
Synthesizing Memory Models from

Framework Sketches and Litmus Tests

James Bornholt Emina Torlak

University of Washington, USA

{bornholt, emina}@cs.washington.edu

Abstract

A memory consistency model specifies which writes to shared

memory a given read may see. Ambiguities or errors in these

specifications can lead to bugs in both compilers and applica-

tions. Yet architectures usually define their memory models

with prose and litmus tests—small concurrent programs that

demonstrate allowed and forbidden outcomes. Recent work

has formalized the memory models of common architectures

through substantial manual effort, but as new architectures

emerge, there is a growing need for tools to aid these efforts.

This paper presents MemSynth, a synthesis-aided sys-

tem for reasoning about axiomatic specifications of memory

models. MemSynth takes as input a set of litmus tests and

a framework sketch that defines a class of memory models.

The sketch comprises a set of axioms with missing expres-

sions (or holes). Given these inputs, MemSynth synthesizes

a completion of the axioms—i.e., a memory model—that

gives the desired outcome on all tests. The MemSynth engine

employs a novel embedding of bounded relational logic in

a solver-aided programming language, which enables it to

tackle complex synthesis queries intractable to existing rela-

tional solvers. This design also enables it to solve new kinds

of queries, such as checking if a set of litmus tests unambigu-

ously defines a memory model within a framework sketch.

We show that MemSynth can synthesize specifications for

x86 in under two seconds, and for PowerPC in 12 seconds

from 768 litmus tests. Our ambiguity check identifies missing

tests from both the Intel x86 documentation and the validation

suite of a previous PowerPC formalization. We also used

MemSynth to reproduce, debug, and automatically repair a

paper on comparing memory models in just two days.
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1. Introduction

Reasoning about concurrent code requires a memory con-

sistency model that specifies the memory reordering behav-

iors the hardware will expose. Architectures typically define

their memory consistency model with prose and litmus tests,

small programs that illustrate allowed and forbidden out-

comes. These imprecise definitions make reasoning about

correctness difficult for both developers and tool builders.

Researchers have therefore argued for formalizing memory

models [49], and have recently created formal models for

common architectures, including x86 [40] and PowerPC [30].

But each such formalization required several person-years of

effort and several revisions (e.g., [5, 6, 35, 38, 39]).

These formalization efforts have been aided by tools for

verification and comparison of memory models. Verification

tools check whether a model allows a litmus test [6, 36, 45],

while comparison tools synthesize litmus tests on which two

models disagree [28, 47]. These tools provide verification and

comparison queries for memory models within a given ax-

iomatic framework (e.g., [8]). The framework supplies basic

axioms that every memory model must follow, expressed as

first-order constraints on relations that order memory events

(such as reads and writes). The tools then answer queries

about specific models from the framework with respect to

a given litmus test (in the case of verification) or a space of

litmus tests (in the case of comparison). But no existing tools

can answer queries about the framework itself, e.g., whether

it contains a memory model that satisfies a set of litmus tests.

This paper proposes using program synthesis to answer

novel queries about memory models and their frameworks.

The core idea behind our proposal is a framework sketch,

which describes a class of memory models with a syntac-

tic template. The template consists of a set of axioms with

holes [41] (i.e., missing expressions) whose completion de-

fines a memory model from the target class. The sketch is

provided by the memory model designer and can capture

domain-specific insights and assumptions, such as the use

of scopes [9] to describe GPU memory models. Given a

framework sketch, synthesis-based tools can answer a variety

of new queries about memory models. For example, they can

search for a memory model specification that satisfies a set

of example litmus tests, automating a tedious development

cycle currently performed by hand [32]. Synthesis also en-



ables more complex queries, such as determining whether

a synthesized model is ambiguous by checking whether a

second, semantically distinct model also explains the same

example litmus tests.

We realize this proposal with MemSynth, a new system

for synthesizing axiomatic specifications of memory mod-

els from framework sketches and litmus tests. MemSynth

provides a language for writing framework sketches, and

an efficient engine for synthesizing models in those frame-

works. The language and the engine are both based on a

deep embedding of bounded relational logic [24, 44] in

Rosette [42, 43], a solver-aided host language that extends

Racket [21, 37] with support for verification and synthesis.

Relational logic combines first-order logic with relational

algebra and transitive closure, providing an expressive se-

mantics that subsumes many recent frameworks for memory

models [6, 29, 45, 47]. The bounded version of the logic is

decidable by reduction to boolean satisfiability, and existing

relational solvers [24, 33, 44] are based on such a reduction.

MemSynth takes a radically simpler approach—it delegates

the reduction to its host language. Rosette includes a symbolic

evaluator that compiles the semantics of its guest languages to

efficiently-solvable SMT constraints. MemSynth layers a spe-

cialized synthesis algorithm on top of this evaluator, scaling

to produce specifications of real memory models in seconds.

The MemSynth synthesizer takes as input a frame-

work sketch and a set of litmus tests. The sketch is a for-

mula in relational logic with missing expressions (holes)

over relations defined by the framework (e.g., happens-

before [25]). Given these inputs, MemSynth completes the

sketch by solving a synthesis query of the form ∃φM ∈
F.

∧

T∈TP
∃I. JLUT ;VT ;φMMKI ∧

∧

T∈TN
∀I. ¬JLUT ;VT ;φMMKI

where F is a framework sketch, and TP and TN contain lit-

mus tests that demonstrate allowed and forbidden behaviors,

respectively. In principle, such a query can be discharged

by generic relational solvers [33] that support higher-order

quantification (over the relations E). In practice, however,

our queries are intractable for these solvers: their languages

lack the constructs (such as sketches and partial interpre-

tations [44]) that enable MemSynth’s embedded engine to

employ aggressive optimizations based on the structure of

litmus tests and framework sketches.

But MemSynth’s novel design offers advantages that

go beyond scalable synthesis. Being embedded in Rosette,

MemSynth provides a platform for rapid development of

high-performance tools for reasoning about memory models.

For example, we use MemSynth to implement the verification

query in five lines of code, obtaining a tool that outperforms

dedicated relational solvers [24, 33] and is comparable to

existing hand-crafted verifiers [6, 29]. We also implement

a novel ambiguity query for identifying ambiguities in the

set of litmus tests with respect to a framework sketch. The

ambiguity query checks whether a memory model uniquely

explains a set of litmus tests, and if not, synthesizes another

model along with a distinguishing test that illustrates the

difference between the two models.

We evaluate the scalability and utility of MemSynth’s

queries using a framework sketch based on work by Alglave

et al. [6]. Given this sketch, MemSynth synthesizes a specifi-

cation for the notoriously relaxed PowerPC architecture from

768 litmus tests in under 12 seconds, including definitions

for the subtle cumulativity behavior of PowerPC fences. We

also synthesize a specification for the total store ordering

(TSO) memory model used by the x86 architecture in under

two seconds, using the litmus tests from the Intel Software

Developer’s Manual [23]. In both cases, our ambiguity query

finds that the given litmus tests do not uniquely define their

intended memory model—several other models are also con-

sistent with the set of tests. MemSynth synthesizes sets of

missing tests from the validation suite of Alglave et al. [6]

(for PowerPC) and the Intel manual (for x86) that resolve

these ambiguities.

We evaluate MemSynth as a tool-building platform by

reproducing results from an existing paper [29] on comparing

memory models. In the process, we automatically synthesize

a repair for a discrepancy between our framework sketch and

the original work—due to a misprint in the paper—which we

were unable to fix by hand. The repaired sketch of the paper’s

framework was developed in two days and achieves the same

performance as the existing tool.

In summary, this paper makes the following contributions:

• We introduce MemSynth, a platform for automatically

synthesizing memory model specifications from frame-

work sketches and litmus tests. MemSynth’s novel design,

as an embedded logic in a solver-aided host language,

enables it to synthesize complex memory models such as

PowerPC from large sets of examples.

• We demonstrate that MemSynth can answer advanced

queries about memory model specifications, such as am-

biguity, that can aid memory model designers in refining

their specifications. To our knowledge, MemSynth is the

first tool to provide this form of analysis for memory

model designs.

• We show MemSynth’s utility for rapid development of

automated memory model frameworks by constructing

several tools that outperform existing counterparts.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the MemSynth language for relational logic.

Section 3 defines framework sketches and litmus tests. Sec-

tion 4 presents the queries that MemSynth can answer, and

Section 5 describes the algorithms to answer these queries.

Section 6 shows three case studies using MemSynth, includ-

ing synthesizing and refining a specification of PowerPC

and identifying ambiguities in x86 documentation. Section 7

describes related work, and Section 8 concludes.



