulation paradigm. They leak
certain information to achieve better performance and we
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quantify the leakage profile by a leakage function L. The
leakage function takes a sequence of queries Q as input and
outputs what an adversary learns by taking part in the
execution of the SE scheme. The SSE scheme is said to be L-
secure if there exists a simulator S, which takes an input L(P)
with P a history of the protocol and outputs a view S(L(P)) that
is indistinguishable from the view of an adversary in a real
execution of the protocol with input P.

Security of SSE. Let SSE = (KeyGen, Enc, Trapdoor,
Search, Dec) be a SSE scheme, A4 is a stateful Probabilistic
Polynomial-Time (PPT) adversary, S is a stateful PPT
simulator, L; and L, are stateful leakage functions in an ideal
security game, and s € N denotes the security parameter. We
define Reals(s) and Ideal, s(s) games as follows:

Realy(s): the challenger runs KeyGen(1*) to generate a key
K. A outputs D and receives (I, C) « Encg(D) from the
challenger. Then the adversary makes a polynomial number of
adaptive queries Q, and for each query g of keyword w,
receives from the challenger a search trapdoor 7D «
Trapdoork(w), Finally, A returns a bit b that is output by the
game.

Ideal, s(s): A outputs D. Given L;(D), S generates and sends
a pair (1, C) to A. The adversary makes a polynomial number of
adaptive queries Q and, for each query g of keyword w, the
simulator receives Ly(D, w) and returns an appropriate trapdoor
TD. Finally, A returns a bit b that is output by the game.

We say that SSE is (L;, L) semantically secure against
adaptive attacks if, for all (non-uniform) PPT adversaries 4, all
polynomials p and sufficiently large s, there exists a (non-
uniform) PPT simulator S such that

|Pr{Realy(s) = 1] - Pr[ldeals(s) = 1]|< 1/p(s)

We define (L;, L;) semantically secure against non-adaptive
attacks in the same way, except that 4 must choose all of its
queries at the start in both games. It can only provide security
if the client's queries are independent of the search index and
previous query results.

Common SSE models can be classified into token-based SE
and index-based SE. Token-based SE scheme can search users'
encrypted sensitive data without modifying cloud Application
Programming Interface (API). As shown in Fig.l, a token-
based SE scheme is depicted as follows.

1) A user extracts keywords from a document D;, generates a
token for each keyword by deterministically encrypted the
keyword using a pseudo-random function f (such as
HMAC) and a secret key &, and encrypts document D;
using a secret key K. Then the user appends the sorted
tokens to the ciphertext, and uploads them to the cloud.

2) When searching for a keyword w, the broker applies the
keyword to the pseudo-random function f and sends
generated token TK=fi(w) to the server.

3) The server can search for the token 7K using the original
search algorithms and return the corresponding encrypted
data or encrypted document identifiers.

With the above discussion, we can conclude that besides
the sizes of the documents and tokens, the L; leakage in the
token-based SSE model exposed the information of the number
of keywords in a document, the document similarity, the
keyword occurrence pattern and the keyword co-occurrence
pattern. The L, leakage exposed the search pattern and the
access pattern, which can be inferred from the L; leakage.

An Index-based SE scheme delegates search capabilities to
a cloud provider on behalf of a user, which should modify
cloud API to invoke specific SE libraries. Curtmola, et al. [6]
first proposed an index-based SSE scheme that lets nothing but
the search and access patterns be known to the server. For each
keyword w, it built a posting list consisting of |[D(w)| nodes. A
posting contains an identifier of a document containing w, a
key used to decrypt the next encrypted posting, and a pointer to
the next encrypted posting. All postings are encrypted with
random keys and scrambled in a random order. As shown in
Fig. 1, the index-based SE scheme contains the following
important steps:

1) A user generates a searchable encrypted index / and the
encrypted documents Ex(D) independently, and uploads
the encrypted index 7 and the encrypted data Ex(D) to the
cloud.

2) Then, the user generates the trapdoor 7D = fyw) of a
keyword w for search.

3) With the trapdoor 7D, the cloud service can search on the
encrypted index using specific search algorithms and
return the corresponding encrypted data or encrypted
document identifiers.

Based on the security definitions of the symmetric
encryption E and the pseudo-random function f; we conclude
that the L; leakage in the index-based SSE model exposed
nothing besides the sizes of the documents and indexes.
However, the L, leakage exposed the information of search
patterns and access patterns. From this leakage, we can infer
keyword occurrence patterns and keyword co-occurrence
patterns for queried keywords.

Inference Attacks: Inference attacks on SE schemes often
use the information of keyword occurrence frequency and
multi-keyword co-occurrence frequency to guess the query
keywords or document contents. They usually contain the
following steps.

1.  An adversary used the leakage information of the SE
scheme (e.g., search patterns and access patterns) to infer
the frequency of the query keyword or co-occurrence
frequency of multiple query keywords.

2. With prior knowledge of the documents, the adversary
can count the frequency of plaintext keyword and the co-
occurrence frequency of multi-keywords respectively.

3. With the plaintext statistics and the query information,
the adversary designed matching algorithms to invert the
query keywords.
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Fig. 1. Searchable encryption system models.

Islam, Kuzu, and Kantarcioglu (IKK) [8] first initiated the
inference attacks on SE with the help of access pattern
disclosure. With sufficient prior knowledge, they convert their
attack model as an optimization problem and uses simulated
annealing [13] to find the optimal mapping between query
trapdoors and keywords. Cash, Grubbs, Perry, and Ristenpart
(CGPR) [9] proposed a simple and efficient attack algorithm
to address the same issue as IKK. A Token-based SSE scheme
encrypted each keyword using deterministic encryption
algorithms, which leaks token occurrence patterns. From the
leakage, an adversary can obtain the keyword occurrence
frequency and multi-keyword co-occurrence frequency in the
document set. Based on this, Shadow Nemesis [14] launched
inference attacks on the token-based SE schemes using the
Weighted Graph Matching (WGM) problem. However, to
invert an encrypted keyword with a high accuracy, an
adversary must have sufficient knowledge of the documents in
the above attacks.

III.  IDCRYPT ARCHITECTURE

We first provide a high-level system overview of our
IDCrypt architecture in the following, and then propose two
easily-deployable SSE schemes that improve the efficiency
and security of SE with provable security definitions.

A. System overview

IDCrypt encrypts the confidential data of a user using a
proxy before outsourcing it to cloud servers. To support
encrypted search functions, the proxy of IDCrypt on the client
side indexes the document data with the document identifier
that points to the encrypted data in the cloud, and relies on an
index server to assist in managing and searching on the index,
thus taking the management burden off the proxy of IDCrypt.

