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Abstract

A memory consistency model specifies which writes to shared
memory a given read may see. Ambiguities or errors in these
specifications can lead to bugs in both compilers and applica-
tions. Yet architectures usually define their memory models
with prose and litmus tests—small concurrent programs that
demonstrate allowed and forbidden outcomes. Recent work
has formalized the memory models of common architectures
through substantial manual effort, but as new architectures
emerge, there is a growing need for tools to aid these efforts.

This paper presents MemSynth, a synthesis-aided sys-
tem for reasoning about axiomatic specifications of memory
models. MemSynth takes as input a set of litmus tests and
a framework sketch that defines a class of memory models.
The sketch comprises a set of axioms with missing expres-
sions (or holes). Given these inputs, MemSynth synthesizes
a completion of the axioms—i.e., a memory model—that
gives the desired outcome on all tests. The MemSynth engine
employs a novel embedding of bounded relational logic in
a solver-aided programming language, which enables it to
tackle complex synthesis queries intractable to existing rela-
tional solvers. This design also enables it to solve new kinds
of queries, such as checking if a set of litmus tests unambigu-
ously defines a memory model within a framework sketch.

We show that MemSynth can synthesize specifications for
x86 in under two seconds, and for PowerPC in 12 seconds
from 768 litmus tests. Our ambiguity check identifies missing
tests from both the Intel x86 documentation and the validation
suite of a previous PowerPC formalization. We also used
MemSynth to reproduce, debug, and automatically repair a
paper on comparing memory models in just two days.
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1. Introduction

Reasoning about concurrent code requires a memory con-
sistency model that specifies the memory reordering behav-
iors the hardware will expose. Architectures typically define
their memory consistency model with prose and litmus tests,
small programs that illustrate allowed and forbidden out-
comes. These imprecise definitions make reasoning about
correctness difficult for both developers and tool builders.
Researchers have therefore argued for formalizing memory
models [49], and have recently created formal models for
common architectures, including x86 [40] and PowerPC [30].
But each such formalization required several person-years of
effort and several revisions (e.g., [5, 6, 35, 38, 39]).

These formalization efforts have been aided by tools for
verification and comparison of memory models. Verification
tools check whether a model allows a litmus test [6, 36, 45],
while comparison tools synthesize litmus tests on which two
models disagree [28, 47]. These tools provide verification and
comparison queries for memory models within a given ax-
iomatic framework (e.g., [8]). The framework supplies basic
axioms that every memory model must follow, expressed as
first-order constraints on relations that order memory events
(such as reads and writes). The tools then answer queries
about specific models from the framework with respect to
a given litmus test (in the case of verification) or a space of
litmus tests (in the case of comparison). But no existing tools
can answer queries about the framework itself, e.g., whether
it contains a memory model that satisfies a set of litmus tests.

This paper proposes using program synthesis to answer
novel queries about memory models and their frameworks.
The core idea behind our proposal is a framework sketch,
which describes a class of memory models with a syntac-
tic template. The template consists of a set of axioms with
holes [41] (i.e., missing expressions) whose completion de-
fines a memory model from the target class. The sketch is
provided by the memory model designer and can capture
domain-specific insights and assumptions, such as the use
of scopes [9] to describe GPU memory models. Given a
framework sketch, synthesis-based tools can answer a variety
of new queries about memory models. For example, they can
search for a memory model specification that satisfies a set
of example litmus tests, automating a tedious development
cycle currently performed by hand [32]. Synthesis also en-



ables more complex queries, such as determining whether
a synthesized model is ambiguous by checking whether a
second, semantically distinct model also explains the same
example litmus tests.

We realize this proposal with MemSynth, a new system
for synthesizing axiomatic specifications of memory mod-
els from framework sketches and litmus tests. MemSynth
provides a language for writing framework sketches, and
an efficient engine for synthesizing models in those frame-
works. The language and the engine are both based on a
deep embedding of bounded relational logic [24, 44] in
Rosette [42, 43], a solver-aided host language that extends
Racket [21, 37] with support for verification and synthesis.
Relational logic combines first-order logic with relational
algebra and transitive closure, providing an expressive se-
mantics that subsumes many recent frameworks for memory
models [6, 29, 45, 47]. The bounded version of the logic is
decidable by reduction to boolean satisfiability, and existing
relational solvers [24, 33, 44] are based on such a reduction.
MemSynth takes a radically simpler approach—it delegates
the reduction to its host language. Rosette includes a symbolic
evaluator that compiles the semantics of its guest languages to
efficiently-solvable SMT constraints. MemSynth layers a spe-
cialized synthesis algorithm on top of this evaluator, scaling
to produce specifications of real memory models in seconds.

The MemSynth synthesizer takes as input a frame-
work sketch and a set of litmus tests. The sketch is a for-
mula in relational logic with missing expressions (holes)
over relations defined by the framework (e.g., happens-
before [25]). Given these inputs, MemSynth completes the
sketch by solving a synthesis query of the form 3¢y €
F.Nreq 3L [Ur: Ve oud [ A Areqs, V1. =[(Urs Ve om)]1
where F is a framework sketch, and Tp and 7y contain lit-
mus tests that demonstrate allowed and forbidden behaviors,
respectively. In principle, such a query can be discharged
by generic relational solvers [33] that support higher-order
quantification (over the relations E). In practice, however,
our queries are intractable for these solvers: their languages
lack the constructs (such as sketches and partial interpre-
tations [44]) that enable MemSynth’s embedded engine to
employ aggressive optimizations based on the structure of
litmus tests and framework sketches.

But MemSynth’s novel design offers advantages that
go beyond scalable synthesis. Being embedded in Rosette,
MemSynth provides a platform for rapid development of
high-performance tools for reasoning about memory models.
For example, we use MemSynth to implement the verification
query in five lines of code, obtaining a tool that outperforms
dedicated relational solvers [24, 33] and is comparable to
existing hand-crafted verifiers [6, 29]. We also implement
a novel ambiguity query for identifying ambiguities in the
set of litmus tests with respect to a framework sketch. The
ambiguity query checks whether a memory model uniquely
explains a set of litmus tests, and if not, synthesizes another

model along with a distinguishing test that illustrates the
difference between the two models.

We evaluate the scalability and utility of MemSynth’s
queries using a framework sketch based on work by Alglave
et al. [6]. Given this sketch, MemSynth synthesizes a specifi-
cation for the notoriously relaxed PowerPC architecture from
768 litmus tests in under 12 seconds, including definitions
for the subtle cumulativity behavior of PowerPC fences. We
also synthesize a specification for the total store ordering
(TSO) memory model used by the x86 architecture in under
two seconds, using the litmus tests from the Intel Software
Developer’s Manual [23]. In both cases, our ambiguity query
finds that the given litmus tests do not uniquely define their
intended memory model—several other models are also con-
sistent with the set of tests. MemSynth synthesizes sets of
missing tests from the validation suite of Alglave et al. [6]
(for PowerPC) and the Intel manual (for x86) that resolve
these ambiguities.

We evaluate MemSynth as a tool-building platform by
reproducing results from an existing paper [29] on comparing
memory models. In the process, we automatically synthesize
a repair for a discrepancy between our framework sketch and
the original work—due to a misprint in the paper—which we
were unable to fix by hand. The repaired sketch of the paper’s
framework was developed in two days and achieves the same
performance as the existing tool.

In summary, this paper makes the following contributions:

® We introduce MemSynth, a platform for automatically
synthesizing memory model specifications from frame-
work sketches and litmus tests. MemSynth’s novel design,
as an embedded logic in a solver-aided host language,
enables it to synthesize complex memory models such as
PowerPC from large sets of examples.

e We demonstrate that MemSynth can answer advanced
queries about memory model specifications, such as am-
biguity, that can aid memory model designers in refining
their specifications. To our knowledge, MemSynth is the
first tool to provide this form of analysis for memory
model designs.

We show MemSynth’s utility for rapid development of
automated memory model frameworks by constructing
several tools that outperform existing counterparts.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the MemSynth language for relational logic.
Section 3 defines framework sketches and litmus tests. Sec-
tion 4 presents the queries that MemSynth can answer, and
Section 5 describes the algorithms to answer these queries.
Section 6 shows three case studies using MemSynth, includ-
ing synthesizing and refining a specification of PowerPC
and identifying ambiguities in x86 documentation. Section 7
describes related work, and Section 8 concludes.



