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Abstract
We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that

move in a 2D workspace using a global input signal (such as gravity or a magnetic field). Upon activation of the field, each

particle moves maximally in the same direction until forward progress is blocked by a stationary obstacle or another

stationary particle. In an open workspace, this system model is of limited use because it has only two controllable degrees

of freedom—all particles receive the same inputs and move uniformly. We show that adding a maze of obstacles to the

environment can make the system drastically more complex but also more useful. We provide a wide range of results for a

wide range of questions. These can be subdivided into external algorithmic problems, in which particle configurations

serve as input for computations that are performed elsewhere, and internal logic problems, in which the particle config-

urations themselves are used for carrying out computations. For external algorithms, we give both negative and positive

results. If we are given a set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial

configuration of unit-sized particles can be transformed into a desired target configuration. Moreover, we show that finding

a control sequence of minimum length is PSPACE-complete. We also work on the inverse problem, providing constructive

algorithms to design workspaces that efficiently implement arbitrary permutations between different configurations. For

internal logic, we investigate how arbitrary computations can be implemented. We demonstrate how to encode dual-rail

logic to build a universal logic gate that concurrently evaluates AND, NAND, NOR, and OR operations. Using many of these

gates and appropriate interconnects, we can evaluate any logical expression. However, we establish that simulating the full

range of complex interactions present in arbitrary digital circuits encounters a fundamental difficulty: a FAN-OUT gate cannot

be generated. We resolve this missing component with the help of 2 9 1 particles, which can create FAN-OUT gates that

produce multiple copies of the inputs. Using these gates we provide rules for replicating arbitrary digital circuits.

Keywords Programmable matter � Robot swarms � Nano-particles � Uniform inputs � Parallel motion planning �
Complexity � Array permutations � NP-completeness � PSPACE-completeness � Efficient algorithms � Logic gates �
Universal computation

1 Introduction

Programmable matter refers to a substance that has

the ability to change its physical properties (shape,

density, moduli, conductivity, optical properties, etc.)

in a programmable fashion, based upon user input or

autonomous sensing. The potential applications are

endless, e.g., smart materials, autonomous monitoring

and repair, or minimal invasive surgery. Thus, there

is a high relevance of this topic to industry and

society in general, and much research has been

invested in the past decade to fabricate programmable

matter. However, fabrication is only part of the story:

without a proper understanding of how to program

This paper provides full details for and combines results of a number

of different extended abstracts that have appeared in the International

Symposium on Algorithms and Experiments for Sensor Systems,

Wireless Networks and Distributed Robotics (ALGOSENSORS

2013) (Becker et al. 2014a), IEEE International Conference on

Robotics and Automation (ICRA 2014) (Becker et al. 2014b) and

ICRA 2015 (Shad et al. 2015). See video from the 31st International

Symposium on Computational Geometry (SoCG’15) (Becker et al.

2015) for illustrations and animations.
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that matter, complex tasks such as minimal invasive

surgery will be out of reach. (Fekete et al. 2015b)

Since the first visions of massive sensor swarms, more than

ten years of work on sensor networks have yielded

considerable progress with respect to hardware miniatur-

ization. The original visions of ‘‘Smart Paint’’ (Abelson

et al. 2000) or ‘‘Smart Dust’’ (Kahn et al. 2000) have

triggered a considerable amount of theoretical research on

swarms of stationary processors, e.g., the work in Fekete

and Kröller (2006, 2007), Fekete et al. (2004), Kröller

et al. (2006). Recent developments in the ability to design,

produce, and control particles at the micro and nanoscale

and the rise of possible applications, e.g., targeted drug

delivery, micro and nanoscale construction, and Lab-on-a-

Chip, motivate the study of large swarms of mobile objects.

But how can we control such a swarm with only limited

computational power and a lack of individual control by a

central authority? Local, robotics-style motion control by

the particles themselves appears hopeless because the

capacity for storing energy for computation, communica-

tion, and motion control is proportional to the volume, but

volume shrinks with the third power of particle length.

A possible answer lies in applying a global, external

force to all particles in the swarm. This resembles the logic

puzzle Tilt (http://www.thinkfun.com/tilt), slide and merge

games such as the 2048 puzzle (Abdelkader et al. 2016),

and dexterity ball-in-a-maze puzzles such as Pigs in Clover

and Labyrinth, which involve tilting a board to cause all

mobile pieces to roll or slide in a desired direction. Prob-

lems of this type are also similar to sliding-block puzzles

with fixed obstacles (Demaine et al. 2000; Hoffmann 2000;

Holzer and Schwoon 2004; Hearn and Demaine 2005),

except that all particles receive the same control inputs, as

in the Tilt puzzle. In the real world, driving ferromagnetic

particles with a magnetic resonance imaging (MRI) scan-

ner gives a milli-scale example of this challenge (Vartho-

lomeos et al. 2012). At the micro-scale, Becker et al.

(2013b) demonstrate how to apply a magnetic field to

simultaneously move cells containing iron particles in a

specific direction within a fabricated workspace (see

Fig. 1a). Other recent examples include using the global

magnetic field from an MRI to guide magneto-tactic bac-

teria through a vascular network to deliver payloads at

specific locations (Chanu et al. 2008) and using electro-

magnets to steer a magneto-tactic bacterium through a

micro-fabricated maze (Khalil et al. 2013); however, this

still involves only individual particles at a time, not the

parallel motion of a whole, massive swarm. How can we

manipulate the overall swarm with coarse global control,

such that individual particles arrive at multiple different

destinations in a (known) complex vascular network such

as the one in Fig. 1(b)? And how can we use the complex

interaction of the particles to carry out complex computa-

tions within the swarm?

All this gives rise to the following two families of

problems, which we denote by External Computation and

Internal Computation.

External computation Considering the particle swarm as

input for a given algorithmic problem, we are faced with a

number of questions that need to be resolved externally,

such as the following.

1. Given a map of an environment, such as the vascular

network shown in Fig. 1, along with initial and goal

positions for each particle, does there exist a sequence

of inputs that will bring each particle to its goal

position?

2. Given a map of an environment, such as the vascular

network shown in Fig. 1, along with initial and goal

positions for each particle, what is the shortest

sequence of moves that will bring each particle to its

goal position?

3. Given initial and goal positions for each particle in a

swarm, how can we design a set of obstacles and a

sequence of moves, such that each particle reaches its

goal position?

Deliberate use of existing stationary obstacles leads to a

wide range of possible particle configurations. In the first

part of the paper (Sects. 4, 5), we give answers to the first

two questions by showing that they may lead to compu-

tationally difficult situations. We also develop several

positive results for the third question (again in Sect. 5). The

underlying idea is to construct artificial obstacles (such as

walls) that allow arbitrary rearrangements of a given two-

dimensional particle swarm. For clearer notation, we will

formulate the relevant statements in the language of matrix

operations, which is easily translated into plain geometric

language. This paper investigates these problems in 2D

discretized environments, leaving 3D and continuous

environments for future work.

Internal computation Considering the particle swarm as a

complex system that can be reconfigured in various ways,

we are faced with issues of the computational power of the

swarm itself, such as the following.

1. Can the complexity of particle interaction be exploited

to model logical operations?

2. Are there limits to the computational power of the

particle swarm?

3. How can we achieve computational universality with

particle computation?