In particular, the IDCrypt paradigm focuses on usability and
does not need to modify the cloud API and a user's familiar
usage patterns. As shown in Fig. 2, IDCrypt consists of the
following main components:

® Proxy. A proxy is responsible for encrypting a user's
confidential data. It is also responsible for generating the
searchable encrypted index for a document set with
document identifiers that point to the encrypted
documents on the cloud.

® Index server. An index server is responsible for
managing the index data and executing the search

operations.
Clhent side Index server
Upload encrypted index |
N W (|
| ! 4 Search Tj
LTS - E(ID{Dy) @
ExiDy I DDy
c I =
R [
| |
Cloud server Database

Fig. 2. IDCrypt architecture.

IDCrypt assumes that the processing in a proxy is
trustworthy and secure, namely the data within the proxy is
transmitted in clear texts. Besides, since IDCrypt indexes the
plaintext data inside the proxy with identifiers pointing to
encrypted data at cloud servers, it has to protect the proxy from
external accesses and attacks.

The pathways outside a user’s proxy, including the cloud
servers, the index server and other proxies are considered
untrusted and need to be protected. As shown in Fig. 2, the
sensitive data is encrypted by the proxy before passed to the
outside, thus effectively preventing the cloud servers and the
index server from stealing private information. In addition,
even if the cloud servers and the index server collude, they
cannot recover the plaintexts because they cannot get the
corresponding keys that are located in the user’s proxy.
Outside the proxy, even if the user's account is stolen by an
attacker, the attacker can only access encrypted data, [because
the encrypted data does not go through the proxy and there is

no decryption process.‘ ,,,,,,,,,,,,,,,,,,,, __ — — 7| Commented [YD6]: becuase the encrypted data must be

B. The SSE-I scheme

To construct an efficient inverted index over the keywords
in a document set, IDCrypt locates the index server at an
online third-party service provider. IDCrypt encrypts the
searchable index to prevent the third-party provider’s
snooping, and protect privacy information (e.g., searchable
keywords and document identifiers), as shown in Algorithm 1.
The procedures of the SSE-I scheme are as follows:

decrypted by the proxy server. (I am not clear what you want
to say here.)




1) For each document in a document set, the proxy first
extracts keywords from the document, and generates
searchable tokens by deterministically encrypting the
extracted keywords.

3) Then, the proxy gets the document identifiers that point to
the encrypted documents in the cloud. It maps the tokens
of a document with corresponding document identifiers
respectively.

3) Finally, the proxy indexes the searchable tokens with their
encrypted document identifiers, and uploads the
encrypted index to the index server.

4) When a user performs a search operation for a keyword, the
proxy sends the corresponding token of the keyword to
the index server; the index server performs the search
operation and returns the encrypted document identifiers.

5) After decrypted by the proxy, the document identifiers can
be used to request the encrypted documents from the
cloud servers.

The index structure of the SSE-I scheme is shown in Fig. 3.
For each keyword w € W, a linked posting list L(#) with length
[D(w)| is built, in which ¢ is the corresponding token of
keyword w. Each item of L(#) consists of an encrypted
document identifier /D(D;) of D; that contains the keyword w.
The entries of a look-up table W; are tuples <value, address>,
in which the value field is used to locate the corresponding
posting list by a pseudo-random function H. That is, when a
keyword is queried, we use its corresponding token value to
locate its posting list.

When a user initiates a query request, the proxy analyzes
the request to get the query keyword. The proxy then
generates the corresponding token of the keyword and sends a
request with the token to the index server. With the token, the

decrypting the encrypted document identifiers, the proxy can
request cloud servers for corresponding encrypted documents.
When receiving the data, the proxy decrypts it and returns the
plaintext data to the end user. In this way, the SSE-I scheme
hides the access pattern to a certain extent since document
identifiers are encrypted, such that an adversary can not
deduce the keyword co-occurrence frequency from the query
results. However, it leaks the number of documents in which a
keyword appears. We emphasize that the sizes of documents
and the index will also be leaked, which is common and not
mentioned in our security definations.

Algorithm 1: SSE-I algorithms

1 Algorithm Keyvgen (1%)
| Given a security parameter s, output keys K, K, k.

3 Algorithm Buildindex (K, D)

Fl Compute Ep (D) and upload it to the cloud;

5 for each document D; in D do

1 get the document identifier ID{D;) of 1);;

7 for each keyword w; in D; do

% | token t; = fi(w;))

9 build the mapping between the tokens

T; = {ty....t;...} and 1D(D; )

10 for each ¢ in T; do

1 if ¢ in dictionary W; then

12 get Lir) according to H{t), add
Ege(1D(D;)) to Lit);

13 else

14 add ¢ to Wy

15 initialize a posting list Lit) according to
Hir), add Ezpe(ID(D;)) to Lit).

16 output index [ = (W,.L).

Algorithm Trapdoor (w)
| Output TK,, = fi{w).
Algorithm Search (I, TK,,)
Search TR, in the index [.;
Qutput the search result Ege (M w)).

index server searches on the index and returns the 2
corresponding  encrypted document identifiers.  After
ID(D4) 1D(Dy) ID{D5) ! Encrypted Index iyt
ity | latute | |thtaly ' Lookuptable [Lq
' Ew-(ID(D — Eg(ID(D: 1
; . /"'/f k(1D(D4)) | w(1D(D3)) :
s 2. 1
Lo Build index for a document set : ty 1 Ew-(ID(D4)) — E-(ID(D3)) :
g S G s :
User Search ty=fifwy) . t: 1 Ex(ID(Dz)) —> Ex{ID(D3)) E
Return £, {ID{Dy)), Ex{ID{D s b :
S : [ Ex{ID(D1) = Ec(ID(Dz)) —— Ex{ID(Dy) | |

Fig. 3. Index structure of the SSE-I scheme.

Theorem 3.1. The SSE-I scheme is adaptively (L;, L)
secure, in which the L; leakage exposed the number of
searchable tokens, the occurrence count of each keyword (the

number of encrypted document identifiers of each token). The
L, leakage exposed search patterns, and the occurrence counts
of query keywords from access patterns, which can be



deduced from L, leakage.

Proof: For the proof, we follow the security definition of
SSE [6][12]. We say our SSE-I scheme is (L;, L;) semantically
secure against adaptive attacks if, for all (non-uniform) PPT
adversaries 4, all polynomials p and sufficiently large s, there
exists a (non-uniform) PPT simulator S that can simulate the
encrypted index 7 and ciphertexts Ex(D) with a probability
negligibly close to 1.

At a high level, the PPT simulator S builds a simulated
encrypted index /* and a simulated sequence of ciphertexts
E*(D) using the information that it receives from L, leakage,
which includes the number of searchable tokens, and the
occurrence count of each keyword. The ideal index /* can be
constructed similarly to a real index, except that the encrypted
document identifiers are replaced by random strings and the
output tokens of the pseudo-random functions are replaced by
random values.