2. MemSynth Language

MemSynth is a language and engine for automated reason-
ing about memory models. The language extends bounded
relational logic [24, 44] with expression holes, which enable
sketching of memory model frameworks. Thanks to its ex-
pressive underlying logic, MemSynth can host many existing
frameworks for reasoning about classes of memory models.
This section reviews the syntax and semantics of relational
logic, and presents our extensions for synthesis problems.

2.1 Bounded Relational Logic

Relational logic [24] extends classic first-order logic with
transitive closure and relational algebra. The inclusion of
closure and relations makes this logic ideally suited for rea-
soning about memory models. In fact, many recent axiomatic
memory model frameworks [6, 29, 45, 48] are expressed as
first-order constraints on relations that order memory events.
MemSynth is based on a new embedding of bounded rela-
tional logic [44] in the Rosette solver-aided language [42, 43],
which extends Racket [21] with support for verification and
synthesis. This embedding includes an explicit construct for
sketching, and its engine offers optimizations for answering
(satisfiability) queries about memory models orders of mag-
nitude faster than general-purpose relational solvers [24, 33].

Syntax. Bounded relational logic (Figure 1) includes the
standard connectives and quantifiers of first-order logic, along
with the standard operators of relational algebra. A specifica-
tion (U;D; f) in this logic consists of a universe of discourse
U, a set of relation declarations D, and a formula f. The
universe U is a finite, non-empty set of uninterpreted symbols.
A relation declaration r 3 [R;,R,] introduces a free variable
r (in essence, a Skolem constant), which denotes a relation
of arity k. Each tuple in this relation consists of k elements
drawn from the universe U. The relations R; and R,, are called
the lower and upper bound on r, and specify the tuples that r
must and may contain, respectively. The formula f may refer
to the variables r declared in D, but it may not include any
other free (unquantified) variables.

Semantics. We define the meaning of a relational specifica-
tion s = (U; D; f]) with respect to an interpretation as follows.
An interpretation / consists of a universe U (1) and a map of
variables to relations drawn from U (I). We say that 7 satisfies
the specification s, written as / |= s, if I and s have the same
universe of discourse (i.e., U(I) = U), if R; C I(r) C R, for
each r ;4 [R;,R,] in D, and if the formula f evaluates to ‘true’
in the environment defined by I, i.e., [f]I =T.

The semantics of formulas and expressions are stan-
dard [44], but we review the most relevant constructs next.
The constant univ denotes the universal relation {(a) |a € U},
and iden is the identity relation {{a,a) | a € U }. The multiplic-
ity predicates no, some, and one constrain their argument to
contain zero, at least one, and exactly one tuple, respectively.
The cross product X — Y of two relations is the Cartesian

product of their tuples. The join X.Y of two relations is the
pairwise join of their tuples, omitting the last column of X
and first column of Y, on which the two relations are matched.
As we will see in Section 3.2, memory model specifications
make heavy use of these constructs.

Example 1. Let the universe be U = {a,b,c,d}, X =
{{a),{c)} a relation of arity 1 with two tuples, and ¥ =
{{a,b),(b,d)} arelation of arity 2 with two tuples. We can
take the cross product, join, and transitive closure of these re-

lations as follows: X =Y = {(a,a,b), (a,b,d),{(c,a,b),(c,b,d)},

XY={()}L,Y.Y ={{a,d)},and Y ={(a,b),(b,d),{a,d)}.
If we provide the declarations p :1 [{},{(a), {(c),{d)}] and
q 2 [{{a,b)},{{a,b),(b,d)}], then the interpretation [ =
{p— X,q+— Y} satisfies the specification (U; p,q¢;no q.p)
but does not satisfy (U; p,q;q.qing).

2.2 Expression Holes

To support synthesis, we extend relational logic with expres-
sion holes, which define the search space for a synthesis query
to explore [41]. An expression hole G(N,T,d,k) is a rela-
tional expression that evaluates non-deterministically to one
of a finite set of concrete expressions. The set contains all ex-
pressions of arity k that can be produced with derivation trees
of depth d from a context-free grammar with non-terminals N
and terminals 7', where the non-terminals are drawn from ex-
pression operators in relational logic. Expression holes are a
key difference between MemSynth and other relational logic
languages such as Kodkod [44] and Alloy* [33], which would
require another layer of embedding—building an interpreter
for relational logic inside relational logic—to achieve the
same result.

Example 2. Let X be arelation of arity 1, Y arelation of arity
2, T={X,Y},and N = {4,—}. Then G(N,T,1,1) contains
only the expressions X and X + X, G(N,T,2, 1) additionally
contains X + X +X and X + X + X + X, and G(N,T,1,2)
contains Y,Y+Y,and X — X.

2.3 Relational DSL

MemSynth is implemented (Figure 2) as a domain-specific
language (DSL) in Rosette [42, 43]. The MemSynth inter-
preter INTERPRET(p,I) takes as input relational syntax p
and an interpretation /, and executes the semantics in Fig-
ure 1. The interpreter represents relations of arity k in the
standard way [24, 44], as boolean matrices of size |U |k , with
each cell denoting the presence or absence of a given k-tuple.
Relational expressions are then interpreted as matrix oper-
ations and formulas as constraints over matrix entries; e.g.,
relational join becomes matrix multiplication.

Being embedded in Rosette, MemSynth is both an in-
terpreter for bounded relational logic and an engine for an-
swering relational satisfiability queries—such as finding an
interpretation / that satisfies a specification s, if one exists.
We obtain this engine for free by exploiting Rosette’s sym-
bolic evaluation facilities. To search for a satisfying interpre-
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Figure 1. The syntax and semantics of bounded relational logic [44].

INTERPRET(p,I)

Inputs: Relational syntax p; interpretation /

Output: Encoding of the semantics of p (according to Figure 1)
with respect to (possibly symbolic) bindings in /

INSTANTIATE(D)

Input:  Set of relation declarations D = {d,...,dn}

Output: Interpretation / that binds each decl. r :; [R;,R,] in D to
a matrix with entries

T <ui|,...,uik>€Rl
freshSymBool()  (uj,,...,u;) € Ry \R;
L otherwise

m[il,..‘,ik}:

Figure 2. Functions provided by the MemSynth DSL for
interpreting relational formulas.

tation I |= s, MemSynth simply evaluates INTERPRET(s, )
against an interpretation / that binds the free variables in
s to matrices populated with symbolic boolean values (us-
ing the INSTANTIATE function in Figure 2). The result of
INTERPRET(s, /) is a symbolic encoding of the semantics of
s, which is then checked for satisfiability with an off-the-shelf
SMT solver [19]. This lifted evaluation works both on sym-
bolic interpretations and on specifications that are made sym-
bolic by the inclusion of expression sketches. This evaluation
strategy also offers precise state space control: by exploiting
domain-specific knowledge to reduce the number of symbolic
values in /, MemSynth outperforms state-of-the-art relational
solvers [33] as we show in Section 6.

3. Framework Sketches

Like existing tools [8, 45, 47], MemSynth specifies memory
models as axioms in relational logic that constrain the set
of executions allowed for a concurrent program. But unlike
existing tools, which take a complete memory model specifi-
cation as input, MemSynth accepts a sketched specification in
the form of a framework sketch provided by a memory model
designer. Framework sketches are at the core of MemSynth’s
flexibility as a tool-building platform.

This section defines framework sketches in terms of
relational logic, and introduces Fajglave, an example sketch of
the Alglave et al. [6] framework for memory models. We
use Fajglave to illustrate the automated reasoning queries
(Section 4) supported by our engine (Section 5), and to
demonstrate their scalability (Section 6).

3.1 Definitions

A framework sketch (Definition 1) consists of two compo-
nents: a set of axioms ¢ that contain expression holes (Sec-
tion 2.2), and a function ENC that encodes the syntax and
semantics of a litmus test in bounded relational logic. Con-
current programs (without unbounded control flow) have a
natural representation [45] in our logic: a program defines a
finite universe of discourse U and a set of relations V = SUE
over U that encode the test’s syntax (S) and its candidate
executions (E). For example, S often includes unary relations
for each type of instruction in a concurrent program P (such
as Read and Write), as well as the program-order relation po
that relates instructions in the same thread. The relations in £
encode possible executions of P by, for example, defining a
happens-before ordering [25] on the instructions in P (see [6,
28, 45]). The holes in the axioms ¢ are specified over the re-
lations SU E emitted by ENC. A framework sketch (¢, ENC)
thus defines a class of memory models (Definition 2) with
respect to a framework-specific definition of a litmus test.

