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ExperimentalDemonstrationoftheVibrational
StabilizationPhenomenoninBio-inspiredFlying

Robots
HaithemTaha1,MohammadaliKiani1andJoelNavarro2

Abstract—Bio-inspiredflyingrobots(BIFRs)are micro-air-
vehiclesthatusebiomimeticactuation(oscillatoryflappingwing)
forlift,propulsion,andcontrol.Thedynamicbehaviorofthese
bio-inspiredsystemsisquiteintricatetostudyasitistypically
describedbya multi-body, multi-time-scale,nonlinear,time-
varyingdynamicalsystem.However,thisrichdynamicsleadto
unconventionalstabilizationmechanismswhosestudyessentially
necessitatesa mathematicallyrigorousanalysis. Ourrecent
effortsusingdifferentialgeometriccontroltheoryrevealeda
vibrationalstabilizationmechanisminducedonthebodypitching
duetotheinteractionbetweenthefastwingflappingdynamics
andtheslowbodydynamics.Inthiseffort,weconstructan
experimentalsetupallowingfortwodegreesoffreedomfor
thebody;vertical motionandpitching motion.Theobjective
istoexperimentallyverifyanddemonstratethevibrational
stabilizationphenomenonininsectflightandits mimicking
BIFRs.

Index Terms—Aerial Systems: Mechanics and Control,
Biomimetics,Dynamics

I.INTRODUCTION

BIO-INSPIREDflyingrobots(BIFRs)orflapping-wing
micro-air-vehiclesrepresentarichdynamicalsystemwith

unconventionaldynamicalbehaviorthatcaughttheattentionof
biologistsandengineersoverthelasttwodecades.Themulti-
bodydynamicsofBIFRsistypicallydescribedbynonlinear,
time-periodic(NLTP)models. Moreover,thefastoscillatory
wingmotionanditsassociatedinertialandaerodynamicloads
interactwiththerelativelyslowerbodymotionresultingin
amulti-time-scaledynamicalsystem.Thesefeaturesleadto
interestingunconventionalbalanceandstabilitycharacteristics,
whichnecessitateamathematicallyrigorousanalysistostudy.
InordertoanalyzethecomplexdynamicsofBIFRs,most
oftheresearcheffortsadoptedtheaveragingassumption[1–
6];thatis,theyassumedthatthebody’sresponseismainly
duetothecycle-averagedaerodynamicloads.However,this
assumptionobscuresthebeautifulunconventionaldynamical
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behaviorofthesebio-inspiredsystems,asshownbytherecent
effortsofTahaetal.[7,8]byrigorouslycombiningaveraging
anddifferentialgeometriccontroltools.Ithasbeenshown
that,forhoveringinsectsandBIFRswitharelativelysmall
flappingfrequency(e.g.,hawkmothandcranefly),inspiteof
thelargeseparationbetweenthesystem’stwotimescales(30
forthehawkmothand50forthecranefly),thereisastrong
interactionbetweenthehigh-frequencyflappingdynamicsand
thelow-frequencybodydynamicsthatresultsinanunconven-
tionalstabilizationmechanism;vibrationalstabilization.This
interactionisessentiallyneglectedwhendirectaveragingis
used[7–9].
Vibrationalstabilizationisanopenloopstabilizationtech-
niqueofanunstableequilibriumviatheapplicationofa
sufficientlyhigh-amplitude,high-frequencyperiodicforcing.
Forexample,theunstableequilibriumoftheinvertedpendu-
lumgainsasymptoticstabilitywhenthepivotisoscillating
verticallyatasufficientlyhighfrequency.Directaveragingof
thesimpleequationsgoverningthedynamicsoftheKapitza
pendulum(invertedpendulumwhosepivotissubjecttoa
verticaloscillation[10,11])showednostabilizationdueto
thepivotvibration.However,appropriateaveragingtechniques
clearlyshowavibrationally-inducedstabilizingstiffness[12].
Whilemanyresearchreports(e.g.,[2–4,13–20])concluded
anunstableflightdynamicsforhoveringinsectsandBIFRs;
mainlyduetolackofpitchstiffness,therecenteffortsbyTaha
etal.[7,8,21,22]showedaninducedvibrationalstabilization
mechanismintheformofpitchstiffnessontheflightdynamics
ofthesebio-inspiredrobots.Inthispaper,wefocusmainly
ontheexperimentaldemonstrationofsuchaphenomenonin
insectflightandBIFRs.