Generating posting lists L*: For each keyword w and its
occurrence count [D(w)|, S generates |[D(w)| random strings
and sets them as a posting list for w.

Generating look-up table W*: For each keyword w, S
generates a random string ¢ and lets H(z) point to the posting
list of w. S records the correspondence between w and 7.

Generating query trapdoor 7*: For the query keyword w, S
sets its trapdoor T* as ¢ corresponds to the keyword w.

The security of the symmetric encryption and the security
of pseudo-random function guarantee that the resulting
encrypted index /* = {W* L*} is indistinguishable from a real
encrypted index, and the resulting trapdoor T%* is
indistinguishable from a real trapdoor.

The simulated document encryptions E*x(D) are simulated
in the same manner (i.e., replacing ciphertexts by random
strings) and the security of the symmetric encryption
guarantees indistinguishability. This completes the proof of
the theorem. m

Our SSE-I scheme is very efficient, in which the time
complexity of index building is O(N), where N =Y, |[D(w)|,
the time complexity of searching is O(1), and the index size is
o(m+n), where m is the total number of keywords, n is the
total number of documents. Besides, the scheme hides
keyword co-occurrence patterns, as all document identifiers
are encrypted to random values. However, the scheme
exposed the number of documents in which a keyword
appears, which may be exploited by an adversary to infer
some queries if the adversary has sufficient knowledge of the
documents. In the following, we design a scheme called SSE-
1I that can hide keyword occurrence frequencies.

C. SSE-II scheme

In our SSE-IT scheme, we pad the length of the posting list
of each keyword to a fixed number ¢. We can determine the
number ¢ according to the most frequent keyword in a
document set. Before building the index for a document set,
we need to count the occurrence number of the most frequent
keyword. An alternative way is setting the number ¢ as the
total number of documents. This method is more efficient at
the cost of more space. After determining the number ¢, for
each keyword, if its occurrence number is less than ¢, we tpadt

the length of its posting list to ¢ with random strings. Our
BuildIndex algorithm of SSE-II scheme is shown in Algorithm
2, and the Keygen, Trapdoor and Search algorithms are the
same with the ones in SSE-I scheme.

Theorem 3.2. The SSE-II scheme is adaptively (L;, L)
secure, where L; leakage exposes the number of searchable
tokens, and L leakage exposes the search pattern.

The proof of this theorem is similar to that of Theorem 3.1;
except that in the process of generating posting lists, for each
keyword w, the simulator S generates ¢ random strings and
sets them as a posting list for w.

In our SSE-II scheme the time complexity of index
building is O(cn), the time complexity of searching is O(1),
and the index size is o(m+cn), where m is the total number of
keywords, and # is the total number of documents. Besides,
the scheme hides the number of documents in which a
keyword appears and the keyword co-occurrence patterns, as
all document identifiers are encrypted to random values. So
our SSE-II scheme can mitigate the inference attacks on SE
even if an adversary has complete knowledge of the
documents. Note that after receiving the search result of a
keyword, the proxy should filter the padded random strings
after decryption in the SSE-II scheme.

Algorithm 2: SSE-II algorithms
1 Algorithm Buildindex (K, D)

z Compute Ex(D) and upload it to the cloud;
3 Determine the fixed number ¢ according to D:
4 for each document D; in D do
5 get the document identifier ID{D;) of D;:
6 for each keyword w; in D; do
7 |_ token t; = fi.(w;))
] build the mapping between the tokens
T = {f-]‘ f,} and ID{D; ).
9 for each 1 in T; do

if ¢ in dictionary W; then

11 get Li1) according to Hf1), add
‘ Eg(ID(D;)) to Lit):

else

L

15 fr;' each token t in W, do
|_ Pad the length of the posting list of  to e

add 1 to W
initialize a posting list L(r) according to
Hit), add Ep(ID(D;}) to Lit).

output index I = (W,.L).

D. Advanced Searchable Encryption Functions

In this section, we discuss the advanced search functions
[3][15] that can be implemented efficiently in our SSE

schemes, including multi-keyword ranked SE and dynamic SE.

Multi-keyword ranked SE: In a multi-keyword ranked SE, a
user wants to seek & documents with the highest relevance
scores on the query vector Q from a document set D. To rank
the documents which contain more than one keyword of the
query vector O, we use the following equation to compute the
relevance scores of matched documents, in which TF (u, w;)
means the normalized Term Frequency (7F) value of keyword

&
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w; in D, and IDF(w;) represents the normalized Inverse
Document Frequency (/DF) value of keyword w; in D.
Score(D,, Q). The function calculates the relevance score
between query vector @ and a document D,,.

Score(D,, Q) =D, -Q = Z TE,w, X IDF,,
wiEWy
In the index building process, we need to add a TF value in

each item of a posting list to represent the frequency of a

keyword in a document. Besides, we compute an /DF value of

each distinct keyword in all the documents, and attach it to the

corresponding token of the look-up table. When performing a

multi-keyword ranked query, we execute the following

procedures:

1. For each keyword in the query Q, the index server
returns all the encrypted identifiers in its posting list.

2. On receiving the return results, a proxy decrypts them to
get all the related document identifiers and
corresponding TF/IDF values.

3. Ifaquery is an “or” query, we compute the score of each
document identifier according to Equation 1 and return
the document identifiers having the top k scores; If the
query is an “and” query, we first select the documents
which contain all the keywords in the query, and then
compute the scores of selected documents.

Dynamic SE: According to Kamara et al. [12], a practical SE

scheme should be dynamic. It can support update operations

that add files to an existing index or delete files from the index.

In a dynamic SE scheme, new terms can be added to a
dictionary of an index, and the posting lists of the index can be
updated for existing terms.

For our SSE schemes, an inverted index is built as shown
in Fig. 4. However, performing an in-place update on the main
inverted index in the index server directly is time-consuming
[15]. To add new documents quickly, we maintain two
indexes: a large main index stored in the index server and a
small auxiliary index that points to new documents and is kept
in the proxy. When the auxiliary index is larger than a
threshold, it is merged into the main index in the index server.
In the SSE-II scheme, when merging the auxiliary index into
the main index, we also need to pad the lengths of posting lists
in the auxiliary index to a fixed number (the occurrence
number of the most frequent keyword or the number of
documents). There are several typical operations in our
dynamic SSE schemes.

* Search: The operations are processed on both the main
index and the auxiliary index, and then the results are
merged.

* Add: When adding a new document, the proxy will build
the auxiliary index for the document.

¢ Delete: When a document is deleted, an invalidation bit
vector stored in the proxy will be updated to indicate that
the document has been deleted. Then the proxy will filter
out the deleted documents according to the vector before
returning the search result.