Definition 1 (Framework sketch). A framework sketch is a
pair (¢, ENC), where:

® ¢ is a relational formula containing zero or more expres-
sion holes. The relations in ¢ are partitioned into sets S
and E, where relations in S characterize the syntax of a
concurrent program, and relations in E characterize an
execution of that program.

e ENC is a function that takes as input a concurrent program
P, and returns a pair (U,V) of a relational universe U
and set of relation declarations V, such that every relation
in SUE is bound by V.



We say that a framework sketch allows a concurrent program
P if there exists an interpretation I such that I |= (U;V; @),
where (U,V) = ENC(P). Otherwise, the sketch forbids P.

Definition 2 (Memory model). A memory model M is a
Sframework sketch (9y, ENC) in which ¢y contains no expres-
sion holes. We say that M belongs to a framework sketch
F = (¢p,ENC), written M € F, if and only if ¢y can be ob-
tained from @r by substituting every hole h=G(N,T,d k) in
@F with a relational expression e € h.

By not mandating a specific definition of a concurrent pro-
gram P, MemSynth allows framework sketches to define
instruction sets and other program structures (e.g., control
flow) that are relevant to a given class of memory models. For
example, a language memory model would include release/ac-
quire operations [11]; an architectural model, such as Fjgave
below (Section 3.2), would include fences for a specific ar-
chitecture (e.g., mfence on x86 or sync and lwsync on
PowerPC); and a GPU memory model would include scopes
on fence operations [9]. MemSynth requires only that the
framework sketch separate the relations S defining a litmus
test from the relations E defining an execution of that test, so
that it can support a variety of automated reasoning queries
in a framework-agnostic way (described in Section 4).

3.2 Fauglave

This section illustrates a framework sketch based on an
axiomatic framework by Alglave et al. [6]. We call the
corresponding framework sketch Fajglave. We use Fajglave for
most of our experiments, although in Section 6.2 we construct
a second framework sketch based on a different framework.

3.2.1 Litmus Tests

In Fajglave, @ litmus test is a small multi-threaded program
together with a candidate outcome, expressed as a constraint
on the program’s final state. For example, the Intel Software
Developer’s Manual [23] includes the following litmus test
to illustrate a surprising behavior allowed by the x86 memory
model, where reads may be reordered with earlier writes:

Test x86/3

Thread 1 Thread 2
I: X < 1 3: Y < 1
2rl«Y L r2+ X

Outcome: r1=0Ar2=0
x86: allowed

We assume that all memory locations (denoted by capital
letters) and registers (denoted by rl, r2, etc.) initially hold
the value O unless stated otherwise. The instruction X <— 1
means that 1 is written to the memory location X, and rl1 Y
means that the value at memory location Y is read into register
r1. The outcome is a conjunction of equalities that specify
final values of memory (optional) and registers (mandatory).

Given a litmus test, Fajglave’s encoding function ENCy
constructs a universe of memory events (i.e., read, write, and

fence instructions), locations, threads, and values that appear
in the test (Definition 3). It also constructs the relations S that
encode the syntax of the test, including, for example, unary
relations (such as Read) for the types of each instruction of
the test. The contents of the syntax relations S are known stat-
ically (i.e., the values observed by each read are known from
the test’s outcome predicate, and we do not handle control
dependencies) and extracted automatically from the test.

Definition 3 (Litmus test). A litmus test in Fajglave is a small
concurrent program together with a postcondition constraint.
Given a litmus test T, Fajglave s encoding function ENC4(T')
returns a finite universe of discourse U and a set of relation
declarations S over U, defined as follows:

® Every relation declaration in S takes the form r ;. [R,R)].
That is, I(r) = R for all interpretations I, and we say that
r is constant.

e Unary relations Event, Thread, Location, and Value par-
tition the universe U into memory events, threads, loca-
tions, and values. Value always includes the distinguished
value 0. Event is partitioned by Read, Write, Fence, and
LWFence relations, which contain reads, writes, heavy-
weight fences, and lightweight fences, respectively.

® The thd relation is a function from Event to Thread.

¢ loc and val map each event e € Read + Write to the
Location and Value, respectively, that they read or write.

® The program order relation po is a strict partial order
over Event (i.e., irreflexive, transitive, and asymmetric);
if (e1,e2) € po, then events e) and e, share a thread (i.e.,
e1.thd = e;.thd) and event e executes before event e;.

® The dependencies relation dep is a subset of po, if
(e1,e2) € dep then event ey depends on event e.

® The final value relation final is a partial function from
Location fo Value, specifying constraints on the final state
of memory imposed by the test’s candidate outcome.

Example 3. Consider the test x86/3 above. ENC4(x86/3)

defines a universe U = EULUT UV with four events E =

{e1,e2,e3,e4}, two locations L = {X,Y}, two threads T =

{t1,12}, and two values V = {0, 1}. Its relations V are:
Read = {(e3), (e4)} Write = {{e1), (e3)}

Fence ={} Thread = {{(t),(r2)}
LWFence = {} Location = {(X),(Y)}
Value = {(0), (1)} dep = {}
p0:{<61762> <€g,e4>} finaI:{}

thd = {<€17t1> <82,l‘|> <e3,lz> <€4,12>}

loc = {{e1,X),

7(6'27Y> (e3,Y), {e4,X)}
val = {{eq1,1),(e2,0),{e3,1),{e4,0)}

3.2.2 Executions

Falglave uses two relations, rf and ws, to define the execution
of a litmus test (Definition 4). The reads-from relation rf maps
each write event to the reads that observe it: if (w,r) € rf,
then w and r are a write and a read, respectively, to the same
address and with the same value. The write serialization rela-
tion ws places a total order on all writes to the same location.



pPposc £ po pPPOTsO £ po— (Write — Read)
grfSC £ rf grfrso = rf— (tththd)
fencesgc = 0 fencesyso £ 0

(a) Sequential consistency (b) Total store order

Figure 3. Examples of common memory models defined by
hand in the Fajgjave framework.

The encoding function ENC4 returns {rf,ws} as the set of ex-
ecution relations E for a litmus test 7', and it specifies bounds
on their contents by automatically extracting them from 7'.

Definition 4 (Fag1ave Execution). In Fajglave, an execution E
of a litmus test T declares two relations:

® The reads-from relation rf is a subset of Write — Read,
such that if (w,r) € rf then (1) w.loc = r.loc and w.val =
rval, and (2) for all W' € Write, if W' # w then (W', r) & rf.

o The write serialization relation ws is a subset of Write —
Write, such that if (wi,ws) € ws then wy.loc = wy.loc,
and for every memory location l; € Location, the relation
{(w1,w2) € ws | wy.loc =1} is a total order.

3.2.3 Memory Model

Flglave defines a memory model as a relational formula ¢4
that constructs a happens-before order and checks its acyclic-
ity. Fajglave’s memory model definition is parametric—many
different memory models can be defined within the same
framework. This freedom is exposed through three relations
{(ppo, grf,fences) that define the allowed intra-thread reorder-
ings, inter-thread reorderings, and reorderings across fences,
respectively. Figure 3 shows examples of these relations for
the common sequential consistency (SC) and total store order
(TSO) models. The Fajglave formula ¢4 replaces these three
relations with expression holes for use in synthesis.

Preserved Program Order. The preserved program order
relation ppo defines which thread-local reorderings are al-
lowed by a memory model. Given the program order relation
po of a litmus test, ppo C po specifies the program-order
edges in po that cannot be reordered. In Figure 3, sequential
consistency allows no thread-local reordering, while total
store order (TSO) allows writes to be reordered beyond later
reads by excluding write-to-read edges from ppo.

Global Reads-From. The global reads-from relation grf
defines which inter-thread communications create ordering
requirements between events. Given the reads-from relation
rf from an execution (Definition 4), grf specifies the edges
in rf that must be globally ordered. In Figure 3, sequential
consistency allows no reordering, and so every edge in rf
creates an ordering obligation. On the other hand, total store
order (TSO) allows threads to read their own writes early, and
so if a read observes a write on the same thread, it should not
create an ordering obligation for other threads.

