ENDOMORPHISMS, TRAIN TRACK MAPS, AND FULLY
IRREDUCIBLE MONODROMIES
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ABSTRACT. Any endomorphism of a finitely generated free group naturally de-
scends to an injective endomorphism of its stable quotient. In this paper, we
prove a geometric incarnation of this phenomenon: namely, that every expand-
ing irreducible train track map inducing an endomorphism of the fundamental
group gives rise to an expanding irreducible train track representative of the
injective endomorphism of the stable quotient. As an application, we prove
that the property of having fully irreducible monodromy for a splitting of a
hyperbolic free-by-cyclic group depends only on the component of the BNS-
invariant containing the associated homomorphism to the integers.

1. INTRODUCTION

In the theory of Out(Fy) train-tracks serve as important tools for understand-
ing free group automorphisms: given an automorphism ¢ one strives to find a
train track representative (say, via the Bestvina—Handel algorithm) that is useful
in analyzing the automorphism.

In [DKL1], we naturally encountered train-track maps f: ® — O for which
fe: m(©) — m(O©) was NOT injective (and thus also NOT surjective by the Hopfian
property of free groups); other sources that have considered train tracks for endo-
morphisms of free groups include [DV, Rey, AKR]. We showed in [DKL1] that f.
descends to an injective endomorphism ¢: @ — @Q of the stable quotient

Q =m(0)/ | ker(¢").

k>1

The group @ is also a nontrivial (since f is a train-track map) free group, and in
the setting of [DKLI1] ¢ is often an automorphism. In this paper, we explain how
to produce from any expanding, irreducible train track map f: ©® — © an honest
train track representative f: @ — O for ¢, and we describe its relationship with f.

Theorem 1.1. Let f: © — © be an expanding irreducible train track map. Let
fe: m(©) — w1 (©) be the free group endomorphism represented by f, and let
¢: Q — Q be the induced injective endomorphism of the stable quotient Q of f..
Then there exists a finite graph © with 71(0) = Q (and no valence 1 vertices),
and an expanding irreducible train-track map f: © — © such that f, = ¢, up
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to post-composition with an inner automorphism of Q. Furthermore, there exists
graph maps p: © — © and &: © — O such that

o fO=0f andﬁf:f_;b, and

o 7@ = K and ®p = fX, for some K > 1.

As an application, we have the following theorem about the Bieri-Neumann-
Strebel invariant for free-by-cyclic groups (see [BNS, Lev, BG, CL] for background
information on the BNS-invariant). To state it, recall that a group homomorphism
u € Hom(G,R) = HY(G;R) is primitive integral if u(G) = Z and that the mon-
odromy ¢,, € Out(ker(u)) of such a homomorphism is the generator of the action
of Z on ker(u) defining the semi-direct product structure G = ker(u) x4, Z. Recall
also that the BNS-invariant X(G) of G [BNS] is an open subset of the positive
projectivization,

2(G) € (HY(G;R) — {0})/R+,
which captures finite generation properties; for example, a primitive integral class
u € HY(G;R) has ker(u) finitely generated if and only if u, —u € X(G).

Theorem 1.2. Suppose G is a hyperbolic group, Yo(G) a component of the BNS-
invariant, and ug,u; € H'(G;R) primitive integral classes projecting into Yo(G)
with ker(ug), ker(uy) finitely generated. Then ker(ug) is free with fully-irreducible
monodromy ¢, if and only if ker(uy) is free with fully irreducible monodromy ¢, .

The fact that ker(ug) is free if and only if ker(uy) is free follows from [GMSW].
The point of the theorem is that the monodromy of wug is fully irreducible if and
only if the monodromy for u; is. The proof of Theorem 1.2 builds on our papers
[DKL2, DKL1] which developed new machinery for studying dynamical aspects of
free-by-cyclic groups by exploiting properties of natural semi-flows on associated
folded mapping tori 2-complexes; see also [AKHR] for related work.

Since full irreducibility is preserved by taking inverses, Theorem 1.2 yields the
following corollary.

Corollary 1.3. Suppose G is a hyperbolic group and that X(G) U —X(G) is con-
nected. Then for any two primitive integral ug,u; € H*(G;R) with finitely gener-
ated, free kernels, ¢u, is fully irreducible if and only if ¢y, is fully irreducible.

Proof. Consider a component C of ¥(G). By Theorem 1.2, either every primitive
integral u € H!(G;R) projecting into C' with ker(u) finitely generated has the
property that ker(u) is free and ¢, is fully irreducible, or else no such u projecting
into C has this property. Say that C' is a fully irreducible component in the former
case and that it is a non-fully irreducible component in the latter. Now if 3¢ (G) is
a fully irreducible component and ¥1(G) a non-fully irreducible component, then
observe that (Xo(G) U —X¢(G)) N (Z1(G) U —%41(G)) = 0. For, if not, then there
exists a primitive integral u with finitely generated kernel and ¢,, fully irreducible,
such that —u lies in $1(G). Since ¢, is fully irreducible if and only ¢_,, = ¢, ! is,
this is a contradiction.