¢ Update: If a document is updated, it will be deleted and
re-inserted.

When a large proportion of documents have been deleted
from a document set, we need to generate a new index of the
remaining documents to replace the old index for saving
storage space. The off-line re-index process is depicted as
follows:

I. For each token of an index, the proxy initiates a
query to the index server with the token.
2. After receiving and decrypting the search results, the

proxy validates each document identifier against the
invalidation bit vector stored in the proxy, and removes the
document identifiers that have been deleted.

3. The building of the new index is completed when all
the search tokens in the old index have been processed, and all
the invalid document identifiers have been deleted from the
posting lists. In the SSE-II scheme, we also need to pad the
length of each posting list in the new index to a fixed number.
4. Finally, the proxy encrypts and uploads the new
index to the index server, and removes the old index. Then
subsequent queries are performed on the new index instead of

the old index.
% new documents
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. Fig. 4 Dynamic search in our SSE scheme

IV. ENCRYPTED SEARCH ON MULTI-INDEXES

In practice, a user may have different document sets in
different cloud applications, so the indexes of different
document sets may be encrypted using different keys. When a
user wants to search for all document sets, he must generate
multiple distinct search tokens for a keyword, and send all of
them to the index server. In another case, there are multi-users
in a cloud application. The documents of different users and
their indexes are encrypted with different keys. Many efficient
SSE schemes [4-6] assume that a search trapdoor is encrypted
using a single key, and they are suitable for a single-user
scenario. If a user u; wants to delegate another user to search
its documents for a keyword, one approach is that user u;
sends the request instead of the other user, and then sends the
result to the other user. However, when the same request is
repeated many times by other users, this approach is
inefficient for user u;. Another alternative method is exposing
the key of user u; to other users, but this approach allows
other users to search for the keywords other than they
requested. To address this issue, we design a token-adjustment
search scheme, presented in the following.



A. Token-adjustment search

In our token-adjustment search scheme, if a user wants to
search for a keyword in a set of indexes, in which each index
is encrypted with a different key, the user only needs to
provide a single search token for that keyword to the index
server. The index server, in turn, returns each encrypted
identifier of a document that contains the keyword.

We assume user Alice’s own key is k;, and the index 7 that
Alice searches for is encrypted with key k> by user Bob. Alice
computes a search token for a keyword w using key
denoted ¢,. If the corresponding token of w of the index 7 in
the index server is #; instead of #;, the index server must adjust
the search token ¢, to #.

The token-adjustment search scheme allows the index
server to perform the adjustment. In the first place, the index
owner must provide a delta, which is a cryptographic value
that enables the index server to adjust a search token from one
key to another key. We use Ag-p to denote the delta that
allows the index server to adjust ¢; to ;. Note that these deltas
can be reused for subsequent search operations, so the index
owner needs to generate the deltas only once. For example, if
Bob delegates a search right of a keyword to Alice, he needs
to provide one delta to the index server, such that the index
server will be able to adjust the token #; from Alice to a
searchable token , using the token adjustment search scheme.

B. Cryptographic construction

We construct the token adjustment search scheme based on
the key derivation algorithm proposed by Atallah et al [16], in
which a delta between two keys k;and k; is defined as follows:

Ak,'—;k/: k Pftk, L)
where L; is a public label associated with &, @ is the XOR
operator and f is a pseudo-random function. Referring to
Equation 2, our token-adjustment search algorithm is depicted
as follows:

Token-adjustment search algorithm. Given two tokens
and ¢ that are encrypted by different keys for keyword w, a
delta between # and ¢ is defined as Ay~ = t; @f(t;, L;), where
L; is a public label associated with the keyword w, @ is the
XOR operator, and f'is a pseudorandom function, which can
be implemented using a cryptographic hash function such as
HMAC.

Based on the token-adjustment search algorithm, the
procedure of the token-adjustment search scheme is depicted
as follows:

1. If Alice wants to search a keyword w on the index / built
by Bob, she sends a request to Bob with the value f{#;, L), in
which # is the token of w computed by Alice, L; is a publicly
available label associated with the keyword w.

2. On receiving the request, Bob checks whether Alice has
the right to search for w. If passed, Bob computes the delta
value Ai—; = t; @f(t;, L;) with the corresponding token ¢ of w.
Finally, it uploads the delta to the index server.

3. In the subsequent searches, if Alice wants to search for
the keyword w, she can send the value # to the index server,
then the index server can adjust the value to # by computing f{%;,

L)), then obtaining 4 = A~y @ f(t, L) =t @ft, L) @ft, L),
thus the index server can search the token # on the index 7 built
by Bob.

For a user, different keywords of his documents have
different labels; for a common keyword, different users have
different tokens encrypted with different keys. In this way, a
user can control which keyword can be searched by which
user. So our token-adjustment search scheme can realize fine-
grained access control.

V.  ENCRYPTED DATA SHARING BETWEEN PROXIES

The data is encrypted at the proxy, namely the secret key is
located in the proxy. So only the proxy can decrypt the
encrypted data. A typical scenario is that user u;, on premise
of proxy P;, wants to share a file with user u,, who is under
another proxy P,. When user u; receives the encrypted file
from the cloud, it is encrypted by proxy P;. So the problem is
how to share encrypted data between different proxies.

To address the above issue, secret key sharing is an
obvious solution. However, the secret key must be shared
securely, and the receiver must provide a credential that is
trusted by both parties. To do this, an IBE scheme [17] can
achieve implicit certification, but has a private-key escrow
problem, namely the Private Key Generator (PKG) can
decrypt the encrypted data of the user. Alternatively, a PKE
scheme does not have a private key escrow issue, but is
inefficient in the case of revoking lots of certificates or
bringing many third-party queries for certificate status [18].
We combine IBE and PKE to realize a Two-Layer Encryption
Scheme (TLES), which adopts their unique advantages to
address their deficiencies. Finally, we design a practical
prototype system and perform performance evaluations.

To realize TLES, we deploy a control node acts as the PKG
of an IBE scheme. When a proxy is initialized, the proxy
authenticates to the control node using its own PKE public key
and its identity ID. After authentication, the control node issues
an IBE private key corresponding to the identity ID. The
control node is also responsible for initializing and updating
the basic information of a proxy, such as proxy ID, proxy
public key, etc. A proxy can query some related attributions
(e.g., proxy ID and proxy public key) of another proxy from
the control node.