Fences. The fences relation fences defines which events are
ordered by a memory fence. For example, the x86 architecture

fr £ (~rf.ws) + {(r,w) : Read — Write | (no rf.r) and (rloc = w.loc)}
ghb £ ppo +ws + fr + grf -+ fences

(a) Auxiliary relations

Execution £ rf in (Write — Read) & (loc.~loc) & (val.~val)
andno (rf.~rf —iden)
and wsin (Write — Write) & loc.~loc
andno iden & ws
and ws.wsinws
andall a : Write. all b : Write.
(not (a = b) anda.loc = b.loc)
implies ({a,b) inwsor (b,a) inws)
Init 2 all  : Read. (no rf.r) implies .val = 0
Uniproc £ no ~(rf +ws +fr + (po & loc.~loc)) & iden
Thin £ no ~(rf + dep) &iden
Final £ all w : Write. (win (univ.ws — ws.univ) and some (w.loc).final)
implies w.val = w.loc.final
Acyclic £ no “ghb & iden
Valid £ Execution and Init and Uniproc and Thin and Final and Acyclic

(b) Axioms

Figure 4. The axioms of the Fajgjave framework extend those
of Alglave et al. [6], with changes to remove initialization
write events and support outcomes for memory locations.

has an mfence instruction that serializes all reads and writes
issued prior to it. The TSO example in Figure 3 already in-
cludes fences in ppo, and so fences is still empty. But some re-
laxed memory models, such as PowerPC and ARM, also have
a notion of fence cumulativity [22], in which fence operations
create orderings between events on other threads; Fajglave
uses fences to model cumulativity. The rules for cumulativ-
ity are subtle, but MemSynth correctly synthesizes them for
PowerPC in under 12 seconds, as we show in Section 6.1.

Axioms Given the definitions of ppo, grf, and fences,
Falglave uses the axioms in Figure 4 to specify the frame-
work sketch’s formula ¢4. The axioms follow Alglave et al.
[6], with two changes for better solving performance. First,
we omit initialization write events (events that initialize each
memory location to 0) in favor of an Init axiom. Second, we
use an explicit Final axiom to encode outcome constraints
on memory locations, rather than simulating all possible
memory states as Alglave et al.’s herd tool does [8].

The first five axioms in Figure 4(b) define well-formedness
of an execution E. The Execution axiom applies the rules in
Definition 4 to the rf and ws relations. The initialization
axiom Init states that reads absent from the reads-from
relation rf observe the initial value 0. The uniprocessor
axiom Uniproc requires executions to respect coherence at
each memory location. The thin-air axiom Thin prevents
executions that create values out of thin air (i.e., involve cyclic
dependencies). Lastly, the final value axiom Final imposes
the constraints defined by the final relation.

To define whether an execution is allowed, Fajglave cON-
structs a global happens-before order ghb reflecting the or-
derings between events induced by the memory model. The
Valid axiom allows a test if there exists some valid execu-
tion for which the global happens-before relation is acyclic
(i.e., no event is transitively reachable from itself). That is,
Falglave’s framework sketch (¢4, ENC4) defines ¢4 £ Valid.



4. Memory Model Queries

MemSynth is designed to efficiently answer four queries
about memory models from a given framework sketch:

Verification determines whether a litmus test is allowed or
forbidden by a memory model;

Synthesis searches for a memory model that produces de-
sired outcomes on a set of litmus tests;

Equivalence determines whether two memory models are
equivalent (within finite bounds); and

Ambiguity decides whether a memory model is the only one
that explains the outcomes of a set of litmus tests.

This section defines the MemSynth queries and explains their
utility in building and refining memory model specifications.
Section 5 shows how to implement these queries to scale to
hundreds of litmus tests and large specifications.

4.1 Verification

The verification query, determining whether a memory model
allows a litmus test, is well-studied in the literature [0,
26, 29, 45, 48]. Given a litmus test 7 and memory model
M = (¢,ENC) (Definition 2), the verification query checks
satisfiability of the formula

31U V; )1

where (U, V) = ENC(T). If this formula is satisfiable, then
M allows the test T (Definition 1). Otherwise, M forbids 7.
The verification query involves a straightforward satisfiabil-
ity check that can be discharged with any relational solver,
including MemSynth.

4.2 Synthesis

The synthesis query searches a framework sketch for a mem-
ory model that is consistent with the desired outcomes for a
set of litmus tests. Given a set Tp of tests that should be al-
lowed, a set Ty of tests that should be forbidden, and a frame-
work sketch F' = (¢, ENC), the synthesis task is to find a mem-
ory model (¢, ENC) € F that allows all tests in 7p and for-
bids all tests in 7. This query amounts to solving the formula

(¢, ENC) € F. N\ 31 [(Ur; Vr; om) 1
TeTp

A\ /\ VI.ﬁ[[(]UT;VT;(f)MDHI
TeTn

ey

where (Ur,Vr) = ENC(T).

The synthesis query involves higher-order universal quan-
tification over the non-constant relations in Vr for forbidden
tests 7y The recent Alloy* solver [33] supports finite model
finding for relational formulas with higher-order quantifiers,
and so could in principle solve the synthesis query. In prac-
tice, however, these queries are intractable for Alloy* because
its language lacks crucial constructs for precisely specifying

the size and shape of the search space: expression holes and
bounds on the contents of declared relations. These limita-
tions motivated our embedding of bounded relational logic
in Rosette (Section 2). In Section 5.2, we present an algo-
rithm for solving synthesis queries that scales to complex
framework sketches and many litmus tests.

4.3 Equivalence

MemSynth can compare two memory models M4 and Mp
from a framework F' for equivalence. If they are not equiva-
lent, MemSynth generates a distinguishing litmus test Tp on
which they disagree (i.e., one model allows 7p while the other
forbids it). As with existing work on generating distinguish-
ing tests [28, 47], the equivalence check is bounded, proving
two models equivalent only up to a bound on the size of the
distinguishing test. These bounds are defined by a symbolic
litmus test (Definition 5), in which some syntax relations S
are not constant (in contrast to, e.g., Definition 3). A symbolic
litmus test thus defines a set of concurrent programs rather
than only one such program.

Definition S (Symbolic litmus test). A symbolic litmus test
Ts = (U; Vs f) for a framework sketch F = (¢,ENC) is a
relational specification in which

® V binds the relations SUE in ¢ (as in Definition 1).
® The formula f is a well-formedness predicate for the
litmus test, in which the only relations are those in S.

Given a symbolic litmus test Tg and two memory mod-
els My = (¢4, ENC) and Mp = (¢p,ENC), the equivalence
query solves for a distinguishing litmus test by checking the
satisfiability of two formulas:

ary. [[TsﬂlT A\ EI.MU;V;(PAD]](IT UI)
/\VI.—‘[[(]U;V;(PBD]](IT UI)

to find a test on which My is weaker than Mp (i.e., M, allows
a test that Mp forbids), and similarly the second formula

alr. [[TsﬂlT A\ EI[NU,V,(PBD]](IT UI)
AVL=[(U:V: 04)] (I UT)

for a test on which My is stronger than Mp. The symbolic
litmus test Ts = (U;V; f)) includes a well-formedness pred-
icate f, a relational formula that ensures the resulting test is
a syntactically valid program. If either formula is satisfiable,
then Tp = EVAL(Ts,Ir) is a litmus test that distinguishes the
two models My and Mp.! If both formulas are unsatisfiable,
then M4 and Mp are equivalent on all valid tests in the search
space defined by T5.

4.4 Ambiguity

The ambiguity query checks whether a memory model M is
the only one within a framework sketch that gives the desired

VEVAL(Ts, Ir) substitutes each variable v in Ty with the value I(v).



outcomes on a set of allowed (7p) and forbidden (7y) litmus
tests. To do so, the query attempts to synthesize a second
memory model My and a distinguishing litmus test 7p such
that Mg and M disagree on Tp but agree on all tests in 7p
and 7Ty. If such a model and test exist, the set of given tests
is ambiguous: there are two semantically distinct memory
models that both explain the input tests 7p U7y .

