
Synthesizing Interpretable Strategies for Solving Puzzle Games

Eric Butler
edbutler@cs.washington.edu

Paul G. Allen School of Computer
Science and Engineering
University of Washington

Emina Torlak
emina@cs.washington.edu

Paul G. Allen School of Computer
Science and Engineering
University of Washington

Zoran Popović
zoran@cs.washington.edu

Paul G. Allen School of Computer
Science and Engineering
University of Washington

ABSTRACT

Understanding how players interact with games is an important

challenge for designers. When playing games centered around

problem solving, such as logic puzzles like Sudoku or Nonograms,

people employ a rich structure of domain-specific knowledge and

strategies that are not obvious from the description of a game’s rules.

�is paper explores automatic discovery of player-oriented knowl-

edge and strategies, with the goal of enabling applications ranging

from difficulty estimation to puzzle generation to game progression

analysis. Using the popular puzzle game Nonograms as our target

domain, we present a new system for learning human-interpretable

rules for solving these puzzles. �e system uses program synthesis,

powered by an SMT solver, as the primary learning mechanism.

�e learned rules are represented as programs in a domain-specific

language for condition-action rules. Given game mechanics and a

training set of small Nonograms puzzles, our system is able to learn

sound, concise rules that generalize to a test set of large real-world

puzzles. We show that the learned rules outperform documented

strategies for Nonograms drawn from tutorials and guides, both in

terms of coverage and quality.

CCS CONCEPTS

•Computing methodologies→Artificial intelligence;

KEYWORDS

Automated Game Analysis, Program Synthesis, Artificial Intelli-

gence

ACM Reference format:

Eric Butler, Emina Torlak, and Zoran Popović. 2017. Synthesizing Inter-

pretable Strategies for Solving Puzzle Games. In Proceedings of FDG’17,

Hyannis, MA, USA, August 14-17, 2017, 12 pages.

DOI: 10.1145/3102071.3102084

1 INTRODUCTION

Automated game analysis is a growing research area that aims to

uncover designer-relevant information about games without hu-

man testing [21, 24, 31, 35], which can be particularly advantageous

in situations where human testing is too expensive or of limited

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FDG’17, Hyannis, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5319-9/17/08. . . $15.00
DOI: 10.1145/3102071.3102084

Figure 1: An example of a Nonograms puzzle, with the start

state on the le� and completed puzzle on the right. �e num-

bered hints describe how many contiguous blocks of cells

are filled with true. We mark cells filled with true as a black

square and cells filled with false as a red X. We use the X to

distinguish from unknown cells, which are blank.

effectiveness [38]. One potential use is automatically understand-

ing game strategies: if we can analyze the rules of the game and

automatically deduce what the effective player strategies are, we

can support a range of intelligent tools for design feedback, con-

tent generation, or difficulty estimation. For humans to use these

computer-generated strategies, they need the strategies to be both

effective in the domain of interest and concisely expressed so a

designer can understand the whole strategy in their mind.

Modeling player interaction is challenging because the game

mechanics do not fully capture how human players might approach

the game. �is is true for all games, but especially for logic puzzle

games such as Sudoku or Nonograms. �ese puzzles are straight-

forward for a computer to solve mechanically by reduction to SAT

or brute-force search, but humans solve them in very different

ways. Rather than search, human players use a collection of in-

terconnected strategies that allow them to make progress without

guessing. For example, there are dozens of documented strategies

for Sudoku1 [33], and puzzle designers construct puzzles and rank

their difficulty based on which of these strategies are used [34]. �e

strategies take the form of interpretable condition-action rules that

specify (1) where a move can be made, (2) what (easy-to-check)

conditions must hold to make it, and (3) how to make the move.

Human players solve puzzles by looking for opportunities to apply

these strategies rather than by manual deduction or search in the

problem space.

Learning and applying these strategies is the core of human

expertise in the game. Understanding these strategies as a designer

allows one to effectively build and analyze puzzles and progressions.

While many such strategies can be uncovered through user testing

1h�p://www.sudokuwiki.org/Strategy Families contains a rather extensive list.



FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Emina Torlak, and Zoran Popović

and designer introspection, they may not effectively cover the

puzzle design space or be the most useful or simple strategies.

Designers can benefit from tools that, given a game’s rules, can

help understand its strategy space. While we would prefer finding

strategies people use, as a necessary step, we must find strategies

we can easily understand and can demonstrate are effective for the

problem-solving task.

In this paper, we investigate automatically learning human-

friendly game playing strategies expressed as condition-action rules.

We focus on the popular puzzle game Nonograms, also known as

Picross, Hanjie, O’Ekaki, or Paint-by-Numbers. A nonogram (see

Figure 1) is a puzzle in which the player must fill in a grid of cells

with either true (black square) or false. Integer hints are given for

each row and column that specify how many contiguous segments

of filled cells exist in each row or column. Solutions o�en form

interpretable pictures, though this is not necessary. By convention,

nonograms have unique solutions and, like other logic puzzles such

as Sudoku, can be solved by deducing parts of the answer in any

order. Also like many logic puzzles, Nonograms is, for arbitrarily

sized puzzles, NP-complete [37], but typical puzzles used in com-

mercial books and games can o�en be solved with a fixed set of

greedy strategies. Even for puzzles that require some tricky moves,

greedy strategies can suffice to find a large portion of the solution.

A key challenge in learning these strategies is interpretability: the

learned strategies need to be expressed in terms of game-specific

concepts meaningful to human players, such as, in the case of

Nonograms, the numerical hints or state of the board. To address

this challenge, we developed a new domain-specific programming

language (DSL) for modeling interpretable condition-action rules.

In contrast to previous DSLs designed for modeling games [5, 18, 23,

24, 27], which focus on encoding the rules and representations of the

game, our DSL focuses on capturing the strategies that a player can

use when puzzle solving. �us, the constructs of the language are

game-specific notions, such as hint values and the current state of

the board. In this way, we frame the problem of discovering player

strategies for Nonograms as the problem of finding programs in our

DSL that represent (logically) sound, interpretable condition-action

rules. �is soundness is critical and difficult to ensure: rules should

be valid moves that respect the laws of the game, and complex

constraints must hold for this to be the case. For this reason, we

use a constraint solver at the core of our learning mechanism.

Learning condition-action rules for Nonograms involves solv-

ing three core technical problems: (1) automatically discovering

specifications for potential strategies, (2) finding sound rules that

implement those specifications, and (3) ensuring that the learned

rules learned are general yet concise. To tackle these challenges,

we built a system using program synthesis [9] as a learning mecha-

nism. �e system takes as input the game mechanics, a set of small

training puzzles, a DSL that expresses the concepts available for

rules, and a cost function that measures rule conciseness. Given

these inputs, it learns an optimal set of sound rules that general-

ize to large real-world puzzles. �e system works in three steps.

First, it automatically obtains potential specifications for rules by

enumerating over all possible game states up to a small fixed size.

Next, it uses an off-the-shelf program synthesis tool [36] powered

by an SMT (Satisfiability Modulo �eories) solver to find programs

that encode sound rules for these specifications. Finally, it reduces

the resulting large set of rules to an optimal subset that strikes a

balance between game-state coverage and conciseness according

to the given cost function. We evaluate the system by comparing

its output to documented strategies for Nonograms drawn from

tutorials and guides, finding that it fully recovers many of these

control rules and covers nearly all of game states covered by the

remaining rules.

