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Abstract— Feature extraction, such as spectral occupancy,
interferer energy and type, or direction-of-arrival, from
wideband radio-frequency (RF) signals finds use in a growing
number of applications as it enhances RF transceivers with
cognitive abilities and enables parameter tuning of traditional
RF chains. In power and cost limited applications, e.g., for sensor
nodes in the Internet of Things, wideband RF feature extraction
with conventional, Nyquist-rate analog-to-digital converters is
infeasible. However, the structure of many RF features (such
as signal sparsity) enables the use of compressive sensing (CS)
techniques that acquire such signals at sub-Nyquist rates; while
such CS-based analog-to-information (A2I) converters have the
potential to enable low-cost and energy-efficient wideband RF
sensing, they suffer from a variety of real-world limitations,
such as noise folding, low sensitivity, aliasing, and limited
flexibility. This paper proposes a novel CS-based A2I architecture
called non-uniform wavelet sampling. Our solution extracts a
carefully-selected subset of wavelet coefficients directly in the
RF domain, which mitigates the main issues of existing A2I
converter architectures. For multi-band RF signals, we propose
a specialized variant called non-uniform wavelet bandpass sam-
pling (NUWBS), which further improves sensitivity and reduces
hardware complexity by leveraging the multi-band signal struc-
ture. We use simulations to demonstrate that NUWBS approaches
the theoretical performance limits of �1-norm-based sparse signal
recovery. We investigate hardware-design aspects and show ASIC
measurement results for the wavelet generation stage, which
highlight the efficacy of NUWBS for a broad range of RF feature
extraction tasks in cost- and power-limited applications.

Index Terms— Analog-to-information (A2I) conversion, cogni-
tive radio, compressive sensing, Internet of Things (IoT), radio-
frequency (RF) signal acquisition, wavelets, spectrum sensing.

I. INTRODUCTION

FOR nearly a century, the cornerstone of digital sig-
nal processing has been the Shannon–Nyquist–Whittaker

sampling theorem [1]. This result states that signals of finite
energy and bandwidth are perfectly represented by a set of
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uniformly-spaced samples at a rate higher than twice the
maximal frequency. It is, however, well-known that signals
with certain structure can be sampled well-below the Nyquist
rate. For example, Landau established in 1967 that multi-
band signals occupying N non-contiguous frequency bands
of bandwidth B can be represented using an average sam-
pling rate no lower than twice the sum of the bandwidths
(i.e., 2N B) [2]. In 2006, Landau’s concept has been general-
ized by Candès et al. [3] and Donoho [4] to sparse signals,
i.e., signals that have only a few nonzero entries in a given
transform basis, e.g., the discrete Fourier transform (DFT).
These results are known as compressive sensing (CS) and
find potential use in a broad range of sampling-critical
applications [5].

In essence, CS fuses sampling and compression: instead of
sampling signals at the Nyquist rate followed by conventional
data compression, CS acquires “just enough” compressive
measurements that guarantee the recovery of the signal of
interest. Signal recovery then exploits the concept of sparsity,
a structure that is present in most natural and man-made
signals. CS has the potential to acquire signals with sampling
rates well-below the Nyquist frequency, which may lead to
significant reductions in the sampling costs and/or power
consumption, or enable an increase the bandwidth of signal
acquisition beyond the physical limits of analog-to-digital
converters (ADCs) [6]. As a consequence, CS is commonly
believed to be a panacea for wideband radio-frequency (RF)
spectrum awareness applications [7]–[9].

A. Challenges of Wideband Spectrum Awareness

In RF communication, there is a growing need in providing
radio transceivers with cognitive abilities that enable aware-
ness and adaptability to the spectrum environment [9]. The
main goals of suitable methods are to capture a variety of
RF parameters (or features) to dynamically allocate spectral
resources [10] and/or to tune traditional RF-chain circuitry
with optimal parameter settings in real-time, e.g., to cancel out
strong interferers using a tunable notch filter [11], [12]. The
RF features to be acquired for these tasks are mainly related
to wideband spectrum sensing [8] and include the estima-
tion of frequency occupancy, signal energy, energy variation,
signal-to-noise-ratio, direction-of-arrival, etc. [7], [13].

For most wideband spectrum sensing tasks, one is typically
interested in acquiring large bandwidths (e.g., several GHz)
with a high dynamic range (e.g., 80 dB or more).
However, achieving such specifications with a single analog-
to-digital converter (ADC) is an elusive goal with current
semiconductor technology [6]. A practicable solution is to scan
the entire bandwidth in sequential manner. From a hardware
perspective, this approach relies on traditional RF receivers
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Fig. 1. Overview of a cognitive radio receiver: A traditional RF front-end
is enhanced with an analog-to-information (A2I) converter that extracts RF
features directly from the incoming analog RF signals. The A2I converter
enables parameter tuning to reduce design margins in the RF circuitry and
assists spectrum awareness tasks in the digital signal processing (DSP) stage.

as put forward by Armstrong in 1921 [14]. The idea is to
mix the incoming RF signal with a complex sinusoid (whose
frequency can be tuned) either to a lower (and fixed)
frequency or directly to baseband. The signal is then sampled
with an ADC operating at lower bandwidth. While such an
approach enjoys widespread use—mainly due to its excellent
spectral selectivity, sensitivity, and dynamic range—the asso-
ciated hardware requirements (for wideband tunable oscillators
and highly-selective filters) and sweeping time may not meet
real-world application constraints [11]. This aspect is partic-
ularly important for the Internet of Things (IoT), in which
devices must adhere to stringent power and cost constraints,
while operating in a multi-standard environment (e.g., contain-
ing signals from 3GPP NB-IoT, IEEE 802.15.4g/15.4k/11.ah,
SigFox, and LoRa). Hence, there is a pressing need for RF
feature extraction methods that minimize the power and system
costs, while offering flexibility to a variety of environments
and standards.

B. Analog-to-Information (A2I) Conversion
A promising solution for such wideband spectrum sensing

applications is to use CS-based analog-to-information (A2I)
converters that leverage spectrum sparsity [8], [15]–[17].
Indeed, one of the main advantages of CS is that it enables
the acquisition of larger bandwidths with relaxed sampling-
rate requirements, thus enabling less expensive, faster, and
potentially more energy-efficient solutions. While a large
number of CS-based A2I converters have been proposed for
spectrum sensing tasks [8], [11], [15], [16], [18], the generally-
poor noise sensitivity of traditional CS methods [19], [20]
and the excessive complexity of the recovery stage [16], [21]
prevents their straightforward use in low-power, cost-sensitive,
and latency-critical applications, which are typical for the IoT.