In the second part of the paper (Sect. 6), we give precise

answers to all of these questions. In particular, we show that

the logical operations AND, NAND, NOR, and OR can be

A. T. Becker et al.
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implemented in our model using dual-rail logic. Using ter-

minology from electrical engineering, we call these com-

ponents that calculate logical operations gates. We establish

a fundamental limitation for particle interactions: we cannot

duplicate the output of a chain of gates without also dupli-

cating the chain of gates. This means a FAN-OUT gate cannot

be generated. We resolve this missing component with the

help of 2 9 1 particles, which can be used to create FAN-OUT

Fig. 1 (Top) State of the art in controlling small objects by force

fields. (Bottom) A complex vascular network, forming a typical

environment for the parallel navigation of small objects. This paper

investigates parallel navigation in discretized 2D environments.

a (Left) After feeding iron particles to ciliate eukaryon (Tetrahymena

pyriformis) and magnetizing the particles with a permanent magnet,

the cells can be turned by changing the orientation of an external

magnetic field (see colored paths in the center image). (Right) Using

two orthogonal Helmholz electromagnets, Becker et al. (2013b)

demonstrated steering many living magnetized T. pyriformis cells. All

cells are steered by the same global field. b Biological vascular

network (cottonwood leaf). (Photo: http://www.tssphoto.com/index.

php?p=980Royce Bair/Flickr/Getty Images.) Given such a network

along with initial and goal positions of N particles, is it possible to

bring each particle to its goal position using a global control signal?

Note that this arrangement is not a tree, but a graph structure with

many cycles. MATLAB code for driving N particles through this net-

work is available at http://www.mathworks.com/matlabcentral/fileex

change/42892
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gates that produce multiple copies of the inputs without

needing duplicate gates. Using FAN-OUT gates, we provide

rules for replicating arbitrary digital circuits.

In the following, we start by a brief formal problem

definition (Sect. 2) and a discussion of related work

(Sect. 3), then continue to provide the results on External

Computation (Sects. 4, 5) and Internal Computation

(Sects. 6, 7). We conclude with future work (Sect. 8).

2 Problem definition

2.1 Model

Our model is based on the following rules:

1. A planar grid workspace W contains a number of unit-

size particles and some fixed unit-square obstacles. A

grid cell is referenced by its Cartesian coordinates

x ¼ ðx; yÞ, and is either free for possible occupation by

a particle, or a permanent obstacle, which may never

be occupied by a particle. Each particle occupies one

grid cell.

2. All particles are commanded in unison: the valid

commands are ‘‘Go Up’’ (u), ‘‘Go Right’’ (r), ‘‘Go

Down’’ (d), and ‘‘Go Left’’ (‘).

3. The particles all move in the commanded direction

until forward progress is blocked by a stationary

obstacle or another blocked particle. A command

sequence m consists of an ordered sequence of moves

mk, where each mk 2 fu; d; r; ‘g. A representative

command sequence is hu; r; d; ‘; d; r; u; . . .i. We

assume that W is bounded by obstacles and issue each

command long enough for the particles to move to

their maximum extent.

The algorithmic decision problem GLOBALCONTROL-MANY-

PARTICLES is to decide whether a given puzzle is solvable. In

other words, given a fixed workspace and a start and goal

location for each particle, the algorithm determines the

existence of a sequence of moves that move the particles to

their goal locations. See Fig. 2 for two simple instances.

3 Related work

Related work is categorized into underactuated control,

manipulation, and computation.

3.1 Underactuated control

Large robot populations Due to the efforts of roboticists,

biologists, and chemists (e.g., Rubenstein et al. 2012; Ou

et al. 2013; Chiang et al. 2011), it is now possible to make

and field large (N ¼ 103–1014) populations of simple

robots. Potential applications for these robots include tar-

geted medical therapy, sensing, and actuation. With large

populations come two fundamental challenges: how to (1)

perform state estimation for the robots and (2) control these

robots.

Traditional approaches often assume independent con-

trol signals for each robot, but each additional independent

signal requires bandwidth and engineering. These band-

width requirements grow at O(N). Using independent sig-

nals becomes more challenging as the robot size decreases.

Especially at the micro- and nano-scales, it is not practical

to encode autonomy in the robots. Instead, the robots are

controlled and interacted with using global control signals.

For this reason, it may be more appropriate to call the

moving agents particles and label the external control

system as the robot.

More recently, robots have been constructed with

physical heterogeneity so that they respond differently to a

global, broadcast control signal. Examples include scratch-

drive microrobots, actuated and controlled by a DC voltage

signal from a substrate (Donald et al. 2013); magnetic

structures with different cross-sections that could be inde-

pendently steered (Floyd et al. 2011); MagMite micro-

robots with different resonant frequencies and a global

magnetic field (Frutiger et al. 2008); and magnetically

controlled nanoscale helical screws constructed to stop

movement at different cutoff frequencies of a global

magnetic field (Peyer et al. 2013). In previous work with

robots modeled as nonholonomic unicycles, we showed

that an inhomogeneity in turning speed is enough to make

Fig. 2 In this image, black cells are fixed, white cells are free, solid discs are individual particles, and goal positions are dashed circles. For the

simple instance on the left, it is impossible to maneuver both particles to end at their goals. The instance on the right has a finite solution: hr; d; ‘i
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even an infinite number of robots controllable with regard

to position. All these approaches show promise, but they

require precise state estimation and heterogeneous robots.

At the molecular scale, there is a bounded number of

modifications that can be made to differentiate robots. In

addition, the control law computation requires at best a

summation over all the robot states O(N) (Becker et al.

2012, 2014c) and at worst a matrix inversion OðN2:373Þ
(Becker and Bretl 2012).

In this paper we take a different approach. We assume a

population of approximately identical planar particles

(which could be small robots) and one global control signal

that contains the direction all particles should move. In an

open environment, this system is not controllable because

the particles move uniformly—implementing any control

signal translates the entire group identically; however, an

obstacle-filled workspace allows us to break this symmetry.

In previous practical work (Becker et al. 2013a), we

showed that if we can command the particles to move one

unit distance at a time, some goal configurations have easy

solutions. Given a large free space, we have an algorithm

showing that a single obstacle is sufficient for position

control of N particles (video of position control: http://

youtu.be/5p_XIad5-Cw). This result required incremental

position control of the group of particles, i.e. the ability to

advance them a uniform, fixed distance. This is a strong

assumption and one that we relax in this work.

Dexterity Games The problem we investigate is strongly

related to dexterity puzzles—games that typically involve a

maze and several balls that should be maneuvered to goal

positions. Such games have a long history. Pigs in Clover,

involving steering four balls through three concentric

incomplete circles, was invented in 1880 by Charles Martin

Crandall. Dexterity games are dynamic and depend on the

manual skill of the player. Our problem formulation also

applies the same input to every agent but imposes only

kinematic restrictions on agents. This is most similar to the

gravity-fed logic maze TiltTM, invented by Vesa Timonen

and Timo Jokitalo and distributed by ThinkFun since 2010

(http://www.thinkfun.com/tilt).

Sliding-block puzzles Sliding-block puzzles use rectan-

gular tiles that are constrained to move in a 2D workspace.

The objective is to move one or more tiles to desired

locations. They have a long history. Hearn (2005) and

Demaine and Hearn (2009) showed that tiles can be

arranged to create logic gates and used this technique to

prove PSPACE-completeness for a variety of sliding-block

puzzles. Hearn expressed the idea of building computers

from the sliding blocks—many of the logic gates could be

connected together, and the user could propagate a signal

from one gate to the next by sliding intermediate tiles. This

requires the user to know precisely which sequence of

gates to enable and disable. In contrast to such a hands-on

approach, with our architecture we can build circuits, store

parameters in memory, and then actuate the entire system

in parallel using a global control signal.

3.2 Manipulation

Computational geometry: robot box-pushing Many vari-

ations of block-pushing puzzles have been explored from a

computational complexity viewpoint with a seminal paper

proving NP-hardness by Wilfong (1991). The general case

of motion-planning when each command moves particles a

single unit in a world composed of even a single robot and

both fixed and moveable squares is in the complexity class

PSPACE-complete (Demaine and Hearn 2009; Dor and

Zwick 1999; Hoffmann 2000).

