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Experimental Demonstration of the Vibrational
Stabilization Phenomenon in Bio-inspired Flying
Robots

Haithem Taha!, Mohammadali Kiani! and Joel Navarro

Abstract—Bio-inspired flying robots (BIFRs) are micro-air-
vehicles that use biomimetic actuation (oscillatory flapping wing)
for lift, propulsion, and control. The dynamic behavior of these
bio-inspired systems is quite intricate to study as it is typically
described by a multi-body, multi-time-scale, nonlinear, time-
varying dynamical system. However, this rich dynamics lead to
unconventional stabilization mechanisms whose study essentially
necessitates a mathematically rigorous analysis. Our recent
efforts using differential geometric control theory revealed a
vibrational stabilization mechanism induced on the body pitching
due to the interaction between the fast wing flapping dynamics
and the slow body dynamics. In this effort, we construct an
experimental setup allowing for two degrees of freedom for
the body; vertical motion and pitching motion. The objective
is to experimentally verify and demonstrate the vibrational
stabilization phenomenon in insect flight and its mimicking
BIFRs.

Index Terms—Aerial
Biomimetics, Dynamics

Systems: Mechanics and Control,

I. INTRODUCTION

IO-INSPIRED flying robots (BIFRs) or flapping-wing
micro-air-vehicles represent a rich dynamical system with
unconventional dynamical behavior that caught the attention of
biologists and engineers over the last two decades. The multi-
body dynamics of BIFRs is typically described by nonlinear,
time-periodic (NLTP) models. Moreover, the fast oscillatory
wing motion and its associated inertial and aerodynamic loads
interact with the relatively slower body motion resulting in
a multi-time-scale dynamical system. These features lead to
interesting unconventional balance and stability characteristics,
which necessitate a mathematically rigorous analysis to study.
In order to analyze the complex dynamics of BIFRs, most
of the research efforts adopted the averaging assumption [1—
6]; that is, they assumed that the body’s response is mainly
due to the cycle-averaged aerodynamic loads. However, this
assumption obscures the beautiful unconventional dynamical
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behavior of these bio-inspired systems, as shown by the recent
efforts of Taha et al. [7, 8] by rigorously combining averaging
and differential geometric control tools. It has been shown
that, for hovering insects and BIFRs with a relatively small
flapping frequency (e.g., hawkmoth and cranefly), in spite of
the large separation between the system’s two time scales (30
for the hawkmoth and 50 for the cranefly), there is a strong
interaction between the high-frequency flapping dynamics and
the low-frequency body dynamics that results in an unconven-
tional stabilization mechanism; vibrational stabilization. This
interaction is essentially neglected when direct averaging is
used [7-9].

Vibrational stabilization is an open loop stabilization tech-
nique of an unstable equilibrium via the application of a
sufficiently high-amplitude, high-frequency periodic forcing.
For example, the unstable equilibrium of the inverted pendu-
lum gains asymptotic stability when the pivot is oscillating
vertically at a sufficiently high frequency. Direct averaging of
the simple equations governing the dynamics of the Kapitza
pendulum (inverted pendulum whose pivot is subject to a
vertical oscillation [10, 11]) showed no stabilization due to
the pivot vibration. However, appropriate averaging techniques
clearly show a vibrationally-induced stabilizing stiffness [12].

While many research reports (e.g., [2—4, 13-20]) concluded
an unstable flight dynamics for hovering insects and BIFRs;
mainly due to lack of pitch stiffness, the recent efforts by Taha
et al. [7, 8, 21, 22] showed an induced vibrational stabilization
mechanism in the form of pitch stiffness on the flight dynamics
of these bio-inspired robots. In this paper, we focus mainly
on the experimental demonstration of such a phenomenon in
insect flight and BIFRs.

II. EXPERIMENTAL SETUP
A. Performance Characterization

In order to avoid the many problems associated with free
flight and to have a better focus on verifying the vibrational
stabilization phenomenon, we construct an experimental setup
that allows for only two degrees of freedom (DOFs) for the
body of the BIFR; vertical motion and pitching motion. Imag-
ine a simple pendulum with its mass replaced by a BIFR, as
shown in the schematic in Fig. 1(a). The hovering equilibrium
is then achieved when the pendulum’s rod becomes horizontal,
as shown in the real picture of our realization presented in Fig.
1(b). This system represents the simplest configuration with a
single DOF (the pendulum angle «) that mimics the vertical
motion of the body.
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(a) A Pendulum-BIFR Schematic.

Fig. 1: The experimental setup of a pendulum-like BIFR.