Fortunately, for a broad range of RF feature extraction
tasks, recovery of the entire spectrum or signal may not
be necessary. In fact, as it has been noted in [22], only a
small number of measurements may be required if one is
interested in certain signal features and not the signal itself.
This key observation is crucial for a broad range of emerging
energy or cost-constrained applications in the RF domain, such
as sensors or actuators for the IoT, wake-up radio, spectrum
sensing, and radar applications [7], [23]–[25]. In most of
these applications, the information of interest has, informally
speaking, a rate far below the physical bandwidth, which is a
perfect fit for CS-based A2I converters that have the potential
to acquire the relevant features directly in the RF (or analog)
domain at low cost and low power.

Figure 1 illustrates a cognitive radio receiver that is assisted
with an A2I converter specifically designed for RF feature

extraction. The A2I converter bypasses conventional RF cir-
cuitry and extracts a small set of features directly from the
incoming RF signals in the analog domain. The acquired
features can then be used by the RF front-end and/or a
subsequent digital signal processing (DSP) stage. Such an
A2I-assisted RF front-end enables one to optimally reconfig-
ure the key parameters of a traditional RF chain according to
the spectral environment. This capability can also be used to
assist traditional RF transceivers by providing means to elim-
inate over-design margins through adaptation to the spectrum
environment via radio link-quality estimation and interferer
localization [9], which is relevant in power- and cost-limited
IoT applications.

C. Contributions

This paper proposes a novel CS-based A2I converter archi-
tecture for cognitive RF receivers. Our approach, referred to
as non-uniform wavelet sampling (NUWS), combines wavelet
preprocessing with non-uniform sampling in order to alleviate
the main issues of existing A2I converter solutions, such
as signal noise, aliasing, and stringent clocking constraints,
which enables a broad range of RF feature extraction tasks.
For RF multi-band signals, we propose a specialized variant
called non-uniform wavelet bandpass sampling (NUWBS),
which combines traditional bandpass sampling with NUWS.
This solution builds upon (i) wavelet sample acquisition
using highly over-complete and hardware-friendly Gabor
frames or Morlet wavelets and (ii) a suitable measure-
ment selection strategy that identifies the relevant wavelets
required for RF feature extraction. We use system simulations
to demonstrate the efficacy of NUWBS and show that it
approaches the theoretical phase transition of �1-norm-based
sparse signal recovery in typical multi-band RF applications.
We investigate hardware-implementation aspects and validate
the effective interference rejection capability of NUWBS.
We conclude by showing ASIC measurement results for the
wavelet generation stage in order to highlight the practical
feasibility of the wavelet generator, which is at the heart of
the proposed A2I converter architecture.

D. Paper Outline

The rest of the paper is organized as follows. Section II
provides an introduction to CS and discusses existing
A2I converter architectures for sub-Nyquist RF signal
acquisition. Section III presents our non-uniform wavelet
sampling (NUWS) method and the specialized variant for
multi-band signals called non-uniform wavelet bandpass sam-
pling (NUWBS). Section IV discusses optimal measurement
selection strategies and provides simulation results. Section V
discusses hardware implementation aspects of NUWBS.
We conclude in Section VI.

E. Notation

Lowercase and uppercase boldface letters denote column
vectors and matrices, respectively. For a matrix A, we rep-
resent its transpose and Hermitian transpose by AT and AH ,
respectively. The M × M identity matrix is IM . The entry
on the kth row and �th column of A is [A]k,� = Ak,� and
the �th column is [A]:,� = a�; the kth entry of the vector a



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PELISSIER AND STUDER: NUWS FOR RF A2I CONVERSION 3

is [a]k = ak . We write R�A = [A]�,: and R�a� = [a]� to
restrict the rows of a matrix A and the entries of a vector a
to the index set �, respectively. Continuous and discrete-time
signals are denoted by x(t) and x[n], respectively.

II. CS TECHNIQUES FOR RF SIGNAL ACQUISITION

We start by introducing the basics of CS and then review
the most prominent A2I converter architectures for RF signal
acquisition, namely non-uniform sampling (NUS) [15], [16],
[26]–[29], variable rate sub-Nyquist sampling [8], [30]–[32],
and random modulation [33], [34], which includes the mod-
ulated wideband converter and Xampling [11], [35]–[37].
For each of these architectures, we briefly discuss the pros
and cons from a RF spectrum sensing and hardware design
standpoint.

A. Compressive Sensing (CS) Basics

Let x ∈ CN be a discrete-time, N-dimensional complex-
valued signal vector that we wish to acquire. We assume
that the signal x has a so-called K -sparse representation
s ∈ CN , i.e., the vector s has K dominant non-zero entries in a
known (unitary) transform basis � ∈ CN×N with x = �s and
�H � = IN . In spectrum sensing applications, one typically
assumes sparsity in the DFT basis, i.e., � = FH is the
N-dimensional inverse DFT matrix. CS acquires M compres-
sive measurements as yi = 〈φi , s〉 + ni for i = 1, 2, . . . , M ,
where φi ∈ CN are the measurement vectors and ni models
measurement noise. The CS measurement process can be
written in compact matrix-vector form as follows:

y = �x + n = �s + n. (1)

Here, the vector y ∈ C
M contains all M compressive measure-

ments, the i th row of the sensing matrix �M×N corresponds to
the measurement vector φi , the M×N effective sensing matrix
� = �� models the joint effect of CS and the sparsifying
transform, and n ∈ CM models mesurement noise.

The main goal of CS is to acquire far fewer measurements
than the ambient dimension N , i.e., we are interested in the
case M � N ; this implies that the matrix � maps K -sparse
signals of dimension N to a small number of measurements M .
Given a sufficient number of measurements, typically scaling
as M ∼ K log(N), that satisfy certain incoherence properties
between the measurement matrix � and the sparsifying trans-
form �, one can use sparse signal recovery algorithms that
generate robust estimates of the sparse representation s and
hence, enable the recovery of the signal x = �s from the
measurements in y; see [5], [38] for more details on CS.

B. A2I Converter Architectures

While sparse signal recovery is typically carried out in
software [39] or with dedicated digital circuitry [16], [21], the
CS-based A2I conversion process modeled by (1) is imple-
mented directly in the analog domain. The next paragraphs
summarize the most prominent A2I converter architectures
that perform CS measurement acquisition with mixed-signal
circuitry.

Fig. 2. High-level architecture of non-uniform sampling (NUS). A sample-
and-hold (S&H) stage acquires a random subset of Nyquist-rate samples of a
wideband signal x(t) and converts each sample x[n] to the digital domain.

1) Non-Uniform Sampling: Non-uniform sampling (NUS)
is one of the simplest instances of CS. In principle, the NUS
strategy samples the incoming signal at irregularly spaced
time intervals by taking a random subset of the samples of
a conventional Nyquist ADC [15], [16]. For this scheme,
the sensing matrix � is given by the M×N restriction operator
R� = [IN ]�,: that contains of a subset � the rows of the
identity matrix IN , where |�| = M is the cardinality of the
sampling set. The effective sensing matrix � = R�IN � in (1)
contains the M rows of the sparsifying basis � indexed by �.
More specifically, NUS can be modeled as

y = R�IN x + n = �NUSs + n (2)

with �NUS = R�IN FH , where we assume DFT sparsity As
shown in [38], randomly-subsampled Fourier matrices enable
faithful signal recovery from M ∼ K log4(N) compressive
measurements. Hence, NUS not only enables sampling rates
close to the Landau rate [2], but is also conceptually simple.