Given a memory model M = (¢, ENC), a framework
sketch F = (¢, ENC), a symbolic litmus test Ts = (Us; Vs; f)),
and sets of allowed and forbidden tests 7p and 7Ty, detecting
ambiguity involves checking the satisfiability of a formula
that combines synthesis and equivalence:

7. 3(gs,ENC) € F. [Ts]ir A N\ 31 [(Ur; Vr: 9s)]1
TeTp

A /\ VI =[(Ur; Vr; os) |
Ty

A3L[(Us; Vs; ¢s)] (Ir UT)
/\V].ﬁ[[(]UM;VM; ¢MDH(IT UI)

where (Ur,Vr) = ENC(T), and a second formula that
swaps Mg and M in the final two conjuncts (akin to the
two equivalence formulas). If either formula is satisfiable,
then Mg = (¢5,ENC) is a second memory model that pro-
duces the desired outcomes on all tests in 7p and 7y, and
Tp = EVAL(Ts, I7) is a litmus test that distinguishes M and
Ms. If both formulas are unsatisfiable, then M is the only
memory model that produces the desired outcomes. This
uniqueness result is with respect to two bounds: the finite
search space defined by the framework sketch F, and the
finite search space for the symbolic litmus test Ts.

The ambiguity query identifies missing tests from the
input sets, and so can form the basis of a refinement loop to
guide the development of a memory model specification. For
example, if we take Tp to contain only the test x86/3 from
Section 3.2, and Ty to be empty, then many distinct memory
models within Fyjelave produce the desired outcomes (TSO,
RMO, PowerPC, etc.). If we take M to be one such model,
the ambiguity query will identify a second model that also
allows test x86/3, and produce a new distinguishing litmus
test Tp to resolve the ambiguity. By deciding the desired
outcome for 7p and adding it to the appropriate set (7p or
Tn), we can repeat the synthesis process to refine the memory
model M. The user can decide on the desired outcome for Tp
by inspecting documentation, executing the test on hardware,
consulting with system architects, or otherwise.

5. Reasoning Engine

This section presents MemSynth’s engine for answering the
queries in Section 4. We show the algorithms to implement
these queries, and describe key optimizations to make them
scale to real-world memory models.

I function VERIFY(M = (¢y,ENC),T)
2 (U,V) « ENc(T)
I < INSTANTIATE(V)
4 @ < INTERPRET(@y, 1)
5 return SOLVE(¢) = SAT

Figure 5. MemSynth’s verification procedure VERIFY takes
as input a memory model M and litmus test 7 and determines
whether M allows T.

1 function ENC4(T)

2 (U,V) < ENCSYNTAX(T) > Encode relations in Definition 3
3 I < INSTANTIATE(V) > Make an interpretation from 'V
4 B! < INTERPRET((Write — Read) & (loc.~loc) & (val.~val), )
5 B! + INTERPRET((Write — Write) & (loc.~loc), )

6 return (U,VU{rf 2 [0,B],ws :» [0,B)*]})

> Figure 4

Figure 6. The ENC4 procedure computes relational bounds
for an execution E in the Fpglave framework.

5.1 Verification

The verification query (Section 4.1) determines whether
a memory model M allows a litmus test 7. The VERIFY
procedure in Figure 5 takes as input a memory model M =
(¢,ENC) and litmus test 7, and returns true iff M allows
T. The VERIFY procedure first encodes the litmus test as a
finite universe U and set of relation declarations V using
the memory model’s ENC function (Definition 1). Given
these bounds, it then checks the satisfiability of the relational
specification (U;V;¢). The implementation of VERIFY is
only four lines of code, demonstrating the utility of our
relational DSL for reasoning about memory models.

Bounds Compaction. Figure 6 shows an example imple-
mentation of the ENC function. The ENC4 procedure com-
putes bounds for the relations in a Fajglave €xecution (Defi-
nition 4). A naive bound that includes every tuple of the ap-
propriate arity is sound, but tighter bounds can significantly
improve performance, since the difference between the upper
and lower bounds for each free relation defines the size of the
search space for the solver query. For Fjjgjaye, an execution
consists of two relations rf and ws that specify a reads-from
and write serialization order, respectively. ENC4 computes
upper bounds for each relation from the Execution axiom in
Figure 4. The rf relation contains only tuples (w,r) where
w is a write, r is a read, and both w and r access the same
location with the same value. Likewise, the ws relation con-
tains only tuples (wy,wz) where both entries are writes to the
same location. Compared to naive upper bounds, this more
compact search space improve verification time by an average
of 27x on the PowerPC tests discussed in Section 6.1.

5.2 Synthesis

The synthesis query (Section 4.2) generates a memory model
that gives the desired outcomes on a set of litmus tests. The
space of candidate solutions is defined by a framework sketch
F = (¢,ENC) (Definition 1), which contains expression holes
that define a candidate space of memory models.

Our synthesis procedure, SYNTHESIZE (Figure 7), takes
as input a framework sketch F = (¢, ENC), a set of allowed



| function SYNTHESIZE(F = (¢,ENC), Tp, Tn)
2 S < new IncrementalSMTSolver()

30 To«{}

4 Oy <+ false

5 T < NEXTTEST(¢u, Tp, T, Tu)

6 while 7 # | do

7 ADDTEST(S,F, T, Tp)

8 Tu < TyuT

9 I, + SOLVE(S)
10 if I, = UNSAT then
11 return UNSAT
12 Ov < EVAL(9,1,)
13 T < NEXTTEST(¢um, ENC, Tp, Ty, Tu)
14 return (¢, ENC)

> Set of used tests
> Model that forbids all outcomes
> Choose an initial test

> Add encoding of T to S

> No model exists

> Use I, to fill the holes in ¢
> Choose the next test

> M gives the expected outcome on all tests in TpU Ty

(a) Main synthesis routine

> Boolean interpretation or UNSAT

I function ADDTEST(S,F = (¢,ENC), T, Tp)
2 (U,V) « ENc(T)

3 I < INSTANTIATE(V)

4 ¢ < INTERPRET(¢,])

5 if T € Tp then

6 ASSERT(S, 9)

7 else

8 X < SYMBOLICS([)

9 ASSERT(S,VX. —¢)

> Symbolic relational interpretation I
> Boolean encoding

> Add an allowed test

> All symbolic booleans in I
> Add a forbidden test

(b) Test evaluation

I function NEXTTEST(¢y, ENC, Tp, Tn, Tv)

2 for T € (TpUTy)\ Ty do

3 if VERIFY((¢y,ENC),T) # (T € Tp) then

4 return 7 > M gives the wrong outcome on T
5 return L

> Iterate over unused tests

> M gives the expected outcome on all unused tests

(c) Test selection

Figure 7. MemSynth’s synthesis procedure SYNTHESIZE takes as input a memory model sketch M, a set Tp of allowed litmus
tests, and a set Ty of forbidden litmus tests, and returns a memory model that produces the given outcomes on all tests.

litmus tests 7p, and a set of forbidden litmus tests 7. Given
these inputs, it uses our relational DSL (embedded in Rosette)
to generate and solve quantified formulas using an off-the-
shelf SMT solver [19]. Because MemSynth represents rela-
tions as matrices of boolean values, these formulas quantify
over boolean variables. We found the Z3 SMT solver [19]
to be extremely effective at discharging these formulas—an
average of 2-5x faster than our own specialized implemen-
tation of counterexample-guided inductive synthesis [41].

SYNTHESIZE does not try to find a correct model for all
tests in 7p and Ty at once, since this would require encoding
every test against the framework sketch predicate ¢. Instead,
tests are added to the synthesis query incrementally. The order
in which tests are added influences synthesis performance;
we use a simple heuristic that adds tests in increasing order of
size, which optimizes for small search spaces. This incremen-
talization reduces the size of the synthesis query substantially:
in Section 6.1, we show that only 16 of 768 tests were added
to the query when synthesizing a model for PowerPC.

The SYNTHESIZE procedure is sound, and it is complete
with respect to the input sketch: if a correct model exists
within the input sketch, SYNTHESIZE will return a solution.

Theorem 1 (Soundness). If SYNTHESIZE(F, Tp,Ty) returns
a memory model M, then M satisfies Equation 1.