Ricochet Robots (Engels and Kamphans 2005), Atomix

(Holzer and Schwoon 2004), and PushPush (Demaine et al.

2000) have the same constraint that particles must move to

their full extent, once they have been set in motion. This

constraint reflects physical realities where, due to uncer-

tainties in sensing, control application, and dynamic mod-

els, precise quantified movements in a specified direction

are not possible. Instead, the input can be applied for a long

period of time, guaranteeing that all particles move to their

fullest extent. In these games the particles move to their

full extent with each input, but each particle can be actu-

ated individually. The problem complexity with global

inputs to all particles is addressed in this paper.

Sensorless manipulation The algorithms in the second

half of our paper do not require feedback, and we have

drawn inspiration from work on sensorless manipulation

(Erdmann and Mason 1988). Sensorless manipulation

explicitly maintains the set of all possible part configura-

tions and selects a sequence of actions to reduce the size of

this set and drive it toward some goal configuration.

Carefully selected primitive operations can make this

easier. Sensorless manipulation strategies often use a

sequential composition of primitive operations, ‘‘squeez-

ing’’ a part either virtually with a programmable force field

or simply between two flat, parallel plates (Goldberg

1993). Some sensorless manipulation strategies take

advantage of limit cycle behavior, for example, engineer-

ing fixed points and basins of attraction so that parts only

exit a feeder when they reach the correct orientation

(Lynch et al. 2002; Murphey et al. 2005). These two

strategies have been applied to a much wider array of

mechanisms such as vibratory bowls and tables (Goemans

et al. 2006; Vose et al. 2009, 2012) or assembly lines

(Akella et al. 2000; Goldberg 1993; van der Stappen et al.

2002), and have also been extended to situations with

Particle computation: complexity, algorithms, and logic
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stochastic uncertainty (Goldberg et al. 1999; Moll and

Erdmann 2002) and closed-loop feedback (Akella and

Mason 1999; Murphey and Burdick 2004).

3.3 Computation

Parallel Algorithms: SIMD Another related area of

research is Single Instruction Multiple Data (SIMD) par-

allel algorithms (Leighton 1991). In this model, multiple

processors are all fed the same instructions to execute, but

they do so on different data. This model has some flexi-

bility, for example, allowing command execution selec-

tively only on certain processors and no operations (NOPs)

on the remaining processors.

Our model is actually more extreme. The particles all

respond in effectively the same way to the same instruction.

The only difference is their location and which obstacles or

particles will block them. In some sense, our model is essen-

tially Single Instruction, Single Data, Multiple Locations.

Our efforts have similarities with mechanical comput-

ers, computers constructed from mechanical, not electrical

components. For a fascinating nontechnical review, see

McCourtney (2001). These devices have a rich history,

from the Pascaline, an adding machine invented in 1642 by

a 19-year old Blaise Pascal, to Herman Hollerith’s punch-

card tabulator in 1890, to the mechanical devices of IBM

culminating in the 1940s. These devices used precision

gears, pulleys, or electric motors to carry out calculations.

Though our implementations in this paper are rather basic,

we require none of these precision elements to achieve

computational universality—merely unit-size obstacles and

sliding particles sized 2 9 1 and 1 9 1.

Collision-based computing Collision-based computing has

been defined as ‘‘computation in a structureless medium

populated with mobile objects.’’ For a survey of this area,

see the excellent collection (Adamatzky and Durand-Lose

2012). Early examples include the billiard-ball computer

proposed by Fredkin and Toffoli (1982) using only spherical

balls and a frictionless environment composed of elastic

collisions with other balls and with angled walls. Another

popular example is Conway’s Game of Life, a cellular

automaton governed by four simple rules (Berlekamp et al.

2001–2004). Cells live or die based on the number of

neighbors. These rules have been examined in depth and

used to design a Turing-complete computer (Rendell

2002, 2011). Game of life scenarios and billiard-ball com-

puters are fascinating but lack a physical implementation. In

this paper we present a collision-based system for compu-

tation and provide a physical implementation.

Programmable matter Clearly there is a wide range of

interesting scenarios for developing approaches to

programmable matter. One such model is the abstract Tile-

Assembly Model (aTAM) by Winfree (Winfree 1998;

Winfree et al. 1998; LaBean et al. 1999), which has

sparked a wide range of theoretical and practical research.

In this model, unit-sized tiles interact and bond with the

help of differently labeled edges, eventually composing

complex assemblies. Even though the operations and final

objectives in this model are quite different from our par-

ticle computation with global inputs (e.g., key features of

the aTAM are that tiles can have a wide range of different

edge types, and that they keep sticking together after

bonding), there is a remarkable geometric parallelism to a

key result of our present paper: while it is widely believed

that at the most basic level of interaction (called temper-

ature 1), computational universality cannot be achieved

(Doty et al. 2009; Maňuch et al. 2010; Meunier et al.

2014) in the aTAM with only unit-sized tiles, recent work

Fekete et al. (2015a) shows that computational universality

can be achieved as soon as even slightly bigger tiles are

used. This resembles the results of our paper, which shows

that unit-size particles are insufficient for universal com-

putation, but employing bigger particles suffices.

4 Mazes

We prove that the general problem defined in Sect. 2 is

computationally intractable.

Theorem 1 GLOBALCONTROL-MANYPARTICLES is NP-hard:

given a specified goal location and an initial configuration

of movable particles and fixed obstacles, it is NP-hard to

decide if a move sequence exists that ends with some

particle at the goal location.

Proof We prove hardness by a reduction from 3SAT.

Suppose we are given n Boolean variables x1; x2; . . .; xn,
and m disjunctive clauses Cj ¼ Uj _ Vj _Wj, where each

literal Uj;Vj;Wj is of the form xi or :xi. We construct an

instance of GLOBALCONTROL-MANYPARTICLES that has a solu-

tion if and only if all clauses can be satisfied by a truth

assignment to the variables. This instance is composed of

variable gadgets for setting individual variables TRUE or

FALSE, clause gadgets that construct the logical OR of

groupings of three variables, and a check gadget that

constructs the logical AND of all the clauses. A particle is

only delivered to the goal location if the variables have

been set in such a way that the formula evaluates to TRUE.

Variable gadgets For each variable xi that appears in ki
literals, we construct ki instances of the variable gadget

i shown in Fig. 3, with a particle initially at the top of the

gadget. The gadget consists of a tower of n levels, designed

for the overall construction to make n total variable

A. T. Becker et al.
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choices. These choices are intended to be made by a move

sequence of the form hd, l / r, d, l=r; . . .; d, l / r, d, ri,
where the ith l / r choice corresponds to setting variable xi
to either TRUE (l) or FALSE (r). Thus variable gadget i ignores

all but the ith choice by making all other levels lead to the

same destination via both l and r. The ith level branches

into two destinations chosen by either l or r, which corre-

spond to xi being set TRUE or FALSE, respectively.

In fact, the command sequence may include multiple

l and r commands in a row, in which case the last l /

r before a vertical u / d command specifies the final deci-

sion made at that level, and the others can be ignored. The

command sequence may also include a u command, which

undoes a d command if done immediately after or else does

nothing; thus we can simply ignore the u command and the

immediately preceding d, if it exists. We can also ignore

duplicate commands (e.g., d, d becomes d) and remove any

initial l / r command. After ignoring these superfluous

commands, assuming a particle reaches one of the output

channels, we obtain a sequence in the canonical form hd,
l / r, d, l / r, ..., d, ri as desired, corresponding uniquely to

a truth assignment to the n variables. (If no particle reaches

the output port, it is as if the variable is neither TRUE nor

FALSE, satisfying no clauses.) Note that all particles arrive at

their output ports at exactly the same time.