A high-level architecture of NUS, as depicted in Figure 2,
consists of a sample-and-hold (S&H) stage and an ADC
supporting the shortest sampling period used by the
NUS [15], [16]. The main challenge of NUS is in the
acquisition of a wideband analog input signal. While the
average sampling rate can be decreased significantly, the ADC
still needs to acquire samples from wideband signals with
frequencies potentially reaching up the maximal input signal
frequency. This key observation has two consequences: First,
NUS requires a sampling clock operating at the time resolution
of the order of the Nyquist rate, which is typically power
expensive. Second, NUS is sensitive to timing jitter: informally
speaking, if the input signal changes rapidly, a small error in
the sampling time can result in a large error in the acquired
sample.

2) Variable Rate Sub-Nyquist Sampling: Variable-rate sub-
Nyquist sampling builds upon the fundamentals of bandpass
sampling [40]. In principle, this A2I conversion strat-
egy undersamples the input signal with multiple branches
(i.e., a bank of parallel bandpass sampling stages) with
sampling rates that differ from one branch to the other.
There exist two main instances of this concept, namely multi-
rate sampling (MRS) that uses a fixed set of sampling frequen-
cies for each branch [8], [31], [32] and the Nyquist-folding
receiver (NYFR) that modulates the sampling frequencies [41].
Both approaches rely on the fact that the signal of interest
is aliased at a particular frequency when undersampled at
a given rate on a given branch, but the same signal may
experience aliasing at a different frequency when sampled at
a different rate on another branch. Empirical results show that
this approach enables signal recovery for a sufficiently large
number of branches [30].
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From a hardware perspective, MRS is relatively simple as
it avoids any randomness during the sampling stage and each
branch performs conventional bandpass sampling. Neverthe-
less, MRS faces the same issues of traditional bandpass sam-
pling [40]: it suffers from noise folding, i.e., wideband noise in
the signal of interest is folded (or aliased) into the compressive
measurements, which results in reduced sensitivity [19], [20].

3) Random Modulation: Random modulation (RM) is used
by a broad range of A2I converters. Existing architectures
first multiply the analog input signal by a pseudo-random
sequence, integrate the product over a finite time window, and
sample the integration result. The random-modulation prein-
tegrator (RMPI) [5], [34] and its single branch counterpart,
the random demodulator (RD) [18], [33], are the most basic
instances of this idea. However, modulating the signal with a
(pseudo-)random sequence is only suitable for very specific
signal classes, such as signals that are well-represented by a
union of sub-spaces [37]. In addition, the (pseudo-)random
sequence generator must still run at Nyquist rate. The main
advantage of the modulated wide-band converter (MWC) is
to reduce the bandwidth of the S&H to run at sub-Nyquist
rates [35], [37]. Indeed, the MWC avoids a fast sampling stage
and, instead, requires a high-speed mixing stage which is typi-
cally more wideband. A recent solution that avoids some of the
drawbacks of RM is the quadrature A2I converter (QAIC) [17].
This method relies on conventional down-conversion before
RM, thus focusing on a small RF band rather than the entire
bandwidth.

C. Limitations of Existing A2I Converters

While numerous A2I converter architectures have been
proposed in the literature, their limited practical success is a
result of many factors. From a theoretical perspective, one is
generally interested in acquisition schemes that minimize the
number of measurements while still enabling faithful recovery
of a broad range of signal classes. From a hardware perspec-
tive, the key goals are to minimize the bandwidth require-
ments, the number of branches, and the power consumption,
while being tunable to the application at hand. Finally, suitable
A2I converters should exhibit high sensitivity and be robust to
hardware impairments and imperfections. We now summarize
the key limitations of existing A2I converter architectures as
discussed in Section II-B with these desirables in mind.

Most of the discussed A2I converters rely on random
mixing or sampling. Such architectures either require large
memories to store the random sequences or necessitate effi-
cient means for generating pseudo-random sequences [42].
In addition, such unstructured sampling schemes prevent
the use of fast linear transforms (such as the fast Fourier
transform) in the recovery algorithm, which results in exces-
sively high signal processing complexity and power consump-
tion [16], [21]. From a hardware perspective, large parts of
the analog circuitry of many A2I converters must still support
bandwidths up to the Nyquist rate, even if the average sam-
pling rate is significantly reduced. For example, NUS [15] and
MRS [32] require S&H circuitry and ADCs designed for the
full Nyquist bandwidth. Similarly, the RD and RMPI require
sequence generators that run at the Nyquist rate. Another
drawback of many A2I converters, especially for MRS or the

Fig. 3. High-level architecture of non-uniform wavelet sampling (NUWS):
one sentence: Conceptually, NUWS first performs a continuous wavelet
transform Wx(t) of the input signal x(t), followed by NUS as shown in
Figure 2 to obtain wavelet samples x[n]. A practical hardware architecture is
discussed in Section V.

MWC [11], [35]–[37], is that they require a large number of
branches, which results in large silicon area and potentially
high power consumption.

A more fundamental issue of most CS-based A2I con-
verter solutions for wideband RF sensing applications is noise
folding [19], [20], which prevents their use for applications
requiring high sensitivity, such as activity detection of low-
SNR signals. In addition, most A2I converters lack versatil-
ity or adaptability to the application at hand, i.e., most system
parameters are fixed at design time and signal acquisition is
non-adaptive (one cannot select the next-best sample based
on the history of acquired samples). However, adaptive CS
schemes have the potential to significantly reduce the acqui-
sition time or the complexity of signal recovery [43].

III. NON-UNIFORM WAVELET (BANDPASS) SAMPLING

We now propose a novel CS-based A2I converter that
mitigates some of the drawbacks of existing A2I converter
solutions. Our approach is referred to as non-uniform wavelet
sampling (NUWS) and essentially acquires wavelet coeffi-
cients directly in the analog domain. We first introduce the
principle of NUWS and then adapt the method to multi-
band signals, resulting in non-uniform wavelet bandpass sam-
pling (NUWBS). We then highlight the advantages of NUWS
and NUWBS compared to existing A2I converters for RF
feature extraction.

A. NUWS: Non-Uniform Wavelet Sampling

The operating principle of NUWS is illustrated in Figure 3.
In contrast to NUS (cf. Figure 2), NUWS first transforms
the incoming analog signal x(t) into a wavelet frame Wx(t)
(see Section IV-A for the basics on wavelets) and then per-
forms NUS to acquire a small set of so-called wavelet sam-
ples x[n]. As illustrated in Figure 4(a), NUS is equivalent to
multiplying the input signal x(t) with a Dirac comb followed
by the acquisition of a subset of samples (indicated by
black arrows). In contrast, as shown in Figure 4(b), NUWS
multiplies the input signal x(t) with wavelets, integrates over
the support of each wavelet, and samples the resulting wavelet
coefficients.