Theorem 2 (Termination). SYNTHESIZE(F,7p, Ty) termi-
nates when Tp and Ty are finite sets.

Theorem 3 (Completeness). If there exists a model M in the
framework sketch F that satisfies Equation 1, and Tp and
Ty are finite sets, then SYNTHESIZE(F, Tp, Ty) will return a
model.

5.3 Equivalence

MemSynth can determine if two memory models are equiv-
alent (up to given bounds) by searching for a litmus test on
which they disagree. Our equivalence-checking procedure
COMPARE(My, Mg, Ts) takes as input two memory models
My and Mp, and a designer-provided symbolic litmus test T
(Definition 5). Given these inputs, it returns either a litmus

test 7 such that VERIFY(My,T) # VERIFY (Mg, T), or L if
no such test exists within the bounds of Ts. To search for a
distinguishing test 7, COMPARE solves the two quantified
boolean equivalence formulas shown in Section 4.3 using the
73 SMT solver (as with SYNTHESIZE), with two additional
optimizations described next.

Symmetry Breaking. For most framework sketches, a naive
specification of a symbolic litmus test will define a search
space that contains many redundant candidate tests. For ex-
ample, after checking a test 7" in Fajgjave, there is no need to
also check a test 7’ that differs from T by a permutation of
the used memory locations (e.g., T’ swaps all instances of X
and Y in the loc relation of T'). To improve query performance,
our definition of Tg for Fjglave applies lex-leader symmetry
breaking [17] to rule out tests that differ only by a permu-
tation of threads, addresses, or values, similar to existing
work [28]. The well-formedness predicate f for Ts also adds
assertions to rule out other uninteresting litmus tests, such as
tests that refer to a memory location exactly once, which has
no visible effect on inter-thread memory reorderings. These
optimizations reduce the run time of equivalence queries by
2-10x, and generalize beyond Fajglave-

Concretization with Metasketches. As another critical op-
timization, we express the symbolic litmus test 75 using a
metasketch [13], which decomposes T into a set of par-
tially concretized symbolic tests. In particular, 75 describes
the set of all litmus tests with up to k threads and up to n
instructions per thread. The corresponding metasketch de-
scribes the same search space using a set of symbolic tests

space of all litmus tests with a concrete number of threads
(k), instructions per thread (z1,...,f;), and writes per thread
(wi,...,wy). For example, the set TS<2’<2’3>’(1"2)> contains all
tests with two threads, with two instructions (one of which
is a write) on the first thread, and three instructions (two of
which are writes) on the second thread. This concretization
enables each symbolic litmus test in the metasketch to use
more compact bounds (e.g., the thread relation thd becomes



entirely concrete), which reduces the search space exponen-
tially. Without this optimization, the equivalence queries in
Section 6.3 are up to two orders of magnitude slower.

5.4 Ambiguity

The final MemSynth query checks whether a memory model
is unique for a set of allowed tests 7p and forbidden tests 7y .
The ambiguity procedure DISAMBIGUATE(M, Tp, Ty, F, Ts)
takes as input a memory model M, sets of allowed tests 7p and
forbidden tests Ty, a framework sketch F = (¢,ENC), and
a symbolic litmus test Ts. It returns a new memory model Mg
and test Tp, such that for all T € TpU Ty, VERIFY(M,T) =
VERIFY (Mg, T), but VERIFY (M, Tp) # VERIFY (Mg, Tp). In
other words, the set of tests 7p U 7y is ambiguous, because
both M and My satisfy every test in the set. Since the am-
biguity query involves synthesizing a memory model Mg
and litmus test 7p, the implementation of DISAMBIGUATE
extends SYNTHESIZE (Figure 7) and benefits from the same
optimizations as COMPARE, i.e., metasketches and symmetry
breaking. Metasketches also enable solving in parallel [13],
which DISAMBIGUATE exploits to gain up to 3x speedup on
8 threads in our experiments.

5.5 Discussion

Limitations. As with other tools based on syntax-guided
synthesis [41], MemSynth’s results are inherently bounded.
Both framework sketches (for synthesis) and symbolic litmus
tests (for equivalence and ambiguity) define large but finite
search spaces, which MemSynth explores exhaustively with
an SMT solver. While incomplete, such bounded reasoning
provides useful results on real-world problems, as Section 6
shows; in most of those experiments, increasing the bounds
yielded no meaningful difference in the results.

MemSynth’s synthesis queries also face the potential for
overfitting, like other example-based synthesis tools. The re-
lational DSL (Section 2) reduces this risk by not including
operators prone to overfitting (e.g., if-then-else expressions),
and by offering control over the size of the search space for ex-
pression holes. The COMPARE and DISAMBIGUATE queries
can also exploit metasketch support for cost functions [13] to
minimize the size of the synthesized tests.

Integration. MemSynth queries read and write litmus tests
in the common Herd format [8], allowing them to integrate
with existing tools for memory models. MemSynth’s rela-
tional DSL can also export models to Alloy* specifications,
which are used by some memory model tools [45, 47]. Mem-
Synth’s relational DSL (Section 2) is similar to the cat lan-
guage [3] for specifying memory models, and so MemSynth
models could be exported for use by that toolchain. But cat
includes fixpoint operations, while our DSL does not, so
importing cat models into MemSynth would require more
work (e.g., bounded unwinding of fixpoints [47]).

6. Case Studies

To demonstrate that MemSynth is an effective approach to
reasoning about memory models, we sought to answer three
research questions:

e Can MemSynth scale to real-world memory models such
as PowerPC and x867?

® Does MemSynth provide a basis for rapidly building
useful automated memory model tools?

e Does MemSynth outperform existing relational solvers
and memory model tools?

Methodology and Code. Experiments in this section were
performed on a quad-core Intel Core i7-7700K CPU at
4.8 GHz, with 16 GB of RAM. We used Rosette [42, 43]
version 2.2 and Z3 [19] version 4.5.0. Both MemSynth and
our relational DSL, Ocelot, are open source and available
from http://memsynth.uwplse.org, together with the
synthesized models and tests from this section and a virtual
machine artifact for reproducing the results.

6.1 Can MemSynth scale to real-world memory
models such as PowerPC and x86?

This section uses MemSynth to synthesize specifications for
the PowerPC [22] and x86 [23] memory models. The results
(summarized in Figure 8) show that MemSynth scales to
complex real-world models, and that its queries can aid in
the design of memory model specifications by identifying
ambiguities and redundancies in tests and documentation.

6.1.1 Synthesizing a PowerPC Model

The PowerPC architecture is well-known for relaxed memory
behaviors that have proven difficult to formalize. Existing for-
malization efforts have identified subtle mis-specifications [5,
6, 30], making an automated process particularly appealing.
To synthesize a specification for PowerPC, MemSynth uses
a set of 768 litmus tests from Alglave et al. [4, 6], which
they generated with their diy tool [7]. These tests vary from
6-24 instructions across 2-5 threads, and while they examine
most aspects of the PowerPC memory model, they are not
intended to be exhaustive. We use the Alglave et al. [6] model
to decide whether each test should be allowed, although we
could use hardware observations instead, as discussed later.
We employ Fajglave as the basis for the synthesis process.
The framework sketch contains expression holes for the ppo,
grf, and fences relations. All three holes use a grammar
containing all relational expressions e in Figure 1 other than
set comprehension and closure. For the barrier expression
fences, we provide a sketch of the form fences 2 Frence +
FiwFences Where Frence and Fiwrence are expression holes
containing Fence and LWFence, respectively, as terminals.
This sketch expresses the high-level insight that PowerPC
features two kinds of cumulative barriers (heavyweight sync
fences and lightweight lwsync fences) that do not interact.



Input Tests Framework Sketch

ppo/grf  fences  State
Arch.  |Tp| |7n| Time Depth  Depth  Space

PPC 163 605  12s 4 4 1406
x86 2 8 2s 4 0 2624

(a) Synthesis results

Symbolic Litmus Test

Num. Num. State

Arch. New Tests Time Threads Events Space

PPC 9 110min 2-4 2-6 216

x86 4 67min 2-4 2-6 24
(b) Ambiguity results

Figure 8. Results of real-world memory model synthesis and
ambiguity experiments for PowerPC and x86. We describe
the framework sketches and symbolic litmus tests both in
terms of their parameters (e.g., expression hole depth) and
the number of candidate solutions they contain (i.e., their state
space). The ambiguity results (b) for a given architecture use
the same framework sketch as the synthesis results (a) for
that architecture.