Now let F(G) C B(G) U —3X(G) denote the union of open sets Xo(G) U —X(G),
over all fully irreducible components ¥¢(G), and let N(G) C 2(G) U —3(G) be
the union of open sets ¥1(G) U —31(G) over all non-fully irreducible components
Y¥1(G). The open sets F(G) and N(G) cover 3(G) U —%(G) and are disjoint by
the previous paragraph, hence one must be empty and the corollary follows. (I
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For the case that G = w1 (M), where M is a finite volume hyperbolic 3-manifold,
considerations of the Thurston norm [Thu] imply that ¥(G) = —%(G) is projec-
tively equal to a finite union of top-dimensional faces of the polyhedral Thurston
norm ball in H*(M;R) (c.f. [BNS]); thus here X(G)U—X(G) is never connected un-
less it is empty. However, for hyperbolic free-by-cyclic groups G it can easily happen
that X(G) U —%(G) is connected and nonempty: In the main example of [DKL1],
one may easily apply Brown’s algorithm [Bro, Theorem 4.4] to the presentation
[DKL1, Equation 3.4] to calculate that ¥(G) contains all rays in H'(G;R) = R?
except for those in the directions (—1,0), (1,2), and (1, —2) (as in [DKL1], we work
with left actions, so we must take the negative of the result of applying Brown’s
algorithm). The cone § calculated in [DKL1, Example 8.3] is one component of
¥(G), and the vector u; = (—1,2) € X(G) satisfies —uy ¢ X(G); see [DKL1, Figure
8]. In particular, we see that ¥(G) U —X(G) is the entire positive projectivization
of HY(G;R) \ {0} 2 R?\ {0}, and is thus connected.

Theorem 1.2 extends and generalizes our earlier result [DKL2, Theorem C].
There we considered a hyperbolic free-by-cyclic group G = Fy x4, Z with fully
irreducible monodromy ¢¢ € Out(Fy) and constructed an open convex cone A C
H'(G;R) containing the projection Fx X4, Z — Z and whose projectivization is
contained in X(G) N —=X(G). Among other things, [DKL2, Theorem C] showed
that for every primitive integral u € A the splitting G = ker(u) x4, Z has finitely
generated free kernel ker(u) and fully irreducible monodromy ¢,, € Out(ker(uw)).

The proofs of [DKL2, Theorem C] and Theorem 1.2 are fairly different, although
both exploit the dynamics of a natural semi-flow on the folded mapping torus Xy
constructed from a train-track representative f: I' — T" of ¢g. Our proof of [DKL2,
Theorem C] starts by establishing the existence of a cross-section ©,, C Xy dual to
each primitive integral u € A such that the first return map f,: ©, — 0, is a train-
track representative of ¢,,. We then used the fine structure of the semi-flow (derived
from the train map f and the fully irreducible atoroidal assumption on ¢g) to
conclude that f, is expanding and irreducible and has connected Whitehead graphs
for all vertices of ©,. This, together with the word-hyperbolicity of G, allowed us
to apply a criterion obtained in [Kap] to conclude that ¢, is fully irreducible.

The proof of Theorem 1.2 starts similarly. Given G = Fy x4, Z as above and an
epimorphism u: G — Z in the same component of £(G) as Fy X4, Z — Z and with
ker(u) being finitely generated (and hence free), we use our results from [DKL1] to
find a section ©,, € Xy dual to u such that the first return map f,: ©, — O, is
an expanding irreducible train track map. However, now (f,).« is a possibly non-
injective endomorphism of 71(©,,). We thus pass to the stable quotient of (f,).,
which we note is equal to the monodromy automorphism ¢, € Out(ker(u)) since
ker(u) is finitely generated. We then apply Theorem 1.1 to obtain an expanding
irreducible train-track representative f,: ©, — ©, and use the provided maps
O, S 6, to construct a pair of flow-equivariant homotopy equivalences M 7.5 Xy
with additional nice properties; here My is the mapping torus of fu. Supposing
that ¢, = (f.)« were not fully irreducible, we then find a proper nontrivial flow-
invariant subcomplex in a finite cover of My which, via the equivalences My <
Xy, gives rise to a proper nontrivial flow-invariant subcomplex of some finite cover
of Xy. From here we deduce the existence of a finite cover A — I' and a lift
h: A — A of some positive power of f such that A admits a proper nontrivial
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h—invariant subgraph. But by a general result of Bestvina—Feighn—-Handel [BFH],
this conclusion contradicts the assumption that ¢g = f, is fully irreducible.

Our proof of Theorem 1.2 uses the assumption that u; and ug lie in the same
component of X(G) to conclude, via the results of [DKL1], that both splittings of
G come from cross sections of a single 2—complex equipped with a semi-flow. It is
therefore unlikely that this approach will lead to any insights regarding splittings
in different components of 3(G). Nevertheless, we ask:

Question 1.4. Can Theorem 1.2 be extended to remove the hypothesis that wu
and ug lie in the same component of the BNS-invariant X(G)?

Acknowledgements: The authors would like to thank the referee for carefully
reading an earlier version of the paper and providing helpful suggestions that im-
proved the exposition.

2. INDUCED TRAIN TRACK MAPS — GENERAL SETTING

Let O be a finite graph with no valence 1 vertices, and let f: © — © be a graph
map (as in [DKL2, Definition 2.1]). Recall from [DKL2, §2] that the (¢, e)—entry
of the transition matriz A(f) of f records the total number of occurrences of the
edge e*! in the edge path f(e/). The transition matrix A(f) is positive (denoted
A(f) > 0) if every entry is positive and is irreducible if for every ordered pair (', e)
of edges of © there exists t > 1 such that the (¢’, e)—entry of A(f)! is positive. We
say that f is irreducible if its transition matrix A(f) is irreducible, and that f is
expanding if for each edge e of © the edge paths f"(e) have combinatorial length
tending to oo with n. In this paper, as in [DKL1], we use the term “train-track
map” to mean the following:

Definition 2.1 (Train-track map). A train-track map is a graph map f: © — ©
such that:

e the map f is surjective, and
e for every edge e of © and every n > 1 the map f"|. is an immersion.

Note that, unlike the original definition [BH], our definition of train-track maps
allows for valence 2 vertices in ©. Lemma 2.12 of [DKL2] shows that train-track
maps must be locally injective at each valence 2, thus the presence of valence 2
vertices does not lead to any complications.

Our Definition 2.1 differs from the traditional setting in another important way;
namely, we do not require a train-track map f: © — © to be a homotopy equiva-
lence. Thus f, need only determine an endomorphism of m (©), in which case f is
not a topological representative of any outer automorphism of 71 (0).