From a high-level perspective, NUWS has the following
advantages over NUS. First, the continuous wavelet trans-
form W reduces the bandwidth of the input signal x(t),
which relaxes the bandwidth of the S&H circuit and the ADC
(see Section IV for the details). Second, NUWS enables full
control over a number of parameters, such as the sample time
instants, wavelet bandwidth, and center frequency. In con-
trast, NUS has only one degree-of-freedom: the sample time
instants.
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Fig. 4. Illustration of the sampling patterns of NUS, NUWS, and NUWBS.
NUS multiplies the incoming signals with a punctured Dirac comb; NUWS
multiplies the incoming signals with a series of carefully-selected wavelets;
NUWBS uses a wavelet comb that is sub-sampled in time and with wavelets
of variable central frequency in order to filter the sub-bands of interest.

In discrete time, the sensing matrix � for NUWS can be
described by taking a small set � of rows of a (possibly over-
complete) wavelet frame WH ∈ CW×N , where WH contains
a specific wavelet on each row and W ≥ M corresponds to
the total number of wavelets. Hence, the sensing matrix of
NUWS is � = R�WH , where M = |�| is the number of
wavelet samples. We can describe the NUWS process as

y = R�WH x + n = �NUWSs + n (3)

with the effective sensing matrix �NUWS = R�WH FH where
we, once again, assumed sparsity in the DFT domain.1 The
necessary details on wavelets are provided in Section IV-A.

By comparing (3) with (2), we see that NUS subsamples the
inverse DFT matrix, whereas NUWS subsamples the (possibly
overcomplete) matrix (FW)H , which is the Hermitian of the
Fourier transform of the entire wavelet frame. We can write
the acquisition of the frequency-sparse signal s as

y = R�(FW)H s + n, (4)

which implies that each wavelet sample is equivalent to
an inner product of the Fourier transform of the wavelet,
i.e., ŵi = Fwi , with the sparse representation s as
yi = 〈ŵi , s〉 + ni , i ∈ �.

As we will discuss in detail in Section IV-A, the considered
wavelets essentially correspond to bandpass signals with a
given center frequency, bandwidth, and phase (given by the
sample time instant). Thus, each wavelet sample corresponds
to pointwise multiplication of the sparse signal spectrum with
the bandpass filter equivalent to the Fourier transform of
the wavelet. Figure 5 illustrates this property and shows the
absolute value of the matrix (FW)H for the complex-valued
Morlet wavelet [44] with six scales. Evidently, each wavelet
captures a different portion of the spectrum with a different
phase (phase differences are not visible) and bandwidth.
We note that for the Morlet wavelet, the bandwidth and center
frequency of each wavelet depends on the scale.

B. NUWBS: Non-Uniform Wavelet Bandpass Sampling

Non-uniform wavelet bandpass sampling (NUWBS) is a
special instance of NUWS optimized for multi-band RF sig-

1Depending on the application, other sparsity bases � than the inverse DFT
matrix FH can be used; an investigation of other bases is ongoing work.

Fig. 5. Absolute value of the product between the Hermitian of the complex-
valued matrix and inverse DFT matrix |[WH FH ]k,�|. We see that each scale
focuses on a different frequency band, whereas the bandwidth within each
scale is fixed and the phase changes for different wavelets.

nals. The capability of handling such signals is of particular
interest for non-contiguous carrier aggregation, a promising
technology to enhance IoT throughput needs [45]. Figure 6(a)
illustrates a typical multi-band scenario in which RF signals
occupy multiple non-contiguous frequency bands that may
be sparsely populated; in addition, there may be interferers
outside the sub-bands of interest. A standard way to acquire
multi-band signals is to use a filterbank with one dedicated
filter and RF receiver per sub-band. Besides requiring high
complexity and power, and suffering from lack of flexibility,
such designs are typically unable to exploit signal sparsity
within the sub-bands.

Traditional bandpass sampling [40] or NUS [26]–[29]
for multi-band signals would result in several issues. First
and foremost, noise and interferers outside the sub-bands of
interest will inevitably fold (or alias) into the measurements—
a phenomenon known as noise folding [19], [20], [40].
Furthermore, for NUS, the a-priori information on the
occupied sub-bands is generally not exploited during the
acquisition process.

In stark contrast to these methods, NUWBS exploits the
multi-band structure and sparsity within each sub-band, while
being resilient to interferers or noise outside of the bands of
interest. As illustrated in Figure 4(c), NUWBS multiplies the
incoming signals with a wavelet comb on a regular sampling
grid, sub-sampled in time with respect to the Nyquist rate.
Unlike NUWS, there are no overlaps between wavelets, which
prevents the need for a large number of branches—typically
one branch per sub-band is sufficient. Furthermore, the center
frequencies of the wavelets can be focused on the sub-bands of
interest, which renders this approach resilient to out-of-band
noise and interferers, effectively reducing noise folding and
aliasing without the need for a filter bank. Finally, as shown
in Section IV-C, NUWBS is able to leverage CS and achieves
near-optimal sampling rates, i.e., close to the Landau rate.

The operating principle of NUWBS is illustrated in
Figure 6. Every NUWBS measurement acts like a filter, which
removes out-of-band noise and interference (see Figure 6(b)).
Then, as shown in Figure 6(c), by taking a subset of wavelet
samples (i.e., wavelet bandpass sampling), NUWBS reduces
the average sampling rate. Traditional recovery methods for
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Fig. 6. Illustration of a multi-band RF signal (a) consisting of two sparsely-
populated sub-bands and an interferer (red). NUWBS first performs wavelet
bandpass sampling to extract both sub-bands (b); then, NUS is used to
minimize the number of wavelet samples, effectively reducing the sampling
rate (c).

CS can then be used to recover the multi-band signals of
interest. From a mathematical viewpoint, NUWBS can be
modeled as in (3) with the differences that the subset of
samples � is adapted to the sub-bands of interest and the
wavelet samples are on a regular sub-sampled grid with non-
overlapping wavelets.

C. Advantages of NUWS and NUWBS

Wavelets find broad applicability in wireless communication
systems, including source coding, modulation, interference
mitigation, and signal de-noising [46], [47]. Nevertheless,
CS-based methods that rely on wavelet sampling are
rather unexplored, especially when dealing with RF signals.
A notable exception is the paper [48], in which a multi-
channel acquisition scheme based on Gabor frames is proposed
that exploits the sparsity in the time-frequency domain. In
contrast to NUBS/NUWBS, this approach relies on a parallel
set of Gabor sampling branches, where each Gabor wavelet
has a fixed bandwidth and the sampling rate is reduced using
the MWC.