When a data block is encrypted at a proxy, a metadata,
including key ID, proxy ID, magic data, header length, etc., is
attached to the encrypted data. A magic tag is a symbol string
used to identify the encrypted data, so the decryption process
can find the ciphertext easily. The proxy records the key ID
that marks the relationship between the encrypted data and its
corresponding key. The decryption process first locates the
ciphertext according to the magic tag in the metadata. It then
obtains the corresponding key according to the key ID and
decrypts the ciphertext to restore plaintext data. Let the identity
ID of the proxy denote its IBE publics key, d denote the IBE
private key, PK denote the PKE public key, and SK denote the
PKE private key. As shown in Fig. 5, the procedure of TLES
scheme between different proxies is presented as follows:



1-3) Proxy B receives the ciphertext encrypted by proxy 4
from the cloud.

4-8) Proxy B obtains the metadata of the ciphertext. After
getting some necessary information from the control node, it
finds Proxy A according to proxy ID in the metadata and then
requests the key from proxy A with parameters. The parameters
include the key ID and (possibly) the proxy B’s time parameter
tp.
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4 gel necessary information

9) After obtaining some information about Proxy B if
necessary, Proxy 4 double encrypts the requested key with
parameters ¢z, proxy B’s identity /Dp, broker B’s PKI public
key PK3, and forwards the encrypted key to proxy B.

10) Proxy B uses the IBE private key dp and the PKI
private key SK3 to decrypt received messages and obtains the
corresponding key. Then the proxy B decrypts the ciphertext
with the decrypted key to obtain plaintext data.
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Fig. 5. Encrypted data sharing between proxies.

Referring to [17], our concrete TLES algorithm based on
the Bilinear Map is shown as follows:

Setup: The control node generates the system parameters
params = < q,n, P, Py, G, H >and master-key s. After setup,
the control node exports params to a file and forwards it to
proxies.

e  Step 1: The pairings are constructed on the curve

y*> = x* + x over the field F, for a prime g =

3 (mod 4). We generate prime q by the formula g +1 =

t * h, in which tis a prime and h is a multiple of 12. For

efficiency, t has the form 2¢ — 22 — 1 for integer a and b,

0 < b < a. For security strength, we set the length of

t =160 bits, the length of ¢ = 512 bits. Let E be the

elliptic curve defined by y* = x* + x over F;. Choose an

arbitrary P € E / .

e Step 2: Pick arandom s € Z; and set Py, = sP.

. Step 3: Choose a cryptographic hash function H :
Fgz = {0,1}" for n. Choose a cryptographic hash
function G : {0,1}" —» Fq. The security analysis will view
H and G as random oracles. The message space is {0, 1}".
The ciphertext space is E / F; X {0,1}".

Extract: For a given string ID € {0,1}" from the proxy
identity and time parameters, generate a private key d as
follows:

. Step 1: Map ID to a point Q;p € E / Fy.

e  Step 2: Set the private key d;p to be d;, = sQ;p,
where s is the master key.

The control node then encrypts the private key d using
proxy’s PKE public key and forwards it to the proxy. The
proxy decrypts it to get the private key d.

Encrypt: Encrypt M € {0,1}" under the public key ID
and public key PKp:

e  Step 1: Map ID into a point Q;p,

e  Step 2: choose arandomr € Z,, and

e Step 3: set ¢, =<rP,M @ H(gjp) >, where
gdip = é(QlePpub) €F,

e Step 4: Encrypts rP with the broker PKE public key
PKg , set the ciphertext to be C =< Epg,(rP),M &

H(glp) >.

Decrypt: Decrypt M with the PKI private key SKp and the
private key d:

e Step 1: Let C =<Ep,(rP),M @ H(gpp) > ,

Decrypts Epy, (rP) with the broker PKI private key SKp,

setU = Dgyp(Epgy(rP)) = TP.

e Step2: LetC; =< U,V > be a ciphertext encrypted
using the IBE public key ID. Decrypt C; using the private
keyd:V @ H (é(d;p,U)) = M.

As mentioned above, TLES effectively ensures the secure
transmission of secret keys, and only the proxy that matches
the identity /D can get the keys. With time parameter ¢, it can
effectively update the IBE private key of the proxy to improve
security. Even if the control node has the IBE private key d of
a proxy, it cannot recover rP because it does not have the
PKE private key SKp of the proxy. To get M, H(g]p) must be



obtained, since r is random, the control node cannot achieve
its goal. If a malicious proxy replaces the public key PKp, thus
it has the corresponding PKE private key, which can get rP,
but it has not the IBE corresponding private key d,
H (é(d;p,U)) cannot be calculated, thus it cannot restore
M .The security definitions of TLES scheme is shown in
Appendix A. Our basic TLES scheme mentioned above is a
one-way encryption secure scheme. According to [17], we can
use a scheme from Fujisaki-Okamoto [19] to convert it to be
secure against adaptive chosen-ciphertext attack conveniently.

VI. PERFORMANCE EVALUATION

In this section we focus on three main questions. First,
how much developer effort is required to construct our SSE
schemes. Second, can our SSE schemes mitigate the inference
attacks with the complete knowledge of the documents. Third,
what are the performance overheads of IDCrypt on search
operations and key sharing between different proxies.

A. Developer effort

For index construction, search and sharing scenarios,
commonly used open source search engines such as Elastic
Search [10] can be integrated into our system. We can manage
the complexity of distributed systems well with the help of
Elastic Search.

As shown in Fig 6, there exist multiple nodes in the
IDCrypt system. IDCrypt builds the index in a node of a proxy,
and balances the index data across the nodes of an index
server to spread the index data and search load. The index
server performs the search operation and returns the search
results. It routes a search request from any proxy to the nodes
that hold the index data, and returns the aggregated results to
the proxy.

Index Server

. Fig. 6 IDCrypt system

Elastic Search provides a distributed system on top of
Lucene [11]. We also build the index of a document set in a
proxy with the help of Lucene. Fig. 7 shows a traditional
process of index building, in which an original file is first
processed to a document structure that contains multiple fields.
The fields are parsed to create keyword-docID pairs. When the
size of keyword-docID pairs is sufficient large, the keyword—
docID pairs with the same keyword are collected respectively
to build a postings list of the keyword, where a posting is
simply a docID. A docID is an integer which can be used to
find the corresponding document contents. However, in our
SSE scheme, as the data is encrypted and stored in the cloud,
we need to map the docID to the document identifier that
points to the encrypted data in the cloud. We do not need to

manage the content of the original file, such that we can build
the index easily and flexibly. As mentioned earlier, we
generate the corresponding tokens for extracted keywords and
encrypt the docID to a random value when processing each
document, and store the searchable tokens and encrypted
docIDs in the index.