Our approach to learning interpretable strategies by representing

them as condition-action rules defined over domain-specific con-

cepts is motivated by cognitive psychology and education research.

In this approach, a set of rules represents (a part of) domain-specific

procedural knowledge of the puzzle game—the strategies a person

takes when solving problems. Such domain-specific knowledge is

crucial for expert problem solving in a variety of domains [3, 8],

from math to chess to professional activities. �e DSL defines the

(domain-specific) concepts and objects to which the player can refer

when solving puzzles, thus constraining the space of strategies that

can be learned to human-friendly ones. Our system takes this space

as input provided by a designer, and produces the procedural knowl-

edge to be used by players. �us, the designer can define (and iterate

on) the concepts over which rules are defined. �e designer also

provides a cost function (defined over the syntax of the DSL) that

measures interpretability in terms of rule complexity, which allows

our system to bias the learning process toward concise, interpretable

rules. �e eventual goal of this line of research is automatically

discovering strategies that players are likely to use. In this work, we

focus on the immediate task of finding human-interpretable rules

in a structure compatible with evidence of how players behave.

While our implementation and evaluation focuses on Nono-

grams, the system makes relatively weak assumptions (discussed in

detail) about the DSL used as input. Variations could be used, and

we expect DSLs representing other logic puzzles could be used in the

system. And while many parts of the learning mechanism are spe-

cific to logic puzzles, we expect the approach of using program syn-

thesis for learning of human-interpretable strategies to apply more

broadly, especially to domains with well-structured problem solving

(even beyond games, such as solving algebraic equations [7]).

In summary, this paper makes the following contributions:

• We identify how domain-specific programming languages

can be used to represent the problem-solving process for

puzzle games in a human-interpretable way.

• We describe an algorithm for automatically learning gen-

eral and concise strategies for Nonograms in a given DSL.

• We present an implementation of this algorithm and show

that the learned rules outperform documented strategies

in terms of conciseness and coverage of the problem space.

�e remainder of the paper is organized as follows. First, Sec-

tion 2 discusses related work. Section 3 presents an overview of the

system and explains the kinds of strategies we are trying to learn.

Section 4 describes our DSL for Nonograms rules. Sections 5–6

discuss technical details of the system. We present an evaluation of

our system that compares its output to documented strategies in

Section 7, and conclude with a summary of our contribution and

discussion of future work in Section 8.



Synthesizing Interpretable Strategies for Solving Puzzle Games FDG’17, August 14-17, 2017, Hyannis, MA, USA

2 RELATED WORK

Automated Game Analysis. Automated game analysis is a grow-

ing research area that aims to uncover designer-relevant informa-

tion about games without human testing [21, 24, 31, 35], which is

needed in situations where human testing is too expensive or of

limited effectiveness [38]. Researchers have investigated estimating

game balance [12, 38] and using constraint solving to ensure design

constraints are satisfied [30]. �ese approaches typically reason at

the level of gamemechanics or available player actions. We contend

that for many domains, such as logic puzzles, the mechanics do not

capture the domain-specific features players use in their strategies,

necessitating representations that contain such features.

General Game AI [25] is a related area in automatically under-

standing game strategies. However, it tackles the problem of ge�ing

a computer to play a game while we tackle the different problem of

finding human-interpretable strategies for playing a game.

Prior research has also looked at analyzing the difficulty of logic

puzzles. Browne presents an algorithm called deductive search

designed to emulate the limits and process of human solvers [4].

Batenburg and Kosters estimate difficulty of Nonograms by count-

ing the number of steps that can be solved one row/column at

a time [2]. �is line of work relies on general difficulty metrics,

while our work models the solving process with detailed features

captured by our DSL for rules.

Interpretable Learning. Finding interpretable models has become

a broader topic of research because there are many domains where

it is important, such as policy decisions. Researchers have looked

at making, e.g., machine learning models more explainable [16, 28].

Many of these techniques focus on either (1) learning an accu-

rate model and then trying to find an interpretable approxima-

tion (e.g., [11]), or (2) restricting the space of models to only those

that are interpretable. We take the la�er approach, targeting a

domain not addressed by other work with a unique approach of

program synthesis.

Modeling Games with Programming Languages. Game descrip-

tion languages are a class of formal representations of games,

many of which were proposed and designed to support automated

analysis. Examples include languages for turn-based competitive

games [17] and adversarial board games [5, 23]. Osborn et al. [24]

proposed the use of such a language for computational critics. �e

Video Game Description Language (VGDL) [27] was developed to

support general game playing. Operational logics [19] deal with

how humans understand the game, and Ceptre [18] is a language

motivated by gameplay. We share goals here, but are arguing to

build a new DSL for each game. All of these prior languages model

the rules or representation of the game, while our language models

concepts meaningful to players in order to capture strategies at

a fine-grained level, which necessitates the inclusion of domain-

specific constructs.

Program Synthesis. Program synthesis, the task of automati-

cally finding programs that implement given specifications [9],

is well-studied and has been used for a variety of applications. No-

tably, program synthesis has been used for several applications in

problem-solving domains, from solution generation [10] to problem

generation [1] to feedback generation [29].

One challenging feature of our program synthesis problem is

its underspecification. Some methods address this challenge with

an interactive loop with the user to refine specifications [9], while

others rank possible programs and select a single best one [26].

Our method ranks programs using the metrics of generality and

conciseness, and differs from prior work in that we are choosing a

set of programs that best implement a set of specifications, rather

than a single program for a single specification.

3 OVERVIEW

�is section provides a high-level overview of our system for synthe-

sizing interpretable rules for Nonograms. We review the mechanics

of the game and show an example of a greedy strategy that our

system can learn. Of course, one can always solve a puzzle by some

combination of brute-force search and manual deduction, but hu-

man players prefer to use a collection of greedy strategies. Puzzles

are designed with these strategies in mind, which take the form of

condition-action rules. �is section illustrates the key steps that

our system takes to synthesize such condition-action rules. Sec-

tions 4–6 present the technical details of our DSL, the rule synthesis

problem, and the algorithms that our system employs at each step.

3.1 Condition-Action Rules for Nonograms

Nonograms puzzles can be solved in any order: as cells are deduced

and filled in, monotonic progress is made towards the final solution.

In principle, deductions could be made using information from the

entire n ×m board. In practice, people focus on some substate of

the board. One natural class of substates are the individual rows

and columns of the board, which we call lines. Since the rules of

the game are defined with respect to individual lines, they can be

considered in isolation. A solving procedure that uses only lines

is to loop over all lines of the board, applying deductions to each.

�is will reveal more information, allowing more deductions to be

applied to crossing lines, until the board is filled. As many puzzle

books and games can be completed by only considering (greedy)

rules on lines, that is the scope on which we focus for this paper.

As an example of a greedy condition-action rule for Nonograms,

we consider what we call the big hint rule (Figure 2), a documented

strategy for Nonograms.2 If a hint value is sufficiently large relative

to the size of the line (Figure 2a), then, without any further infor-

mation, we can fill in a portion of the middle of the row. �e big

hint rule can be generalized to multiple hints (Figure 2b): if there

is any overlap between the furthest le� and furthest right possible

positions of a given hint in the row, we can fill in that overlap. Our

system aims to discover sound strategies of this kind, and synthe-

size human-readable explanations of them that are (1) general, so

they apply to a wide variety of puzzle states, and (2) concise, so

they have as simple an explanation as possible.