We next summarize the benefits of wavelet sampling and
the advantages of NUWS/NUWBS to RF applications.

1) Tunability and Robust Feature Acquisition: Wavelets
offer a broad range of parameters including time instant, center
frequency, and bandwidth (see Section IV-A for the details).
This flexibility can be exploited to adapt each measurement
to the signal or feature class at hand or to improve robustness
to out-of-band noise and interferers, or aliasing. For NUWBS,
we take advantage of this property by focusing each wavelet
sample on the occupied sub-bands, which yields improved
sensitivity by mitigating noise folding and interference.

2) Adaptive Feature Extraction: The tree structure of
wavelets across scales [49] is a well-exploited property in
data compression [50]. In RF applications, one can exploit
this property to develop adaptive feature extraction schemes
that first identify RF activity on a coarse scale (e.g., in a wide
frequency band) and then, adaptively “zoom in” to sub-bands
that exhibit activity for a more detailed analysis. This approach
avoids traditional frequency scanning and has the potential to
enable faster RF feature extraction than non-adaptive schemes.

3) Structured Sampling: A broad range of CS-based A2I
converter solutions focuses on randomized or unstructured
sampling methods. Such methods typically require large
storage (for the sampling matrices) and high complex-
ity during signal recovery. In contrast, structured sensing
approaches are known to avoid these drawbacks [51]. Wavelets
exhibit a high degree of structure and their parametrization
requires low storage. Furthermore, recovery algorithms that
rely on fast (inverse) wavelet transforms are computationally
efficient [52].

4) Relaxed Hardware Constraints: From a hardware per-
spective, random sequences or clock generation circuitry that
operates at Nyquist rates can—in contrast to NUS and RD—
be avoided due to the sub-Nyquist operation of NUWS and
NUWBS. Hence, the associated clock synthesis and clock-tree
management can be relaxed [53]. In addition, by sub-sampling
the wavelet coefficients, we can further reduce the ADC
sampling rates. Due to the signal correlation with the wavelet
prior to sampling, the bandwidth requirements of the S&H
circuit and the ADC are relaxed as well. In addition, NUWBS
prevents overlapping wavelets, which enables the use of a
small number of parallel sampling branches. This property
reduces the circuit area and power consumption. As we will
show in Section V, widely-tunable wavelets can be generated
efficiently in analog hardware.

IV. WAVELET DESIGN AND VALIDATION OF NUWBS

This section summarizes the basics of wavelets and then,
discusses wavelet selection and design for NUWS/NUWBS.
We finally validate NUWBS for multi-band RF sensing.

A. Wavelet Prerequisites

For the sake of simplicity, we will use both continuous-
time and discrete-time signal representations and often switch
in between without making the discretization step explicit.

1) Wavelet Basics: A wavelet is a continuous waveform that
is effectively limited in time, has an average value of zero,
and bounded L2-norm (often normalized to one). Wavelets for
signal processing were introduced by Morlet [44] who showed
that continuous-time functions x(t) in L2 can be represented
by a so-called wavelet ψs,δ(t) that is obtained by scaling
s ∈ R+ and shifting δ ∈ R a so-called mother wavelet ψ(t).
The scaling and shifting operations can be made formal as
follows:

ψs,δ(t) = 1√
s
ψ

(
t − δ

s

)
, s ∈ R

+, δ ∈ R. (5)

The so-called wavelet coefficient Wxs,δ of a signal x(t) for a
given wavelet ψs,δ(t) at scale s and with time shift δ, is defined
as the following inner product [54], [55]:

Wxs,δ = 〈x, ψs,δ〉 =
∫
R

x(t)
1√
s
ψ∗

(
t − δ

s

)
dt . (6)

In words, each wavelet coefficient Wxs,δ compares the sig-
nal x(t) to a shifted and scaled version ψs,δ(t) of the
mother wavelet ψ(t). By comparing the signal to wavelets
for various scales and time shifts, we arrive at the contin-
uous wavelet transform (CWT) Wxs,δ. The CWT represents
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Fig. 7. Real part of the product between the Hermitian of the Gabor and
inverse DFT matrix A = 
{WH FH } at a given center frequency and for
various time shifts. Signals far away from the center frequency are attenuated,
which effectively mitigates out-of-band noise, interference, and aliasing.

one-dimensional signals in a highly-redundant manner, i.e., by
two continuous parameters (s, δ). All possible scale-time
atoms can be collected in an (overcomplete) frame given by

D = {
ψs,δ(t)

∣∣ δ ∈ R, s ∈ R
+}

.

In practice, one is often interested in selecting a suitable
subset of scales and shifts that enable an accurate (or exact)
representation of original signal s(t) of interest. In what
follows, we are particularly interested in wavelets that can be
generated efficiently in hardware; such wavelets are discussed
next.

2) Gabor Frame: The Gabor transform is a well-known
analysis tool to represent a signal simultaneously in time
and frequency, similarly to the short-time Fourier trans-
form (STFT). The set of Gabor functions (often called Gabor
frame) is, strictly speaking, not a wavelet basis—the formal-
ism, however, is very similar [56], [57]. Gabor frames consist
of functions (or atoms)

ψ f c
ν ,δk (t) = p(t − δk)e

j2π f c
ν t , (7)

which are parametrized by the center frequencies f c
ν and

time shifts δk of a windowing function p(t), where ν =
1, 2, . . . and k = 1, 2, . . . are the indices of discrete frequency
and time shifts, respectively. In practice, one often uses a
Gaussian windowing function p(t) that is characterized by
the width (or duration) parameter τ . Based on [56], the time
and frequency representation of the unit �2-norm Gabor atoms
with a Gaussian window are defined as follows:

ψ f c
ν ,δk (t) = 2

1
4

√
τπ

1
4

e j2π f c
ν (t−δk)e

−
(

t−δk
τ

)2

(8)


 f c
ν ,δk ( f ) = (τ

√
2π)

1
2 e− j2πδk f e−(πτ( f − f c

ν ))2
. (9)

There exists a trade-off when choosing the width parameter τ :
a large width increases the frequency resolution while lowering
the time resolution, and vice versa. As it can be seen from (9),
the Fourier representations of Gabor atoms decay exponen-
tially fast, which is the reason for their excellent frequency-
rejection properties, i.e., signals sufficiently far away of the
center frequency f c

ν are strongly attenuated. This filtering
effect of Gabor atoms is illustrated in Figure 7, which shows
the real part of the matrix (FW)H for one particular center
frequency f c

ν and various time shifts δk . Clearly, signals that
are sufficiently far apart from the center frequency f c

ν will be
filtered.