In order to save memory or disk space, these docIDs that
we just discussed are best stored in integer form, such that
they can be compressed efficiently in the index. For instance,
the posting lists of an index containing the integral docIDs can
be compressed with delta-encoding [15]. To save time and
space, in our SSE schemes, when a document is processed, its
document identifier can be mapped to an integer range
according to the number of keywords in the document. When
extracting a keyword from the document, we make the docID
plus one instead of encrypting the docID, and then build the
token-docID pair. In this way we can construct an index of a
document set securely and efficiently, and compress the index
using the off-the-shelf algorithms in Lucene project.
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. Fig. 7 Index building process

In the scenario of key sharing, the control node is deployed
on a separate virtual machine. The communications between a
broker/proxy and a control node is mainly implemented by
socket transmission. We generate the PKI key pair with
OpenSSL library [20]. We use elliptic curves to implement
IBE, and invoke the PBC library [21] for bilinear pairings.

B. Security evaluation on our SSE schemes

We empirically investigate the security of our SSE
schemes by comparing them with Curtmola’s construction.
We use the count attack scheme [9] to infer the keywords of
opaque query trapdoors, in which the adversary has the
complete knowledge of all the documents. While it is
unrealistic for an adversary to know all documents of a user in
normal cases, this may happen sometimes. For example, a user
has a set of emails stored at an email server, and it decides to
encrypt all the emails using a SE scheme.

We use the online-available Enron [22] email set as the
dataset. We chose the emails of the “ sent _mail” folder of 78
employees, resulting in 30,109 messages. A message is
considered as a document. We extract the keywords in each
document using the standard Porter stemming algorithm [23];
then remove stop-words [24] and duplicate keywords. There
exist 49,982 unique keywords in the 30,109 documents. We
then establish a fixed-size keyword universe from the
keywords by taking the most frequent 5000 keywords. Fig. 8
shows the query recovery results of the count attack against
Curtmola’s scheme and our schemes. We run attacks on each
scheme in the same setup with the adversary having no access



to any queries. For the fixed number of keyword universe, we
vary the number of query keywords from 500 to 3000.

As the results show, an adversary can invert the most
query trapdoors against Curtmola’s construction, because it
exposed search and access patterns. In this scheme, an
adversary can deduce the keyword occurrence frequency and
the keyword co-occurrence frequency over the keywords that
have been queried. According to the count attack algorithm,
for each search trapdoor, the adversary first counts the number
of documents in its query result, and then tries to find a unique
keyword appeared in the same number of plaintext documents.
If the keyword is found, then it can be mapped to the trapdoor
directly. We called this the first round attack. In the second
round attack, the adversary uses the keyword co-occurrence
frequency to deduce other mappings between keywords and
trapdoors. Based on the already-built mappings, given an
unknown trapdoor ¢, the adversary first selects the candidate
keywords that appeared in the same number of plaintext
documents as the length of query result of ¢. Then, to filter the
candidate keyword set of ¢, for each pair of mapped keyword-
trapdoor pair w” and ¢, the adversary computes the count ¢; of
documents in which w and w’ both appear in plaintext
documents, and the count ¢, of documents which both the
query ¢ and ¢’ hit in query results. If ¢; is not equal to ¢, then
the keyword w will be removed from the candidate keyword
set. Finally, if only one keyword meeting all the conditions is
left, then it can be mapped to g.

In our SSE-I scheme, an adversary can invert a quite small
portion of queried trapdoors, as the scheme only leaks the
keyword occurrence frequency Information in the query
results. The adversary can only perform the first round attack
with such leakage. In particular, our SSE-II scheme leaks no
information about the keyword occurrence frequency or the
keyword co-occurrence frequency, thus the adversary can
invert no search trapdoors. From Fig. 8 we can conclude that,
when the size of the keyword vocabulary is fixed, even if only
a few query trapdoors are inverted in the first round attack in
Curtmola’s scheme, then almost all trapdoors can be mapped
to their plaintext keywords in the second round attack.
However, in our SSE schemes, the number of identified
trapdoors does not increase after the first round attack.
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C. Performance overheads of IDCrypt

In this section we test the overheads of search and key
sharing operations. The configurations of our test virtual
machines are Intel 2.5 GHz dual-core with 4 GB of memory,
the uplink speed is approximately 1 MB/s, and the downlink
speed is approximately 7.5 MB/s. We use a macro-
benchmarking framework Rally [25] to benchmark the search
efficiency of our SSE scheme. Table I shows that, as the size
and number of files increase, the index storage overhead
grows slowly, and the search performance decreases lightly.
Even for large file collections, for example, a size of 2.2GB,
the index consumes just about 1.7GB storage space, and the
search performance is about 11 operations per second.

TABLE L. SEARCH EFFICIENCY
Document Count Dacu(tg(;;x)t Size Im:zgéj‘ize Query (ops/s)
9697882 1.212332 0.947194 19.5675
10716760 1.339540 1.05098 16.1885
11961342 1.487816 1.17934 14.6774
13053463 1.624238 1.25526 13.8309
17647279 2.201861 1.70634 10.9576

Finally, in order to demonstrate the performance of TLES
scheme between different proxies, we test each process of the
TLES, including system parameter generation, key issuing,
key encryption, and key decryption. The average time in each
process is shown in Table II. We concluded from the results
that the decryption process including the PKE decryption
process and the IBE decryption process takes more time than
the encryption process, but it is negligible and not noticeable
by a user. Generally speaking, the extra overhead in
milliseconds level introduced by the IDCrypt is insignificant
and acceptable for smooth user experience.

TABLE II. TIME COST OF EACH PROCESS IN TLES
‘ ‘ Params Gen ‘ Issuing ‘ Enc ‘ Dec ‘
| Time(ms) | 55 | 22 | 14 | 38 |

VII. RELATED WORK

A. Typical Searchable Encryption Schemes

Song et al. [4] proposed the first practical SE scheme. The
search operation is simple, but the disadvantages are that the
cloud requires full-text scanning and the computation is
proportional to the data size. In addition, the server may use
statistics to obtain additional user information.

Goh [5] proposed a secure index method to achieve SE
using Bloom Filters. However, the Bloom Filter used in this
scheme has an error rate, which may lead to inaccurate search
results. It is not a sub-linear scheme.

Curtmola et al. [6] builds an encrypted search mechanism
using inverted indexes, increased the search efficiency greatly,
and improved the security of the encrypted search. It can only
support exact keyword search and documents can not be
updated dynamically. Based on this scheme, advanced SE
functions are further developed, such as [12][26][27].



For multi-user encrypted search, Boneh et al. [28] realized
the Public Key Encryption with Keyword Search (PEKS)
algorithm using asymmetric encryption. This scheme led to
greater performance loss.

However, all searchable encryption schemes mentioned in
the above requires to modify the current cloud APIL In
addition, they leak search and access patterns for efficiency,
which can be exploited by adversaries to get sensitive
information [8][9].