Nevertheless in [DKL1, §4] we saw that an arbitrary endomorphism ¢: Fn — Fiy
of a finite-rank free group naturally gives rise to an injective endomorphism @ of
the quotient group

Q= Fn/ | ker(¢").
E>1
In fact, the kernels stabilize after finitely many, say K, steps so that |J, -, ker(o*) =
ker(p®). Then Q is isomorphic to the image J = X (Fy) < Fy and is thus itself
free. Moreover, the isomorphism conjugates ¢ to the restriction of ¢ to J, and thus
we may view @: Q — @ and ¢|;: J — J as the “same” injective endomorphism.
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We refer to the train track map f: © — © as a weak train track representative
of this quotient endomorphism @: @ — @ of f.. The goal of this section is to
prove Theorem 1.1 which promotes the weak train track representative f: @ — ©
to an honest train track representative f: © — © of ¢ (meaning that f. = @ up to
conjugation) whenever f is an expanding irreducible train track map.

2.1. Subgroups and lifts. For the remainder of §2 we fix an expanding irreducible
train track map f: © — ©. We begin with a simple observation.

Lemma 2.2. For every edge e of O, there exists a legal loop a.: S' — © crossing
e. Here “legal” simply means that f*oa: S' — © is an immersion for all k > 0.
In particular, © is a union of legal loops.

Proof. Since f is expanding and © has finitely many edges, there exists an integer j
so that f7(e) crosses some edge €’ at least twice in the same direction. Irreducibility
then provides some £ > j so that f*(e) crosses e twice in the same direction. Thus
we may find a subinterval I C e, say whose endpoints both map to an interior point
of e, such that the restriction f*|; defines an immersed closed loop a: S' — ©
crossing e. Since f is a train-track map, it follows that « is legal. O

Let v be an f-periodic vertex of ©, say of period r. Then set vg = v and
v; = fi(vg) for i =1,...,7 — 1. We consider the indices of the vertices vg,...,v,_1
modulo 7 in what follows.

Now we let B; = m1(©,v;). Then f induces homomorphisms B; — B;1, with
1 =20,...,7r — 1 and indices modulo ». We write f, to denote any of these homo-
morphisms (though to clarify, we may also write (f«);: B; = Bjt+1). With this
convention, we can write fﬁ, for j € Z with j > 0, to denote any of the r homo-
morphisms (f{);: B; — Bj1; with subscripts taken modulo r.

A path ¢ from v; to v; determines an isomorphism ps: B; — B;. The image
fﬁ(é) = ¢’ likewise determines an isomorphism ps : Bi¢ — Bji¢, and we have

(2.3) (f9)j 0 ps = psr o (fO)i-
Note that changing ¢ (and hence also ¢'), we obtain potentially different isomor-
phisms ps and ps.

Fix ¢ and let n > 0 be an integer such that the restriction of f, to the subgroup
J; = fI"(B;) < B is injective. Let § be a path from v;y; to v; and &' = f(4).
Then setting

Jiv1 = [ (Bit1)
we have
Jiv1 = [ (ps(Bi)) = ps (f27(Bi)) = ps (i),

and hence pg restricts to an isomorphism from J; to J; ;1. It is interesting to note
that J;41 is defined without reference to ¢ (or ¢). Furthermore, if 6" = f(¢), then
by (2.3) we have

(fo)it1 = psr o (fo)i o py' s Big1 — Bito,
and hence the restriction of f, to J;;1 is injective. Therefore, if we let n(i) > 0
be the smallest positive integer so that f, restricted to J; = f(Z)T(Bi) is injective,
then we have shown that n(i) > n(i + 1). Since this condition is true for all 4, it
follows that n(:i) = n(j) for all 0 <4,j <r — 1. We henceforth fix n = n(i).
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For each ¢ let p;: O, — O denote the cover corresponding to the conjugacy
class J; < m1(0,v;). Let 17; - p{l(vi) denote the set of all vertices v; so that
(pi)*(m(éiﬁi)) = J;. Then the covering group of p;: éz — O acts simply tran-
sitively on \N/z Since the isomorphism ps sends J; to J;11, it follows that there is
an isomorphism of covering spaces 0, — éi+1. Repeating this r times, we see that
all the covering spaces {p; : él — @}f;& are pairwise isomorphic. In particular, we
now simply write p: O — O for any one of these spaces. Write © for the convex
(Stallings) core of é, and we note that this is a proper subgraph.

For all m > n we have f™(B;) = £ (f{"~™"(B;)) < f""(B;) = J;. Thus from
standard covering space theory, we know that for every ¢ and every v; € \72 there is
a unique continuous map f/%m" making the following diagram commute:

=
p

(0,v;) A (0, v;)

Proposition 2.4. For any m > n and U; € V;, we have E"\r(@) =0.

Proof. Fix m > n and v; € V. Since fg\r is surjective on the level of fundamental

groups, the containment © C f%?(@) is immediate. Since f: ©® — O is itself
surjective, it follows that we also have the inclusion

6 C f27(©) = f27 o fmT() = fr(6).

Here we have used the equality fvﬁ o flm=n)r — E’; guaranteed by the uniqueness
of lifts of f™" sending v; to v;.

On the other hand, for any legal loop a: S — © the composition f/%ﬁ" o«
is an immersion; this conclusion follows from the local injectivity of p o f/%’a" o
a = f™ o a. Since the closure of 5) \ © consists of finitely may pairwise disjoint
trees, it follows that the image of f/%—”z\r o a must be contained in the core ©. The

containment f/%”\’(@) C © now follows from the fact that © is a union of legal loops
(Lemma 2.2). O

Since (f«); restricted to J; is an injective homomorphism into J; 11, for any choice
of basepoints v; € V; and v; 1 € V;41 covering space theory again provides a unique
map fz, 5., © — © making the following diagram commute:

~ ﬁ7z‘>ﬁi+1 ~
(@7Ui) - (@,Ui+1)

(©,0:) —> (8, vi11)

Vit1 to

Proposition 2.5. Let f = ﬁi,’gi+1‘(:) be the restriction of any such lift f}l
O. Then f(©) = O and f: © — O is an expanding train track map.
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Proof. Proposition 2.4 and Lemma 2.2 show that there exist finitely many legal
loops i, ...,ap: ST — © such that © is the union of the images of Bj = fgf o
for j = 1,...,k. Noting that f o B; is an immersion (because it is a lift of the
immersion f o f™" o a;), its image must be contained in ©. Therefore, f maps the
union U;3;(S') = © into ©, and we conclude f(f) ce.