Synthesis. MemSynth synthesizes a model, which we call
PPCy, that agrees with Alglave et al.’s hand-written model
on all 768 tests. The synthesis takes 12 seconds, and due
to its heuristics for test ordering, the incremental synthesis
algorithm (Figure 7) uses only 16 of the 768 tests.

Ambiguity. While the 768 tests described above cover
much of the semantics of PowerPC, they do not identify
a unique model. To resolve this ambiguity, we apply Mem-
Synth’s DISAMBIGUATE query (Section 4.4) to enlarge the
set until it identifies a single model. We use the Alglave et al.
model as an oracle to decide the correct outcome for the
generated distinguishing tests.

MemSynth finds 9 new tests to add to the set. The tests
deal with the semantics of PowerPC barriers; for example:

Test ppc/ambig/3
Thread 1 Thread 2
:rl«B 4 r2+A
2 lwsync s: lwsync
s A+ 1 B+ 1

Outcome: rl=1Ar2=1
PowerPC: forbidden

After adding the 9 tests, the new synthesized model PPC is
equivalent to the Alglave et al. [6] model on all tests up to 6
instructions across 4 threads, and is the only model (within
our sketch) that produces the given outcomes on all tests.

Discussion. MemSynth is complementary to test-generation
tools such as diy [6]: these tools can seed the synthesis process
with initial tests, and MemSynth can then identify ambigu-
ities and synthesize new tests to resolve them. While our

(define (hole depth arity non-terms terms)
..) ; Expression hole (Section 2.2)

(define (Faigiave Ppo grf fences)
..) ; Axioms from Figure 4

; Common components of memory model specifications
(define (SameAddr X) (& (-> X X) (join loc (~ loc))))
(define rfi (& rf (join thd (~ thd))))

(define rfe (- rf (join thd (~ thd))))

; Expression holes for Faiglave model (Section 3.2)
(define ppo
(hole 4 2 (list + - -> & SameAddr)
(list po dep Event Read Write Fence Atomic)))
(define grf (hole 4 2 (list + - -> & SameAddr)
(list rf rfi rfe none univ)))
; x86 fences are not cumulative
(define fences (-> none none))

; Final sketch
(define x86-sketch (Faiglave Ppo grf fences))

(a) Framework sketch Fajgjave

; Before disambiguation
(define ppog
(& po (- (-> Event (+ Write Read))
(-> (- Write Atomic) Read))))
(define grfg (- rf (join thd (~ thd))))
(define TS0 (Faiglave PPOo grfy fences))

; After resolving 4 ambiguities

(define ppos (- po (-> (- Write Atomic) Read)))
(define grfy (- rf (join thd (~ thd))))

(define TSO4 (Faiglave PPOs grf, fences))

(b) Synthesized models 7SO¢ and TSO4

Figure 9. The framework sketch Fjjglave for synthesizing a
memory model for the x86 architecture (a), and synthesized
models SOy and TSO4 before and after resolving ambigui-
ties (b). The expression holes for ppo and grf define a search
space of size 2024 45 described in Figure 8. The fences rela-
tion is empty because x86 fences are not cumulative.

experiments use the hand-written model of Alglave et al. [6]
as an oracle, we could instead determine litmus test outcomes
by manually consulting documentation or by hardware exper-
iments. For example, Alglave et al. [4] also ran their 768 tests
on PowerPC hardware and observed whether each behavior
occurred. MemSynth is able use the results of these experi-
ments as an oracle, and synthesizes a new model PPCy in
13 seconds. The resulting model is not equivalent to PPC)
(MemSynth synthesizes a distinguishing test with its equiva-
lence query in 6 seconds) because some allowed outcomes
were not observed on the hardware.

6.1.2 x86 Ambiguity and Redundancy

The x86 architecture specifies a variant of fotal store ordering
(TSO) as its memory model. The x86 TSO memory model is
defined in the Intel Software Developer’s Manual [23] with
prose and a set of 10 litmus tests. Though TSO is one of the
simplest memory models, formalizing the subtleties of its
x86 variant has been challenging [14, 15, 38, 40].

We used MemSynth to synthesize a specification of the
x86 memory model. To do so, we extended Fajglave With
support for atomic operations (adding a new unary Atomic



relation to Definition 3 to model x86’s xchg instruction) and
the mfence full memory fence (populating the Fence relation
in Definition 3). MemSynth synthesizes a formalization 7SOq
that is correct on the Intel manual’s 10 litmus tests in under
two seconds. Figure 9 shows the framework sketch Fajglave
and the synthesized model 7SOy.

Ambiguity. But MemSynth’s DISAMBIGUATE query (Sec-
tion 4.4) determines that another weaker memory model,
TSO1, also satisfies all 10 tests, while disagreeing with 7SO
on a new distinguishing test:

Test x86/ambig/1

Thread 1 Thread 2
Lrl+«A »B+1
»r2+B 4 xchg(A, r3)

Initially: r3 =1
Outcome: r1=1Ar2=0

This test is a variant of the manual’s example 8-1 [23], but
with an atomic exchange instead of a plain write to A. The
documentation indicates that x86 should forbid this outcome,
as TSOq does but 7SO, does not.

Repeating the ambiguity query after adding x86/ambig/1
finds 3 more distinguishing tests that further examine the
semantics of atomic operations and mfence. According to
the documentation, the resulting tests should also be for-
bidden. After adding these tests to the synthesis process,
MemSynth is able to prove that a new synthesized model
TSO;4 is unique, up to the bounds in Figure 8 on the size of
the model specification and distinguishing litmus test.

The TSO4 model in Figure 9(b) correctly captures the
intent of the x86 TSO model, and is similar to both Figure 3
and Alglave [2]. The synthesized ppo, allows writes to be
reordered past later reads, while grf, allows a thread to read
its own writes early. 7S04 also models the semantics of the
xchg and mfence instructions, both of which are included
in ppoy and so prevent reordering.> We further validated
the synthesized model by comparing it to the x86-TSO
model of Sewell et al. [40] on the 24 litmus tests in their
paper [34]; TSO4 agrees with x86-TSO on all such tests. The
4 distinguishing tests synthesized by MemSynth are either
single-fenced variants of Sewell et al.’s amd5 litmus test, or
xchg-based variants of other Intel tests, similar to their n8 test.

Potential Redundancy. In the paper on their earlier x86-
CC formalization of the x86 memory model, Sarkar et al. [38]
write that “P8 may be redundant,” where P8 is a principle
from the Intel manual about which reorderings are allowed:

“88.2.3.9: Loads and stores are not reordered with
locked instructions.” [23]

The manual section describing this principle includes two
litmus tests demonstrating forbidden reorderings. We found

2 We model Atomic as a subset of Write, so the expression (- Write
Atomic) allows only plain writes to be reordered.

that if we omit these two tests from the synthesis process, the
ambiguity experiment above re-discovers them, suggesting
they are needed to uniquely identify x86’s memory model.

6.2 Does MemSynth provide a basis for rapidly
building useful automated memory model tools?

While previous sections build on the Fajglave framework
sketch, based on the Alglave et al. [6] framework, Mem-
Synth’s engine generalizes to other framework sketches. In
this section, we present Fyry, a framework sketch constructed
from a framework developed by Mador-Haim et al. [28, 29].
The implementation took only two days of work by one of
this paper’s authors. Moreover, we use MemSynth to auto-
matically rectify a discrepancy between our implementation
and the paper’s results that we could not resolve by hand.

6.2.1 The Fyg Framework

Mador-Haim et al.’s memory model framework [28, 29]
was developed to contrast memory model specifications by
generating a distinguishing litmus test on which two models
disagree (as MemSynth’s equivalence query does). A memory
model is defined by a “must-not-reorder” function F (x,y) that
determines whether two instructions x and y can be reordered.
The framework places syntactic restrictions on F' such that
it admits only 90 models. The authors prove that the size of
litmus test needed to distinguish models in this set is bounded,
and that only 82 of the 90 models are semantically distinct.