2. MemSynth Language

MemSynth is a language and engine for automated reason-

ing about memory models. The language extends bounded

relational logic [24, 44] with expression holes, which enable

sketching of memory model frameworks. Thanks to its ex-

pressive underlying logic, MemSynth can host many existing

frameworks for reasoning about classes of memory models.

This section reviews the syntax and semantics of relational

logic, and presents our extensions for synthesis problems.

2.1 Bounded Relational Logic

Relational logic [24] extends classic first-order logic with

transitive closure and relational algebra. The inclusion of

closure and relations makes this logic ideally suited for rea-

soning about memory models. In fact, many recent axiomatic

memory model frameworks [6, 29, 45, 48] are expressed as

first-order constraints on relations that order memory events.

MemSynth is based on a new embedding of bounded rela-

tional logic [44] in the Rosette solver-aided language [42, 43],

which extends Racket [21] with support for verification and

synthesis. This embedding includes an explicit construct for

sketching, and its engine offers optimizations for answering

(satisfiability) queries about memory models orders of mag-

nitude faster than general-purpose relational solvers [24, 33].

Syntax. Bounded relational logic (Figure 1) includes the

standard connectives and quantifiers of first-order logic, along

with the standard operators of relational algebra. A specifica-

tion LU ;D; f M in this logic consists of a universe of discourse

U , a set of relation declarations D, and a formula f . The

universe U is a finite, non-empty set of uninterpreted symbols.

A relation declaration r :k [Rl ,Ru] introduces a free variable

r (in essence, a Skolem constant), which denotes a relation

of arity k. Each tuple in this relation consists of k elements

drawn from the universe U . The relations Rl and Ru are called

the lower and upper bound on r, and specify the tuples that r

must and may contain, respectively. The formula f may refer

to the variables r declared in D, but it may not include any

other free (unquantified) variables.

Semantics. We define the meaning of a relational specifica-

tion s = LU ;D; f M with respect to an interpretation as follows.

An interpretation I consists of a universe U(I) and a map of

variables to relations drawn from U(I). We say that I satisfies

the specification s, written as I |= s, if I and s have the same

universe of discourse (i.e., U(I) =U), if Rl ⊆ I(r)⊆ Ru for

each r :k [Rl ,Ru] in D, and if the formula f evaluates to ‘true’

in the environment defined by I, i.e., J f KI =⊤.

The semantics of formulas and expressions are stan-

dard [44], but we review the most relevant constructs next.

The constant univ denotes the universal relation {〈a〉 | a∈U},
and iden is the identity relation {〈a,a〉 | a∈U}. The multiplic-

ity predicates no, some, and one constrain their argument to

contain zero, at least one, and exactly one tuple, respectively.

The cross product X → Y of two relations is the Cartesian

product of their tuples. The join X .Y of two relations is the

pairwise join of their tuples, omitting the last column of X

and first column of Y , on which the two relations are matched.

As we will see in Section 3.2, memory model specifications

make heavy use of these constructs.

Example 1. Let the universe be U = {a,b,c,d}, X =
{〈a〉,〈c〉} a relation of arity 1 with two tuples, and Y =
{〈a,b〉,〈b,d〉} a relation of arity 2 with two tuples. We can

take the cross product, join, and transitive closure of these re-

lations as follows: X→Y = {〈a,a,b〉,〈a,b,d〉,〈c,a,b〉,〈c,b,d〉},
X .Y = {〈b〉}, Y.Y = {〈a,d〉}, and ^Y = {〈a,b〉,〈b,d〉,〈a,d〉}.
If we provide the declarations p :1 [{},{〈a〉,〈c〉,〈d〉}] and

q :2 [{〈a,b〉},{〈a,b〉,〈b,d〉}], then the interpretation I =
{p 7→ X ,q 7→ Y} satisfies the specification LU ; p,q;no q.pM
but does not satisfy LU ; p,q;q.q in qM.

2.2 Expression Holes

To support synthesis, we extend relational logic with expres-

sion holes, which define the search space for a synthesis query

to explore [41]. An expression hole G(N,T,d,k) is a rela-

tional expression that evaluates non-deterministically to one

of a finite set of concrete expressions. The set contains all ex-

pressions of arity k that can be produced with derivation trees

of depth d from a context-free grammar with non-terminals N

and terminals T , where the non-terminals are drawn from ex-

pression operators in relational logic. Expression holes are a

key difference between MemSynth and other relational logic

languages such as Kodkod [44] and Alloy∗ [33], which would

require another layer of embedding—building an interpreter

for relational logic inside relational logic—to achieve the

same result.

Example 2. Let X be a relation of arity 1, Y a relation of arity

2, T = {X ,Y}, and N = {+,→}. Then G(N,T,1,1) contains

only the expressions X and X +X , G(N,T,2,1) additionally

contains X + X + X and X + X + X + X , and G(N,T,1,2)
contains Y , Y +Y , and X → X .

2.3 Relational DSL

MemSynth is implemented (Figure 2) as a domain-specific

language (DSL) in Rosette [42, 43]. The MemSynth inter-

preter INTERPRET(p, I) takes as input relational syntax p

and an interpretation I, and executes the semantics in Fig-

ure 1. The interpreter represents relations of arity k in the

standard way [24, 44], as boolean matrices of size |U |k, with

each cell denoting the presence or absence of a given k-tuple.

Relational expressions are then interpreted as matrix oper-

ations and formulas as constraints over matrix entries; e.g.,

relational join becomes matrix multiplication.

Being embedded in Rosette, MemSynth is both an in-

terpreter for bounded relational logic and an engine for an-

swering relational satisfiability queries—such as finding an

interpretation I that satisfies a specification s, if one exists.

We obtain this engine for free by exploiting Rosette’s sym-

bolic evaluation facilities. To search for a satisfying interpre-



specification s ::= LU ;D; f M

universe U ::= {a[,a]∗}

declarations D ::= {} | {d[,d]∗}

declaration d ::= r :k [b,b]

bound b ::= {(〈a[,a]∗〉)∗}

formula f ::= true | false | e in e | e = e | no e |

some e | one e | not f | f and f | f or f |

f implies f | f iff f |

all x : e. f | exists x : e. f

expression e ::= r | c | e+ e | e & e | e− e | e.e |

e→ e | ^e | ∼e | {x : e | f}

arity k ::= positive integer

relation r ::= identifier

variable x ::= identifier

scalar a ::= identifier

constant c ::= univ | iden

(a) Abstract syntax

JLU ;d1 , . . . ,dn; f MKI =
n
∧

i=1

JdiKI∧J f KI∧ (U(I) =U)

Jr :k [bL ,bU ]KI = bL ⊆ I(r)⊆ bU

JtrueKI =⊤

JfalseKI =⊥

Jp in qKI = JpKI ⊆ JqKI

Jp = qKI = JpKI = JqKI

Jno pKI = JpKI ⊆ /0

Jsome pKI = /0⊂ JpKI

Jone pKI = |JpKI|= 1

Jnot f KI = ¬J f KI

J f and gKI = J f KI∧JgKI

J f or gKI = J f KI∨JgKI

J f implies gKI = J f KI⇒ JgKI

J f iff gKI = J f KI⇔ JgKI

Jall x : p. f KI = ∧v∈JpKIJ f K(I[x := v])

Jexists x : p. f KI = ∨v∈JpKIJ f K(I[x := v])

JrKI = I(r)

JunivKI = {〈a〉 | a ∈U(I)}

JidenKI = {〈a,a〉 | a ∈U(I)}

Jp+qKI = JpKI∪JqKI

Jp & qKI = JpKI∩JqKI

Jp−qKI = JpKI \JqKI

Jp.qKI = {〈p1 , . . . , pn ,q1 , . . . ,qm〉 |

〈p1 , . . . , pn ,z〉 ∈ JpKI∧〈z,q1 , . . . ,qm〉 ∈ JqKI}

Jp→ qKI = {〈p1 , . . . , pn ,q1 , . . . ,qm〉 |

〈p1 , . . . , pn〉 ∈ JpKI∧〈q1 , . . . ,qm〉 ∈ JqKI}

J^pKI = JpKI∪Jp.pKI∪Jp.p.pKI∪ . . .

J∼pKI = {〈p2 , p1〉 | 〈p1 , p2〉 ∈ JpKI}

J{x : p | f}KI = {v ∈ JpKI | J f K(I[x := v])}

(b) Semantics

Figure 1. The syntax and semantics of bounded relational logic [44].