Thus f is a graph map from O to itself, f: © — O, and we may consider its
iterates f¢. As above, we now see that floﬂj lifts flof”oog and so is an immersion
for each ¢ > 0. Since each edge of © is crossed by some B;, this proves each iterate
f¢ is locally injective on each edge & of ©. Moreover, since p is a covering map, the
combinatorial length of f¢(é) is equal to that of po f*(é) = f*(p(€)). Therefore f
is expanding because f is.

To prove the proposition it remains to show that f(0) 2 ©. Fix preferred lifts
; € V; for each 0 < i < r and set f; = fvl Vit lg for 0 < i < r. It suffices to show

that each f; maps © onto ©. To see that f;(©) = ©, note that
fioficio o firno fiy10 F27 1 (©,vi01) = (8,Ti4)

Vit
(with subscripts taken modulo r) is a lift of flotDr taking v;+1 to v;41. Therefore
the above composition (and in particular f;) has image © by Proposition 2.4.

For the remainder of this section, we let f = }:@ be any lift of f as above,

i Ui41
let f= flg: © - O be its restriction to the core © of the covering p: © — O, and
write p = p|g: © — ©.

Lemma 2.6. There is a lift ®: © — © of a power fX of f with ®(©) = O such
that ®op = fK and consequently ® op = fK.

Because @ is a lift of fX and sincej and p are restrictions, we also obviously
have po® = fK pod = fX and po f = fop.

Proof. The composition f" necessarily maps the finite set p~'(v;) N © into itself.
Thus the sequence v;, f7(v;), f27(¥;), ... is eventually periodic. Choosing k to be
a sufficiently large multiple of the period, it follows that the point z := f*"(;)
satisfies f™*7(2) = z and f™*"(v;) = 2z for all m > 1.

Set J = p,(m1(0, 2)), and note that J and J; = p,(m1(0,7;)) are conjugate but
possibly distinct subgroups of B;. Observe that

2T (©,00)) = [T 0 fIT(m(©,00)) < fET(Ji) = fI 0 pu(mi (O, 7))
= pe o fI"(m(0.%)) < pu(m(6,2) = J.

Therefore there is a unique lift ®: (0,v;) — (é,z) of f2k"7 sending v; to z. By
inspection, this lift must be ® = fkn7 o J%?” = fhrro J/“%? and therefore has image
© by Propositions 2.4-2.5. B
Set K = 2knr, and we claim that f% = ® o p. Indeed, both maps lift the
composition
FEop: (0,7;) = (0,v;)
and send v; — z by construction; hence they are equal by uniqueness of lifts.

Interestingly, this argument shows that a power of f (namely fK ) maps all of 5)
into ©. (]



8 SPENCER DOWDALL, ILYA KAPOVICH, AND CHRISTOPHER J. LEININGER

Proposition 2.7. Let f: © — O and f:© — O be as above. If f is irreducible
then f is irreducible. If f has a power with positive transition matriz, then f has
a power with positive transition matrix.

Proof. Assume first that f is irreducible. Choose arbitrary edges €, &’ of © and set
e = p(€). With ® as in Lemma 2.6, we have ®(0) = ©, and so we may choose an
edge eg of O such that ®(ey) 2 €. By irreducibility of f, there exist s > 0 such
that eg C f*(e). Then applying Lemma 2.6 with K as in the statement, we have

fETs@) = fXof (&) =Popo f(e)=Do f*(e) 2 P(en) 2 €.

Thus f is irreducible provided f is. Next assume there is a power f¢ with positive
transition matrix, so that in particular ft(e) = O for every edge e of ©. Choosing
any edge € of ©, as above we find

FE @) = [Fofi(e) =@ opo fi(e) = ®o f'(p(e)) = (©) = ©.
Therefore fE+¢ has positive transition matrix as well. (I

2.2. Train tracks for induced endomorphisms. Combining the results above,
we can now easily give the

Proof of Theorem 1.1. The map f: © — © is given by Proposition 2.5, which to-
gether with Proposition 2.7 implies f is an expanding irreducible train track map.
The map p: © — O is the restriction of a covering map to the core, and hence p,
defines an isomorphism of 1(0) onto the image J = f1"(71(0)) < m(©), up to
conjugation. By construction, f.|; determines an injective endomorphism J — J,
up to conjugation. Since P, fx = fiPx, it follows that f, induces an injective endo-
morphism of 71 (©), up to conjugation. As was shown in [DKL1, Proposition 2.6],
there is an isomorphism J — @ conjugating f.|; to ¢. It follows that with respect
to this isomorphism and p, we have ¢ = f,, up to conjugation.

Let ®: © — © and K > 0 be as in Lemma 2.6. The conclusion of that lemma
proves the remainder of the theorem. O

The intrepid reader is encouraged to apply Theorem 1.1 to the naturally arising
first return map fo: O3 — O, described in Example 5.7 and Figure 7 of [DKL1].
For a warm-up, here is a simpler example:

Example 2.8. Let O be the 3—petal rose depicted in Figure 1, and let f: © — © be
the expanding irreducible train track map defined on edges by f(a) = ab, f(b) = be,
f(c) = abbe. Then 71(0) is free on generators a, b, ¢ (correspoding to petals of the
same letter), and we find that f.(m(©)) = (ab,bc). Thus f, is neither surjective
nor injective, but we find that the restriction of f. to J = (ab, bc) is injective. The
induced endomorphism ¢: Q — @ of the stable quotient Q) = J of f, is therefore
given by ¢(ab) = (ab)(bc) and ¢(bc) = (bc)(ab)(bc), which is an automorphism
of this rank 2 free group.