Clause gadgets For each clause, we use the OR gadget

shown in Fig. 4a. The OR gadget has three inputs corre-

sponding to the three literals, and input particles are ini-

tially at the top of these inputs. For each positive literal of

the form xi, we connect the corresponding input to the left

output of an unused instance of variable gadget i. For each

negative literal of the form :xi, we connect the corre-

sponding input to the right output of an unused instance of

a variable gadget i. (In this way, each variable gadget gets

used exactly once.)

We connect the variable gadget to the OR gadget as

shown in Fig. 5: place the variable gadget above the clause

so as to align the vertical output and input channels, and

join them into a common channel. To make room for the

three variable gadgets, we simply extend the black areas

separating the three input channels in the OR gadget. The

unused output channel of each variable gadget is connected

to a waste receptacle. Any particle reaching that end cannot

return to the logic.

If any input channel of the OR gadget has a particle, then

it can reach the output port by the move sequence

hd; ‘; d; ri. Furthermore, because variable gadgets place all

particles on their output ports at the same time, if more than

one particle reaches the OR gadget, they will move in uni-

son as drawn in Fig. 4a, and only one can make it to the

output port; the others will be stuck in the ‘‘waste’’ row,

Fig. 3 Variable gadgets that are assigned a truth value by executing a

sequence of hd; ‘=ri moves. The ith ‘=r choice sets the variable xi to

TRUE or FALSE by putting the particle in the left or right column. This

selection move is shown in blue. Each gadget is designed to respond

to the ith choice but ignore all others. This lets us make several copies

of the same variable by making multiple gadgets with the same i. In

the figure n ¼ 4, and the input sequence hd; ‘; d; r; d; ‘; d; r; d; r; di
sets (x1=TRUE, x2=FALSE, x3=TRUE, x4=FALSE). a Variable x1 set TRUE for
i ¼ 1. b x2 set FALSE, i ¼ 2. c x3 set TRUE, i ¼ 3. d x4 set FALSE, i ¼ 4.

(Color figure online)

x1 ¬x3 x4

oi

waste

(a)

o1 o2 o3 o4 o5

waste

Target

(b)

o1 o2 o3 o4 o5

waste

Target

(c)

Fig. 4 Gadgets that use the cycle hd; ‘; d; ri. The 3-input OR gadget

outputs one particle if at least one particle enters in an input line and

sends any extra particle(s) to a waste receptacle. The 5-input AND

gadget outputs one particle to the TARGET LOCATION, marked in gray, if

at least 5 inputs are TRUE. Excess particles are sent to a waste

receptacle. a 3-input OR hd; ‘; d; ri. b 5-input AND (TRUE) hd; ‘; d; ri.
c 5-input AND (FALSE) hd; ‘; di
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even if extra h‘; r; u; di commands are interjected into the

intended sequence. Hence, a single particle can reach the

output of a clause if and only if that clause (i.e., at least one

of its literals) is satisfied by the variable assignment.

Check gadget As the final stage of the computation, we

check that all clauses were simultaneously satisfied by the

variable assignment, using the m-input AND gadget shown

in Fig. 4b, c. Specifically, we place the clause gadgets

along a horizontal line and connect their vertical output

channels to the vertical input channels of the check gadget.

Again we can align the channels by extending the black

areas that separate the input channels of the AND gadget, as

shown in the composite diagram Fig. 5.

Fig. 5 Combining 12 variable gadgets, four 3-input OR gadgets, and a

4-input AND gadget to realize the 3SAT expression ð:x1 _ :x3 _ x4Þ^
ð:x2 _ :x3 _ x4Þ ^ ð:x1 _ x2 _ x4Þ ^ ðx1 _ :x2 _ x3Þ. a Initial state

with particles (colored) on the upper right. The objective is to move

one particle into the grey target rectangle at lower left. b Setting

variables to (FALSE, TRUE, FALSE, TRUE) does not satisfy this 3SAT

instance. c Setting the variables (TRUE, FALSE, FALSE, TRUE) satisfies this

3SAT instance. d Successful outcome. (TRUE, FALSE, FALSE, TRUE)

moves a single particle into the target region. (Color figure online)
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The intended solution sequence for the AND gadget is

hd; ‘; d; ri. The AND gadget is designed with the downward

channel exactlym units to the right from the left wall andmore

than 2m units from the right wall, so for any particle to reach

the downward channel (and ultimately, the target location), at

least m particles must be presented as input. Because each

input channel will present at most one particle (as argued in a

clause), a particle can reach the final destination if and only if

allm clauses output a particle, which is possible exactly when

all clauses are satisfied by the variable assignment.

Clearly, the size of all parts of the construction is

polynomial in the size of the original 3SAT instance. This

completes the reduction and the NP-hardness proof. h

We conjecture that GLOBALCONTROL-MANYPARTICLES is in

fact PSPACE-complete. One approach would be to simulate

nondeterministic constraint logic (Hearn and Demaine

2005), perhaps using a unique move sequence of the form

hd, ‘=r, d, ‘=r, . . .i to identify and ‘‘activate’’ a component.

One challenge is that all gadgets must properly reset to

their initial state without permanently trapping any parti-

cles. However, we are able to prove that a variant of this

problem is PSPACE-complete in Sect. 5.3.

5 Matrices

The previous section investigated pathologically difficult

configurations. This section investigates a complementary

problem. Given the same particle and world constraints as

before, what types of control are possible and economical

if we are free to design the environment?

First, we describe an arrangement of obstacles that

implement an arbitrary matrix permutation in four com-

mands. Then we provide efficient algorithms for sorting

matrices. We finish with potential applications.

5.1 A workspace for a single permutation

For our purposes, a matrix is a 2D array of particles (each

possibly of a different color). For an ar � ac matrix A and a

br � bc matrix B, of equal total size N ¼ arac ¼ brbc, a

matrix permutation assigns each element in A a unique

position in B. Example constructions that execute matrix

permutations of total size N ¼ 15 and 100 are shown,

respectively, in Figs. 6 and 7.

Theorem 2 Let A and B be matrices with dimensions as

above. Any matrix permutation that transforms A into B

can be executed by a set of obstacles in just four moves.

For N particles, the constructed arrangement of obstacles

requires ð3N þ 1Þ2 space and 4N þ 1 obstacles. If parti-

cles move with a speed of v, the required time for those four

moves is 12N/v. and in time 12N=speed.

Proof The reader is referred to Fig. 6 and 7 for examples.

The move sequence is hu; r; d; ‘i. The lower-left particle

starts at (0, 0).

Move 1: We place ac obstacles, one for each column of

A, spaced vertically ar � 1 units apart, such that moving u

spreads the particle array into a staggered vertical line.

Each particle now has its own row. Move 2: We place N

obstacles to stop each particle during the move r. Because

each particle has a unique row, it can be stopped at any

arbitrary column by its obstacle. We leave an empty

column between each obstacle to prevent collisions during

the next move. Move 3: We place N particles to stop

particles during the move d, which arranges the particles in

their final rows. These rows are spread in a staggered

horizontal line. Move 4: We place ar obstacles in a vertical

line from ð� 1; 1Þ to ð� 1; acÞ. Moving ‘ stacks the

staggered rows into the desired permutation and returns

the array to the initial position. h

By reapplying the same permutation enough times, we

can return to the original configuration. The permutations

shown in Fig. 6 return to the original image in two cycles,

while Fig. 7 requires 740 cycles. In fact, any permutation

of N elements will return to its original position after it is

repeated a finite number of times (Dummit and Foote

2009).