II.EXPERIMENTALSETUP

A.PerformanceCharacterization

Inordertoavoidthemanyproblemsassociatedwithfree
flightandtohaveabetterfocusonverifyingthevibrational
stabilizationphenomenon,weconstructanexperimentalsetup
thatallowsforonlytwodegreesoffreedom(DOFs)forthe
bodyoftheBIFR;verticalmotionandpitchingmotion.Imag-
ineasimplependulumwithitsmassreplacedbyaBIFR,as
shownintheschematicinFig.1(a).Thehoveringequilibrium
isthenachievedwhenthependulum’srodbecomeshorizontal,
asshownintherealpictureofourrealizationpresentedinFig.
1(b).Thissystemrepresentsthesimplestconfigurationwitha
singleDOF(thependulumangleγ)thatmimicsthevertical
motionofthebody.
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(a)APendulum-BIFRSchematic.

(b)RealizationoftheSchematic.

Fig.1:Theexperimentalsetupofapendulum-likeBIFR.

Thispendulum-likesetupispreferredincomparisontothe
Wood’sHarvardRobofly[23](movingalongverticalrails),
whichwasusedtoprovetheconceptofBIFRs.Notethatfor
thelatterconfiguration,iftheflappingamplitude/frequency
isslightlydeviatedfromthehoveringbalancerequirement,
theBIFRwillexperienceaverticalclimb/descentwithsome
meanvelocity.Incontrast,becauseofthegravitationalspring
actionprovidedbythependulumconfiguration,anydeviation
fromthehoveringbalancerequirementresultsinaslightly
differentequilibriumpositionγe.Inaddition,measurementof
thisequilibriumpendulumangleγeiseasilyachievedusing
aGravity360DegreeHallAngleSensor[24]andprovidesa
measureforthegeneratedthrustfromtheBIFRastheflapping
frequencychanges,accordingtothebalanceequation

FT= mBIFR+
1

2
mrod gsinγe,

whereFTisthecycle-averagedgeneratedthrustforce,mBIFR
isthe massoftheBIFR(13gm),mrodisthe massof
thependulum’srod(1.8gm),andgisthegravitational
acceleration.Thepowersupplyinthelabalreadyprovides
informationaboutthecycle-averagedtotalpowerconsump-
tionP
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.Inaddition,astheappliedvoltageisincreased,the
flappingfrequencyincreases.Ateachgivenvoltage,avideo
isrecordedatarateof240framepersecond.Thetime
stampofeachvideoisanalyzedtoobtainanestimateforthe
flappingfrequency(theaverageflapspersecond).Assuch,

theperformancecharacteristicsoftheBIFRisdeterminedand
presentedinFig.2.

Fig.2:PerformancecharacteristicsoftheusedBIFR.

TheadoptedBIFRisanoff-the-shelfflappingbird[25]
whosewingsarehighlyflexiblewingsthatflapinavertical
strokeplaneresultinginagoodthrustproducingcapabilityat
zeroforwardspeed(i.e.,atthehoveringposition).ThisBIFR
(showninFig.3(a))isadaptedforthecurrentexperimental
setupasshowninFig.3(b);onlythewingsandtheflap-
pingmechanismareretainedwhilethebodyandmotorare
replaced.Ofparticularimportanceisthereplacementofthe
drivingmotorwithastrongermotor[26]thatallowsoperating
athigherflappingfrequencies,whichisnecessaryforthe
demonstrationofvibrationalstabilization.

(a)ActualBird[25]. (b)AdaptedVersionoftheBIFR.

Fig.3:TheactualandadaptedBIFRs.

B.PitchingDynamics

Apin(hinge)connectionisintroducedbetweenthebodyof
theBIFRandthependulum’srodtoallowforbodypitching
θ,asshowninFig.4.Theresponseofthepitchingangle
ismeasuredusingadigitalcameraandanimageprocessing
algorithm(e.g.,[27]).AsshowninFigs.3(b),4,thenose
andtailoftheBIFRaremarkedwithdifferentcolors.Then,
asimplealgorithmisimplementedinVisualStudioC++,
exploitingtheimageprocessinglibraryOpenCV,todetect
thesecircularstickersfromvideorecordingsanddetermine
theanglebetweenthelineconnectingthesetwomarksand
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Fig.4:Two-DOFBIFRExperimentalSetup.