B. Usable Searchable Encryption Systems

At protect-point 4 between a user and the client side in Fig.

2, ShadowCrypt [29] runs in the browser plug-in mode to
perform encryption and search functions. ShadowCrypt only
supports text input data, and do not support mobile platform.
M-Aegis [30] proposes 7.5 layers between users and
applications based on the mobile platform. M-Aegis only
supports textual data. The SE functions of [29][30] are based
on token-based SE scheme which exposed token occurrence
patterns. An adversary can launch inference attacks on their
SE schemes with prior knowledge using token occurrence
patterns, as in [9][14].

At protect-point B between the client side and the server
side in Fig. 2, Mylar [31] protects data from malicious server
administrators based on the Meteor JavaScript framework,
affecting the backward compatibility. Mylar used Song’s SE
scheme [4] to construct their SE functions, which can be
attacked by recent works [32-33] using leaked information. In
[32] an adversary can collude with some users to invert a
query of an honest user, and [33] leverages design or
implementation issues of [31] to infer sensitive information.

At protect-point C between the server side and the
database in Fig. 2, CryptDB [34] encrypts the data before it is
put into the database, and performs query requests on the
encrypted data based on Song’s SE scheme [4], thus
effectively preventing the malicious database administrator.
However, CryptDB can not prevent the server program
behaving malicicouly.

C. Encrypted Key Sharing Schemes

If the data is encrypted with different keys, ciphertext
sharing requires corresponding key sharing. Commonly used
mechanisms for sharing keys are PKE and IBE. Two of the
most well-known PKE certificate verification schemes are
Certificate Revocation List (CRL) and Online Certificate
Status Protocol (OCSP). However, they are both inefficient in
the case of revoking lots of certificates in real-time [18].
Micali proposed "Novomodo" system [35] achieving better
efficiency, but it brings many third-party queries for
certification status. To eliminate certificate status queries, IBE
seems to be an effective way. Shamir [36] proposed the
identity-based encryption and introduced an identity-based
signature scheme. However, it is not practical for high-volume
systems. Boneh [17] proposed a fully functional scheme based
on the Weil pairing. Nevertheless, IBE itself has a private key
escrow problem: The private key generator can decrypt the
ciphertext of a user. To address this, Certificate-Based
Encryption [18] and Certificate-Less  Public  Key

Cryptography [37] combine IBE and PKE to realize double
encryption, but they do not perform detailed performance
evaluations. Lewko et al. [38] designed a scheme supporting
multiple authorized parties. However, it has no practical
evaluations. For sharing keys securely, we design a practical
TLES scheme and perform performance evaluations.

VIIL

In this paper, we first conducted a systematic and
quantitative comparison between index-based SE and token-
based SE schemes. We describe the SSE schemes of our
IDCrypt architecture in detail and analyze its security. The
experiments results further show that IDCrypt indeed
introduces fairly low overhead. To fulfill encrypted search,
IDCrypt builds search indexes at proxies with the identifiers
of encrypted data. We also design token-adjustment search
schemes to search across different indexes. To share encrypted
data between different proxies, we propose the two layers
encryption scheme TLES to transmit secret keys. Certainly,
IDCrypt still faces some technical challenges, and further
research and improvement are needed. For example, due to the
wide variety of cloud applications, we need to automatically
match more protocols and build the index for them to search.

CONCLUSION AND DISCUSSION
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APPENDIX

A. SECURITY OF ONE-WAY ENCRYPTION TLES SCHEME

To give the security notion of One-Way Encryption (OWE)
TLES scheme, we first give the security notions of OWE
Public-Key Encryption (PKE) [19] and OWE Identity-Based
Encryption (IBE) [17].
Security of OWE PKE: Let I1 = (K, E, D) be a PKE scheme.
Let 4 be a probabilistic polynomial-time adversary. Given a
sufficiently large s, we say that IT is OWE secure if for every
PPT adversary 4, all polynomials p, the advantage of 4 is

AV (k) 2 Pr{(pk, sk) o= K(14): ¥ < MSP: ¥+ Epatn) s Alpk, v) = Duiy)]
<1/p(s)
In which MSP represents message spaces determined by s.
The message x is picked up uniformly from MSP to compute a
ciphertext y. Then the adversary 4 outputs a string on input
(pk, y) as the decryption of y with pk.
Security of OWE IBE: An identity-based encryption scheme
is ID-OWE secure if no PPT adversary A has a non-negligible
advantage in the following game:
Setup: The challenger takes a security parameter s as input
and runs the Setup algorithm. It gives the resulting system
parameters params to the adversary, and keeps the master-key
private.
Phase 1: The adversary issues private key extraction queries
adaptively for ID,, ..., ID,. The challenger runs Extract
algorithm to generate the private key d; corresponding to ID;
and sends d; to the adversary.
Challenge: When Phase 1 is over, the adversary outputs a
public key ID # ID,, ..., ID,, on which to be challenged. The
challenger picks a random M € M and encrypts it using /D as
the public key. Then the resulting ciphertext C is sent to the
adversary.
Phase 2: The adversary issues more extraction queries
IDy+1, ..., ID, adaptively with the constraint that ID; # ID.
The challenger responds as in Phase 1.
Finally, the adversary outputs a message M’ € M. We say that
IT is ID-OWE secure if for every PPT adversary 4, all
polynomials p and sufficiently large s, the advantage of 4 is
Adv(A4) = PriM =M’] < 1/p(s)

We are concerned about two different types of attacks
referring to [18]: 1) by an uncertified client and 2) by the
certifier, and we define two different games accordingly. In
Game 1, the adversary has PKE public-private key pair and its
IBE public key (including identity /D and possibly time
parameter ), but does not know the IBE private key SKise
corresponding to the public key params. It can make
extraction and decryption queries. In Game 2, the adversary
acts as the role of the certifier (PKG). It has the PKE public
key PK, IBE public key params and its private key SK;zg, but
does not have the PKE private key SK. It can make decryption
queries. We say that our TLES scheme is OWE secure if no
adversary can win either game.



Game 1: The challenger takes a security parameter s and runs
the Setup algorithm of IBE. It gives the adversary the resulting
system parameters params. It keeps the master-key SKjzr to
itself. Then the adversary interleaves extraction and
decryption queries with a single challenge query. These
queries are answered as follows:
--On extraction query <s,/D;,PK,SK>, the challenger runs
Extract algorithm to generate the private key d; corresponding
to the public key ID;. It sends d; to the adversary.
--On decryption query <s,/D,PK,SK,C>. The challenger
responds by running algorithm Extract to generate the private
key d; corresponding to ID;. It then runs algorithm Decrypt to
decrypt the ciphertext C using the private key d; and SK. It
sends the resulting plaintext to the adversary.
-- On challenge query <s’,/D’,PK’,SK ">, the challenger picks
a random M € M and runs Encrypt algorithm to encrypt it
using /D’ and PK’. Then the resulting ciphertext C’ is sent to
the adversary.
Finally, the adversary outputs a message M’ € M. We say
that the TLES is OWE secure against Gamel if for every PPT
adversary 4, all polynomials p and sufficiently large s, the
advantage of 4 is

Adv(4) = Pr{M = M’] < 1/p(s)
Proof: Let 4 be a PPT adversary that has advantage ¢(s)
against TLES. Suppose 4 makes at most gr private key
extraction queries and at most gp decryption queries. Then
there is a PPT adversary B that has advantage at least ¢(s)
against OWE IBE. Its running time is O(time(4)).