Plugging f: © — © into Theorem 1.1, the construction produces the graph ©
depicted in Figure 1 along with maps f, p, and ® defined on edges by:

e f(ao) = agbo, f(bo) = f(b1) = bico, and f(co) = agbobico
e p(ao) = a, p(bo) = p(b1) = b, and p(co) = ¢
[ @(a) = aobo, (I)(b) = b1CO, and (I)(C) = aoboblco.

One may easily verify that these satisfy the conclusion of Theorem 1.1 with K = 1.
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_ o ao ~ ¢ © a
(€] p
CX O
~
3 s
b1 bo
O
b

FIGURE 1. An application of Theorem 1.1.

3. SEMI-FLOWS ON 2—COMPLEXES AND FREE-BY-CYCLIC GROUPS

To see how Theorem 1.1 can be applied to Theorem 1.2, we briefly recall some of
the setup and results from [DKL2, DKL1]. Starting with an expanding, irreducible
train-track map f: I' — I representing an automorphism of the free group 7 (I'),
in [DKL2] we constructed a 2-complex X = X, the folded mapping torus, which
is a (homotopy equivalent) quotient of the mapping torus of f and contains an
embedded copy of I'. The suspension flow on the mapping torus descends to a
semi-flow ¢ on X having I' as a cross section and f as first return map, in the
following sense.

Definition 3.1 (see [DKLI, §5.1]). A cross section of (X,1) is a finite embedded
graph © C Q that is transverse to ¢ (meaning there is a neighborhood W of ©
and a map n: W — S' such that © = n~!(z0) for some zg € S! and for each
¢ € X the map {s € Rsg | ¥s(€) € W} — ST given by s — n(¥s(£)) is an
orientation preserving local diffeomorphism) with the property that every flowline
hits © infinitely often (meaning {s € R>¢ | ¥s(§) € ©} is unbounded for all £ € X).

Being homotopy equivalent to the mapping torus, we have G = m(X) =
mi(I') x5, Z. The projection onto Z defines a primitive integral element uy €
Hom(G;R) = HY(G;R) = HY(X;R). The class ug projects into a component
Yo(G) of the BNS-invariant ¥(G) of G, and we let S C H*(G;R) denote the open
cone which is the preimage of 3¢(G). In [DKL1] we proved that every primitive
integral u € § is “dual” to a cross section © C X of ¢ enjoying a variety of prop-
erties; see also [Gaul, Gau2, Wan| for other results related to the existence of dual
cross-sections for complexes equipped with semi-flows. To describe the duality, we
recall that the first return map fo: © — O of ¥ to © allows us to write G as the
fundamental group of the mapping torus of fg. This expression for G determines
an associated homomorphism to Z which is precisely u. The class u is determined
by ©, and we thus write [@] = u. Alternatively, © is dual to u if the map witnessing
the transversality of © to 1 can taken as a map ne: X — S defined on all of X
for which (1g)« = u. Then, ¥ can be reparameterized to ¥ so that the time-one
map, ¥ restricted to © is the first return map.

The map feo was shown to be an expanding irreducible train-track map in
[DKL1], but it is not a homotopy equivalence in general. The descent to the stable
quotient ¢pe): Qo] — Qo) of (fe). is an automorphism if and only if ker([©]) is
finitely generated. In this case we can identify Qo) = ker([©]), so that the asso-
ciated splitting of G as a semi-direct product G = ker([0]) x Z has monodromy
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¢je]- The associated expanding irreducible train track map fo: © — © from Theo-
rem 1.1 is thus a topological representative for ¢(g). Therefore, Theorem 1.2 reduces
to proving the following.

Theorem 3.2. Suppose f: ' — T is an expanding irreducible train track rep-
resentative of a hyperbolic fully irreducible automorphism. Further assume that
© C X = Xy is a section of the semi-flow ¢, as constructed in [DKL1], with first
return map fo: © — O such that ker([©)]) is finitely generated. Then for the in-
duced train track map fo: © — © from Theorem 1.1, (fo)« is a fully irreducible
automorphism.

Proof of Theorem 1.2 from Theorem 3.2. Suppose that ker(ug), say, is free and ¢,
is fully irreducible. Let f: I' — I' be an expanding irreducible train track represen-
tative of ¢,,,, and let X, be the associated folded mapping torus and suspension
semi-flow. From [DKL1], there is a section © C X such that [©] = u; whose first
return map fg: © — O has the property that (fg). descends to the monodromy
$u, on the (free) stable quotient Q,, = 71(0©). By Theorem 3.2, (fo). = ¢, is
fully irreducible, as required. (I

The proof of Theorem 3.2 requires some new constructions which are carried
out in the next few sections. We need to work in a slightly more general context
of semi-flows on compact 2—complexes, without fixed points. Cross sections and
duality are defined just as above.

4. FLOW-EQUIVARIANT MAPS

Here we describe a general procedure for producing maps between spaces equipped
with semi-flows. The particular quality of map we will require is provided by the
following:

Definition 4.1. Given spaces X,Y each equipped with semi-flows X, %Y then

maps a: X — Y and 8: Y — X are called flow-homotopy inverse maps if (1) the
maps are flow-equivariant, i.e.

by a=ay and X B = By
for all s > 0, and (2) there exists K > 0 so that Ba = ¥ and a8 = 1). Note that
« and (8 are indeed homotopy inverses of each other (with the semi-flows defining
the required homotopies). We also call « and 8 flow-homotopy equivalences.