3) Complex-Valued Morlet Wavelet (C-Morlet): In contrast
to the Gabor frame, the complex-valued Morlet (C-Morlet)
wavelet uses windowing functions whose width parameter is
linked to the central frequency (cf. Figure 5) [54], [55]. Recall
from (5) that higher scales correspond to the most “stretched”
wavelets (in time) and hence, wavelets measure long time

Fig. 8. Frequency domain amplitude of C-Morlet wavelets for 6 scales as
shown in Figure 5; the bandwidth of the wavelets increases with the central
frequency, which is in contrast to Gabor atoms that have constant bandwidth.

intervals for features containing low-frequency information
and shorter intervals for high-frequency information. In fact,
the width of a C-Morlet is linked to the central frequency so
that there is a constant number of oscillations per effective
wavelet duration. More formally, the C-Morlet shows a con-
stant quality factor Q across scales. As a result, the C-Morlet
wavelets coincide with (8) and satisfy the additional con-
straint accross scales that the central frequency f c

ν and
the wavelet bandwidth BWp satisfy the following condition:
Q = f c

ν /BWp = f c
ν τνπα

√
2. Here, the parameter α is 0.33

for a −10 dB referred bandwidth. Figure 8 shows the spectrum
amplitude for six scales of the C-Morlet wavelet family for a
given quality factor—clearly the wavelet bandwidth is linked
to the scale.

B. Wavelet Selection for the Design of NUWBS

We are, in principle, free in choosing the width, frequency,
and time instant of each wavelet. In practice, however, we are
interested in wavelets that can be generated efficiently in
hardware, enable the use of a small number of branches, and
extract the RF features of interest. We now outline how to
select suitable wavelet parameters for NUWBS.

1) Parameter Selection: As detailed in Section III-B,
NUWBS first performs a projection of the input signal
on a select set of wavelets (or atoms) and then, subsam-
ples the wavelet coefficients. Since Gabor frames contain
a highly redundant set of atoms, it may—at first—seem
counter-intuitive to use an overcomplete frame expansion
WH ∈ CW×N with W � N of the signal x as our ultimate
goal is to reduce the number of measurements. It is thus
critical to select a suitable subset � of atoms that enables
robust signal recovery or feature extraction with a minimum
number of measurements M = |�| � N � W . As we
will see, the high redundancy turns out to be beneficial as it
allows us to select a potentially better subset of measurement,
e.g., compared to NUS that can only select a subset of rows
of the Fourier matrix.

If we are interested in optimizing our set � of wavelet
samples for sparse signal recovery, which is the original
motivation of CS, then we can minimize the so-called mutual
coherence [5] between the sub-sampled sensing matrix R�WH
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and the sparsifying basis � = FH , defined as

μm(R�WH , FH ) = max
i,k

|〈[R�W]i , [FH ]k〉|. (10)

The mutual coherence is related to the minimum number of
measurements M that are required to guarantee recovery of
K -sparse signals [5], [58]. Hence, we wish to find an optimal
set � of cardinality M that minimizes (10); unfortunately, this
is a combinatorial optimization problem. We therefore resort
to a qualitative analysis and heuristics to identify a suitable
set of wavelets that enables the recovery of sparse signals.

According to the closed-form expression in (8), the Gabor
atoms are characterized by the width parameter τ . Our goal is
to find the optimal width parameter τ̂ , depending on the input
signal (e.g., its bandwidth). Intuitively, the width parameter τ
should be linked to the bandwidth BWRF of the RF signal.
In fact, the effective wavelet width should be designed so
that each wavelet measurement yi , i = 1, 2, . . . , M , collects
enough information over the bandwidth of interest or, in other
words, the pulse spectrum should be as flat as possible over the
bandwidth of interest. We can make this intuition more formal
by considering the so-called local mutual coherence [3], [59]

μm(WH
s , FH

� ) = max
i,k

|〈[Ws]i , [FH
� ]k〉| (11)

between the wavelet sampling matrix WH
s at a particular

scale s and the sparsifying basis limited to the subset of
frequencies � of interest (e.g., limited to the potentially
active or occupied sub-bands).

From the Gabor frame definition in (8), we can compute
a closed form expression of the mutual coherence between
a Gabor frame having a fixed width parameter τ and the
Fourier basis. Assuming that the atom’s central frequency f c

ν
is centered to the band of interest and is a multiple value of
the frequency resolution 
 f = fNyq/N , we can compute the
local mutual coherence defined in (10) as follows:

μm(WH
s , FH

� ) = (τ
√

2π)1/2

Figure 9 shows the evolution of the mutual coherence as well
as the theoretical lower bound (the purple horizontal line)
given by 1/

√
N [42], [60]. The curves in this figure are

obtained by setting the dimension to N = 256 and computing
inner products between the rows of Gabor frame and the
rows of the inverse discrete Fourier restricted to the band of
interest FH

� . The (local) mutual coherence is then computed
according to (10) (and Eq. 11). The individual points on
the curves are obtained by tuning the wavelet bandwidth
BWp divided by the occupied RF bandwidth BWRF. Note that
the shorter the atom (or wavelet) duration τ , the wider its
bandwidth BWp is. As a result, the energy of the sensing
vector is spread in the frequency domain and hence, captures
information of all frequencies within the sub-band of inter-
est. The limit τ → 0 corresponds to the Dirac comb (the
bandwidth tends to infinity) for which the mutual coherence
is known to reach the Welch lower bound [61]. The limit
τ → ∞ corresponds to the case in which the sensing vectors
are localized in the frequency domain, i.e., the measurements
are maximally coherent with the Fourier basis. Hence, for
wavelet sampling, we can determine the width parameter τ
to match the signal of interest. In practice, one can trade-off

Fig. 9. Mutual coherence μm between the Gabor frame WH and the inverse
DFT matrix FH as a function of the wavelet bandwidth (BWp) relative to the
RF signal bandwidth BWp/BWRF.

filtering performance (to mitigate noise folding and aliasing)
versus measurement incoherence (to reduce the number of
required CS measurements).

2) Gabor Time-Shift Selection: Besides selecting the opti-
mal width parameter τ of the Gabor atoms, we have to
identify suitable frequencies f c

ν and time shifts δk . Consider,
for example, the multi-band signal shown on the left side
in Figure 10, where we assume that we know the coarse
locations of the potentially active sub-bands (e.g., determined
by a given standard), but not the locations of the non-zero
frequencies within each sub-band (e.g., the frequency slots
used for transmission). For simplicity, the axes have been
normalized so that the y-axis stands for the frequency index ν
and the x-axis stands for the time shift index k. We define the
following parameters: the sub-sampling ratio γ = fNyq/BWRF
is the ratio between the Nyquist frequency fNyq and the
bandwidth of each sub-band BWRF; the aggregate bandwidth
BWag is the total bandwidth of all occupied sub-bands, i.e., in
our example BWag = 2BWRF. Equivalently, the aggregate
bandwidth can be expressed by the cardinality of the occupied
frequency indices |�| so that BWag = 
 f |�|, where 
 f is
the bandwidth per frequency bin.