6.2.2 Repairing the Framework

After implementing Fyiyy, we found that our results differed
from those in the original paper. The paper states there should
be 82 distinct models, but our implementation found only 12
distinct models. Moreover, the paper identifies the following
as a distinguishing litmus test (i.e., some models allow it
while others forbid it):

Test mh/L2

Thread 1 Thread 2
P X<+1 wrl< X
2 X<+ 2 L r2<+ X

Outcome: rl =2Ar2=0

Yet our implementation reported this test (which contains a
load-load coherence violation allowed by SPARC’s RMO
model) to be disallowed by all 90 memory models.

Our manual investigation implicated one of the paper’s
axioms for happens-before relations:

5. Ignore local: If x is after y in program order, then x
cannot happen before y.

Omitting this axiom from our implementation gave 86 distinct
models, not 82 as expected, and so we hypothesized that the
axiom was necessary but too strong. Since the paper correctly
reports that mh/L2 is allowed by RMO, we believe the paper’s
results are correct but this axiom was misprinted in the paper.
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Figure 10. Performance comparisons between MemSynth
and existing tools for (a) verification and (b) equivalence.

However, the paper’s authors were unable to provide their
implementation for us to compare against [10].

We first tried to fix the axiom by hand, but despite several
attempts, a correct fix eluded us: our closest results identified
78 or 86 distinct models rather than 82. Instead, we used
MemSynth’s relational logic DSL to synthesize a repair.
In relational logic, axiom 5 is written as “no (~po) & hb”,
where hb is the happens-before relation for an execution. To
repair the axiom, we replaced ~po with an expression hole of
depth 3, and synthesized a completion that gave the correct
outcomes on the 9 litmus tests from the original paper on both
TSO and RMO memory models. We were able to synthesize
the following repair in 4 seconds:

no (~((po—rf) & (Write — Read))) & hb

In prose:

Sa. Ignore local: If x is after y in program order, x is a
read, y is a write, and x does not read the value written
by y, then x cannot happen before y.

The repaired axiom allows reads to see local writes early
without affecting the happens-before relation. We believe it is
intended to allow models such as TSO to observe their own
writes early by ignoring the happens-before order. With the
repaired axiom, our pairwise comparison results produce 82
distinct models, identical to the original paper.

6.3 Does MemSynth outperform existing relational
solvers and memory model tools?

This section compares MemSynth to existing relational en-
gines and memory model tools on verification, equivalence,
and synthesis queries.

Verification. Figure 10(a) shows the time for MemSynth,
Alloy (v4.2_2015-02-22) [24, 44], and herd (v7.43) [8] to
verify 768 PowerPC litmus tests from Section 6.1. The Alloy
results use the PPC specification synthesized by MemSynth,
while herd (configured in “speed check” mode) already sup-
ports PowerPC. The results show that MemSynth outperforms
Alloy by 10x, and is comparable to herd’s custom decision
procedure for memory models.

Equivalence. We used MemSynth and Alloy* (v0.2) [33]
to perform a pairwise comparison of 10 different synthe-

sized PowerPC models. Both MemSynth and Alloy* used a
symbolic litmus test with up to 2 threads and 6 instructions.
Figure 10(b) shows that MemSynth outperforms Alloy* on
most of these queries: MemSynth can solve 3x more queries
in under one second, and the hardest problem takes 8 s for
MemSynth versus 10 min for Alloy*. With symmetry break-
ing and concretization (which cause the large steps in the
MemSynth line in Figure 10(b)) disabled, MemSynth could
not solve any of the comparisons in under an hour.

Synthesis. The synthesis query (Section 4.2) requires
higher-order quantification, and so we compared MemSynth
to Alloy* [33]. Because Alloy* does not support expression
holes (Section 2), we designed a framework sketch M that
simply chooses between hard-coded memory models. When
given M = {SC, TSO}, both MemSynth and Alloy* return in
under a second. However, when given M = {SC, TSO,PSO},
MemSynth still returns in under a second, but Alloy* times
out after one hour. This result suggests Alloy* would not be
able to synthesize models from complex framework sketches.

7. Related Work

MemSynth is, to our knowledge, the first tool to provide
synthesis and other higher-order queries for memory model
specifications. It builds on existing work in formalizing and
reasoning about memory models, which this section reviews.

Formalization. Few architectures formalize their memory
models (with the exception of SPARC [46] and Alpha [16]),
and so this task has fallen to researchers. A notable suc-
cess is the x86-TSO model [40], which formalizes the mem-
ory model of the x86 architecture. This model was refined
through several papers [35, 38], which revealed ambiguities
in the x86 documentation. In Section 6.1.2, MemSynth’s
DISAMBIGUATE query automatically identified more such
ambiguities.

Another effort has developed several formalizations of the
PowerPC architecture [5, 6, 8, 30, 39]. The PowerPC memory
model allows many more reorderings than x86, and features
cumulative barriers to restore stronger behavior. The specifi-
cation for PowerPC is complex, and several ambiguities in
the PowerPC manual [22] required detailed experimentation
to resolve. The PowerPC formalization effort also developed
a suite of memory model experimentation tools, which we
use in Section 6.1 and Section 6.3.

Formalization efforts have also brought clarity to emerg-
ing programming language memory models, particularly C11
and C++11 [11, 12]. These efforts have helped check that
the target models provide basic guarantees about important
classes of programs—for example, that all data-race-free pro-
grams have sequentially consistent memory ordering [1]. Like
hardware memory models, language memory models are also
relational, and some (e.g., the Java Memory Model [31]) have
already been formalized [45] in bounded relational logic. We
therefore believe MemSynth could also be effective for lan-
guage models, with appropriate design of a framework sketch.



Frameworks. Recent work has developed generic memory
model frameworks that can be instantiated with different
architectures. The Nemos framework [48] offers axiomatic
specifications for a variety of models, such as causal consis-
tency, but (to our knowledge) cannot express microprocessor
models such as TSO. Alglave et al. [2, 6, 8] developed an
axiomatic framework for microprocessor memory models. It
admits models for complex architectures such as PowerPC,
and is the basis for our Fjgjave framework sketch (Section 3.2)
and most experiments in Section 6. Mador-Haim et al. [29]
developed a framework for store-atomic memory models,
which we implement in Section 6.2. It captures common
models such as TSO, but is restricted enough to prove upper
bounds on the size of distinguishing litmus tests.

Automated Reasoning. One common application of for-
mal memory models is inserting synchronization instructions
that restore sequential consistency in a concurrent program.
Alglave et al. [6] address this problem for PowerPC with a
specification of the platform’s barrier semantics, including
cumulativity; we automatically synthesize this specification
in Section 6.1. Another common application is verification of
concurrent code under relaxed memory models, and several
tools have been developed for this purpose (e.g., [18, 20]).
All of them rely on formal specifications of memory models
that can be synthesized with MemSynth.

MemSAT [45] is an automated tool that implements the
verification query of Section 4.1 for axiomatic memory model
specifications. MemSAT found several discrepancies in the
formalization of the Java Memory Model [31]. MemSynth
is similar to MemSAT in its use of relational logic, but fo-
cuses on hardware models and offers richer automated rea-
soning queries including synthesis. Wickerson et al. [47] use
Alloy* [33] to implement a tool for automatically comparing
memory consistency models, similar to MemSynth’s equiv-
alence query. They show results for both processor and lan-
guage memory models, but their tool does not support Mem-
Synth’s synthesis and ambiguity queries, and it is unclear how
to adapt their quantifier elimination strategy (“deadness”) to
specification synthesis. Lustig et al. [27] use Alloy [24] to syn-
thesize suites of litmus tests that examine a set of pre-defined
memory ordering relaxations, which together compose a de-
sign space we could use as a framework sketch.

8. Conclusion

This paper presented MemSynth, a synthesis-aided system
for reasoning about axiomatic specifications of memory con-
sistency models. As the first of a new class of memory model
tools, MemSynth can synthesize memory model formaliza-
tions based on a framework sketch provided by a designer.
MemSynth’s expressive specification language builds on an
optimized bounded relational logic engine, which serves as
a platform for developing novel automated reasoning queries.
We showed that MemSynth can synthesize specifications for
complex architectures, refine those specifications by identify-

ing ambiguities, and support rapid development of memory
model tools that outperform hand-crafted versions. As new
parallel architectures continue to emerge, MemSynth can
help formalize their memory models rapidly and precisely.
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