This pendulum-like setup is preferred in comparison to the
Wood’s Harvard Robofly [23] (moving along vertical rails),
which was used to prove the concept of BIFRs. Note that for
the latter configuration, if the flapping amplitude/frequency
is slightly deviated from the hovering balance requirement,
the BIFR will experience a vertical climb/descent with some
mean velocity. In contrast, because of the gravitational spring
action provided by the pendulum configuration, any deviation
from the hovering balance requirement results in a slightly
different equilibrium position .. In addition, measurement of
this equilibrium pendulum angle ~,. is easily achieved using
a Gravity 360 Degree Hall Angle Sensor [24] and provides a
measure for the generated thrust from the BIFR as the flapping
frequency changes, according to the balance equation

1 .
Fr = (mBIFR + Emmd) gsin e,
where Fr is the cycle-averaged generated thrust force, mgirr
is the mass of the BIFR (13 gm), m..q is the mass of
the pendulum’s rod (1.8 gm), and g is the gravitational
acceleration. The power supply in the lab already provides
information about the cycle-averaged total power consump-
tion P. In addition, as the applied voltage is increased, the
flapping frequency increases. At each given voltage, a video
is recorded at a rate of 240 frame per second. The time
stamp of each video is analyzed to obtain an estimate for the
flapping frequency (the average flaps per second). As such,

the performance characteristics of the BIFR is determined and
presented in Fig. 2.
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Fig. 2: Performance characteristics of the used BIFR.

The adopted BIFR is an off-the-shelf flapping bird [25]
whose wings are highly flexible wings that flap in a vertical
stroke plane resulting in a good thrust producing capability at
zero forward speed (i.e., at the hovering position). This BIFR
(shown in Fig. 3(a)) is adapted for the current experimental
setup as shown in Fig. 3(b); only the wings and the flap-
ping mechanism are retained while the body and motor are
replaced. Of particular importance is the replacement of the
driving motor with a stronger motor [26] that allows operating
at higher flapping frequencies, which is necessary for the
demonstration of vibrational stabilization.

(a) Actual Bird [25]. (b) Adapted Version of the

Fig. 3: The actual and adapted BIFRs.

B. Pitching Dynamics

A pin (hinge) connection is introduced between the body of
the BIFR and the pendulum’s rod to allow for body pitching
6, as shown in Fig. 4. The response of the pitching angle
is measured using a digital camera and an image processing
algorithm (e.g., [27]). As shown in Figs. 3(b).4, the nose
and tail of the BIFR are marked with different colors. Then,
a simple algorithm is implemented in Visual Studio C++,
exploiting the image processing library OpenCV, to detect
these circular stickers from video recordings and determine
the angle between the line connecting these two marks and
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Hinge Point

Fig. 4: Two-DOF BIFR Experimental Setup.

the horizontal (i.e. #) at each time stamp with a sampling
frequency of 50 ms.

Because the line of action of the thrust force is above the
body longitudinal axis and consequently hinge point, there is
an unbalanced pitching moment which will preclude equilibria.
Therefore, we added four split shot size lead of 3g total weight
near the tail of the BIFR, as shown in Figs. 3(b).4 (the black
dots near tail) to shift the center of gravity of the BIFR
backward along the longitudinal axis. As such, the pitching
moment at the hinge point due to the weight will balance that
of the thrust force according to the balance equation

Frer = mpiprgeg cos be,

where er and eq are the offsets of the thrust and gravity forces,
respectively, from the hinge point, and €. is the equilibrium
value of the pitching angle. At zero applied voltage (zero
thrust force), the BIFR is standing vertically (6. = 90°) at the
bottom position (. = 0°) of the pendulum. As the voltage
and consequently the flapping frequency increase, the body
moves upward along the circular path of the pendulum (i.e.,
increases) and tilts forward towards the horizontal attitude (i.e.,
@ decreases), as shown in Fig. 4. It is noteworthy that most
insects have their center of gravity behind the hinge location
along their longitudinal axis and achieve hovering equilibria at
body inclination with respect to the horizontal (i.e., f) around
50° [14, 28]; i.e., similar to the current setup.

III. DEMONSTRATION OF VIBRATIONAL STABILIZATION

Having established equilibrium, studying stability comes
promptly. It is noteworthy that most research reports concluded
instability of insects and BIFRs at hover due to lack of pitch
stiffness [4, 14, 17-20, 29-31]. Hence, it has been believed
that insects and their man-made BIFRs have to employ feed-
back to stabilize their flight during hover. While this may
indeed be true, these studies mostly neglected the potential

3

of the natural high-frequency oscillatory flapping motion to
induce vibrational stabilization [7, 8]. To experimentally verify
and demonstrate such a phenomenon in the BIFRs, we apply
different voltages to the motor driving the flapping mechanism
to attain different equilibrium positions (v, and #,) at different
flapping frequencies, thanks to the pendulum configuration and
to the stronger motor. We then measure the response of the
pendulum angle -y and the body pitching angle #, as explained
above, at each operating frequency.

Figure 5 shows the response of the BIFR system at a
flapping frequency of ~ 12Hz (corresponding to 1.94 Volt).
At this low flapping frequency, the BIFR barely goes up
(e ~ 24°) and the equilibrium pitching angle is quite large
(6, ~ 76°). The response is found to be unstable as shown in
the figure, even without giving a disturbance; the oscillatory
wing motion naturally provides a sufficient disturbance.