3.2 System Overview

To synthesize sound, general, and concise descriptions of Nono-

grams strategies, our system (Figure 3) needs the following inputs:

(1) �e formal rules of Nonograms to determine the soundness

of learned strategies.

2h�ps://en.wikipedia.org/wiki/Nonogram#Simple boxes



FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Emina Torlak, and Zoran Popović

(a) An example of the big hint rule: for any line with a single, suf-

ficiently large hint, no matter how the hint is placed, some cells in

the center will be filled.

(b) An example of the big hint rule for multiple hints.

Figure 2: �e big hint rule for one (a) and many (b) hints.

�is is an example of the kind of sound greedy strategy for

which we aim to learn interpretable descriptions.

(2) A domain-specific language (DSL) defining the concepts

and features to represent these strategies.

(3) A cost function for rules to measure their conciseness.

(4) A training set of line states from which to learn rules.

(5) A testing set of line states with which to select an optimal

subset of rules (that maximize state coverage).

Given these inputs, the system uses a 3-phase algorithmic pipeline

to produce an optimal set of rules represented in the DSL: specifi-

cation mining, rule synthesis, and rule set optimization. We explain

each of these phases by illustrating their operation on toy inputs.

3.2.1 Specification Mining. Before synthesizing interpretable

strategies, we need specifications of their input/output behavior.

Our system mines these specifications from the given training

states as illustrated in Figure 4. For each training state, we use

the rules of Nonograms (and an SMT solver) to calculate all cells

that can be filled in, producing a maximally filled target state. �e

resulting pair of line states—the training state and its filled target

state—forms a sound transition in the state of the game. In our

system, an individual transition forms the specification for a rule. A

single transition is an underspecification of a strategy since many

rules may cover that particular transition. We leave it to the rule

synthesis phase to find the most general and concise rule for each

mined specification.

3.2.2 Rule Synthesis. �e rule synthesis phase takes as input a

mined transition, the DSL for rules, and the cost function measur-

ing rule complexity. Given these inputs, it uses standard synthesis

techniques to find a program in the DSL that both covers the mined

transition and is sound with respect to the rules of Nonograms. Fig-

ure 5 shows the output of the synthesis phase for the first transition

in our toy example (Figure 4).

�e key technical challenges this phase must solve, beyond find-

ing sound rules, is to ensure the rules are general and concise.

Generality is measured by the number of line states to which the

rule is applicable, and conciseness is measured by the cost function

provided by the designer. We use iterative optimization to maxi-

mize each of these. We additionally exploit the structure of the DSL

for generality, which we detail in Section 6.

3.2.3 Rule Set Optimization. �e synthesis phase produces a set

of programs in the DSL, one for each mined transition, that repre-

sent the interpretable strategies we seek. Because the DSL captures

human-relevant features of Nonograms, the concise programs are

human-readable descriptions of the strategies. However, this set of

rules can be unmanageably large, so the rule optimization phase

prunes it to a subset of the most effective rules. In particular, given

a set of rules and a set of testing states on which to measure their

quality, this phase selects a subset of the given rules that best covers

the states in the testing set. In our implementation, testing states

are drawn from solution traces to real-world puzzles. �us, in our

toy example, the big hint rule will be selected for the optimal subset

because it is widely applicable in real-world puzzles.

4 A DOMAIN-SPECIFIC LANGUAGE FOR
NONOGRAMS RULES

Our system uses a domain-specific language (DSL) to represent a

space of explainable condition-action rules for Nonograms. Pro-

grams in this DSL are human-readable representations of greedy

strategies for solving Nonograms puzzles; they could, for instance,

be mechanically translated into a wri�en description. Compared

to representations such as neural networks, designers can easily

inspect DSL rules and comprehend how they work. �is section

presents the key features of our DSL and discusses how similar

DSLs could be developed for other puzzle games.3

4.1 Patterns, Conditions, and Actions

In our DSL, a program representing a rule consists of three parts:

(1) A pa�ern (to which part of the state does it apply).

(2) A condition (when does it apply).

(3) An action (how does it apply).

�e high-level semantics of rules are simple: for a given state, if

there is a binding assignment to the pa�ern, and if the condition

holds for those bindings, then the action may be applied to the state.

We describe these constructs in more detail below.

4.1.1 Pa�erns. Pa�erns are the constructs that allow a rule

to reference parts of the state, such as “the first block of filled

cells.” Conditions and actions can only reference state through the

pa�ern elements. �e semantics of pa�erns are non-deterministic

and existential: a rule can apply to a state only if there is some

satisfactory binding to the pa�ern, but it may apply to any such

satisfactory binding.

Our Nonograms DSL exposes three properties of a line state

through pa�erns, as illustrated in Figure 6. Hints are the integer

hints specified by a puzzle instance. Blocks are contiguous segments

of cells that are true. Gaps are contiguous segments of cells that

3Appendix A contains a formal description of the syntax and semantics of the DSL.



Synthesizing Interpretable Strategies for Solving Puzzle Games FDG’17, August 14-17, 2017, Hyannis, MA, USA

Specification 

Mining
Rule Specs Rule Synthesis

Rule Set 

Optimization
Optimal Set

of Rules

Training 

Examples

Cost function for 

Rule Complexity 

Formal Description 

of Domain

Testing 

Examples

Domain-Specific 

Language for Rules

Learned

Programs

Figure 3: An overview our system’s three phases, along with their inputs and outputs.

Figure 4: Example of the inputs and outputs for specifica-

tionmining in our toy problem. Given a set of states, we use

the rules of Nonograms to calculate deducible transitions

for those states. Each transition serves as the specification

for a potential rule.

def big_hint_rule:

with h = singleton(hint):

if lowest_end_cell(h) > highest_start_cell(h):

then fill(true , highest_start_cell(h),

lowest_end_cell(h))

Figure 5: Basic version of the big hint rule. �ese programs

are the output of the rule synthesis phase of the system. �e

with, if, and then delineate the 3 parts of a rule: the pa�ern,

condition, and action. �ese are explained in Section 4.

are not false (i.e., either unknown or true). �e lists of all hints,

blocks, and gaps can be mechanically enumerated for any state.

�ese elements of the state can be bound using three constructs:

Arbitrary(e) binds non-deterministically to any element of

type e (i.e., hint, block, or gap) that is present in the state.

Constant(e, i) binds to the ith element of type e , if the state

contains at least i + 1 elements of that type.

Singleton(e) binds to the first element of type e , if the state

contains only one element of that type.

Blocks

Gaps

Hints

Figure 6: �e three types of elements to which patterns can

refer. Hints are part of the state, blocks are contiguous seg-

ments of true cells, and gaps are contiguous segments of

non-false cells.

For example, the state in Figure 6 has two blocks: b1 starts at index

1 and is length 2, and b2 starts at index 5 and is length 1. �e pa�ern

expression arbitrary(block) binds to either b1 or b2, constant(block,

1) binds only to b2, and singleton(block) does not bind at all because

there are multiple blocks. A program may bind any number of state

elements (using multiple pa�ern constructs).