thehorizontal(i.e.θ)ateachtimestampwithasampling
frequencyof50ms.
Becausethelineofactionofthethrustforceisabovethe

bodylongitudinalaxisandconsequentlyhingepoint,thereis
anunbalancedpitchingmomentwhichwillprecludeequilibria.
Therefore,weaddedfoursplitshotsizeleadof3gtotalweight
nearthetailoftheBIFR,asshowninFigs.3(b),4(theblack
dotsneartail)toshiftthecenterofgravityoftheBIFR
backwardalongthelongitudinalaxis.Assuch,thepitching
momentatthehingepointduetotheweightwillbalancethat
ofthethrustforceaccordingtothebalanceequation

FTeT=mBIFRgegcosθe,

whereeTandegaretheoffsetsofthethrustandgravityforces,
respectively,fromthehingepoint,andθeistheequilibrium
valueofthepitchingangle.Atzeroappliedvoltage(zero
thrustforce),theBIFRisstandingvertically(θe=90

◦)atthe
bottomposition(γe=0

◦)ofthependulum.Asthevoltage
andconsequentlytheflappingfrequencyincrease,thebody
movesupwardalongthecircularpathofthependulum(i.e.,γ
increases)andtiltsforwardtowardsthehorizontalattitude(i.e.,
θdecreases),asshowninFig.4.Itisnoteworthythatmost
insectshavetheircenterofgravitybehindthehingelocation
alongtheirlongitudinalaxisandachievehoveringequilibriaat
bodyinclinationwithrespecttothehorizontal(i.e.,θe)around
50◦[14,28];i.e.,similartothecurrentsetup.

III.DEMONSTRATIONOFVIBRATIONALSTABILIZATION

Havingestablishedequilibrium,studyingstabilitycomes
promptly.Itisnoteworthythatmostresearchreportsconcluded
instabilityofinsectsandBIFRsathoverduetolackofpitch
stiffness[4,14,17–20,29–31].Hence,ithasbeenbelieved
thatinsectsandtheirman-madeBIFRshavetoemployfeed-
backtostabilizetheirflightduringhover. Whilethismay
indeedbetrue,thesestudiesmostlyneglectedthepotential

ofthenaturalhigh-frequencyoscillatoryflappingmotionto
inducevibrationalstabilization[7,8].Toexperimentallyverify
anddemonstratesuchaphenomenonintheBIFRs,weapply
differentvoltagestothemotordrivingtheflappingmechanism
toattaindifferentequilibriumpositions(γeandθe)atdifferent
flappingfrequencies,thankstothependulumconfigurationand
tothestrongermotor. Wethenmeasuretheresponseofthe
pendulumangleγandthebodypitchingangleθ,asexplained
above,ateachoperatingfrequency.
Figure5showstheresponseoftheBIFRsystemata
flappingfrequencyof∼12Hz(correspondingto1.94Volt).
Atthislowflappingfrequency,theBIFRbarelygoesup
(γe∼24

◦)andtheequilibriumpitchingangleisquitelarge
(θe∼76

◦
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).Theresponseisfoundtobeunstableasshownin
thefigure,evenwithoutgivingadisturbance;theoscillatory
wingmotionnaturallyprovidesasufficientdisturbance.

Fig.5:BIFRunstableresponseatrelativelylowflapping
frequency(∼12Hz).

Figure6showstheresponseoftheBIFRsystemasthe
appliedvoltage(flappingfrequency)is manuallyincreased
from1Vto3V.Thebirdrisesuptowardsthehovering
position(γgoesfrom20◦to60◦andθchangesfrom77◦to
62◦).ItisclearthattheBIFRresponseexperiencesinstability
duringthetransitionperiodandbecomesstablebeyonda
certainpendulumangle(i.e.,flappingfrequency). Weapply
fixeddifferentvoltages(correspondingtodifferentflapping
frequencies)andobservethesystemresponseateachcase.The
thresholdflappingfrequencybelowwhichtheBIFRresponse
isunstableandbeyondwhichitisnaturallystabilizedisfound
tobe15Hz.Itisenvisagedthatthisthresholdshouldbe
relatedtothesystem’snaturalfrequency(1.4Hz).Thatis,
thestabilization-thresholdratiobetweentheperiodicforcing
frequencyandthesystem’snaturalfrequencyisfoundtobe
10.7forthecurrentsetup.Seekingauniversalvalueforsuch
aratioisquiteimportantandissuggestedforfuturework.
Figure7showstheresponseoftheBIFRsystemata
relativelyhighflappingfrequencyof∼18Hz(corresponding
to3Volt).Atthisrelativelyhighflappingfrequency,theBIFR
systemisalmostatthehoveringposition(γe∼85

◦)andthe
equilibriumpitchingangleθe∼50

◦isclosetothenatural
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Fig.6:BIFRresponseastheflappingfrequencyisbeing
manuallyincreased.

valuesobservedinnatureforhoveringinsects[14,28].Clearly,
theresponseisstable.Evenwhenarelativelylargedisturbance
(∆θ∼50◦)isappliedatt=8.6
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sec,thesystemgoesbackto
itsequilibriumperiodicorbit(i.e.,thehoveringperiodicorbit).