For a two-color image, we can always construct a per-

mutation that resets in 2 cycles. If the matrix has only two

colors then for each entry in the matrix a permutation of the

particles will either flip the color or keep the color constant

in that given entry. If the permutation flips the color of a

particular entry, then doing the permutation twice will flip

this entry back to its original color. If the permutation

keeps the color of a particular entry constant, then doing

the permutation twice will also preserve the color of that

entry. Performing the permutation twice always results in

the original matrix. Such a permutation is an involution, a

function that is its own inverse. An involution often does

not exist for permutations on images with more than two

colors.

5.2 A workspace for arbitrary permutations

Theorem 2 can be exploited to generate larger sets of

permutations or even all possible permutations. There is a

tradeoff between the number of introduced obstacles and

the number of moves required for realizing a permutation.

We start with obstacle sets that require only a small

number of moves.

Theorem 3 For an arbitrary set of k permutations of N

particles, we can construct a set of O(kN) obstacles, such

that we can switch from a start arrangement into any of the

k permutations using at most Oðlog kÞ force-field moves.
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Proof See Fig. 8. Build a binary tree of depth log k for

choosing between the permutations by a sequence of hr, d,
ðr=‘Þ, d, ðr=‘Þ, ..., d, ðr=‘Þ, d, ‘, ui with log k decisions

between r and ‘, from the initial prefix hr; di to the final

suffix hd; ‘; ui. This gets the particles to the set of obstacles

for performing the appropriate permutation. h

Corollary 4 For any N and an arbitrary but fixed e[ 0,

we can construct a set of ðN!Þe obstacles such that any

permutation of N particles can be achieved by at most

OðN logNÞ force-field moves.

Proof This follows from Theorem 3. With k ¼ ðN!Þe=N,
log k becomes e logðN!Þ � logN, i.e., OðN logNÞ. h

Now we proceed to more economical sets of obstacles,

with arbitrary permutations realized by clockwise and

counterclockwise move sequences. We make use of the

following easy lemma, which shows that two base per-

mutations are enough to generate any desired

rearrangement.

Lemma 5 Any permutation of N objects can be generated

by the two base permutations p ¼ ð1; 2Þ and

q ¼ ð1; 2; . . .;NÞ. Moreover, any permutation can be gen-

erated by a sequence of length at most N2 that consists of p

and q.

The proof is elementary and left to the reader. This

allows us to establish the following result.

Theorem 6 We can construct a set of O(N) obstacles

such that any ar � ac arrangement of N particles can be

rearranged into any other ar � ac arrangement p of the

same particles, using at most OðN2Þ force-field moves.

Fig. 6 In this image for N ¼ 15, black cells are obstacles, white cells

are free, and colored discs are individual particles. The world has

been designed to permute the particles between ‘A’ into ‘B’ every

four steps: hu; r; d; ‘i. See video at http://youtu.be/3tJdRrNShXM.

Visually, the distinction between particles of the same color does not

matter; however, the arrangement of obstacles induces a specific

permutation of individual particles. (Color figure online)

Fig. 7 In this larger example with N ¼ 100, the different control

sections are easier to see than in Fig. 6. (1) The staggered obstacles on

the left spread the matrix vertically, (2) the scattered obstacles on the

upper right permute each element, and (3) the staggered obstacles

along the bottom reform each row, which are collected by (4). The

cycle resets every 740 iterations. See http://youtu.be/eExZO0HrWRQ

for an animation of this gadget

Fig. 8 For any set of k fixed, but arbitrary permutations of N particles,

we can construct a set of O(kN) obstacles, such that we can switch

from a start arrangement into any of the k permutations using at most

Oðlog kÞ force-field moves. Here k ¼ 4 and ‘A’ is transformed into

‘B’, C’, ‘D’, or ‘E’ in eight moves: hr; d; ðr=‘Þ; d; ðr=‘Þ; d; ‘; ui
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Proof See Fig. 9. Use Theorem 2 to build two sets of

obstacles, one each for p and q, such that p is realized by

the sequence hu; r; d; ‘i (clockwise) and q is realized by

hr; u; ‘; di (counterclockwise). Then we use the appropriate

sequence for generating p in OðN2Þ moves. h

Using a larger set of base permutations allows us to

reduce the number of necessary moves. Again, we make

use of a simple base set for generating arbitrary

permutations.

Lemma 7 Any permutation of N objects can be generated

by the N base permutations p1 ¼ ð1; 2Þ; p2 ¼
ð1; 3Þ; . . .; pN ¼ ð1; ðN � 1ÞÞ and q ¼ ð1; 2; . . .;NÞ. More-

over, any permutation can be generated by a sequence of

length at most N that consists of pi and q.

The proof is again completely straightforward and left to

the reader.

Theorem 8 We can construct a set of OðN2Þ obstacles

such that any ar � ac arrangement of N particles can be

rearranged into any other br � bc arrangement p of the

same particles, using at most OðN logNÞ force-field moves.

Proof Use Theorem 2 to build N sets of obstacles, one

each for p1; . . .; pN�1; q. Furthermore, use Lemma 7 for

generating all permutations with at most N different of

these base permutations, and Theorem 3 for switching

between these k ¼ N permutations. Then we can get p with

at most N cycles, each consisting of at most OðlogNÞ
force-field moves. h

This is the best possible with respect to the number of

moves in the following sense:

Theorem 9 Suppose we have a set of obstacles such that

any permutation of a rectangular arrangement of N par-

ticles can be achieved by at most M force-field moves. Then

M is at least XðN logNÞ.

Proof Each permutation must be achieved by a sequence

of force-field moves. Because each decision for a force-

field move hu; d; ‘; ri partitions the remaining set of pos-

sible permutations into at most four different subsets, we

need at least XðlogðN!ÞÞ ¼ XðN logNÞ such moves. h

5.3 PSPACE-Completeness

In Sect. 4, we showed that the problem GLOBALCONTROL-

MANYPARTICLES is computationally intractable in a particular

sense: given an initial configuration of movable particles

and fixed obstacles, it is NP-hard to decide whether any

individual particle can be moved to a specified location. In

the following, we show that minimizing the number of

moves for achieving a desired goal configuration for all

particles is PSPACE-complete.

Theorem 10 Given an initial configuration of (labeled)

movable particles and fixed obstacles, it is PSPACE-complete

to compute a shortest sequence of force-field moves to

achieve another (labeled) configuration.

Proof The proof is largely based on a complexity result

by Jerrum (1985), who considered the following problem:

Given a permutation group specified by a set of generators

and a single target permutation p, which is a member of the

group, what is the shortest expression for the target per-

mutation in terms of the generator? This problem was

shown to be PSPACE-complete in Jerrum (1985), even when

the generator set consists of only two permutations, say, p1
and p2.

As shown in Sect. 5.2, we can realize any matrix

permutation pi of a rectangular arrangement of particles by

a set of obstacles, such that this permutation pi is carried
out by a quadruple of force-field moves. We can combine

the sets of obstacles for the two different permutations p1
and p2, such that p1 is realized by going through a

clockwise sequence hu; r; d; ‘i, while p2 is realized by a

counterclockwise sequence hr; u; ‘; di. We now argue that a

target permutation p of the matrix can be realized by a

minimum-length sequence of m force-field moves if and

Fig. 9 Repeated application of two base permutations can generate

any permutation, when used in a manner similar to BUBBLE SORT. The

obstacles in (a) generate the base permutation p ¼ ð1; 2Þ in the

clockwise direction hu; r; d; ‘i (b) and q ¼ ð1; 2; . . .;NÞ in the

counter-clockwise direction hr; u; ‘; di (c)
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only if p can be decomposed into a sequence of a total of n

applications of permutations p1 and p2, where m ¼ 4n.