A key property of our pa�ern constructs is that they form a la�ice

of generalization. For example, if a sound rule contains an arbitrary

pa�ern, and that pa�ern is replaced with any constant pa�ern,

the resulting rule will still be sound, but less general. Similarly, a

constant(0) pa�ern can be replacedwith a singleton pa�ern to obtain

another less general rule. We exploit this property during synthesis

as a way to generalize rules, by searching for rules with more

general pa�ern. Figure 7 shows the result of applying this form of

generalization to the big hint rule from Figure 5: the new rule uses

a more general pa�ern and is thus applicable to more states.

def big_hint_rule_general:

with h = arbitrary(hint):

if lowest_end_cell(h) > highest_start_cell(h):

then fill(true , highest_start_cell(h),

lowest_end_cell(h))

Figure 7: General version of the big hint rule, which uses an

arbitrary pattern instead of a singleton pattern. �is rule

applies in strictly more situations than the one in Figure 5

and is therefore is better on the metric of generality.



FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Emina Torlak, and Zoran Popović

4.1.2 Conditions. Conditions are boolean expressions describ-

ing the constraints necessary for sound application of a rule’s action.

�ese expressions can include basic arithmetic operators (e.g., ad-

dition and integer comparison), constructs that encode geometric

properties of lines (e.g., lowest_end_cell in Figure 5), constructs that

determine whether a particular bound element is maximal (e.g., is

the bound hint the largest hint?), and constructs that determine

whether a particular expression is unique for the binding of a given

pa�ern (e.g., is this gap the only gap bigger than the first hint?).

When the same condition is expressible in multiple ways, our sys-

tem uses the designer-provided cost function to choose the best one.

For example, Figure 8 shows another program for the basic big hint

rule that uses different condition constructs than the equivalent

program in Figure 5. Which rule is selected by our system depends

on whether the cost function assigns lower values to geometric

or arithmetic operations—a decision le� to the designers using

the system, enabling them to explore the ramifications of various

assumptions about player behavior.

def big_hint_rule_arithmetic:

with h = singleton(hint):

if 2 * h > line_size:

then fill(true , line_size - h, h)

Figure 8: Variant of the basic big hint rule (Figure 5) but

using arithmetic constructs instead of geometric ones. �e

designer-provided cost metric for rules is used to measure

their relative complexity and choose the more concise.

4.1.3 Actions. Our DSL limits a rule’s actions to filling a single

contiguous run of cells in a line. Actions expressions are of the

form fill(b,s,e), which says that the board state may be modified

by filling in the cells in the range [s, e) (which must both be integer

expressions) with the value b (either true or false). �ese simple

actions are sufficient to express common line-based strategies for

Nonograms (see Section 7), but it would be easy to support more

complex actions since our algorithms are agnostic to the choice of

action semantics.

4.2 Creating DSLs for other Domains

While the detailed constructs of our DSL are domain-specific, the

structure is general to other logic puzzles. Our system assumes

the DSL has the basic structure of pa�erns, conditions, and actions,

but the rest of it can be varied. Our DSL for Nonograms is one of

many plausible DSLs with this structure, and similar DSLs could

be cra�ed for games such as Sudoku.

5 PROBLEM FORMULATION

As illustrated in Section 3, our system (Figure 3) synthesizes con-

cise programs in its input DSL that represent sound and general

condition-action rules for Nonograms. In particular, the learned

rules cover transitions mined from a given set of line states. We

formalize these notions below and provide a precise statement of

the rule synthesis problem solved by our system.

5.1 Line States and Transitions

We focus on lines (Definition 5.1) as the context for applying strate-

gies. Any sound deduction the player makes on a Nonograms line

takes the form of a valid transition (Definition 5.3). While our

definitions of these notions are specific to Nonograms, analogous

notions exists for any puzzle game (e.g., Sudoku) in which the player

monotonically makes progress towards the solution. Our problem

formulation assumes the domain has (partially ordered) states and

transitions, but our algorithm is agnostic to the details.

Definition 5.1 (Line State). A Nonograms line state (also called

just line or state) is an ordered sequence of hints, and an ordered

sequence of cells. Hints are known positive integers. Cells can be

unknown (empty) or filled with either true or false. A state is valid

if there is an assignment of all unknown cells such that the rules

of the puzzle are satisfied for the hints and cells. Unless otherwise

noted, we are implicitly talking about valid states.

Definition 5.2 (Partial Ordering of States). Given any two states s

and t , s is weaker than t (s � t ) iff s and t share the same hints, the

same number of cells, and, filled cells in s are a subset of the filled

cells in t . In particular, s � t if t is the result of filling zero or more

of unknown cells in s . Being strictly weaker (s ≺ t ) is being weaker

and unequal.

Definition 5.3 (Line Transition). A Nonograms line transition (or,

simply, a transition) is a pair of states 〈s, t〉 where s � t . A transition

is productive iff s ≺ t . A transition is valid iff both states are

valid and the transition represents a sound deduction, meaning t

necessarily follows from s and the rules of Nonograms. A transition

〈s, t〉 is maximal iff it is valid and for all valid transitions 〈s,u〉, u

is weaker than t (i.e., u � t ). As we are only concerned with valid

states and sound deductions, unless otherwise mentioned, we are

implicitly talking about valid transitions.

5.2 Rules

Strategies, or rules, are defined (Definition 5.4) as the set of transi-

tions they engender. Rules are non-deterministic because they may

apply in multiple ways to the same input state, yielding multiple

output states. �is can be the case, for example, for programs in our

DSL that contain an arbitrary binding. We therefore treat rules as

relations (rather than functions) from states to states. Given this

treatment, we define rule generality (Definition 5.5) to favor rules

that apply to as many input states as possible. Finally, since we

are interested in finding concise representations of these rules in

the Nonograms DSL, we define rule conciseness (Definition 5.6) in

terms of the cost function provided as input to our system.

Definition 5.4 (Rules). A Nonograms rule is a relation from states

to states. A rule r is sound iff all pairs of states 〈s, t〉 ∈ r are valid

transitions.

Definition 5.5 (Generality of Rules). Given a state s , we say that

a rule r covers s if 〈s, t〉 ∈ r for some t with s ≺ t . A rule r is more

general than a rule q if r covers a superset of states covered by q.

Definition 5.6 (Conciseness of Rules). Let f be a cost function that

takes as input a program in the Nonograms DSL and outputs a real

value. Let R and Q be two programs in the DSL that represent the



Synthesizing Interpretable Strategies for Solving Puzzle Games FDG’17, August 14-17, 2017, Hyannis, MA, USA

rule r (i.e., R andQ are semantically equivalent and their input/out-

put behavior is captured by the relation r ). �e program R is more

concise than the program Q iff f (R) ≤ f (Q).

5.3 �e Rule Synthesis Problem

Given the preceding definitions, we can now formally state the

problem of synthesizing rules for Nonograms:

Given a DSL and a set of states, the rule synthesis

problem is to find a set of most concise programs

in the DSL that cover the given states and that rep-

resent the most general sound rules with respect

to those states.

6 ALGORITHMS AND IMPLEMENTATION

�is section presents the technical details of our system (Figure 3)

for synthesizing sound, general, and concise condition-action rules

for Nonograms. We describe our algorithm for specification mining,

rule synthesis, and rule set optimization, and discuss key aspects

of their implementation. Section 7 shows the effectiveness of this

approach to discovering explainable strategies for Nonograms.