We construct an adversary B that uses 4 to gain advantage

€(s) against OWE IBE. Adversary B interacts with 4 as
follows:
Phase 1: At any time adversary A issues extraction queries,
adversary B receives the queries and sends them to the IBE
challenger. The challenger runs algorithm Extract to get the
private key d; corresponding to the public key ID;. It sends d;
to the adversary B, and then B sends it to 4.

At any time adversary A4 issues decryption queries, the
adversary B decrypts the ciphertext of 7P’ using the private
key SKto get 7P’, then sends remaining data and 7P’ to the
IBE challenger. The challenger responds by running algorithm
Extract to generate the private key d; corresponding to /D;. It
then decrypts the remaining data using the private key d;. It
sends the resulting plaintext to adversary B, and then B sends
it to 4.

Once the adversary 4 decides that Phase 1 is over it
outputs an identity /D’ on which it wishes to be challenged.
The only constraint is that /D’ did not appear in any private
key extraction queries and decryption queries in Phase 1.

The adversary B sends /D’ to IBE challenge. The IBE
challenger picks a random M €M and encrypts M using ID’.
It sends C’ as the challenge to the adversary B, Then B
encrypts 7P’ of C"using PK’ and sends it to 4.

Phase 2: The adversary issues more queries where query g; is
one of:

--extraction query in which ID; /= [D’. The challenger
responds as in Phase 1.

--decryption query in which ID; /= ID’ and C; /= C’. The
challenger responds as in Phase 1. These queries may be asked
adaptively as in Phase 1.

Finally, the adversary 4 outputs a guess M~ and wins the game
if M = M’. The adversary B outputs the same M’ and wins the
game if 4 wins. So, if 4 is an adversary that has advantage ¢(s)
against TLES, then B is an adversary that has advantage €(s)
against OWE IBE.

Game 2: The challenger takes a security parameter s and runs
the Setup algorithm of PKE. It gives the adversary the
resulting PK. It keeps the SK to itself. Then the adversary
interleaves decryption queries with a single challenge query.
These queries are answered as follows:
--On  decryption query  <s,ID,params,SKir,Ci>, the
challenger responds by running algorithm Extract to generate
the private key d; corresponding to /D;. It than runs Decrypt
algorithm to decrypt the ciphertext C; using the private key SK
and d,. It sends the resulting plaintext to the adversary.
--On challenge query <s’,ID’,params’,SKpr ">, the challenger
picks a random M € M and runs Encrypt algorithm to encrypt
it using /D’ and PK. Then the resulting ciphertext C’ is sent to
the adversary.
Finally, the adversary receives C’ and outputs a message M’
& M. We say that the TLES is OWE secure against Game2 if
for every PPT adversary 4, all polynomials p and sufficiently
large s, the advantage of 4 is

Adv(A) = PriM =M’] < 1/p(s)

Proof: Let 4 be an adversary that has advantage €(s) against
TLES. Suppose 4 makes at most gp decryption queries. Then
there is an adversary B that has advantage at least ¢(s) against
OWE PKE. Its running time is O(time(4)).

We construct an adversary B that uses 4 to gain advantage
€(s) against OWE PKE. Adversary B interacts with 4 as
follows:

Phase 1: The adversary issues decryption queries where query
qiis:

At any time adversary A4 issues decryption queries, the
adversary B runs algorithm Extract to generate the private key
d; corresponding to the public key ID;. Then B sends
ciphertext of 7P’ to the PKE challenge. The challenge
decrypts the ciphertext of 7P’ using the private key SK. Then
the PKE challenge sends 7P’ to B. B then decrypts the
remaining data using the private key d; and #P’. It sends the
resulting plaintext to the adversary 4.

Once the adversary A decides that Phase 1 is over, it issues
a challenge query <s’,ID’,params’,SKizz > to the adversary B.
The adversary B sends the challenge to PKE challenger. The
challenger picks a random M € M and encrypts M using PK
and /D’ then sends C’ to the adversary B, Then B sends C’ to
A.

Phase 2: The adversary issues more decryption queries where
C; /= C’. The PKE challenger responds as in Phase 1. These
queries may be asked adaptively as in Phase 1.

Finally, the adversary 4 outputs a guess M’ and wins the

game if M = M’. The adversary B outputs the same M’ and



wins the game if 4 wins. In Game2 the adversary acts as the
role of the certifier (PKG). It has the IBE public key and its
private key, but does not have the PKE private key. So, if 4 is
an adversary that has advantage ¢(s) against TLES, then
adversary B has advantage ¢(s) in decrypting the ciphertext of
7P’ in C’ without SK, thus B is an adversary that has
advantage €(s) against OWE PKE.

B. COUNT ATTACK ALGORITHM

The count attack scheme is shown in Algorithm 3. In linel,
for each search trapdoor, the adversary first counts the number
of documents in its query result, and then seeks to find a
unique keyword appeared in the same number of plaintext
documents. If the keyword is found, then it can be mapped to
the trapdoor directly. In line 2, the algorithm builds a query
co-occurrence counts C,, where C,[i, j] represents the number
of documents query ¢; and g; both match. Similarly, a keyword
co-occurrence counts C; can also be built, where Cfi, j]
represents the number of plaintext documents in which

keyword w; and keyword w; both appear.

Algorithm 3: The Count Attack Algorithm

Input: query trapdoors 7 and results, unencrypted keyword index I;

Output: mapping set between keywords in / and trapdoors in T

1 initialize the base mapping set K;

2 compute query co-occurrence matrix C, for trapdoors 7 and
keyword co-occurrence matrix C; for index /;

3 while size of K is increasing do

4 for each unknown trapdoor ¢ € 7-K do

5 build candidate keyword set S = {s : the occurrence count of
s equals to the occurrence count of 7 };

6 for s € S do

7 for known base mapping (¢’, s’) € K do

8 if C,[1, t'] #C[s, 5] then

9 ‘ remove s from S;

10 if one keyword s remains in S then

11 | add (z, 5) to K;

12 return the mapping set K;
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