INTERPRET(p, I)
Inputs: Relational syntax p; interpretation I

Output: Encoding of the semantics of p (according to Figure 1)

with respect to (possibly symbolic) bindings in I

INSTANTIATE(D)
Input: Set of relation declarations D = {d1, . . . ,dn}
Output: Interpretation I that binds each decl. r :k [Rl ,Ru] in D to

a matrix with entries

m[i1, . . . , ik] =











⊤ 〈ui1 , . . . ,uik 〉 ∈ Rl

freshSymBool() 〈ui1 , . . . ,uik 〉 ∈ Ru \Rl

⊥ otherwise

Figure 2. Functions provided by the MemSynth DSL for

interpreting relational formulas.

tation I |= s, MemSynth simply evaluates INTERPRET(s, I)
against an interpretation I that binds the free variables in

s to matrices populated with symbolic boolean values (us-

ing the INSTANTIATE function in Figure 2). The result of

INTERPRET(s, I) is a symbolic encoding of the semantics of

s, which is then checked for satisfiability with an off-the-shelf

SMT solver [19]. This lifted evaluation works both on sym-

bolic interpretations and on specifications that are made sym-

bolic by the inclusion of expression sketches. This evaluation

strategy also offers precise state space control: by exploiting

domain-specific knowledge to reduce the number of symbolic

values in I, MemSynth outperforms state-of-the-art relational

solvers [33] as we show in Section 6.

3. Framework Sketches

Like existing tools [8, 45, 47], MemSynth specifies memory

models as axioms in relational logic that constrain the set

of executions allowed for a concurrent program. But unlike

existing tools, which take a complete memory model specifi-

cation as input, MemSynth accepts a sketched specification in

the form of a framework sketch provided by a memory model

designer. Framework sketches are at the core of MemSynth’s

flexibility as a tool-building platform.

This section defines framework sketches in terms of

relational logic, and introduces FAlglave, an example sketch of

the Alglave et al. [6] framework for memory models. We

use FAlglave to illustrate the automated reasoning queries

(Section 4) supported by our engine (Section 5), and to

demonstrate their scalability (Section 6).

3.1 Definitions

A framework sketch (Definition 1) consists of two compo-

nents: a set of axioms φ that contain expression holes (Sec-

tion 2.2), and a function ENC that encodes the syntax and

semantics of a litmus test in bounded relational logic. Con-

current programs (without unbounded control flow) have a

natural representation [45] in our logic: a program defines a

finite universe of discourse U and a set of relations V = S∪E

over U that encode the test’s syntax (S) and its candidate

executions (E). For example, S often includes unary relations

for each type of instruction in a concurrent program P (such

as Read and Write), as well as the program-order relation po

that relates instructions in the same thread. The relations in E

encode possible executions of P by, for example, defining a

happens-before ordering [25] on the instructions in P (see [6,

28, 45]). The holes in the axioms φ are specified over the re-

lations S∪E emitted by ENC. A framework sketch (φ ,ENC)
thus defines a class of memory models (Definition 2) with

respect to a framework-specific definition of a litmus test.

Definition 1 (Framework sketch). A framework sketch is a

pair (φ ,ENC), where:

• φ is a relational formula containing zero or more expres-

sion holes. The relations in φ are partitioned into sets S

and E, where relations in S characterize the syntax of a

concurrent program, and relations in E characterize an

execution of that program.

• ENC is a function that takes as input a concurrent program

P, and returns a pair (U,V) of a relational universe U

and set of relation declarations V , such that every relation

in S∪E is bound by V .



We say that a framework sketch allows a concurrent program

P if there exists an interpretation I such that I |= LU ;V;φM,
where (U,V) = ENC(P). Otherwise, the sketch forbids P.

Definition 2 (Memory model). A memory model M is a

framework sketch (φM,ENC) in which φM contains no expres-

sion holes. We say that M belongs to a framework sketch

F = (φF ,ENC), written M ∈ F, if and only if φM can be ob-

tained from φF by substituting every hole h = G(N,T,d,k) in

φF with a relational expression e ∈ h.

By not mandating a specific definition of a concurrent pro-

gram P, MemSynth allows framework sketches to define

instruction sets and other program structures (e.g., control

flow) that are relevant to a given class of memory models. For

example, a language memory model would include release/ac-

quire operations [11]; an architectural model, such as FAlglave

below (Section 3.2), would include fences for a specific ar-

chitecture (e.g., mfence on x86 or sync and lwsync on

PowerPC); and a GPU memory model would include scopes

on fence operations [9]. MemSynth requires only that the

framework sketch separate the relations S defining a litmus

test from the relations E defining an execution of that test, so

that it can support a variety of automated reasoning queries

in a framework-agnostic way (described in Section 4).

3.2 FAlglave

This section illustrates a framework sketch based on an

axiomatic framework by Alglave et al. [6]. We call the

corresponding framework sketch FAlglave. We use FAlglave for

most of our experiments, although in Section 6.2 we construct

a second framework sketch based on a different framework.

3.2.1 Litmus Tests

In FAlglave, a litmus test is a small multi-threaded program

together with a candidate outcome, expressed as a constraint

on the program’s final state. For example, the Intel Software

Developer’s Manual [23] includes the following litmus test

to illustrate a surprising behavior allowed by the x86 memory

model, where reads may be reordered with earlier writes:

Test x86/3

Thread 1 Thread 2

1: X← 1 3: Y← 1

2: r1← Y 4: r2← X

Outcome: r1= 0∧r2= 0

x86: allowed

We assume that all memory locations (denoted by capital

letters) and registers (denoted by r1, r2, etc.) initially hold

the value 0 unless stated otherwise. The instruction X← 1

means that 1 is written to the memory location X, and r1← Y

means that the value at memory location Y is read into register

r1. The outcome is a conjunction of equalities that specify

final values of memory (optional) and registers (mandatory).

Given a litmus test, FAlglave’s encoding function ENCA

constructs a universe of memory events (i.e., read, write, and

fence instructions), locations, threads, and values that appear

in the test (Definition 3). It also constructs the relations S that

encode the syntax of the test, including, for example, unary

relations (such as Read) for the types of each instruction of

the test. The contents of the syntax relations S are known stat-

ically (i.e., the values observed by each read are known from

the test’s outcome predicate, and we do not handle control

dependencies) and extracted automatically from the test.

Definition 3 (Litmus test). A litmus test in FAlglave is a small

concurrent program together with a postcondition constraint.

Given a litmus test T , FAlglave’s encoding function ENCA(T )
returns a finite universe of discourse U and a set of relation

declarations S over U, defined as follows:

• Every relation declaration in S takes the form r :k [R,R].
That is, I(r) = R for all interpretations I, and we say that

r is constant.

• Unary relations Event, Thread, Location, and Value par-

tition the universe U into memory events, threads, loca-

tions, and values. Value always includes the distinguished

value 0. Event is partitioned by Read, Write, Fence, and

LWFence relations, which contain reads, writes, heavy-

weight fences, and lightweight fences, respectively.

• The thd relation is a function from Event to Thread.

• loc and val map each event e ∈ Read+Write to the

Location and Value, respectively, that they read or write.

• The program order relation po is a strict partial order

over Event (i.e., irreflexive, transitive, and asymmetric);

if (e1,e2) ∈ po, then events e1 and e2 share a thread (i.e.,

e1.thd= e2.thd) and event e1 executes before event e2.

• The dependencies relation dep is a subset of po; if

(e1,e2) ∈ dep then event e2 depends on event e1.

• The final value relation final is a partial function from

Location to Value, specifying constraints on the final state

of memory imposed by the test’s candidate outcome.

Example 3. Consider the test x86/3 above. ENCA(x86/3)
defines a universe U = E ∪L∪T ∪V with four events E =
{e1,e2,e3,e4}, two locations L = {X,Y}, two threads T =
{t1, t2}, and two values V = {0,1}. Its relations V are:

Read= {〈e2〉,〈e4〉} Write= {〈e1〉,〈e3〉}
Fence= {} Thread= {〈t1〉,〈t2〉}
LWFence= {} Location= {〈X〉,〈Y〉}
Value= {〈0〉,〈1〉} dep= {}
po= {〈e1,e2〉,〈e3,e4〉} final= {}
thd= {〈e1, t1〉,〈e2, t1〉,〈e3, t2〉,〈e4, t2〉}
loc= {〈e1,X〉,〈e2,Y〉,〈e3,Y〉,〈e4,X〉}
val= {〈e1,1〉,〈e2,0〉,〈e3,1〉,〈e4,0〉}

3.2.2 Executions

FAlglave uses two relations, rf and ws, to define the execution

of a litmus test (Definition 4). The reads-from relation rf maps

each write event to the reads that observe it: if (w,r) ∈ rf,

then w and r are a write and a read, respectively, to the same

address and with the same value. The write serialization rela-

tion ws places a total order on all writes to the same location.



ppoSC , po

grfSC , rf

fencesSC , /0

(a) Sequential consistency

ppoTSO , po− (Write→ Read)

grfTSO , rf− (thd.∼thd)

fencesTSO , /0

(b) Total store order

Figure 3. Examples of common memory models defined by

hand in the FAlglave framework.