6.1 Specification Mining

As illustrated in Figure 4, specification mining takes as input a set of

line states (Definition 5.1) and produces a set of maximal transitions

(Definition 5.3), one for each given state, that serve as specifications

for the rule synthesis phase. In particular, for every training state s ,

we use an SMT solver to calculate a target state t such that 〈s, t〉 is

a valid transition, and t is stronger than any state u (i.e., u � t ) for

which 〈s,u〉 is a valid transition. �is calculation is straightforward:

for each unknown cell in s , we ask the SMT solver whether that cell

is necessarily true or false according to the rules of Nonograms,

and fill it (or not) accordingly. �e resulting transitions, and there-

fore rule specifications, represent the strongest possible deductions

that a player can make for the given training states.

�e effectiveness of our mining process depends critically on

the choice of the training set. If the training set is too small or

haphazardly chosen, the resulting specifications are unlikely to

lead to useful rules. We want a variety of states, so enumerating

states up to a given size is a reasonable choice. But for lines of size

n, there are between 2n and 4n possible transitions, so we choose a

relatively small value (in our evaluation, a random subset of lines

of size n ≤ 7), relying on the rule synthesis phase to generalize

these rules so they apply on the larger states in the testing set.

6.2 Rule Synthesis

6.2.1 Basic Synthesis Algorithm. Given a transition 〈s, t〉, we

use an off-the-shelf synthesis tool [36] to search for a program in

the Nonograms DSL that includes the transition 〈s, t〉 and that is

sound with respect to the rules of the game. Formally, the synthesis

problem is to find a program P in our DSL that encodes a sound

rule R with 〈s, t〉 ∈ R. �is involves solving the 2QBF problem

∃P∀uφ(u, P(u)), where the quantifier-free formula φ(u, P(u)) en-

codes the rules of Nonograms and requires 〈s, t〉 to be included in

P ’s semantics. �e synthesis tool [36] solves our 2QBF problem

using a standard algorithm [32] that works by reduction to SMT.

6.2.2 Implementation of the Basic Algorithm. Most synthesis

tools that work by reduction to SMT have two key limitations:

(1) they can only search a finite space of programs for one that

satisfies φ, and (2) they can only ensure the soundness of P on finite

inputs. We tackle the first limitation through iterative deepening:

our implementation asks the synthesis tool to search for programs

of increasing size until one is found or a designer-specified timeout

has passed. We address the second challenge by observing that prac-

tical puzzle instances are necessarily limited in size. As a result, we

do not need to find rules that are sound for all line sizes: it suffices

to find rules that are sound for practical line sizes. Our implemen-

tation takes this limit on line size to be 30. As a result, learned rules

are guaranteed to be sound for puzzles of size 30 × 30 or less.

6.2.3 Synthesizing General and Concise Rules. Our basic synthe-

sis algorithm suffices to find sound rules, but we additionally want

to find general and concise rules. Generalization has two potential

avenues for optimization: generalizing the pa�erns (to bind more

states) or generalizing the conditions (to accept more bound states).

Finding concise rules involves minimizing the cost of synthesized

programs according to the designer-provided cost function for the

Nonograms DSL. We discuss each of these optimizations in turn.

Enumerating over pa�erns to generalize rules. As described in

Section 4.1.1, the pa�ern constructs of our DSL are partially ordered

according to how general they are: arbitrary is more general than

constant which is more general than singleton. We can exploit

this structure to find general rules with the following method: once

we find a sound rule, we a�empt to find another sound rule while

constraining the pa�ern to be strictly more general.

Our implementation performs this generalization through brute-

force enumeration. For each specification, we calculate all the

possible elements of a state (see Figure 6 for an example), and

translate each to the most specific set of pa�erns possible. For

the example in Figure 6, there would 7 of them: constant(hint,0),

constant(hint,1), constant(hint,2), constant(block,0), constant(block,1)

, constant(gap,0), constant(gap,1). We fix these and try to synthesize

a rule program with that pa�ern set. Upon success, we enumerate

over all possible ways to make the pa�erns one step more general

(e.g., by replacing a constant with an arbitrary) and try to find

rules for those. We explore the entire graph of possible pa�erns

this way, and in doing so find the most general (with respect to

the pa�erns) rules for each specification. �ere may be multiple

maximally general rules; our system will output all of them, relying

on the rule set optimization phase to choose the best.

In practice, useful general rules use relatively few bound ele-

ments (big hint uses only one, for example). We can significantly

improve the performance of pa�ern generalization by searching

for programs with fewer pa�erns first. Referencing our previous

example, rather than finding rules with all 7 pa�erns, we would

search for programs that use small subsets of them, in increasing

order. Our implementation stops a�er a fixed upper bound on size

but in principle could enumerate over all of them.

Iterative optimization of conditions to generalize rules. Even with

a fixed pa�ern, the generality of a rule can change depending on

the condition. We want to choose the condition that covers the

maximal number of training states. As we do not have a structure of



FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Emina Torlak, and Zoran Popović

the DSL to easily exploit, we instead rely on iterative optimization.

A�er finding a sound rule program P0, we a�empt to synthesize a

new program P with the additional constraints that

(1) for any state that P0 covers, P must also cover it, and

(2) there exists at least one state that P covers but P0 does not.

Looping until failure, we can be certain we have a most general

rule with respect to the coverage of the condition.

�is technique is greedy; we will find some arbitrary locally

most general rule. But there can be many ways to generalize the

condition of a rule (as suggested by our results; see Section 7.1).

While our implementation produces only one locally most general

rule, we could easily extend the system to produce all such rules

by restarting the search a�er hi�ing a local optimum and adding

constraints to cover states not covered by any of the previous rules.

Iterative optimization for concise rules. Weuse a designer-provided

cost function f on the syntax of the DSL to measure the complexity

of the rules. �e problem of finding most concise rules is one of

minimizing this cost. As with condition generalization, we do this

with iterative optimization: a�er finding a sound rule program P0,

we a�empt to synthesize a new semantically equivalent program P

with the additional constraint that f (P) < f (P0). Repeating until

failure will give us a globally most concise rule.

Combining generalization and cost minimization. We combine

all of the above optimizations in a nested loop. For each given

specification, we enumerate over all pa�erns and synthesize a set

of programs with the most general pa�ern. Next, we generalize the

condition of each program with the most general pa�ern. Finally,

we make each resulting program optimally concise without sacri-

ficing either pa�ern or condition generality. �e resulting large set

of rule programs is then pruned using rule set optimization.

6.3 Rule Set Optimization

6.3.1 Basic Rule Set Optimization Algorithm. Given a set of rule

programs, the rule set optimization algorithm selects a subset of

those programs that best covers the states in the designer-provided

testing test. While any set of states can be used for testing, our

evaluation uses a set of states drawn from solution traces of real-

world puzzles. To choose a subset of rules with the best coverage of

the testing set, we set up a discrete optimization problem with the

following objective: select k rules (for some fixed k) that cover the

greatest proportion of (maximal) transitions from the testing set.

For this optimization, we measure coverage by the total number

of cells filled. �at is, the coverage of a test item can be partial;

the objective function awards a score for each cell filled. Greedy

methods suffice for this optimization.