The ‘‘if’’ part is easy: simply carry out the sequence of n

permutations, each realized by a (clockwise or counter-

clockwise) quadruple of force-field moves. For the ‘‘only

if’’ part, suppose we have a shortest sequence of m force-

field moves to achieve permutation p, and consider an

arbitrary subsequence that starts from the base position in

which the particles form a rectangular arrangement in the

lower left-hand corner. It is easy to see that a minimum-

length sequence cannot contain two consecutive moves that

are both horizontal or both vertical: these moves would

have to be be in opposite directions, and we could shorten

the sequence by omitting the first move. Furthermore, by

construction of the obstacle set, the first move must be u or

r. Now it is easy to check that the choice of the first move

determines the next three ones: u must be followed by

hr; d; ‘i; similarly, r must be followed by hu; ‘; di. Any
other choice for moves 2–4 would produce a longer overall

sequence or destroy the matrix by leading to an arrange-

ment from which no recovery to a rectangular matrix is

possible. Therefore, the overall sequence can be decom-

posed into m ¼ 4n clockwise or counterclockwise quadru-

ples. As described, each of these quadruples represents

either p1 or p2, so p can be decomposed into n applications

of permutations p1 and p2. This completes the proof. h

Note that the result also implies the existence of solu-

tions of exponential length, which can occur with poly-

nomial space. Binary counters are particular examples of

such long sequences that are useful for many purposes.

6 Limitations of particle logic

After considering the complexity of rearranging given

arrangements of particles, i.e., external computation, we

now turn to using the particles themselves for performing

logic operations, i.e., internal computation. We first

establish the limitations of 1 � 1 particles; details on

designing the full range of logic gates with the help of 2�1

particles are described in the following Sect. 7.

6.1 Dual-rail logic and FAN-OUT gates

In Sect. 4 we showed that given only obstacles and parti-

cles that move maximally in response to an input, we can

construct a variety of logic elements. These include vari-

able gadgets that enable setting multiple copies of up to n

variables to be TRUE or FALSE (Fig. 3) and m-input OR and

AND gates (Fig. 4). Unfortunately, we cannot build NOT

gates because our system of particles and obstacles is

conservative—we cannot create a new particle at the output

when no particle is supplied to the input. A NOT gate is

necessary to construct a logically complete set of gates. To

do this, we rely on a form of dual-rail logic, where both the

state and inverse (A and �A) of each signal are propagated

throughout the computation. Dual-rail logic is often used in

low-power electronics to increase the signal-to-noise ratio

without increasing the voltage (Zimmermann and Fichtner

1997). With dual-rail logic we can now construct the

missing NOT gate, as shown in Fig. 10. The command

sequence hd; ‘; u; ri inverts the input.

We now revisit the OR and AND gates of Fig. 4, using

dual-rail logic and the four inputs A; �A;B; �B. The gate in the

middle row of Fig. 10 can simultaneously compute AND,

OR, NOR, and NAND, using the same command sequence

hd; ‘; u; ri as the NOT gate. Outputs can be piped for further

logic using the interconnections in Fig. 10. Unused outputs

can be piped into a storage area and recycled for later use.

Dual-rail devices open up new opportunities, including

XOR and XNOR gates, which are not conservative using

single-rail logic. This gate, shown in the bottom row of

Fig. 10 also outputs a constant 1 and 0.

Consider the half adder shown in Fig. 11. With an AND

and XOR we can compactly construct a half adder. We are

hindered by an inability to construct a FAN-OUT device. The

fan out of a logic gate output is the number of gate inputs it

can feed or connect to. In the particle logic demonstrated

thus far, each logic gate output could fan out to only one

gate. This is sufficient for sum of products and product of

sums operations in CPLDs (complex programmable logic

devices) but insufficient for more flexible architectures.

Instead, we must take any logical expression and create

multiple copies of each input. For example, a half adder

requires only one XOR and one AND gate, but our particle

computation requires two A and two B inputs. In the rest of

this section we prove the insufficiency of unit-sized parti-

cles for the implementation of FAN-OUT gates and design a

FAN-OUT gate using 2� 1 particles.

6.2 Only 1 3 1 particles are insufficient

First we provide terminology to define how particles

interact with each other. We say that particle q blocks

particle p during a move mk, if p is prevented from

reaching location x ¼ ðx; yÞ because particle q occupies

this location. As a consequence, at the end of mk, q’s

location is x, while particle p’s location is adjacent to x,

depending on the direction of mk. Furthermore, the

sequence of locations hs; . . .; gi of a particle p from a start

location s to its goal location g describes its path. For an

unchanged sequence of force-field moves and obstacles, a

particle p can only be prevented from reaching its desti-

nation by adding additional particles, or removing existing
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ones. We argue in the following that this will still lead to

g being occupied at the end of the sequence, possibly by a

different particle.

Lemma 11 If given a fixed workspace W and a command

sequence m that moves a particle p from start location s to

goal location g, then adding additional particles anywhere

in W at any stage of the command sequence cannot prevent

g from being occupied at the conclusion of sequence m.

Proof Consider the effect of adding a particle to work-

space W. If p never gets blocked by any particle q, then p’s

path remains the same. Therefore, at the conclusion of m, p

occupies g.

Now suppose p gets blocked by q. By the definition of

blocking, q prevents p from reaching some location x

because q already occupies this location. After the

blocking, the command sequence will continue and so

particle q will continue on p’s original path, following the

same instructions and therefore ending up in the same

location, g, unless q gets blocked by yet another particle.

By induction, additional particles will have the same effect.

If q gets blocked by any other particle, then this particle

will continue on p’s original path. Thus by adding more

particles, it is impossible to prevent some particle from

occupying g at the conclusion of m. h

Corollary 12 A NOT gate without dual-rail inputs cannot

be constructed.

Proof By contradiction. A particle logic NOT gate without

dual-rail inputs has one input at s, one output at g, an

arbitrary (possibly zero) number of asserted inputs, which

are all initially occupied, and an arbitrary (possibly zero)

number of waste outputs.

To satisfy the NOT gate conditions given a command

sequence m, the following conditions must be satisfied.

1. If s is initially unoccupied, g must be occupied at the

conclusion of m.

2. If s is initially occupied, g must be unoccupied at the

conclusion of m.

By Lemma 11, if s initially unoccupied results in g being

occupied by some particle p at the conclusion of m, then

the addition of a particle q at s cannot prevent g from being

filled, resulting in a contradiction. h

0 1

A B

XO
R

XNO
R

A B

B

10 XNO
R

XO
R

10 XNO
R

XO
R

10 XNO
R

XO
R

10 XNO
R

XO
R

Fig. 10 Schematic and diagram of dual-rail logic gates. Each gate

employs the same clock sequence hd; ‘; u; ri, the four inputs

correspond to A; �A;B; �B. The top row is a NOT gate and a connector.

The middle row is a universal logic gate whose four outputs are AND,

NAND, OR, NOR. The bottom row gate outputs the XOR, XNOR of the

inputs and constants 1 and 0. See video at http://youtu.be/mJWl-

Pgfos0 for a hardware demonstration

A

B
S

D

Fig. 11 The half adder shown above requires two copies of A and B
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This shows that dual-rail logic is necessary for the for-

mation of NOT gates.

Additionally, we show that 1� 1 particles are insuffi-

cient to produce FAN-OUT gates. To this end, we must

examine the possibilities both when we add additional

particles to the scenario and when we remove them.