Proposition 4.2. Suppose X,Y are 2-compleves with semi-flows X ,yY and cross
sections Ox C X and ©y C Y. Further suppose that the first return maps to the
cross sections are the restrictions of the time-one maps: Fx = 7/)f(|®x :Ox — Ox
and Fy = 1/1%/|@Y : @y — @y.
If there are maps a: O x — Oy and B: Oy — Ox such that
e aFx = Fya and BFy = Fxf3, and
e Ba=F% and o = F§ for some k.

then there are flow-homotopy inverse maps &: X — Y and B:Y - X extending o
and B, respectively.

Proof. First, let Mp, be the mapping torus of Fix: ©Ox — Ox with its suspension
semi-flow which we denote WX. Construct maps h: Mg, — X and h¥: X —
Mg, by

hy (0,1) = (0) and Y (2) = (V) (o (2),1 — px(2))
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for § € ©, and t € [0,1), and where px(z) € (0, 1] is the return time of z € X to
O©x. That is, px(x) is the smallest number ¢ > 0 so that ¢;X (z) € Ox.

Claim 4.3. hi and by are flow-equivariant, and hif hi¥ = X and hfh{ = U,

Proof of Claim. This claim follows easily from the definitions, but we spell out a
proof here.
First, note that for all € O, t € [0,1) and s > 0 we have

h(UX0,1) = hFESTN), s+t~ |s+1))
= YN ey (FET(0))

Ve Lot Vst (0)
= 1/)s+t( ) T/’ (wt ( ))
= U (hg (6,1)).
Thus h{ is flow-equivariant, as required.
Every x € X has the form z = 9% (0) for some § € ©x and 0 < t < 1. Then
px(x) =1 —t, and hence
hit (x) = b (97 () = (Wi (0),1 — (1 = 1)) = (Fx (6). 1)
Therefore
hy (s (2)) = h¥ (X () = hi (v54(9))
= W WS X))
= (FETrNe) s+t — s +t))
= U, (Fx(0),0) = W (T (Fx (6).0))
= U (Fx(0),t) = U (h (2)).

Thus h{ is also flow-equivariant.
Next let § € ©x and t € [0,1). Then px (¥;X(6)) =1 — ¢, and thus

hihg (0.8) = hi (¥;(9))
= (1 (¥ (0),1— (1 - 1))
= (¥1(0),1) = (Fx(6),1)
= U (0,1).
On the other hand, for all x € X we have
hg i (2) = h (V55 () (@), L = px (@) = Ui, (o) Wy () (%)) = 47 ()
This completes the proof the claim. (Il
Next, we note that because aF'x = Fy« and fFy = Fxa, the maps a: ©x —
Oy and (: Oy — Ox determine flow-equivariant maps between mapping tori
o Mg, - Mp, and 8': Mp, — Mp,
given by
a'(6,t) = (a(0),t) and B'(n,t) = (B(n),t)
forall € ©x, n € Oy and 0 <t < 1. Since fa = F& and aff = FE, we have
B'al(0,t) = (F§(0),t) = U3 (0,1) and o' B'(n, 1) = (F¥(n),t) = U} (n,1).
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To complete the proof, we must construct maps
&: X —>Yand B: Y — X.
These are simply the compositions of the maps above:
& =hYo'h and g = hB'RY
where hY : Mp, — Y and hY:Y — Mp, are defined similar to Ay and h,

respectively. As a composition of flow-equivariant maps, these are flow-equivariant.
Finally, using the flow-equivariance and the properties of these maps we obtain

Ba = (hg B'hY)(h§ o'h) = b B (hY hg o' by = b B0} o/ B
= BN (BT = n U TR
= h{ W hy =Y hg hy
= ¢k+1¢1 :7/’1?-5-2

A similar calculation proves &B = 1/1,)€/+2. a

5. A FEW COVERING CONSTRUCTIONS

The proof of Theorem 3.2 relies on some constructions of, and facts about, covers
of 2-complexes Y with semi-flows . We will freely use facts from covering space
theory, typically without mentioning them explicitly. To begin, we note that for
any cover p: Y — Y there is a lifted semi-flow, {/; on Y. This lifted semiflow has
the property that p{/;t iyp for all £ > 0. This semi-flow is obtained by viewing
¢p as a homotopy of p and lifting this to the unique homotopy of the identity on
Y. Observe that for each covering transformation 7': Y - Y the families T¢t
and th give two homotopies of T' that both lift the homotopy ¢p of p. By the
uniqueness of lifted homotopies, it follows that Tz/)t th Therefore w commutes
with the group of covering transformations of Y.

Proposition 5.1. Suppose Y is a connected 2—complex with a semiflow v and a
connected section © C 'Y such that the first return map f: © — © is a homotopy
equivalence, and so that the semiflow is parameterized so that the restriction of the
time-one map is f, that is, 1]le = f.

Suppose A — O is a connected finite sheeted covering space and g: A — A is
a lift of a positive power f™ of f. Then there is a finite sheeted covering space
p: Y — Y so that the restriction of p to any one of the components of p~(©) is
isomorphic to A — ©, and so that A is a section of the lifted semi-flow with first
return map equal to g.

Proof. Let [©] € HY(Y;R) be the dual to ©. Since f is a homotopy equivalence,
71(0) = ker([0]) <m1(Y), and we let YA — Yo — Y be the covers corresponding
to 1 (A) < m(0) < 7 (Y). Write ¢ and ¢® for the lifted semi-flows to these
covers. B

The inclusion of © into Y lifts to an embedding © = ©y C Yg inducing an
isomorphism on fundamental groups. Since ¢ restricts to the first return map on
0, P (0¢) C Yo is another lift of O, differing from ¢ by a covering transformation
t that generates the infinite cyclic covering group of Yo — Y. Let ©, = t" 0Oy, for
all n € Z, so that ©; = 0y = ¥P(0p). Then t~14O|g, is precisely the map
f:© — O. Since ¥© commutes with ¢, we have t*kw,?|@0 = fF for all k > 1.
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There is also an embedding A = Ag C Ya inducing an isomorphism on funda-
mental groups so that the restriction of Ya — }Nfo to Ag is the covering A — O.
Since ¢t~ "2, = f", and since 7 (Ag) — 7T1(YA) is an isomorphism, the lift
g: A — A of f* can be extended to a lift Ya — Ya of t~"1)9. On the other hand,
t7mp9 = &4~ is homotopic via the semi-flow 1® to t~™. The lifted semiflow is
the lift of the homotopy, and it follows that we can lift (¢1~™ and hence) " to a map
T: YA — Ya so that Tl YA — Ya is the chosen lift of 9.