Fig.7:BIFRstableresponseatrelativelyhighflappingfre-
quency(∼18Hz).

Sofar,itcanbeconcludedthattheresponseofBIFRs
(particularlythebodypitchresponse)isnaturally(without
feedback)stabilizedbeyondacertainthresholdofflapping
frequency.Thisfactconformswellwiththevibrationalstabi-
lizationphenomenon[10,11,32,33]andsuggeststhattheob-
servednaturalstabilizationathighfrequenciesisavibrational
stabilizationphenomenon. However,one mightarguethat
becausetheintricatedynamicsofthesystem,thefrequencynot
onlyaffectsstability,butalsobalance/equilibrium;obviously
increasingthefrequencyleadstoadifferentequilibrium,
whichmayormaynothavesimilarstabilitycharacteristics
toequilibriacorrespondingtolowfrequencies.Toshowthat

theinducedstabilizing mechanismisindeedavibrational
stabilizationonethatismainlyduetothetime-periodicnature
ofthedrivingaerodynamicthrustforceandnotbecauseof
operatingatadifferentequilibrium,weconstructareplica
oftheexperimentalsetup withtheBIFRbeingreplaced
byasmallpropellerrevolving withaconstantspeed,as
showninFig.8.ThemaindifferenceisthattheBIFRsetup
producesaperiodicthrustforce,andconsequentlyatime-
periodicdynamicsallowingforvibrationalstabilization,while
thepropellersetupproducesaconstantthrustforce,and
consequentlyatime-invariantdynamicsleavingnoroomfor
vibrationalstabilization.

(a)APendulum-PropellerSetup. (b) Used Propellerofdiameter
3mm.

Fig.8:ATwo-DOFPendulum-PropellerSetup.

Usingsplitshotsizelead,wemanagedtomatchtheweight
andinertiaofthepropellersystemwiththeBIFRsystem.
Figure9showstheresponseofthetwo-DOFpropeller-
pendulumsystematarelativelysmallpropellerspeed(i.e.,
atasmallpendulumequilibriumangleγe∼ 9

◦).Clearly,
theresponseisexponentiallyunstable.Increasingtheapplied
voltagetoattainhigherpendulumequilibriumangles(closer
tothehoveringposition)worsensthestabilitycharacteristics
somuchthatthesystemstructurebecomespronetobreaking.

IV.CONCLUSION

Anexperimentalsetupisconstructedtostudytheflight
dynamicsofabio-inspiredflappingrobotthat mimicsthe
flightofsomeinsectandbirds.Thesetupallowsfortwo
degreesoffreedomforthebody;verticalmotionandpitching
motion.Thegoalwastoverifywhethersuchspeciesand
theirman-madcounterpartsexploitthevibrationalstabilization
phenomenonintheirflight,particularlyatthehoveringposi-
tion.Recallingthatvibrationalstabilizationisanopenloop
stabilizationtechniqueduetotheapplicationofasufficiently
highfrequencyperiodicforcing,westudiedthestabilityof
thesystematdifferentflappingfrequencies.Itwasfoundthat
thesystemisnaturally(withoutfeedback)stabilizedbeyonda
certainthresholdoftheflappingfrequency(15Hz,equivalently
10.7timesthesystem’snaturalfrequency,inthecurrent
setup),whichconformswiththevibrationalstabilizationphe-
nomenon. Moreover,weconstructedareplicaofthesystem
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Fig.9: Unstable Responseofthe Two-DOF Propeller-
PendulumSystem.

replacingtheflappingbirdwithapropellerthatrevolvesata
constantspeedtocheckwhethertheinducedstabilizationat
highfrequenciesismainlyduetoperiodicityofthedriving
force(i.e.,avibrationalstabilization)ornot.Itwasfoundthat
thepropellersystemreplicaisunstableatallappliedvoltages
andbecomesevenmoreunstableatlargerappliedvoltages
(i.e.,whenitcomesclosertothehoveringposition).Finally,
itisconcludedthatbio-inspiredflappingrobots,indeed,enjoy
vibrationalstabilization.
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