Lemma 13 Consider a given workspace W with a num-

ber of particles, two of which are p1 and p2, initially at s1
and s2. Letm be a command sequence that moves p1 and p2
to the respective goal locations g1 and g2. Then deleting

either p1 or p2 from the original configuration results in at

least one of g1 or g2 being occupied at the conclusion ofm.

Proof Without loss of generality, suppose we remove

particle p1.

First suppose p2 never gets blocked by p1. Then the

removal of p1 will not affect the path of p2. Particle p2 has

the same number of blockings that it had before the

removal of p1 and so p2 will follow the same path and

occupy g2 at the conclusion.

Alternatively, suppose p2 gets blocked by p1 when p1 is

occupying location x. Because p1 is removed, it no longer

occupies x during this move; because it was stopped in the

common direction when blocking p2, particle p2 gets

stopped by this obstacle at location x, previously occupied

by p1. Particle p2 now proceeds along the path previously

traveled by p1. Effectively, p2 has replaced p1 and follows

the path until it reaches g1. Successive blockngs between

p2 and p1 in the original scenario are resolved in the same

manner. h

In the context of programmable matter, it is natural to

consider systems in which particles are moved around, but

neither created nor destroyed; such a system is called

conservative. As it turns out, this has important

consequences.

Theorem 14 A conservative dual-logic FAN-OUT gate

cannot be constructed using only 1� 1 particles.

Proof We assume such a FAN-OUT gate exists and reach a

contradiction. Consider a FAN-OUT gate W, dual-rail input

locations sa, sa, and dual-rail output locations

ga1 ; ga2 ; ga1 ; ga2 . Because particle logic is conservative,

there must be at least one additional input location sp and

particle p. A FAN-OUT gate implements the truth table shown

in Table 1. Given an arbitrary command sequence m:

1. If sa and sp are initially occupied and sa vacant at the

conclusion of m, then ga1 and ga2 are occupied and the

locations ga1 and ga2 are vacant.

2. If sa is initially vacant and sa and sp are occupied at the

conclusion of m, then ga1 and ga2 are vacant and the

locations ga1 and ga2 are occupied.

We will now assume that condition 1, above, is the original

scenario and add and subtract particles, applying Lem-

mas 11 and 13, to show that it is impossible to meet con-

dition 2.

Assume condition 1. Particles a and p start at sa and sp
respectively and at the conclusion of m, the locations ga1
and ga2 are occupied. Now remove particle a. According to

Lemma 13, either ga1 or ga2 must be occupied at the

conclusion of m. Suppose without loss of generality that

ga1 is filled. By Lemma 11, adding an additional particle at

location sa cannot prevent ga1 from being filled. However,

to meet condition 2, ga1 must be vacant, thus no such gate

is possible. h

7 Device and gate design

Now we consider actually designing clock sequence, logic

gates, and wiring, making use of 2 � 1 particles.

Choosing a clock sequence The clock sequence is the

ordered set of moves that are simultaneously applied to

every particle in our workspace. We call this the clock

sequence because, as in digital computers, this sequence is

universally applied and keeps all logic synchronized.

A clock sequence determines the basic functionality of

each gate. To simplify implementation in the spirit of

Reduced Instruction Set Computing (RISC), which uses a

simplified set of instructions that run at the same rate, we

want to use the same clock cycle for each gate and for all

wiring. Our early work in Becker et al. (2014b) used a

standard sequence hd; ‘; d; ri. This sequence can be used to

make AND, OR, and XOR gates, and any of their inverses. This

sequence can also be used for wiring to connect arbitrary

inputs and outputs, as long as the outputs are below the

inputs. Unfortunately, hd; ‘; d; ri cannot move any particles

upwards. To connect outputs as inputs to higher-level logic

requires an additional reset sequence that contains a hui
command. Therefore, including all four directions is a

necessary condition for a valid clock sequence for com-

putation that reuses gates. The shortest sequence has four

commands, each appearing once. We choose the sequence

hd; ‘; u; ri and by designing examples, prove that this

Table 1 FAN-OUT operation. This

cannot be implemented with 1

� 1 particles and obstacles. Our

technique uses 2 � 1 particles

Inputs Outputs

A A 1 A A A A

0 1 1 0 0 1 1

1 0 1 1 1 0 0
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sequence is sufficient for logic gates, FAN-OUT gates, and

wiring.

This clock sequence has the attractive property of being

a clockwise (CW) rotation through the possible input

sequences. One could imagine our particle logic circuit

mounted on a wheel rotating about an axis parallel to the

ground. If the particles were moved by the pull of gravity,

each counter-clockwise revolution would advance the cir-

cuit by one clock cycle. A gravity-fed hardware imple-

mentation of particle computation is shown in Fig. 12.

Limitations The clock sequence imposes constraints on

the set of reachable positions after one cycle, as illustrated

in Fig. 13. If at the completion of a hd; ‘; u; ri cycle a

particle is located at ðsx; syÞ, the potential locations at the

end of the next cycle are any locations except

ð½sx þ 1;1�; syÞ, and ðsx � 1; ½�1; sy � 1�Þ. For the parti-

cle to start at ðsx; syÞ after a r move, it must have been

stopped by an obstacle at ðsx þ 1; syÞ, so ðsx þ 1; syÞ is

unreachable. Moving to the right of this obstacle requires a

move of length k 6¼ 0 in the down direction, followed by a

r move, followed by a move of k in the up direction.

However, r is not the second move in the sequence.

Because r is the final move in the clock sequence, locations

directly to the right of the start location are unreachable in

one cycle. Similarly, to end at any location ðsx � 1; gyÞ
with gy � sy requires both an obstacle at ðsx; gyÞ and an

initial down move to at least ðsx; gy � 1Þ, but these

requirements are contradictory.

A FAN-OUT Gate A FAN-OUT gate with two outputs

implements the truth table in Table 1. This cannot be

implemented with 1 9 1 particles and obstacles by

Corollary 14. Our technique uses 2 9 1 particles. A single-

input, two-output FAN-OUT gate is shown in Fig. 14. This

gate requires a dual-rail input, a supply particle, and a 2 �

1 slider. The clockwise control sequence hd; ‘; u; ri dupli-

cates the dual-rail input.

The FAN-OUT gate can drive multiple outputs. In Fig. 15 a

single input drives four outputs. This gate requires a dual-

Fig. 12 Gravity-fed hardware

implementation of particle

computation. The

reconfigurable prototype is

arranged using obstacle blocks

(yellow) as a FAN-OUT gate using

a 2 � 1 particle (white), three

supply particles (blue), and one

red dual-rail input (red). This

paper proves that such a gate is

impossible using only 1 � 1

particles. See the

demonstrations in the video

(Becker et al. 2015), https://

youtu.be/H6o9DTIfkn0

sx,sy

(sx−1,[−∞,sy−1]) 

Unreachable: ([sx+1,∞],sy ) 

sx,gy

U
nreachable

Fig. 13 Two regions are unreachable in one hd; ‘; u; ri cycle

A 1 A A 1 A

A A A A A A A A
d A = 0 A = 1

A = 0 A = 1

A = 0 A = 1
A A A A A A A A

Fig. 14 A single input, two-output FAN-OUT gate. This gate requires a

dual-rail input, a supply particle, and a 2� 1 slider. The clockwise

control sequence hd; ‘; u; ri duplicates the dual-rail input
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rail input, three supply particles, and a 2� 1 slider. The

clockwise control sequence hd; ‘; u; ri quadruples the dual-

rail input. In general, an n-output FAN-OUT gate with control

sequence hd; ‘; u; ri requires a dual-rail input, n� 1 supply

particles, and one 2� 1 slider. It requires an area of size

4nþ 7� 2nþ 4.