6.3.2 Using an oracle for decomposition. When human players

apply greedy strategies, they do so by considering both states, such

as lines, and substates, such as parts of a line. If a player can deduce

that certain hints must be constrained to certain cell ranges (as

illustrated in Figure 9), then the player can focus on the identified

substate (essentially, a smaller line), which might make new rules

available, or at least make case-based-reasoning simpler. �is form

of problem decomposition is o�en required for applying strategies,

especially on very large boards.

Figure 9: An example of state decomposition. Because hints

are ordered, if we knowwhere one hint lies (in this case, hint

3), then we can consider sub-lines in isolation. �is allows

us to apply the big hint rule (Figure 5) to the right sub-line.

In order to account for this player behavior when evaluating our

objective function, we use an SMT solver as an oracle for decompo-

sition.4 �at is, to measure how much of a transition can be solved

with a given set of rules, we apply both the rules and the decompo-

sition oracle to a fixed point. �is allows us to measure the impact

of the rules in a more realistic way than under the assumption that

greedy strategies are used on their own, without decomposition.

7 EVALUATION

To evaluate our system, we compared its output to a set of docu-

mented strategies from Nonograms guides and tutorials. Unlike

Sudoku, there is no comprehensive database of strategies for Nono-

grams, so we recovered these control rules from various sources:

the introduction to a puzzle book [20], the tutorial of a commercial

digital game [14], and the Wikipedia entry for Nonograms.5 �ese

sources demonstrate rules through examples and natural language,

so, to encode them in our DSL, some amount of interpretation is

necessary. In particular, while these sources o�en explain the rea-

soning behind a strategy, the strategy is demonstrated on a simple

case, le�ing the reader infer the general version. We encoded the

most general (when possible, multiple) variants of the demonstrated

rules in our DSL, for a total of 14 control rules.

We evaluated our system by asking the following questions:

(1) Can the system recover known strategies by learning rules

in the control set?

(2) How does the learned set compare to the control set when

measuring coverage of the testing data?

Training Data. For this evaluation, we trained the system using

a random subset of maximal transitions of lines up to length 7.

�ere were 295 such states. Note that, excepting tutorial puzzles,

no commercial puzzles are on boards this small, so none of the

testing examples are this small.

Testing Data. Our testing data is drawn from commercial Nono-

grams puzzle books and digital games Original O’Ekaki [22], �e

Essential Book of Hanjie and How to Solve It [20], and the Pircoss e

series [13–15]. We randomly selected 17 puzzles from these sources.

�e lines range in size from 10 to 30. All puzzles are solvable by

considering one line at a time. To get test data from these boards,

we created solution traces with random rollouts by selecting lines,

4 �e Picross series of videogames for the Nintendo DS and 3DS actually provide a
limited version of this oracle to the player. For each partially-filled line, the game tells
the player which (if any) of the hints are satisfied. �e reasoning is based only on the
partial state, not the solution; it uses some deductive/search-based procedure.
5h�ps://en.wikipedia.org/wiki/Nonogram#Solution techniques



Synthesizing Interpretable Strategies for Solving Puzzle Games FDG’17, August 14-17, 2017, Hyannis, MA, USA

using our oracle to fill the maximum possible cells, and repeating

until the puzzle was solved. We took each intermediate state from

these solution traces as testing states. �is resulted in 2805 testing

states.

Learned Rules. From our training examples, the first two phases

of the system (specification mining and rule synthesis) learned 1394

semantically distinct rules as determined by behavior on the test

set. Two learned rules are shown in Figures 10 and 11. We measure

the quality of the learned rules by comparing them to the control

rule set, both on whether the learned set includes the control rules

and how well the learned rules perform on the testing data.

7.1 Can the system automatically recover the
control rules?

Our system recovered 9 of the 14 control rules, either exactly, or

as a more general rule. Figure 10 shows an example of a rule

from the control set for which our system learned a syntactically

identical rule. While the training set included example states for

all control rules, our greedy generalization algorithm choose a

different generalization than the one represented by the missed

control rules. As discussed in Section 6.2.3, we could extend the

system to exploremultiple generalizations. Given sufficient training

time, such a system would find these particular rules as well. In

some cases where our system did not match a control rule, it did

find a qualitatively similar rule that covered many of the same states

(as in Figure 11).

# crossing out the cell next to a satisfied hint ,

# which can be determined because it's (one of)

# the biggest hints.

def punctuate_maximum:

# for any arbitrary hint and block

with

h = arbitrary(hint) and

b = arbitrary(block):

# if the hint is maximal ,

# the block and hint have the same size ,

# and the block is strictly right of the left edge ,

if maximal(h) and size(b) = size(h) and start(b) > 0:

# then cross out the cell to the left of the block

then fill(false , start(b) - 1, start(b))

Figure 10: An example of a control rule that our system re-

covers exactly, annotated with comments. �is is a top-10

rule as determined by the rule set optimization.

7.2 How does an optimal subset of rules
compare on coverage?

In order to quantitatively compare the coverage of our learned

set to the control set, we measured the proportion of the maximal

transitions of the testing examples that each rule set covered. As

described in Section 6.3, we measure this by the proportion of

transitions covered; for a set of rulesR, the coverage C(R) is the

total number of cells over all testing examples covered by applying

rules in R and the decomposition oracle to a fixed point.

# crossing out the left side of the line if a block

# is more than hint -value distance from the edge.

def mercury_variant:

# for singleton hint and arbitrary block

with

h = singleton(hint) and

b = arbitrary(block):

# if the right side of the block is

# greater than the value of the hint

if start(b) + size(b) > size(h):

# then cross out cells from 0 up through the

# one that is hint -value many cells away from

# the right edge of the block.

then fill(false , 0, start(b) + size(b) - size(h))

Figure 11: An example top-10 rule learned by our system

that is not in the control set, annotated with comments.

�is rule is similar to what we call themercury control rule,

which is not recovered exactly. But the learned rule covers a

large portion of the same states. While slightly less general,

it is significantly more concise than the control rule, using

one fewer pattern, one fewer condition, and less complex

arithmetic. �e learned rule is also a reasonable interpreta-

tion of the description on which the control rule is based.6

Coverage of learned rules. First, we compared the entire rule sets.

On our test examples, the 14 control rules R0 have a coverage

C(R0) of 4652. Our trained rule set Rt has a coverage C(Rt ) of

7558. �ese sets are incomparable; the control rules cover some

items that the learned do not and vice-versa. Looking at the union

of the two sets, they have a total coverageC(Rt ∪R0) of 7673. �at

is, the learned set alone covers over 98% of the transitions covered

by the learned and control sets together. �is means that, even

though we do not recover the control rules exactly, the learned

rules cover nearly all test cases covered by the missed control rules.

Coverage of a limited set of rules. We would expect that the very

small control set would have less coverage than the large set of

learned rules. For a more equitable comparison, we measure the

top-10 rules from each set, using the rule set optimization phase

of our system. Choosing the top 10 rules, the top 10 control rules

have a coverage of 4652 (unchanged from the full 14), and the top

10 learned rules have a coverage of 6039. �e learned rules, when

limited to the same number as the control rules, still outperform

the control on the testing examples. Figure 11 shows an example

of a learned rule in the top-10 set that was not in the control set.