The encoding function ENCA returns {rf,ws} as the set of ex-

ecution relations E for a litmus test T , and it specifies bounds

on their contents by automatically extracting them from T .

Definition 4 (FAlglave Execution). In FAlglave, an execution E

of a litmus test T declares two relations:

• The reads-from relation rf is a subset of Write→ Read,

such that if (w,r) ∈ rf then (1) w.loc= r.loc and w.val=
r.val, and (2) for all w′ ∈Write, if w′ 6= w then (w′,r) 6∈ rf.

• The write serialization relation ws is a subset of Write→
Write, such that if (w1,w2) ∈ ws then w1.loc = w2.loc,

and for every memory location li ∈ Location, the relation

{(w1,w2) ∈ ws | w1.loc= li} is a total order.

3.2.3 Memory Model

FAlglave defines a memory model as a relational formula φA

that constructs a happens-before order and checks its acyclic-

ity. FAlglave’s memory model definition is parametric—many

different memory models can be defined within the same

framework. This freedom is exposed through three relations

〈ppo,grf, fences〉 that define the allowed intra-thread reorder-

ings, inter-thread reorderings, and reorderings across fences,

respectively. Figure 3 shows examples of these relations for

the common sequential consistency (SC) and total store order

(TSO) models. The FAlglave formula φA replaces these three

relations with expression holes for use in synthesis.

Preserved Program Order. The preserved program order

relation ppo defines which thread-local reorderings are al-

lowed by a memory model. Given the program order relation

po of a litmus test, ppo ⊆ po specifies the program-order

edges in po that cannot be reordered. In Figure 3, sequential

consistency allows no thread-local reordering, while total

store order (TSO) allows writes to be reordered beyond later

reads by excluding write-to-read edges from ppo.

Global Reads-From. The global reads-from relation grf

defines which inter-thread communications create ordering

requirements between events. Given the reads-from relation

rf from an execution (Definition 4), grf specifies the edges

in rf that must be globally ordered. In Figure 3, sequential

consistency allows no reordering, and so every edge in rf

creates an ordering obligation. On the other hand, total store

order (TSO) allows threads to read their own writes early, and

so if a read observes a write on the same thread, it should not

create an ordering obligation for other threads.

Fences. The fences relation fences defines which events are

ordered by a memory fence. For example, the x86 architecture

fr , (∼rf.ws)+{〈r,w〉 : Read→Write | (no rf.r) and (r.loc= w.loc)}

ghb, ppo+ws+ fr+grf+ fences

(a) Auxiliary relations

Execution, rf in (Write→ Read)& (loc.∼loc)& (val.∼val)
and no (rf.∼rf− iden)
andws in (Write→Write)& loc.∼loc
and no iden&ws
andws.ws inws
and all a : Write. all b : Write.

(not (a = b) and a.loc= b.loc)
implies (〈a,b〉 inwsor 〈b,a〉 inws)

Init, all r : Read. (no rf.r) implies r.val= 0

Uniproc, no ^(rf+ws+ fr+(po& loc.∼loc))& iden

Thin, no ^(rf+dep)& iden

Final, all w : Write. (w in (univ.ws−ws.univ) and some (w.loc).final)
implies w.val= w.loc.final

Acyclic, no ^ghb& iden

Valid, Execution and Init andUniproc andThin andFinal andAcyclic

(b) Axioms

Figure 4. The axioms of the FAlglave framework extend those

of Alglave et al. [6], with changes to remove initialization

write events and support outcomes for memory locations.

has an mfence instruction that serializes all reads and writes

issued prior to it. The TSO example in Figure 3 already in-

cludes fences in ppo, and so fences is still empty. But some re-

laxed memory models, such as PowerPC and ARM, also have

a notion of fence cumulativity [22], in which fence operations

create orderings between events on other threads; FAlglave

uses fences to model cumulativity. The rules for cumulativ-

ity are subtle, but MemSynth correctly synthesizes them for

PowerPC in under 12 seconds, as we show in Section 6.1.

Axioms Given the definitions of ppo, grf, and fences,

FAlglave uses the axioms in Figure 4 to specify the frame-

work sketch’s formula φA. The axioms follow Alglave et al.

[6], with two changes for better solving performance. First,

we omit initialization write events (events that initialize each

memory location to 0) in favor of an Init axiom. Second, we

use an explicit Final axiom to encode outcome constraints

on memory locations, rather than simulating all possible

memory states as Alglave et al.’s herd tool does [8].

The first five axioms in Figure 4(b) define well-formedness

of an execution E. The Execution axiom applies the rules in

Definition 4 to the rf and ws relations. The initialization

axiom Init states that reads absent from the reads-from

relation rf observe the initial value 0. The uniprocessor

axiom Uniproc requires executions to respect coherence at

each memory location. The thin-air axiom Thin prevents

executions that create values out of thin air (i.e., involve cyclic

dependencies). Lastly, the final value axiom Final imposes

the constraints defined by the final relation.

To define whether an execution is allowed, FAlglave con-

structs a global happens-before order ghb reflecting the or-

derings between events induced by the memory model. The

Valid axiom allows a test if there exists some valid execu-

tion for which the global happens-before relation is acyclic

(i.e., no event is transitively reachable from itself). That is,

FAlglave’s framework sketch (φA,ENCA) defines φA , Valid.



4. Memory Model Queries

MemSynth is designed to efficiently answer four queries

about memory models from a given framework sketch:

Verification determines whether a litmus test is allowed or

forbidden by a memory model;

Synthesis searches for a memory model that produces de-

sired outcomes on a set of litmus tests;

Equivalence determines whether two memory models are

equivalent (within finite bounds); and

Ambiguity decides whether a memory model is the only one

that explains the outcomes of a set of litmus tests.

This section defines the MemSynth queries and explains their

utility in building and refining memory model specifications.

Section 5 shows how to implement these queries to scale to

hundreds of litmus tests and large specifications.

4.1 Verification

The verification query, determining whether a memory model

allows a litmus test, is well-studied in the literature [6,

26, 29, 45, 48]. Given a litmus test T and memory model

M = (φ ,ENC) (Definition 2), the verification query checks

satisfiability of the formula

∃I.JLU ;V;φMKI

where (U,V) = ENC(T ). If this formula is satisfiable, then

M allows the test T (Definition 1). Otherwise, M forbids T .

The verification query involves a straightforward satisfiabil-

ity check that can be discharged with any relational solver,

including MemSynth.

4.2 Synthesis

The synthesis query searches a framework sketch for a mem-

ory model that is consistent with the desired outcomes for a

set of litmus tests. Given a set TP of tests that should be al-

lowed, a set TN of tests that should be forbidden, and a frame-

work sketch F =(φ ,ENC), the synthesis task is to find a mem-

ory model (φM,ENC) ∈ F that allows all tests in TP and for-

bids all tests in TN . This query amounts to solving the formula

∃(φM,ENC) ∈ F.
∧

T∈TP

∃I. JLUT ;VT ;φMMKI

∧
∧

T∈TN

∀I. ¬JLUT ;VT ;φMMKI
(1)

where (UT ,VT ) = ENC(T ).
The synthesis query involves higher-order universal quan-

tification over the non-constant relations in VT for forbidden

tests TN The recent Alloy∗ solver [33] supports finite model

finding for relational formulas with higher-order quantifiers,

and so could in principle solve the synthesis query. In prac-

tice, however, these queries are intractable for Alloy∗ because

its language lacks crucial constructs for precisely specifying

the size and shape of the search space: expression holes and

bounds on the contents of declared relations. These limita-

tions motivated our embedding of bounded relational logic

in Rosette (Section 2). In Section 5.2, we present an algo-

rithm for solving synthesis queries that scales to complex

framework sketches and many litmus tests.

4.3 Equivalence

MemSynth can compare two memory models MA and MB

from a framework F for equivalence. If they are not equiva-

lent, MemSynth generates a distinguishing litmus test TD on

which they disagree (i.e., one model allows TD while the other

forbids it). As with existing work on generating distinguish-

ing tests [28, 47], the equivalence check is bounded, proving

two models equivalent only up to a bound on the size of the

distinguishing test. These bounds are defined by a symbolic

litmus test (Definition 5), in which some syntax relations S

are not constant (in contrast to, e.g., Definition 3). A symbolic

litmus test thus defines a set of concurrent programs rather

than only one such program.

Definition 5 (Symbolic litmus test). A symbolic litmus test

TS = LU ;V; f M for a framework sketch F = (φ ,ENC) is a

relational specification in which

• V binds the relations S∪E in φ (as in Definition 1).

• The formula f is a well-formedness predicate for the

litmus test, in which the only relations are those in S.