Being a lift of a covering map, 7' is itself a covering transformation of Ya — Y,
and we form the quotient Y = Ya/(T). Since T commutes with 12, it descends to
a semi-flow w on'Y. The restriction to Ag of Ya — Y is an embedding of A into
Y, and the first return of w to this copy of A occurs precisely at time n. Since we
have factored out by (T, this first return map is the descent of T2 restricted
to Ag, and is thus precisely g, as required. a

The following provides a converse to the previous proposition which we will need.

Proposition 5.2. Suppose that Y is a connected 2—complex with a semiflow 1
and connected cross section © C'Y so that the first return map f: © — O is the
restriction of the time-1 map, Y1le = f and is a homotopy equivalence. Given a
connected, finite sheeted covering space p: Y — Y, any component A C p~(0) is
a section, and the first return map g: A — A of the lifted semi-flow is a lift of a
power of f.

Proof. Every cover of Y is a quotient of the universal covering Y = Y, and the
proposition will follow easily from a good description of this }77 which we now
explain. We first let Yo — Y denote the cover corresponding to m1(0) = ker([6)]).
As in the previous proof, we have homeomorphic copies of © in 57@, which we
denote {©,}necz, so that a generator ¢ of the covering group has t©, = 6,41
for all n. Furthermore, the lifted semi-flow ¢© to Ye has ¢©(0,) = ©,.1, and
t=19: 0, — O, is the map f, with respect to the homeomorphism ©, = ©
obtained by restricting )7@ — Y to ©,.

Since the 1nclu51on 0, C Y@ is an isomorphism on fundamental group, the
universal cover ¥ — Y@ contains copies of the universal cover of ©, say {@n}nez
so that for each n, @n is the preimage of ©,. The lifted semiflow 1/) to ¥ has
time—1 map sending G) to ®n+1 for all n. In particular, for any integer k& > 0,
z/b\k(A O,) = (:),H_k, and {ﬁ\k|@ is a lift of the k" power of f from the n** copy of the
universal cover of O to the (n + k)th copy.

Any connected, finite sheeted cover Y 5 Yisa quotient of Y the lifted semi-
flow 1/} is the descent of 1/) to Y, and {@n}nez push down to finitely many graphs
él, ceey (:)j in 17, each of which is a finite sheeted covering space of © (here j is the
subgroup index in Z of the image of 771((:)) under the homomorphism []). We may
choose our indices 1,...,j so that @ pushes down to @k, where k = n mod j for
all n. From the descrlptlon of @[1, it follows that ¢1(@k) 9k+1, with indices taken
modulo j. Consequently, 1/’3(@k) = O, for all k, and the restriction of {/;j to any
one is a lift of f7. As this is the first return map, we are done. O

Proposition 5.3. Suppose X andY are connected 2—complexes equipped with semi-
flows X and Y, respectively. Given flow-homotopy inverse maps o: X —Y and
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B:Y — X, and a connected finite sheeted cover p: X — X, there exists a connected
finite sheeted cover q: Y — Y and lifts of a and 8 which are flow-homotopy inverses:

X
!
X

Proof. Let q: Y — Y be the connected cover corresponding to a, (p.(m1(X))).

q

N=<=—/—=

«
S
B
[e}%
A
S
B

Since p (7r1( )) has finite index in m1(X), and a, is an isomorphism, it follows
that g, (71 (Y)) has finite index in 71 (Y), and hence ¢ is a finite sheeted cover.

From basic covering space theory, « lifts to a map a: X — Y so that qa = ap.
Since 3 is a homotopy inverse of a, B, (g.(m1(Y))) is (conjugate to) p. (w1 (X)). By
changing the basepoint of Y to adjust this conjugate, it follows that there is a lift
B Y — X so that pﬂ Bq. Let ¢X and wy denote the lifted semi-flows, and note
that pﬁa = Bqa = Bap = pxp for some K > 0. Therefore, ,Ba is a lift of ¥x.

Since 9%, t € [0, K] defines a homotopy from the identity to 1%, we can lift the
homotopy and thus g& is homotopic (via some lift of ’(/)tX) to a map covering the
identity, i.e. a covering transformation for p. Composing E with the inverse of this
covering transformation, we get another lift of 5 (which we continue to call B) SO
that now g& = 1[ % We claim that o and B are flow-homotopy inverses.

First, we verify that a and ﬁ are flow-equivariant. To see this, first note that
for every 7 € X, the paths ¢ — oz¢t (Z) and t +— wt a(T) are both lifts of the path
t = ai*p(Z) = ¥} ap(). Since these have the same value a(z) at time ¢t = 0,
uniqueness of path lifting guarantees that 1}2/ a = &QZtX, so a is flow-equivariant.
The same argument works for E .