Our proposed Gabor frequency and time shift selection
strategy relies on two principles. First, in order to acquire
information in a given sub-band, we consider a fixed central
frequency centered in the sub-band of interest. Second, in the
time domain we perform bandpass sampling with the goal of
mixing the signal of interest to (or near to) baseband. This
means that instead of sampling at all of the available time
shifts defined by the Nyquist rate (shown by the vertical black
dashed lines in Figure 10), we only acquire a subset defined
by the sub-sampling factor γ (the red circles in Figure 10),
effectively performing wavelet bandpass sampling. As a result
two adjacent Gabor atoms will not overlap in time since,
by construction, the sampling rate is inversely proportional
to the pulse duration. In the case of two sub-bands the
aggregate sampling rate is set to 2 fNyq/γ equivalent to
the aggregate bandwidth equal to 2BWRF. We note that in
addition to bandpass sampling, we can perform NUS on the
acquired wavelet samples to further reduce the sampling rates.
As shown next, this is typically feasible in the case where we
know a-priori that the sub-bands are sparsely populated.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PELISSIER AND STUDER: NUWS FOR RF A2I CONVERSION 9

Fig. 10. Time-frequency grid of the Gabor atoms to be acquired via NUWBS;
our approach makes use of a-priori knowledge of the occupied frequency
bands; Atom selection relies on constant frequency and bandpass sampling in
time for 2 sub-bands; the used parameters are BWag = 2×BWRF = 2×16
 f ,
γ = 16, and N = 256 samples.

Fig. 11. Empirical phase transition graph of NUWBS for multi-band
signal acquisition compared to the theoretical �1-norm phase transition for
a Gaussian measurement ensemble (shown with the dashed purple line).
NUWBS exhibits similar performance as the theoretical phase transition,
which demonstrates that NUWBS enables near-optimal sample rates.

C. Performance Validation of NUWBS

We now demonstrate the efficacy of NUWBS for spectral
activity detection in a multi-band RF application. In particular,
we simulate an empirical phase transition [39], [62] that char-
acterizes the probability of correct support recovery, i.e., the
rate of correctly recovering the true active frequency bins from
NUWBS measurements. As a reference, we also include the
theoretical phase transition of �1-norm based sparse signal
recovery for a Gaussian measurement ensemble [62].

We use N = 256 frequency bins and two active sub-
bands with a total number of |�| = 32 potentially active
frequency bins. The signals within these bins are assumed to
be K ≤ |�| sparse. The NUWBS measurements are selected
as discussed in Section IV-B and illustrated in Figure 10,
i.e., we form the M × N matrix �NUWBS = R�WH FH by
fixing the frequency f c

ν at the center of each sub-band and
use a sub-sampling ratio per branch of γ = 2N/|�| = 16.
We generate measurement-sparsity pairs (M, K ), and for each
pair, we generate a synthetic K -sparse signal within the two
allowed sub-bands; the K non-zero coefficients are complex-

Fig. 12. Generic serial NUWBS architecture to acquire Gabor
frame or wavelet samples. NUWBS first multiplies the input signal x(t) with
a wavelet comb pc(t) at rate 1/Ts and integrates the result. One then takes a
random set of wavelet samples and quantizes them using an ADC. A wavelet
is defined by its central frequency f c and width parameter τ (the effective
pulse duration).

valued numbers of unit amplitude and random phases.
For support recovery, we use orthogonal matching pursuit [60],
restricted to the sub-bands of interest, i.e., we assume that
the sub-band support � is known a-priori but not the active
coefficients within these sub-bands. We perform support set
recovery for 100 Monte–Carlo trials and report the average
success rate.

Figure 11 shows the empirical phase transition, where white
areas indicate zero errors for support set recovery. The x-axis
shows the normalized compression ratio, i.e., the number of
measurements compared to the total sub-band width M/|�|;
the y-axis shows the normalized sparsity level, i.e., the fraction
of non-zeros compared to the total sub-band width K/|�|.
We see that NUWBS exhibits a similar success-rate profile
as predicted by the theoretical phase transition (i.e., recovery
will fail above and succeed below the dashed purple line),
which is valid in the asymptotic limit for �1-norm based
sparse-signal recovery from Gaussian measurements. This key
observation implies that NUWBS in combination with the
atom selection strategy discussed in Section IV-B exhibits
near-optimal sample complexity in multi-band scenarios.
We emphasize that even for the relatively small dimensionality
of the simulated system (i.e., N = 256), NUWBS is already in
satisfactory agreement with the theoretical performance limits
for sparse signal recovery.

V. IMPLEMENTATION ASPECTS OF NON-UNIFORM

WAVELET (BANDPASS) SAMPLING

This section discusses hardware implementation aspects to
highlight the practical feasibility of NUWS/NUWBS and their
advantages over existing A2I converter solutions.

A. Architecture Considerations of NUWBS

Figure 12 shows the critical architecture details for NUWBS
that uses Gabor frames or C-Morlet wavelets. The continuous-
time input signal x(t) is first multiplied (or mixed) with a
wavelet comb pc(t). The resulting signal is then integrated
over a period Ts (for each wavelet) and subsampled at a
rate fs . The rate fNyq of the input signal x = [x1, . . . , xN ]T
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reduces to a uniform sub-sampling rate fs of the measurements
y = [y1, . . . , yM ]T such that NTNyq = MTs .

For uniform sub-sampling at rate fs (i.e., we do not perform
NUS of the wavelet samples), the compression ratio N/M is
proportional to the sub-sampling ratio κ = fNyq/ fs . If we
randomly select a subset of samples of the sample stream
(in addition to uniform sub-sampling), then we can further
lower the (average) sampling rate, effectively implement-
ing CS. The sampling diversity of NUWBS comes from the
wavelet parameters settings, namely the width parameter τ and
the central frequency f c.

While the architecture depicted in Figure 12 is purely
serial, one can deploy multiple parallel branches to (i) fur-
ther increase the diversity of the CS acquisition stage,
(ii) reduce the ADC rate by interleaved processing,
or (iii) sense multiple sub-bands. In addition, a multi-branch
architecture can simplify the circuitry for each branch by fixing
the center frequency, pulse width, delay, or pulse rate per
branch. For such an architecture, each branch performs wavelet
bandpass sampling at a given scale with fixed bandwidth and
center frequency.

B. Idealistic CWT Bandpass Sampling versus Realistic
Serial Wavelet Bandpass Sampling

This section discusses the commonalities and differences
between idealistic CWT bandpass sampling and the serial
wavelet bandpass sampling architecture shown in Figure 12.