Unstable Response at Low Flapping Frequency (12 Hz)
150 T T T T T T

Pitching Angle 6"

Pendulum Angle ¥

Time (sec)

Fig. 5: BIFR unstable response at relatively low flapping
frequency (~ 12Hz).

Figure 6 shows the response of the BIFR system as the
applied voltage (flapping frequency) is manually increased
from 1V to 3V. The bird rises up towards the hovering
position (y goes from 20° to 60° and f changes from 77° to
62°). It is clear that the BIFR response experiences instability
during the transition period and becomes stable beyond a
certain pendulum angle (i.e., flapping frequency). We apply
fixed different voltages (corresponding to different flapping
frequencies) and observe the system response at each case. The
threshold flapping frequency below which the BIFR response
is unstable and beyond which it is naturally stabilized is found
to be 15Hz. It is envisaged that this threshold should be
related to the system’s natural frequency (1.4Hz). That is,
the stabilization-threshold ratio between the periodic forcing
frequency and the system’s natural frequency is found to be
10.7 for the current setup. Seeking a universal value for such
a ratio is quite important and is suggested for future work.

Figure 7 shows the response of the BIFR system at a
relatively high flapping frequency of ~ 18Hz (corresponding
to 3 Volt). At this relatively high flapping frequency, the BIFR
system is almost at the hovering position (. ~ 85°) and the
equilibrium pitching angle f. ~ 50° is close to the natural
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Fig. 6: BIFR response as the flapping frequency is being
manually increased.

values observed in nature for hovering insects [14, 28]. Clearly,
the response is stable. Even when a relatively large disturbance
(A6 ~ 50°) is applied at ¢t = 8.6 sec, the system goes back to
its equilibrium periodic orbit (i.e., the hovering periodic orbit).

Stable Response at High Flapping Frequency (18 Hz)
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Fig. 7: BIFR stable response at relatively high flapping fre-
quency (~ 18Hz).

So far, it can be concluded that the response of BIFRs
(particularly the body pitch response) is naturally (without
feedback) stabilized beyond a certain threshold of flapping
frequency. This fact conforms well with the vibrational stabi-
lization phenomenon [10, 11, 32, 33] and suggests that the ob-
served natural stabilization at high frequencies is a vibrational
stabilization phenomenon. However, one might argue that
because the intricate dynamics of the system, the frequency not
only affects stability, but also balance/equilibrium; obviously
increasing the frequency leads to a different equilibrium,
which may or may not have similar stability characteristics
to equilibria corresponding to low frequencies. To show that

the induced stabilizing mechanism is indeed a vibrational
stabilization one that is mainly due to the time-periodic nature
of the driving aerodynamic thrust force and not because of
operating at a different equilibrium, we construct a replica
of the experimental setup with the BIFR being replaced
by a small propeller revolving with a constant speed, as
shown in Fig. 8. The main difference is that the BIFR setup
produces a periodic thrust force, and consequently a time-
periodic dynamics allowing for vibrational stabilization, while
the propeller setup produces a constant thrust force, and
consequently a time-invariant dynamics leaving no room for
vibrational stabilization.

(a) A Pendulum-Propeller Setup. (b) Used Propeller of diameter

3mm.

Fig. 8: A Two-DOF Pendulum-Propeller Setup.

Using split shot size lead, we managed to match the weight
and inertia of the propeller system with the BIFR system.
Figure 9 shows the response of the two-DOF propeller-
pendulum system at a relatively small propeller speed (i.e.,
at a small pendulum equilibrium angle . ~ 9°). Clearly,
the response is exponentially unstable. Increasing the applied
voltage to attain higher pendulum equilibrium angles (closer
to the hovering position) worsens the stability characteristics
so much that the system structure becomes prone to breaking.

IV. CONCLUSION

An experimental setup is constructed to study the flight
dynamics of a bio-inspired flapping robot that mimics the
flight of some insect and birds. The setup allows for two
degrees of freedom for the body; vertical motion and pitching
motion. The goal was to verify whether such species and
their man-mad counterparts exploit the vibrational stabilization
phenomenon in their flight, particularly at the hovering posi-
tion. Recalling that vibrational stabilization is an open loop
stabilization technique due to the application of a sufficiently
high frequency periodic forcing, we studied the stability of
the system at different flapping frequencies. It was found that
the system is naturally (without feedback) stabilized beyond a
certain threshold of the flapping frequency (15Hz, equivalently
10.7 times the system’s natural frequency, in the current
setup), which conforms with the vibrational stabilization phe-
nomenon. Moreover, we constructed a replica of the system
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Fig. 9: Unstable Response of the Two-DOF Propeller-
Pendulum System.

replacing the flapping bird with a propeller that revolves at a
constant speed to check whether the induced stabilization at
high frequencies is mainly due to periodicity of the driving
force (i.e., a vibrational stabilization) or not. It was found that
the propeller system replica is unstable at all applied voltages
and becomes even more unstable at larger applied voltages
(i.e., when it comes closer to the hovering position). Finally,
it is concluded that bio-inspired flapping robots, indeed, enjoy
vibrational stabilization.
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