Given a symbolic litmus test TS and two memory mod-

els MA = (φA,ENC) and MB = (φB,ENC), the equivalence

query solves for a distinguishing litmus test by checking the

satisfiability of two formulas:

∃IT . JTSKIT ∧∃I.JLU ;V;φAMK(IT ∪ I)

∧∀I.¬JLU ;V;φBMK(IT ∪ I)

to find a test on which MA is weaker than MB (i.e., MA allows

a test that MB forbids), and similarly the second formula

∃IT . JTSKIT ∧∃I.JLU ;V;φBMK(IT ∪ I)

∧∀I.¬JLU ;V;φAMK(IT ∪ I)

for a test on which MA is stronger than MB. The symbolic

litmus test TS = LU ;V; f M includes a well-formedness pred-

icate f , a relational formula that ensures the resulting test is

a syntactically valid program. If either formula is satisfiable,

then TD = EVAL(TS, IT ) is a litmus test that distinguishes the

two models MA and MB.1 If both formulas are unsatisfiable,

then MA and MB are equivalent on all valid tests in the search

space defined by TS.

4.4 Ambiguity

The ambiguity query checks whether a memory model M is

the only one within a framework sketch that gives the desired

1 EVAL(TS, IT ) substitutes each variable v in TS with the value I(v).



outcomes on a set of allowed (TP) and forbidden (TN) litmus

tests. To do so, the query attempts to synthesize a second

memory model MS and a distinguishing litmus test TD such

that MS and M disagree on TD but agree on all tests in TP

and TN . If such a model and test exist, the set of given tests

is ambiguous: there are two semantically distinct memory

models that both explain the input tests TP∪TN .

Given a memory model M = (φM,ENC), a framework

sketch F = (φ ,ENC), a symbolic litmus test TS = LUS;VS; f M,
and sets of allowed and forbidden tests TP and TN , detecting

ambiguity involves checking the satisfiability of a formula

that combines synthesis and equivalence:

∃IT .∃(φS,ENC) ∈ F. JTSKIT ∧
∧

T∈TP

∃I. JLUT ;VT ;φSMKI

∧
∧

T∈TN

∀I. ¬JLUT ;VT ;φSMKI

∧∃I.JLUS;VS;φSMK(IT ∪ I)

∧∀I.¬JLUM;VM;φMMK(IT ∪ I)

where (UT ,VT ) = ENC(T ), and a second formula that

swaps MS and M in the final two conjuncts (akin to the

two equivalence formulas). If either formula is satisfiable,

then MS = (φS,ENC) is a second memory model that pro-

duces the desired outcomes on all tests in TP and TN , and

TD = EVAL(TS, IT ) is a litmus test that distinguishes M and

MS. If both formulas are unsatisfiable, then M is the only

memory model that produces the desired outcomes. This

uniqueness result is with respect to two bounds: the finite

search space defined by the framework sketch F , and the

finite search space for the symbolic litmus test TS.

The ambiguity query identifies missing tests from the

input sets, and so can form the basis of a refinement loop to

guide the development of a memory model specification. For

example, if we take TP to contain only the test x86/3 from

Section 3.2, and TN to be empty, then many distinct memory

models within FAlglave produce the desired outcomes (TSO,

RMO, PowerPC, etc.). If we take M to be one such model,

the ambiguity query will identify a second model that also

allows test x86/3, and produce a new distinguishing litmus

test TD to resolve the ambiguity. By deciding the desired

outcome for TD and adding it to the appropriate set (TP or

TN), we can repeat the synthesis process to refine the memory

model M. The user can decide on the desired outcome for TD

by inspecting documentation, executing the test on hardware,

consulting with system architects, or otherwise.

5. Reasoning Engine

This section presents MemSynth’s engine for answering the

queries in Section 4. We show the algorithms to implement

these queries, and describe key optimizations to make them

scale to real-world memory models.

1 function VERIFY(M = (φM ,ENC),T )
2 (U,V)← ENC(T )
3 I← INSTANTIATE(V)
4 ϕ ← INTERPRET(φM , I)
5 return SOLVE(ϕ) = SAT

Figure 5. MemSynth’s verification procedure VERIFY takes

as input a memory model M and litmus test T and determines

whether M allows T .

1 function ENCA(T )
2 (U,V)← ENCSYNTAX(T ) ⊲ Encode relations in Definition 3

3 I← INSTANTIATE(V) ⊲ Make an interpretation from V

4 Brf
u ← INTERPRET((Write→ Read)& (loc.∼loc)& (val.∼val), I)

5 Bws
u ← INTERPRET((Write→Write)& (loc.∼loc), I) ⊲ Figure 4

6 return (U,V ∪{rf :2 [ /0,B
rf
u ],ws :2 [ /0,B

ws
u ]})

Figure 6. The ENCA procedure computes relational bounds

for an execution E in the FAlglave framework.

5.1 Verification

The verification query (Section 4.1) determines whether

a memory model M allows a litmus test T . The VERIFY

procedure in Figure 5 takes as input a memory model M =
(φ ,ENC) and litmus test T , and returns true iff M allows

T . The VERIFY procedure first encodes the litmus test as a

finite universe U and set of relation declarations V using

the memory model’s ENC function (Definition 1). Given

these bounds, it then checks the satisfiability of the relational

specification LU ;V;φM. The implementation of VERIFY is

only four lines of code, demonstrating the utility of our

relational DSL for reasoning about memory models.

Bounds Compaction. Figure 6 shows an example imple-

mentation of the ENC function. The ENCA procedure com-

putes bounds for the relations in a FAlglave execution (Defi-

nition 4). A naive bound that includes every tuple of the ap-

propriate arity is sound, but tighter bounds can significantly

improve performance, since the difference between the upper

and lower bounds for each free relation defines the size of the

search space for the solver query. For FAlglave, an execution

consists of two relations rf and ws that specify a reads-from

and write serialization order, respectively. ENCA computes

upper bounds for each relation from the Execution axiom in

Figure 4. The rf relation contains only tuples (w,r) where

w is a write, r is a read, and both w and r access the same

location with the same value. Likewise, the ws relation con-

tains only tuples (w1,w2) where both entries are writes to the

same location. Compared to naive upper bounds, this more

compact search space improve verification time by an average

of 27× on the PowerPC tests discussed in Section 6.1.

5.2 Synthesis

The synthesis query (Section 4.2) generates a memory model

that gives the desired outcomes on a set of litmus tests. The

space of candidate solutions is defined by a framework sketch

F = (φ ,ENC) (Definition 1), which contains expression holes

that define a candidate space of memory models.

Our synthesis procedure, SYNTHESIZE (Figure 7), takes

as input a framework sketch F = (φ ,ENC), a set of allowed



1 function SYNTHESIZE(F = (φ ,ENC),TP,TN )
2 S← new IncrementalSMTSolver()
3 TU ←{} ⊲ Set of used tests

4 φM ← false ⊲ Model that forbids all outcomes

5 T ← NEXTTEST(φM ,TP,TN ,TU ) ⊲ Choose an initial test

6 while T 6=⊥ do

7 ADDTEST(S,F,T,TP) ⊲ Add encoding of T to S

8 TU ← TU ∪T

9 Ib← SOLVE(S) ⊲ Boolean interpretation or UNSAT

10 if Ib = UNSAT then ⊲ No model exists

11 return UNSAT
12 φM ← EVAL(φ , Ib) ⊲ Use Ib to fill the holes in φ

13 T ← NEXTTEST(φM ,ENC,TP,TN ,TU ) ⊲ Choose the next test

14 return (φM ,ENC) ⊲ M gives the expected outcome on all tests in TP ∪TN

(a) Main synthesis routine

1 function ADDTEST(S,F = (φ ,ENC),T,TP)
2 (U,V)← ENC(T )
3 I← INSTANTIATE(V) ⊲ Symbolic relational interpretation I

4 ϕ ← INTERPRET(φ , I) ⊲ Boolean encoding

5 if T ∈ TP then

6 ASSERT(S,ϕ) ⊲ Add an allowed test

7 else

8 X ← SYMBOLICS(I) ⊲ All symbolic booleans in I

9 ASSERT(S,∀X . ¬ϕ) ⊲ Add a forbidden test

(b) Test evaluation

1 function NEXTTEST(φM ,ENC,TP,TN ,TU )
2 for T ∈ (TP ∪TN)\TU do ⊲ Iterate over unused tests

3 if VERIFY((φM ,ENC),T ) 6= (T ∈ TP) then

4 return T ⊲ M gives the wrong outcome on T

5 return ⊥ ⊲ M gives the expected outcome on all unused tests

(c) Test selection

Figure 7. MemSynth’s synthesis procedure SYNTHESIZE takes as input a memory model sketchM, a set TP of allowed litmus

tests, and a set TN of forbidden litmus tests, and returns a memory model that produces the given outcomes on all tests.

litmus tests TP, and a set of forbidden litmus tests TN . Given

these inputs, it uses our relational DSL (embedded in Rosette)

to generate and solve quantified formulas using an off-the-

shelf SMT solver [19]. Because MemSynth represents rela-

tions as matrices of boolean values, these formulas quantify

over boolean variables. We found the Z3 SMT solver [19]

to be extremely effective at discharging these formulas—an

average of 2–5× faster than our own specialized implemen-

tation of counterexample-guided inductive synthesis [41].