Comparing the complexity of these rules with the cost function,

the top-10 control rules have a mean cost of 31.7 while the top-10

from the learned set have a mean cost of 33.7. �ough our learning

algorithm minimizes individual rule cost, the optimization greedily

maximizes coverage while ignoring cost.

�ese results suggest that our system can both recover rules for

known strategies and cover more states from real-world puzzles.

8 CONCLUSION

�is paper presented a system for automated synthesis of inter-

pretable strategies for the puzzle game Nonograms. Our system

6h�ps://en.wikipedia.org/wiki/Nonogram#Mercury



FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Emina Torlak, and Zoran Popović

takes as input the rules of Nonograms, a domain-specific language

(DSL) for expressing strategies, a set of training examples, and a

cost function for measuring rule complexity. Given these inputs, it

learns general, concise programs in the DSL that represent effective

strategies for making deductions on Nonograms puzzles. �e DSL

defines the domain-specific constructs and features of Nonograms,

ensuring that our learned strategies are human-interpretable. Since

the DSL is taken as input, the designer can use it to encode domain-

specific considerations and bias. When compared with documented

strategies recovered from guides and tutorials, the rules our system

learns recover many existing strategies exactly and outperform

them when measured by coverage on states from real-world puz-

zles.

�iswork focused on automatic synthesis of human-interpretable

strategies. But the eventual goal is to find strategies that humans

are likely to use. Avenues of future work thus include using player

solution traces for cost estimation. For example, rather than using

a designer-provided cost function to estimate rule complexity, we

can a�empt to learn a cost function from play traces.

Our work enables a range of applications, such as game-design

feedback, difficulty estimation, and puzzle and progression genera-

tion. For example, previous puzzle game generation research relied

on a designer-authored space of concepts and solution features to

generate a progression of puzzles [6]. Tools like the one presented

in this paper can serve as input for such systems.

While we applied our system to Nonograms, we expect it to be

applicable to other puzzle games as well. �e system assumes that

the input DSL has the basic structure of pa�erns, conditions, and

actions, but is agnostic to the detailed constructs. �e presented

system is designed for logic puzzles of this structure, but we believe

that program synthesis can be used to learn human-interpretable

strategies in a wider range of games and problem-solving domains.

A FORMAL DSL DEFINITION

�is appendix provides formal definitions for the syntax (Figure 12)

and semantics (Figure 13) of the Nonograms DSL (Section 4) used

for rule learning. �e semantics use the following definitions in

addition to those from Section 5.

Definition A.1 (Block Element). A block of line s is a maximally

sized, contiguous sequence of cells from s where every cell is filled

with true. Blocks are defined by a pair 〈i,n〉, where i is the index

of the starting cell of the block and n is the number of cells in the

block. �e blocks of line s are the sequence of all blocks, ordered

ascending by their starting cell index.

Definition A.2 (Gap Element). A gap of line s is a maximally sized,

contiguous sequence of cells from s where every cell is not filled

with false. Gaps are defined by a pair 〈i,n〉, where i is the index of

the starting cell of the gap and n is the number of cells in the gap.

�e gaps of line s are the sequence of all gaps, ordered ascending

by their starting cell index.

Cost Function. �e cost function used to measure rule concise-

ness in our evaluation is a monotonic linear function defined over

the program syntax. �at is, each syntactic element (e.g., maximal) is

given a fixed real value, and the cost of a given piece of syntax is

the value of the particular element plus the sum of the costs of all

subexpressions.

rule R ::= with P: if b: then A

pa�erns P ::= d [and d]∗

pa�ern declaration d ::= x = p

pa�ern expression p ::= singleton(t)

| constant(t, k)

| arbitrary(t)

pa�ern type t ::= hint | block | gap

action A ::= fill(B, e, e)

boolean expression b ::= true

| b and b

| e ob e

| x is unique where b

| maximal(x)

| minimal(x)

integer expression e ::= (e)

| k

| line_size

| e oe e

| start(x)

| size(x)

| lowest_end_cell(x)

| highest_start_cell(x)

arithmetic operator oe ::= + | -

comparison operator ob ::= = | >= | >

identifier x ::= identifier

integer k ::= integer literal

boolean B ::= true | false

Figure 12: Syntax for the Nonograms DSL. �e notation

[form]∗ means zero or more repetitions of the given form.

ACKNOWLEDGMENTS

�e authors would like to thank the anonymous reviewers for

their valuable comments and helpful suggestions. �e work is sup-

ported by the National Science Foundation under Grant No. 1639576

and 1546510 and by Oak Foundation under Grant No. 16-644.

REFERENCES
[1] Erik Andersen, Sumit Gulwani, and Zoran Popović. 2013. A Trace-based Frame-

work for Analyzing and Synthesizing Educational Progressions. In CHI.
[2] K Joost Batenburg and Walter A Kosters. 2012. On the difficulty of Nonograms.

ICGA Journal 35, 4 (2012), 195–205.
[3] John D Bransford, Ann L Brown, Rodney R Cocking, and others. 2000. How

people learn. Washington, DC: National Academy Press.
[4] Cameron Browne. 2013. Deductive search for logic puzzles. In Computational

Intelligence in Games (CIG), 2013 IEEE Conference on. IEEE.
[5] Cameron Browne and Frederic Maire. 2010. Evolutionary Game Design. IEEE

Transactions on Computational Intelligence and AI in Games 2 (2010), 1–16.
[6] Eric Butler, Erik Andersen, Adam M. Smith, Sumit Gulwani, and Zoran Popović.

2015. Automatic Game ProgressionDesign�roughAnalysis of Solution Features.
In Proc. of the 33rd ACM Conf. on Human Factors in Computing Systems (CHI ’15).

[7] Eric Butler, Emina Torlak, and Zoran Popović. 2016. A Framework for Parameter-
ized Design of Rule Systems Applied to Algebra. In Intelligent Tutoring Systems.
Springer.

[8] Mary L Gick. 1986. Problem-solving strategies. Educational psychologist 21, 1-2
(1986), 99–120.

[9] Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of Declarative



Synthesizing Interpretable Strategies for Solving Puzzle Games FDG’17, August 14-17, 2017, Hyannis, MA, USA

Jwith P: if b: then AKs = if σ , ⊥ ∧ JbK(s,σ ) then JAK(s,σ ) else ⊥ where σ = JPK(s, ∅)

Jd1 and d2K(s,σ ) = Jd1K(s, Jd2K(s,σ ))
Jx = pK(s,σ ) = if v , ⊥ ∧ σ , ⊥ then σ ∪ x 7→ v else ⊥ where v = JpKs
Jsingleton(t)Ks = singleton(elements(s, t))

Jconstant(t, k)Ks = listref (elements(s, t),k)

Jarbitrary(t)Ks = arbitrary(elements(s, t))

Jfill(B,e1,e2)K(s,σ ) = fill(JBK(s,σ ), Je1K(s,σ ), Je2K(s,σ ))

JtrueK(s,σ ) = true

JfalseK(s,σ ) = false

Jb1 and b2K(s,σ ) = Jb1K(s,σ ) ∧ Jb2K(s,σ )
Je1 = e2K(s,σ ) = Je1K(s,σ ) = Je2K(s,σ )
Je1 >= e2K(s,σ ) = Je1K(s,σ ) ≥ Je2K(s,σ )
Je1 > e2K(s,σ ) = Je1K(s,σ ) > Je2K(s,σ )
Jx is unique where bK(s,σ ) = JbK(s,σ ) ∧ ∀v ∈elements(s, type(u))\u ¬JbK(s,σ ∪ x 7→ v) where u = σ [x]