Our choice of B ensures that Ea = 1;% A similar calculation as above ensures
&E differs from 1;}; by a covering transformation. To complete the proof, we must
show that this covering transformation is trivial. To do this, we pick any point in
the image of &, &(Z) € Y, and then observe that

afa(T) = g (T) = Yia(@).
Thus &E agrees with 1;}; at the point a(z). But since these differ by a covering

transformation and they agree at a point, it follows that the covering transformation
is the identity, and hence a3 = . |

6. FULL IRREDUCIBILITY

Proof of Theorem 3.2. Recall that we have the folded mapping torus X = Xy,
for f: I' = I' an expanding irreducible train track representative of a hyperbolic
fully irreducible automorphism. We have © C X a section with first return map
fo: ©® — O, an expanding irreducible train track, inducing an automorphism on
the stable quotient. This automorphism is represented by the expanding irreducible
train track map fe: © — © from Theorem 1.1. Now suppose that (fe). is not fully
irreducible.
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Claim 6.1. There is a finite sheeted covering A — O, a lift g: A — A of a power
of fo, and a proper subgraph Q C A containing at least one edge so that g(Q2) = 2.

Proof. Since (fg). is not fully irreducible, there exists n > 0 for which we may
choose a vertex z € © with f3(2) = z and free factor H of m1(0) = (0, 2) such
that (f3).(H) is conjugate to H.

Let p: (Q,%) — (O, z) denote the cover corresponding to H and choose a vertex
7 € p~l(2) so that p,(m (€, 7)) = (f&).(H). Basic covering space theory guar-
antees that there is a unique lift h: Q— Q of fg sending % to #'. Let v: S* — Q
be any non-null-homotopic closed curve. Since (fe) is hyperbolic, the sequence
of curves h* o~ is an infinite sequence of distinct homotopy classes. Tightening
each curve in the sequence gives an infinite sequence of curves {7} in the Stallings
core Q C S~2, each without backtracking, representing distinct homotopy classes.
Furthermore, since neither h nor tightening can increase the number of illegal turns
in a loop of Q, the number of illegal turns of 7, is uniformly bounded as k — oo. It
follows that the length of the maximal legal segment of v, must tend to infinity with
k. From a sufficiently long legal segment we can construct a legal loop § contained
in . The loops h* o § must be legal for all £ > 0, and hence must be contained in
the core of Q. Tt follows that

Q= UUresh) ca

k>0j>k

is a nonempty subgraph of Q with at least one edge, and that h(Q) = Q since

) =n{ ) UrG6GEH | =) Uresh) =

k>0 >k kE>05>k

Next let £ > 0 be such that h’ has a fixed vertex w € Q. Thus h* is a lift of f3¢,
and fa¢ fixes the image v € © of w. By Hall’s Theorem (i.e. separability of finitely
generated subgroups of free groups), there are covering maps

QA6
such that A — © is a finite sheeted covering, and so that Q — A restricts to an
embedding on 2. We use this fact to identify Q and the point w with their images
in A, noting that  C A is a proper subgraph containing at least one edge.

Finally, choose a power fé"é such that (%”é)* fixes the image of 71 (A, w) in
71(0,v). By covering space theory again, we may choose a lift g: A — A of _énz
fixing the image of w in A. It follows that the restriction of g to €2 agrees with
the restriction of hi¢ to Q (via the identification from the covering @ — A). In
particular, g(2) = Q. O

As in [DKL1], we may reparameterize the semi-flow on X so that the first return
map to © is the time-one map. Applying Proposition 4.2 (to the maps © — © and
© — O provided by Theorem 1.1), we get flow-homotopy inverse maps o and 3
between the mapping torus My, and X. Note that these maps restrict to graph
maps between © and ©.

Let A — © be the finite sheeted cover, g: A — A the lift of a power of fo,
and Q C A the proper subgraph with at least one edge and g(Q2) = , all from
the claim. By Proposition 5.1, there is a cover p: M 7o —* My, so that p restricted
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to a component of p~1(©) is isomorphic to A — ©. Proposition 5.3 then provides
flow-homotopy inverse lifted maps to a cover X of X, denoted a and 3. Letting I'
denote a component of the preimage of I' in X, we have the following diagram:

|

Let ¥ and v denote the flows on M 7o and X , respectively, and let K > 0 be so

that E& = Uk and &E = Y. Note that this implies a and B are surjective, since
Uy and g are. .
There is a proper, flow invariant subset Zg C My, defined by

Zo = wi(Q

t>0

/‘N

AHM}”OWX

@HMf T X ~—
Ow

B S —

Since the first return of ¥ to A is g, which is surjective, and since g(2) = ,
it follows that ¥4(Zg) = Zg and \I/t(Mf@) # Zg, for every t > 0. Now flow
equivariance implies

Pi(a(Za)) = a(Vi(Za)) = a(Za)

Furthermore, suppose that 1;(X) = &(Zg) for some ¢. Then surjectivity and
equivariance of 3 implies

Zo = Wk (Za) = B(@(Za)) = B(r(X)) = W(B(X)) = Wi(Mj,) # Za,

a contradiction. Therefore, 1 (X) # a(Zq) for all t > 0.

Since « sends edges 0£9 to edges of ©, we see that a sends edges of A to edges
of the preimage of © in X. It follows that &(Zq) contains an open subset of a 2—cell
of X and thus that a(Zg) eventually flows over an entire edge e of the component
T of the preimage of I'. Now we note that the first refurn map to E is a lift of a
power of f by Proposition 5.2. Denote this first return map r : I' - I'. Thus r is a
train track map.

A result of Bestvina-Feighn-Handel [BFH, Proposition 2.4], or alternatively, a
recent result of Dowdall and Taylor [DT, Proposition 5.1] imply that if a hyperbolic
fully irreducible automorphism of F preserves a subgroup of finite index in Fl,
then the restriction of the automorphism to that subgroup induces a fully irreducible
automorphism of the subgroup.

Therefore r induces a fully irreducible automorphism of 7y (f), and being a train
track representative of that automorphism, r is an expanding irreducible train track
map (e.g. by [Kap, Lemma 2.4]). In particular, the edge e must eventually map
over the entire graph r by some power of the first refurn map r. It follows that
the ¢—invariant subset @(Zq) contains T. But since ' is a section of 1, this implies
that &(Zq) = X, which is a contradiction. O
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