SYNTHESIZE does not try to find a correct model for all

tests in TP and TN at once, since this would require encoding

every test against the framework sketch predicate φ . Instead,

tests are added to the synthesis query incrementally. The order

in which tests are added influences synthesis performance;

we use a simple heuristic that adds tests in increasing order of

size, which optimizes for small search spaces. This incremen-

talization reduces the size of the synthesis query substantially:

in Section 6.1, we show that only 16 of 768 tests were added

to the query when synthesizing a model for PowerPC.

The SYNTHESIZE procedure is sound, and it is complete

with respect to the input sketch: if a correct model exists

within the input sketch, SYNTHESIZE will return a solution.

Theorem 1 (Soundness). If SYNTHESIZE(F,TP,TN) returns

a memory model M, then M satisfies Equation 1.

Theorem 2 (Termination). SYNTHESIZE(F,TP,TN) termi-

nates when TP and TN are finite sets.

Theorem 3 (Completeness). If there exists a model M in the

framework sketch F that satisfies Equation 1, and TP and

TN are finite sets, then SYNTHESIZE(F,TP,TN) will return a

model.

5.3 Equivalence

MemSynth can determine if two memory models are equiv-

alent (up to given bounds) by searching for a litmus test on

which they disagree. Our equivalence-checking procedure

COMPARE(MA,MB,TS) takes as input two memory models

MA and MB, and a designer-provided symbolic litmus test TS

(Definition 5). Given these inputs, it returns either a litmus

test T such that VERIFY(MA,T ) 6= VERIFY(MB,T ), or ⊥ if

no such test exists within the bounds of TS. To search for a

distinguishing test T , COMPARE solves the two quantified

boolean equivalence formulas shown in Section 4.3 using the

Z3 SMT solver (as with SYNTHESIZE), with two additional

optimizations described next.

Symmetry Breaking. For most framework sketches, a naive

specification of a symbolic litmus test will define a search

space that contains many redundant candidate tests. For ex-

ample, after checking a test T in FAlglave, there is no need to

also check a test T ′ that differs from T by a permutation of

the used memory locations (e.g., T ′ swaps all instances of X

and Y in the loc relation of T ). To improve query performance,

our definition of TS for FAlglave applies lex-leader symmetry

breaking [17] to rule out tests that differ only by a permu-

tation of threads, addresses, or values, similar to existing

work [28]. The well-formedness predicate f for TS also adds

assertions to rule out other uninteresting litmus tests, such as

tests that refer to a memory location exactly once, which has

no visible effect on inter-thread memory reorderings. These

optimizations reduce the run time of equivalence queries by

2–10×, and generalize beyond FAlglave.

Concretization with Metasketches. As another critical op-

timization, we express the symbolic litmus test TS using a

metasketch [13], which decomposes TS into a set of par-

tially concretized symbolic tests. In particular, TS describes

the set of all litmus tests with up to k threads and up to n

instructions per thread. The corresponding metasketch de-

scribes the same search space using a set of symbolic tests

of the form T
〈k,(t1,...,tk),(w1,...,wk)〉

S , each of which encodes the

space of all litmus tests with a concrete number of threads

(k), instructions per thread (t1, . . . , tk), and writes per thread

(w1, . . . ,wk). For example, the set T
〈2,(2,3),(1,2)〉

S contains all

tests with two threads, with two instructions (one of which

is a write) on the first thread, and three instructions (two of

which are writes) on the second thread. This concretization

enables each symbolic litmus test in the metasketch to use

more compact bounds (e.g., the thread relation thd becomes



entirely concrete), which reduces the search space exponen-

tially. Without this optimization, the equivalence queries in

Section 6.3 are up to two orders of magnitude slower.

5.4 Ambiguity

The final MemSynth query checks whether a memory model

is unique for a set of allowed tests TP and forbidden tests TN .

The ambiguity procedure DISAMBIGUATE(M,TP,TN ,F,TS)
takes as input a memory model M, sets of allowed tests TP and

forbidden tests TN , a framework sketch F = (φ ,ENC), and

a symbolic litmus test TS. It returns a new memory model MS

and test TD, such that for all T ∈ TP∪TN , VERIFY(M,T ) =
VERIFY(MS,T ), but VERIFY(M,TD) 6= VERIFY(MS,TD). In

other words, the set of tests TP∪TN is ambiguous, because

both M and MS satisfy every test in the set. Since the am-

biguity query involves synthesizing a memory model MS

and litmus test TD, the implementation of DISAMBIGUATE

extends SYNTHESIZE (Figure 7) and benefits from the same

optimizations as COMPARE, i.e., metasketches and symmetry

breaking. Metasketches also enable solving in parallel [13],

which DISAMBIGUATE exploits to gain up to 3× speedup on

8 threads in our experiments.

5.5 Discussion

Limitations. As with other tools based on syntax-guided

synthesis [41], MemSynth’s results are inherently bounded.

Both framework sketches (for synthesis) and symbolic litmus

tests (for equivalence and ambiguity) define large but finite

search spaces, which MemSynth explores exhaustively with

an SMT solver. While incomplete, such bounded reasoning

provides useful results on real-world problems, as Section 6

shows; in most of those experiments, increasing the bounds

yielded no meaningful difference in the results.

MemSynth’s synthesis queries also face the potential for

overfitting, like other example-based synthesis tools. The re-

lational DSL (Section 2) reduces this risk by not including

operators prone to overfitting (e.g., if-then-else expressions),

and by offering control over the size of the search space for ex-

pression holes. The COMPARE and DISAMBIGUATE queries

can also exploit metasketch support for cost functions [13] to

minimize the size of the synthesized tests.

Integration. MemSynth queries read and write litmus tests

in the common Herd format [8], allowing them to integrate

with existing tools for memory models. MemSynth’s rela-

tional DSL can also export models to Alloy∗ specifications,

which are used by some memory model tools [45, 47]. Mem-

Synth’s relational DSL (Section 2) is similar to the cat lan-

guage [3] for specifying memory models, and so MemSynth

models could be exported for use by that toolchain. But cat

includes fixpoint operations, while our DSL does not, so

importing cat models into MemSynth would require more

work (e.g., bounded unwinding of fixpoints [47]).

6. Case Studies

To demonstrate that MemSynth is an effective approach to

reasoning about memory models, we sought to answer three

research questions:

• Can MemSynth scale to real-world memory models such

as PowerPC and x86?

• Does MemSynth provide a basis for rapidly building

useful automated memory model tools?

• Does MemSynth outperform existing relational solvers

and memory model tools?

Methodology and Code. Experiments in this section were

performed on a quad-core Intel Core i7-7700K CPU at

4.8 GHz, with 16 GB of RAM. We used Rosette [42, 43]

version 2.2 and Z3 [19] version 4.5.0. Both MemSynth and

our relational DSL, Ocelot, are open source and available

from http://memsynth.uwplse.org, together with the

synthesized models and tests from this section and a virtual

machine artifact for reproducing the results.

6.1 Can MemSynth scale to real-world memory

models such as PowerPC and x86?

This section uses MemSynth to synthesize specifications for

the PowerPC [22] and x86 [23] memory models. The results

(summarized in Figure 8) show that MemSynth scales to

complex real-world models, and that its queries can aid in

the design of memory model specifications by identifying

ambiguities and redundancies in tests and documentation.

6.1.1 Synthesizing a PowerPC Model

The PowerPC architecture is well-known for relaxed memory

behaviors that have proven difficult to formalize. Existing for-

malization efforts have identified subtle mis-specifications [5,

6, 30], making an automated process particularly appealing.

To synthesize a specification for PowerPC, MemSynth uses

a set of 768 litmus tests from Alglave et al. [4, 6], which

they generated with their diy tool [7]. These tests vary from

6–24 instructions across 2–5 threads, and while they examine

most aspects of the PowerPC memory model, they are not

intended to be exhaustive. We use the Alglave et al. [6] model

to decide whether each test should be allowed, although we

could use hardware observations instead, as discussed later.

We employ FAlglave as the basis for the synthesis process.

The framework sketch contains expression holes for the ppo,

grf, and fences relations. All three holes use a grammar

containing all relational expressions e in Figure 1 other than

set comprehension and closure. For the barrier expression

fences, we provide a sketch of the form fences , FFence +
FLWFence, where FFence and FLWFence are expression holes

containing Fence and LWFence, respectively, as terminals.