Jmaximal(x)K(s,σ ) = ∀v ∈elements(s, type(u)) size(u) ≥ size(v) where u = σ [x]

Jminimal(x)K(s,σ ) = ∀v ∈elements(s, type(u)) size(u) ≤ size(v) where u = σ [x]

J(e)K(s,σ ) = JeK(s,σ )
JkK(s,σ ) = k

Jline_sizeK(s,σ ) = number of cells in line s

Je1 + e2K(s,σ ) = Je1K(s,σ ) + Je2K(s,σ )
Je1 - e2K(s,σ ) = Je1K(s,σ ) − Je2K(s,σ )
Jstart(x)K(s,σ ) = start(σ [x])

Jsize(x)K(s,σ ) = size(σ [x])

Jlowest_end_cell(x)K(s,σ ) = lowestend(s,σ [x])

Jhighest_start_cell(x)K(s,σ ) = higheststart(s,σ [x])

elements(s, hint) =�e ordered sequence of hints of s (Definition 5.1)

elements(s, block) =�e ordrered sequence of blocks of s (Definition A.1)

elements(s, gap) =�e ordrered sequence of gaps of s (Definition A.2)

type(u) = whether u is a hint, block or gap

start(u) = i if u is the ith hint

i if u is a block (i,n)

i if u is a gap (i,n)

size(u) = h if u is a hint h

n if u is a block (i,n)

n if u is a gap (i,n)

singleton(L) = if length(L) = 1 then L[0] else ⊥

listref (L, i) = if length(L) > i ≥ 0 then L[i] else ⊥

arbitrary(L) = if length(L) > 0 then a non-deterministically chosen element from L else ⊥

lowestend(s,u) = i +
∑i
j=0 hj if [h0, . . . ,hk−1] are the hints of s and u is hi

0 otherwise

higheststart(s,u) = N − k + i + 1 −
∑k−1
j=i hj if [h0, . . . ,hk−1] are the hints of s , u is hi , and N is the number of cells in s

0 otherwise

Figure 13: Semantics for the Nonograms DSL (Figure 12). �e notation s is the line state (Definition 5.1), and σ is a map from

identifiers to values (i.e., the bindings of the pattern).



FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Emina Torlak, and Zoran Popović

Programming (PPDP ’10). ACM.
[10] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. 2011. Synthesizing

Geometry Constructions. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’11). ACM.

[11] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt
Schiele, and Trevor Darrell. 2016. Generating visual explanations. In European
Conference on Computer Vision. Springer, 3–19.

[12] Alexander Jaffe, Alex Miller, Erik Andersen, Yun-En Liu, Anna Karlin, and Zoran
Popović. 2012. Evaluating Competitive Game Balance with Restricted Play. In
AIIDE.

[13] Jupiter. 2015. Picross e6. (2015).
[14] Jupiter. 2015. Pokémon Picross. (2015).
[15] Jupiter. 2016. Picross e7. (2016).
[16] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. 2016. Interpretable

Decision Sets: A Joint Framework for Description and Prediction. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’16). ACM, New York, NY, USA.

[17] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth. 2008. General game playing: Game description language specification.
Technical Report. Stanford University.

[18] Chris Martens. 2015. Ceptre: A language for modeling generative interactive
systems. In Eleventh Artificial Intelligence and Interactive Digital Entertainment
Conference.

[19] Michael Mateas and Noah Wardrip-Fruin. 2009. Defining operational logics, In
DiGRA. Digital Games Research Association (DiGRA) (2009).

[20] Gareth Moore. 2006. �e Essential Book of Hanjie and How to Solve It.
[21] Mark J Nelson. 2011. Game Metrics Without Players: Strategies for Understand-

ing Game Artifacts.. In Artificial Intelligence in the Game Design Process.
[22] Tetsuya Nishio. 2008. Original O’Ekaki: Intelligent Designs from Its Creator.
[23] John Orwant. 2000. EGGG: Automated programming for game generation. IBM

Systems Journal 39, 3.4 (2000), 782–794.
[24] Joseph Carter Osborn, April Grow, and Michael Mateas. 2013. Modular Compu-

tational Critics for Games.. In AIIDE.
[25] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and

Simon M Lucas. 2016. General video game ai: Competition, challenges and
opportunities. In �irtieth AAAI Conference on Artificial Intelligence.

[26] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework for
inductive program synthesis. In Proceedings of the 2015 ACM SIGPLAN Inter. Conf.
on Object-Oriented Programming, Systems, Languages, and Applications. ACM.

[27] Tom Schaul. 2013. A Video Game Description Language for Model-based or
Interactive Learning. In IEEE Conference on Computational Intelligence in Games.

[28] Zhangzhang Si and Song-Chun Zhu. 2013. Learning and-or templates for object
recognition and detection. IEEE transactions on pa�ern analysis and machine
intelligence 35, 9 (2013), 2189–2205.

[29] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
Feedback Generation for Introductory Programming Assignments. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). ACM, New York, NY, USA.

[30] Adam M Smith and Michael Mateas. 2011. Answer set programming for pro-
cedural content generation: A design space approach. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (2011), 187–200.

[31] Adam M Smith, Mark J Nelson, and Michael Mateas. 2010. Ludocore: A logical
game engine for modeling videogames. In Computational Intelligence and Games
(CIG), 2010 IEEE Symposium on. IEEE, 91–98.

[32] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings
of the 12th Inter. Conf. on Architectural Support for Programming Languages and
Operating Systems. ACM, 12. DOI:h�p://dx.doi.org/10.1145/1168857.1168907

[33] Andrew C Stuart. 2007. �e Logic of Sudoku. Michael Mepham Publishing.
[34] Andrew C Stuart. 2012. Sudoku Creation and Grading. (January 2012). h�p:

//www.sudokuwiki.org/Sudoku Creation and Grading.pdf [Online, accessed 8
Mar 2017].

[35] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron
Browne. 2011. Search-based procedural content generation: A taxonomy and
survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186.

[36] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Ma-
chine for Solver-aided Host Languages. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 12.

[37] Nobuhisa Ueda and Tadaaki Nagao. 1996. NP-completeness results for NONO-
GRAM via parsimonious reductions. Technical Report (1996).

[38] Alexander Zook, Brent Harrison, andMark O Riedl. 2015. Monte-carlo tree search
for simulation-based strategy analysis. In Proceedings of the 10th Conference on
the Foundations of Digital Games.


	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Condition-Action Rules for Nonograms
	3.2 System Overview

	4 A Domain-Specific Language for Nonograms Rules
	4.1 Patterns, Conditions, and Actions
	4.2 Creating DSLs for other Domains

	5 Problem Formulation
	5.1 Line States and Transitions
	5.2 Rules
	5.3 The Rule Synthesis Problem

	6 Algorithms and Implementation
	6.1 Specification Mining
	6.2 Rule Synthesis
	6.3 Rule Set Optimization

	7 Evaluation
	7.1 Can the system automatically recover the control rules?
	7.2 How does an optimal subset of rules compare on coverage?

	8 Conclusion
	A Formal DSL Definition
	Acknowledgments
	References