Data storage A general-purpose computer must be able

to store data. A 2� 1 particle enables us to construct a

read/writable data storage for one bit. A single-bit data

storage latch is shown in Fig. 16. This gate is conservative,

and the memory state is given by the position of the 2� 1

slider: If the slider is low the memory state is true, if the

slider is high the memory state is false. This gate imple-

ments the truth table in Table 2, and has three inputs Set,

Clear, or Read. Only one input should be true, making this

a tri-rail input. This input can be generated by logic on two

dual-rail inputs: a Set/Clear input S and a Read/Write input

R, where Set ¼ S ^ R, Clear ¼ S ^ R , and Read ¼ R.

Depending on which input is active, the clockwise control

sequence hd; ‘; u; ri will read, set, or clear the memory. The

gate has a single output M that reports the memory state

after the inputs have been computed. The entire gadget

requires a 16� 8 area. By combining an n-out FAN-OUT gate

shown in Fig. 15 with n data storage devices, we can read

from an n-bit memory.

A binary counter Using the FAN-OUT gate fromSect. 7we can

generate arbitrary Boolean logic. The half adder from Fig. 11

requires a single FAN-OUT gate, one AND, and one XOR gate.

We illustrate how several gates can be combined by

constructing a binary counter, shown in Fig. 17. Six logic

gates are used to implement a 3-bit counter. A block dia-

gram of the device is shown in Fig. 18. The counter

requires three FAN-OUT gates, two summers (XOR) gates, and

one carry (AND) gate. Six 1� 1 particles and three 2� 1

particles are used. The counter has three levels of gates

actuated by CW sequence hd; ‘; u; ri and requires three

interconnection moves hd; ‘; u; ri, for a total of 24 moves (6

cycles) per count.

Scaling Issues Particle computation requires multiple

clock cycles, workspace area for gates and interconnec-

tions, and many particles. In this section we analyze how

these scale with the size of the counter, using Fig. 18 as a

reference.

Gates An n-bit counter requires 3ðn� 1Þ gates: n
FAN-OUT gates, n� 1 summers (XOR) gates,

and n� 2 carry (AND) gates.

Particles We require n 1 � 1 particles, one for each

bit, and n 2 � 1 particles, one for each

FAN-OUT gate.

Propagation

delay

The counter requires n stages of logic and

n corresponding wiring stages. Each stage

requires a complete clock cycle hd; ‘; u; ri
for a total of 8n moves.

These requirements are comparable to a ripple-carry

adder: the delay for n bits is n delays and requires 5ðn�
1Þ þ 2 gates. Numerous other schemes exist to speed up the

computation; however, using discrete gates allows us to use

standard methods for translating a Boolean expression into

gate-level logic. If speed were critical, instead of using

discrete gates, we could engineer the workspace to com-

pute the desired logic directly.

Optimal wiring schemes With our current CW clock

cycle, we cannot have outputs from the same column as

inputs—outputs must be either one to the right or three to

the left. Choosing one of these results in horizontal shifts at

each stage and thus requires spreading out the logic gates.

A more compact wiring scheme cycles through three layers

that each shift right by one, followed by one layer that

shifts left by three. We also want the wiring to be tight left-

to-right. If our height is also limited, wire buses, shown in

Fig. 17 provide a compact solution.

Optimized logic The particle-computation presented in

this section is general purpose, and Fig. 17 illustrates how

a set of gate components can be composed to compute

arbitrary logic. Single-purpose logic can often be more

compact, as shown by Fig. 19, which shows three counters

that use less area and fewer particles than Fig. 17.

8 Conclusion

This paper analyzes the problem of steering many particles

with uniform inputs in a 2D environment containing

obstacles. We design environments that can efficiently

A = 0 A = 1

1 1 1 A A 1 1 1 A A

A A A A A A A A A A A A A A A A

d, , u, r A = 0 A = 1

1 1 1 A A 1 1 1 A A

A A A A A A A A A A A A A A A A

Fig. 15 The FAN-OUT gate can drive multiple outputs. Here a single

input drives four outputs. This gate requires a dual-rail input, three

supply particles, and a 2� 1 slider. The clockwise control sequence

hd; ‘; u; ri quadruples the dual-rail input
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perform matrix operations on groups of particles in paral-

lel, including a matrix permutation requiring only four

moves for any number of particles. These matrix operations

enable us to prove that the general motion planning prob-

lem is PSPACE-complete.

We also introduce a new model for mechanical com-

putation. We

1. prove the insufficiency of unit-size particles for gate

fan-out;

Q = false Q = true 

Q = false Q = false Q = false Q = true Q = true Q = true 

M M
_  

M M
_  

M M
_  

M M
_  

M M
_  

M M
_  

d

Fig. 16 A conservative, flip-flop memory gadget. This gadget has a

tri-rail input of Set, Clear, or Read; and a 2� 1 state variable. The

memory state Q is given by the position of the 2� 1 slider: If the

slider is low the memory state is true, if the slider is high the memory

state is false. Depending on which input is active, the clockwise

control sequence hd; ‘; u; ri will read, set, or clear the memory. The

gate has a single output M that reports the memory state Q after the

inputs have been computed. The entire gadget requires a 16� 8 area

Table 2 A single-bit data

storage latch with state Q,

inputs Set, Clear, or Read, and

outputs representing the

memory state M and the inverse

M.

Q S C R Q M M

0 1 0 0 1 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 1

1 1 0 0 1 1 0

1 0 1 0 0 0 1

1 0 0 1 1 1 0

b2b̄2 1 b1b̄1 1 b0b̄0 1

Fig. 17 A three-bit counter implemented with particles. The counter

requires three FAN-OUT gates, two summer gates, and one carry gate.

Six 1 � 1 particles and three 2 � 1 particles are used. The gates and

wire buses are actuated by the CW sequence hd; ‘; u; ri. See video at

https://youtu.be/QRAOaLZjuBY?t=4m9s for animation
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2. establish the necessity of dual-rail logic for Boolean

logic;

3. design FAN-OUT gates and memory latches by employ-

ing slightly different particles; and

4. present an architecture for device integration, a

common clock sequence, and a binary counter.

There remain many interesting problems to solve. We are

motivated by practical challenges in steering micro-parti-

cles through vascular networks, which are common in

biology. Though some are two-dimensional, including the

leaf example in Fig. 1 and endothelial networks on the

surface of organs, many of these networks are three

dimensional. Magnetically actuated systems are capable of

providing 3D control inputs, but control design poses

additional challenges.

We investigate a subset of control in which all particles

move maximally. Future work should investigate more

general motion—what happens if we can move all the

particles a discrete distance or along an arbitrary curve?

We also abstracted important practical constraints, e.g.,

ferromagnetic objects tend to clump in a magnetic field,

and most magnetic fields are not perfectly uniform.

Finally, our research has potential applications in micro-

construction, microfluidics, and nano-assembly. These

Fig. 18 Gate-level diagram for

an n-bit counter

Fig. 19 Custom logic can be compact. Each counter above uses the

clock sequence hd; ‘; u; ri and resets after 8 cycles (32 moves). (Left)

an arrangement that cyclically counts from zero to seven: seven

particles, one 2 � 1 slider, 8 � 18 area. (Center) a binary counter with

three bits: three particles, three 2 � 1 sliders, 14 � 14 area. (Right) a

gadget that resets every 32 moves: one particle, 16 � 14 area
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applications require additional theoretical analysis to

model heterogeneous objects and objects that bond when

forced together, e.g., MEMS components and molecular

chains.
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Fekete SP, Kröller A (2007) Topology and routing in sensor

networks. In: 3rd international workshop algorithmic aspects

wireless sensor networks (ALGOSENSORS 2007), volume 4837

of lecture notes in computer science. Springer, pp 6–15
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