This sketch expresses the high-level insight that PowerPC

features two kinds of cumulative barriers (heavyweight sync

fences and lightweight lwsync fences) that do not interact.



Input Tests Framework Sketch

Arch. |TP| |TN | Time

ppo/grf

Depth

fences

Depth

State

Space

PPC 163 605 12 s 4 4 21406

x86 2 8 2 s 4 0 2624

(a) Synthesis results

Symbolic Litmus Test

Arch. New Tests Time

Num.

Threads

Num.

Events

State

Space

PPC 9 110 min 2–4 2–6 2165

x86 4 67 min 2–4 2–6 2114

(b) Ambiguity results

Figure 8. Results of real-world memory model synthesis and

ambiguity experiments for PowerPC and x86. We describe

the framework sketches and symbolic litmus tests both in

terms of their parameters (e.g., expression hole depth) and

the number of candidate solutions they contain (i.e., their state

space). The ambiguity results (b) for a given architecture use

the same framework sketch as the synthesis results (a) for

that architecture.

Synthesis. MemSynth synthesizes a model, which we call

PPC0, that agrees with Alglave et al.’s hand-written model

on all 768 tests. The synthesis takes 12 seconds, and due

to its heuristics for test ordering, the incremental synthesis

algorithm (Figure 7) uses only 16 of the 768 tests.

Ambiguity. While the 768 tests described above cover

much of the semantics of PowerPC, they do not identify

a unique model. To resolve this ambiguity, we apply Mem-

Synth’s DISAMBIGUATE query (Section 4.4) to enlarge the

set until it identifies a single model. We use the Alglave et al.

model as an oracle to decide the correct outcome for the

generated distinguishing tests.

MemSynth finds 9 new tests to add to the set. The tests

deal with the semantics of PowerPC barriers; for example:

Test ppc/ambig/3

Thread 1 Thread 2

1: r1← B 4: r2← A

2: lwsync 5: lwsync

3: A← 1 6: B← 1

Outcome: r1= 1∧r2= 1

PowerPC: forbidden

After adding the 9 tests, the new synthesized model PPC1 is

equivalent to the Alglave et al. [6] model on all tests up to 6

instructions across 4 threads, and is the only model (within

our sketch) that produces the given outcomes on all tests.

Discussion. MemSynth is complementary to test-generation

tools such as diy [6]: these tools can seed the synthesis process

with initial tests, and MemSynth can then identify ambigu-

ities and synthesize new tests to resolve them. While our

(define (hole depth arity non-terms terms)

...) ; Expression hole (Section 2.2)

(define (FAlglave ppo grf fences)

...) ; Axioms from Figure 4

; Common components of memory model specifications

(define (SameAddr X) (& (-> X X) (join loc (~ loc))))

(define rfi (& rf (join thd (~ thd))))

(define rfe (- rf (join thd (~ thd))))

; Expression holes for FAlglave model (Section 3.2)

(define ppo

(hole 4 2 (list + - -> & SameAddr)

(list po dep Event Read Write Fence Atomic)))

(define grf (hole 4 2 (list + - -> & SameAddr)

(list rf rfi rfe none univ)))

; x86 fences are not cumulative

(define fences (-> none none))

; Final sketch

(define x86-sketch (FAlglave ppo grf fences))

(a) Framework sketch FAlglave

; Before disambiguation

(define ppo0
(& po (- (-> Event (+ Write Read))

(-> (- Write Atomic) Read))))

(define grf0 (- rf (join thd (~ thd))))

(define TSO0 (FAlglave ppo0 grf0 fences))

; After resolving 4 ambiguities

(define ppo4 (- po (-> (- Write Atomic) Read)))

(define grf4 (- rf (join thd (~ thd))))

(define TSO4 (FAlglave ppo4 grf4 fences))

(b) Synthesized models TSO0 and TSO4

Figure 9. The framework sketch FAlglave for synthesizing a

memory model for the x86 architecture (a), and synthesized

models TSO0 and TSO4 before and after resolving ambigui-

ties (b). The expression holes for ppo and grf define a search

space of size 2624, as described in Figure 8. The fences rela-

tion is empty because x86 fences are not cumulative.

experiments use the hand-written model of Alglave et al. [6]

as an oracle, we could instead determine litmus test outcomes

by manually consulting documentation or by hardware exper-

iments. For example, Alglave et al. [4] also ran their 768 tests

on PowerPC hardware and observed whether each behavior

occurred. MemSynth is able use the results of these experi-

ments as an oracle, and synthesizes a new model PPCH in

13 seconds. The resulting model is not equivalent to PPC0

(MemSynth synthesizes a distinguishing test with its equiva-

lence query in 6 seconds) because some allowed outcomes

were not observed on the hardware.

6.1.2 x86 Ambiguity and Redundancy

The x86 architecture specifies a variant of total store ordering

(TSO) as its memory model. The x86 TSO memory model is

defined in the Intel Software Developer’s Manual [23] with

prose and a set of 10 litmus tests. Though TSO is one of the

simplest memory models, formalizing the subtleties of its

x86 variant has been challenging [14, 15, 38, 40].

We used MemSynth to synthesize a specification of the

x86 memory model. To do so, we extended FAlglave with

support for atomic operations (adding a new unary Atomic



relation to Definition 3 to model x86’s xchg instruction) and

the mfence full memory fence (populating the Fence relation

in Definition 3). MemSynth synthesizes a formalization TSO0

that is correct on the Intel manual’s 10 litmus tests in under

two seconds. Figure 9 shows the framework sketch FAlglave

and the synthesized model TSO0.

Ambiguity. But MemSynth’s DISAMBIGUATE query (Sec-

tion 4.4) determines that another weaker memory model,

TSO1, also satisfies all 10 tests, while disagreeing with TSO0

on a new distinguishing test:

Test x86/ambig/1

Thread 1 Thread 2

1: r1← A 3: B← 1

2: r2← B 4: xchg(A, r3)

Initially: r3= 1

Outcome: r1= 1∧r2= 0

This test is a variant of the manual’s example 8-1 [23], but

with an atomic exchange instead of a plain write to A. The

documentation indicates that x86 should forbid this outcome,

as TSO0 does but TSO1 does not.

Repeating the ambiguity query after adding x86/ambig/1

finds 3 more distinguishing tests that further examine the

semantics of atomic operations and mfence. According to

the documentation, the resulting tests should also be for-

bidden. After adding these tests to the synthesis process,

MemSynth is able to prove that a new synthesized model

TSO4 is unique, up to the bounds in Figure 8 on the size of

the model specification and distinguishing litmus test.

The TSO4 model in Figure 9(b) correctly captures the

intent of the x86 TSO model, and is similar to both Figure 3

and Alglave [2]. The synthesized ppo4 allows writes to be

reordered past later reads, while grf4 allows a thread to read

its own writes early. TSO4 also models the semantics of the

xchg and mfence instructions, both of which are included

in ppo4 and so prevent reordering.2 We further validated

the synthesized model by comparing it to the x86-TSO

model of Sewell et al. [40] on the 24 litmus tests in their

paper [34]; TSO4 agrees with x86-TSO on all such tests. The

4 distinguishing tests synthesized by MemSynth are either

single-fenced variants of Sewell et al.’s amd5 litmus test, or

xchg-based variants of other Intel tests, similar to their n8 test.

Potential Redundancy. In the paper on their earlier x86-

CC formalization of the x86 memory model, Sarkar et al. [38]

write that “P8 may be redundant,” where P8 is a principle

from the Intel manual about which reorderings are allowed:

“§8.2.3.9: Loads and stores are not reordered with

locked instructions.” [23]

The manual section describing this principle includes two

litmus tests demonstrating forbidden reorderings. We found

2 We model Atomic as a subset of Write, so the expression (- Write
Atomic) allows only plain writes to be reordered.

that if we omit these two tests from the synthesis process, the

ambiguity experiment above re-discovers them, suggesting

they are needed to uniquely identify x86’s memory model.

6.2 Does MemSynth provide a basis for rapidly

building useful automated memory model tools?

While previous sections build on the FAlglave framework

sketch, based on the Alglave et al. [6] framework, Mem-

Synth’s engine generalizes to other framework sketches. In

this section, we present FMH, a framework sketch constructed

from a framework developed by Mador-Haim et al. [28, 29].

The implementation took only two days of work by one of

this paper’s authors. Moreover, we use MemSynth to auto-

matically rectify a discrepancy between our implementation

and the paper’s results that we could not resolve by hand.

6.2.1 The FMH Framework

Mador-Haim et al.’s memory model framework [28, 29]

was developed to contrast memory model specifications by

generating a distinguishing litmus test on which two models

disagree (as MemSynth’s equivalence query does). A memory

model is defined by a “must-not-reorder” function F(x,y) that

determines whether two instructions x and y can be reordered.

The framework places syntactic restrictions on F such that

it admits only 90 models. The authors prove that the size of

litmus test needed to distinguish models in this set is bounded,

and that only 82 of the 90 models are semantically distinct.

6.2.2 Repairing the Framework

After implementing FMH, we found that our results differed

from those in the original paper. The paper states there should

be 82 distinct models, but our implementation found only 12

distinct models. Moreover, the paper identifies the following

as a distinguishing litmus test (i.e., some models allow it

while others forbid it):

Test mh/L2

Thread 1 Thread 2

1: X← 1 3: r1← X

2: X← 2 4: r2← X

Outcome: r1= 2∧r2= 0

Yet our implementation reported this test (which contains a

load-load coherence violation allowed by SPARC’s RMO

model) to be disallowed by all 90 memory models.

Our manual investigation implicated one of the paper’s

axioms for happens-before relations:

5. Ignore local: If x is after y in program order, then x

cannot happen before y.

Omitting this axiom from our implementation gave 86 distinct

models, not 82 as expected, and so we hypothesized that the

axiom was necessary but too strong. Since the paper correctly

reports that mh/L2 is allowed by RMO, we believe the paper’s

results are correct but this axiom was misprinted in the paper.
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Figure 10. Performance comparisons between MemSynth

and existing tools for (a) verification and (b) equivalence.

However, the paper’s authors were unable to provide their

implementation for us to compare against [10].

We first tried to fix the axiom by hand, but despite several

attempts, a correct fix eluded us: our closest results identified

78 or 86 distinct models rather than 82. Instead, we used

MemSynth’s relational logic DSL to synthesize a repair.

In relational logic, axiom 5 is written as “no (∼po)& hb”,

where hb is the happens-before relation for an execution. To

repair the axiom, we replaced ∼po with an expression hole of

depth 3, and synthesized a completion that gave the correct

outcomes on the 9 litmus tests from the original paper on both

TSO and RMO memory models. We were able to synthesize

the following repair in 4 seconds:

no (∼((po− rf)& (Write→ Read)))&hb

In prose:

5a. Ignore local: If x is after y in program order, x is a

read, y is a write, and x does not read the value written

by y, then x cannot happen before y.

The repaired axiom allows reads to see local writes early

without affecting the happens-before relation. We believe it is

intended to allow models such as TSO to observe their own

writes early by ignoring the happens-before order. With the

repaired axiom, our pairwise comparison results produce 82

distinct models, identical to the original paper.

6.3 Does MemSynth outperform existing relational

solvers and memory model tools?

This section compares MemSynth to existing relational en-

gines and memory model tools on verification, equivalence,

and synthesis queries.

Verification. Figure 10(a) shows the time for MemSynth,

Alloy (v4.2_2015-02-22) [24, 44], and herd (v7.43) [8] to

verify 768 PowerPC litmus tests from Section 6.1. The Alloy

results use the PPC1 specification synthesized by MemSynth,

while herd (configured in “speed check” mode) already sup-

ports PowerPC. The results show that MemSynth outperforms

Alloy by 10×, and is comparable to herd’s custom decision

procedure for memory models.

Equivalence. We used MemSynth and Alloy∗ (v0.2) [33]

to perform a pairwise comparison of 10 different synthe-

sized PowerPC models. Both MemSynth and Alloy∗ used a

symbolic litmus test with up to 2 threads and 6 instructions.

Figure 10(b) shows that MemSynth outperforms Alloy∗ on

most of these queries: MemSynth can solve 3× more queries

in under one second, and the hardest problem takes 8 s for

MemSynth versus 10 min for Alloy∗. With symmetry break-

ing and concretization (which cause the large steps in the

MemSynth line in Figure 10(b)) disabled, MemSynth could

not solve any of the comparisons in under an hour.

Synthesis. The synthesis query (Section 4.2) requires

higher-order quantification, and so we compared MemSynth

to Alloy∗ [33]. Because Alloy∗ does not support expression

holes (Section 2), we designed a framework sketchM that

simply chooses between hard-coded memory models. When

givenM= {SC,TSO}, both MemSynth and Alloy∗ return in

under a second. However, when givenM= {SC,TSO,PSO},
MemSynth still returns in under a second, but Alloy∗ times

out after one hour. This result suggests Alloy∗ would not be

able to synthesize models from complex framework sketches.

7. Related Work

MemSynth is, to our knowledge, the first tool to provide

synthesis and other higher-order queries for memory model

specifications. It builds on existing work in formalizing and

reasoning about memory models, which this section reviews.

Formalization. Few architectures formalize their memory

models (with the exception of SPARC [46] and Alpha [16]),

and so this task has fallen to researchers. A notable suc-

cess is the x86-TSO model [40], which formalizes the mem-

ory model of the x86 architecture. This model was refined

through several papers [35, 38], which revealed ambiguities

in the x86 documentation. In Section 6.1.2, MemSynth’s

DISAMBIGUATE query automatically identified more such

ambiguities.

Another effort has developed several formalizations of the

PowerPC architecture [5, 6, 8, 30, 39]. The PowerPC memory

model allows many more reorderings than x86, and features

cumulative barriers to restore stronger behavior. The specifi-

cation for PowerPC is complex, and several ambiguities in

the PowerPC manual [22] required detailed experimentation

to resolve. The PowerPC formalization effort also developed

a suite of memory model experimentation tools, which we

use in Section 6.1 and Section 6.3.

Formalization efforts have also brought clarity to emerg-

ing programming language memory models, particularly C11

and C++11 [11, 12]. These efforts have helped check that

the target models provide basic guarantees about important

classes of programs—for example, that all data-race-free pro-

grams have sequentially consistent memory ordering [1]. Like

hardware memory models, language memory models are also

relational, and some (e.g., the Java Memory Model [31]) have

already been formalized [45] in bounded relational logic. We

therefore believe MemSynth could also be effective for lan-

guage models, with appropriate design of a framework sketch.



Frameworks. Recent work has developed generic memory

model frameworks that can be instantiated with different

architectures. The Nemos framework [48] offers axiomatic

specifications for a variety of models, such as causal consis-

tency, but (to our knowledge) cannot express microprocessor

models such as TSO. Alglave et al. [2, 6, 8] developed an

axiomatic framework for microprocessor memory models. It

admits models for complex architectures such as PowerPC,

and is the basis for our FAlglave framework sketch (Section 3.2)

and most experiments in Section 6. Mador-Haim et al. [29]

developed a framework for store-atomic memory models,

which we implement in Section 6.2. It captures common

models such as TSO, but is restricted enough to prove upper

bounds on the size of distinguishing litmus tests.

Automated Reasoning. One common application of for-

mal memory models is inserting synchronization instructions

that restore sequential consistency in a concurrent program.

Alglave et al. [6] address this problem for PowerPC with a

specification of the platform’s barrier semantics, including

cumulativity; we automatically synthesize this specification

in Section 6.1. Another common application is verification of

concurrent code under relaxed memory models, and several

tools have been developed for this purpose (e.g., [18, 20]).

All of them rely on formal specifications of memory models

that can be synthesized with MemSynth.

MemSAT [45] is an automated tool that implements the

verification query of Section 4.1 for axiomatic memory model

specifications. MemSAT found several discrepancies in the

formalization of the Java Memory Model [31]. MemSynth

is similar to MemSAT in its use of relational logic, but fo-

cuses on hardware models and offers richer automated rea-

soning queries including synthesis. Wickerson et al. [47] use

Alloy∗ [33] to implement a tool for automatically comparing

memory consistency models, similar to MemSynth’s equiv-

alence query. They show results for both processor and lan-

guage memory models, but their tool does not support Mem-

Synth’s synthesis and ambiguity queries, and it is unclear how

to adapt their quantifier elimination strategy (“deadness”) to

specification synthesis. Lustig et al. [27] use Alloy [24] to syn-

thesize suites of litmus tests that examine a set of pre-defined

memory ordering relaxations, which together compose a de-

sign space we could use as a framework sketch.

8. Conclusion

This paper presented MemSynth, a synthesis-aided system

for reasoning about axiomatic specifications of memory con-

sistency models. As the first of a new class of memory model

tools, MemSynth can synthesize memory model formaliza-

tions based on a framework sketch provided by a designer.

MemSynth’s expressive specification language builds on an

optimized bounded relational logic engine, which serves as

a platform for developing novel automated reasoning queries.

We showed that MemSynth can synthesize specifications for

complex architectures, refine those specifications by identify-

ing ambiguities, and support rapid development of memory

model tools that outperform hand-crafted versions. As new

parallel architectures continue to emerge, MemSynth can

help formalize their memory models rapidly and precisely.
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