1) Analysis of CWT Bandpass Sampling: The wavelet coef-
ficient Wxs,δ of the signal x(t) at a scale s and time shift
δ is defined in (6). Assume that the time-shift parameter δ
is continuous so that CWT is a continuous function in δ.
Then, the scalar product in (12) can be rewritten using the
convolution operator ∗ as follows [54]:

Wxs(δ) = (x ∗ ψ̃s)(δ). (12)

Here, ψ̃s(u) = 1√
s
ψ∗(−u

s ). We can now compute the Fourier
transform F in the time-shift parameter δ to obtain

F{Wxs(δ)} = X ( f )
̃s( f ), (13)

where 
̃s( f ) is the Fourier transform of the wavelet ψ̃s(u)
given by


̃s( f ) = F{
ψ̃s(u)

} = √
s
∗(−s f ) (14)

and 
( f ) is the Fourier transform of the mother wavelet ψ(t).
From (13), we see that the CWT Wxs(δ) is equivalent
to filtering the input signal X ( f ) with the transfer func-
tion HCWT( f ) = 
̃s( f ). We can now analyze the result of
bandpass sampling applied to the function Wxs(δ). To this
end, we assume a sampling rate fs well-below the Nyquist
bandwidth of the input signal x(t) and below the bandwidth
of the mother wavelet, i.e., fs ≤ BWp � fNyq.

We have the following discrete-time output signal

y[t = nTs ] =
n=+∞∑
n=−∞

Wxs(nTs)δ(t − nTs)

sampled at fs = 1/Ts . The output signal y[t = nTs ]
corresponds to the bandpass sampled version of signal x(t)
after filtering it with the transfer function HCWT( f ) = 
̃s( f ).

Fig. 13. Illustration of the signal (useful fu and interferer fi ) spectrum
evolution along the serial wavelet bandpass sampling; The wavelet sampling
rate is fs with constant wavelet parameters settings (τ, f c). The input signal
spectrum X ( f ) is convolved with weighted Dirac comb, filtered by a sinc
low-pass filter, and decimated at rate fs .

In contrast to classical bandpass sampling, the initial CWT
extracts a particular frequency band defined by the center fre-
quency f c and the bandwidth BWp of the wavelets. In words,
CWT bandpass sampling is an effective combination of fil-
tering and mixing via bandpass sampling. It is important to
realize that this scheme requires access to the continuous-time
CWT of the signal prior to sub-sampling. In practice, however,
we do not have access to the CWT—instead, we have to make
use of the wavelet sampling architecture shown in Figure 12.

Performing a CWT in hardware is infeasible and would
require an excessively large number of branches, i.e.,
a dedicated branch per time shift δ or convolution result
every TNyq second as the CWT atoms have infinite support.
In contrast, the architecture proposed in Figure 12 performs
a convolution of the input signal with the atom ψ̃s(δ) every
Ts second (instead of TNyq) in a serial manner. While both
approaches are similar, there are important differences in the
filtering capabilities. To this end, we investigate the out-of-
support � (out-of-band interference) rejection performance
for serial wavelet bandpass sampling that can be imple-
mented (cf. Figure 12) and the idealistic CWT bandpass
sampling approach.

2) Analysis of Serial Wavelet Bandpass Sampling: Consider
the case in which both the wavelet center frequency and
bandwidth remains constant for the entire wavelet comb. This
is the case of the Gabor frame projection reported on a single
branch in Figure 10. We will use Figure 13, which illustrates
the spectrum representation, to assist our discussion. The input
signal x(t) in Figure 13(a) is first multiplied (mixed) with
a wavelet comb pc(t) shown in Figure 13(b). The mixing
result z(t) can be expressed as follows:

z(t) = x(t)pc(t) = x(t)
n=+∞∑
n=−∞

p(t − nTs),

where p(t) is the considered wavelet. The Fourier transform
of the signal z(t) shown in Figure 13(c) is given by

Z( f ) = fs X ( f ) ∗ P( f )

k=+∞∑
k=−∞

δ( f − k fs), (15)
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which reveals that the spectrum of the mixed signal Z( f ) is the
convolution between the Fourier transform of the input signal
X ( f ) (cf. Figure 13(a)) and a Dirac comb weighted by the
Fourier transform of the wavelet P( f ). According to (9) the
Gaussian envelope of Gabor atoms or C-Morlet wavelets show
exponentially fast decay, which implies that the infinite sum
can effectively be reduced to a small number of Dirac delta
functions shown in Figure 13(b). Furthermore, we see that
NUWBS effectively reduces noise folding by pre-filtering the
spectrum with the pulse P( f ) prior to band-pass sampling; this
is contrast to conventional band-pass sampling in which noise
from the entire Nyquist bandwidth folds into each sample [40].

In order to match this approach with the bandpass CWT
approach discussed in Section V-B1, we can see that p(t)
corresponds to the wavelet atom at the scale s and time shift
δ = 0 with Fourier transform

P( f ) = F
{

1√
s



(
t

s

)}
= √

s
(s f ). (16)

By comparing (14) with (16), we see that one is the complex
conjugate of the other. In the architecture shown in Figure 12,
the mixing product z(t) is low-pass filtered. A typical filter
that can be implemented corresponds to an integration over
a rectangular window of duration Ts . The frequency-domain
representation of this integrator corresponds to the cardinal
sine (sinc) function. Hence, the Fourier transform Y ( f ) of the
filtered and mixed signal Z( f ) shown in Figure 13(d) is

Y ( f ) = Z( f )Tssinc(Ts f ), (17)

where we define sinc(u) = sin(πu)/(πu). In the architecture
shown in Figure 12, the signal y(t) is finally decimated by
a factor κ such that κ = fNyq/ fs , i.e., the entire Nyquist
band is folded into the frequency range [− fs/2, fs/2]. Hence,
the sample stream of the decimated signal is

yd [nTs] = y[nκ
t] with 
t = 1/ fNyq

and the Fourier transform of the discrete signal yd [nTs] shown
in Figure 13(e) is given by

Yd [e2 jπ f ] = 1

κ

κ−1∑
r=0

Y
(

e2 j f −r
κ

)
. (18)

According to this equation, the serial wavelet bandpass sam-
pling method collapses all the sinc-filtered and Gaussian
weighted convolution products into the band [− fs/2, fs/2].
As illustrated in Figure 13(e), because of the sub-sampling
process, the output frequency location is folded to { fi/ fs} fs
with { fi/ fs} the fractional part between the interference fre-
quency fi and the wavelet repetition rate, equal in our case
to the output sampling frequency fs . The equivalent filtering
effect is given by

HWBS( f ) =
κ/2−1∑

k=−κ/2

sinc(Ts( f − k fs))P(k fs )

=
κ/2−1∑

k=−κ/2

sinc(Ts( f − k fs))e
−(πτk fs )2

. (19)

Fig. 14. Comparison between out-of-band interference rejection between the
CWT and wavelet bandpass sampling in the case of wavelet sampling rate
equal to four times the wavelet bandwidth (i.e., Ts = 4τ = 1 ns).

The expression in (19) highlights the out-of-band rejection
capabilities of the proposed (realistic) serial wavelet band-
pass sampling approach in comparison with the (idealistic)
CWT bandpass method computed in (13). We emphasize that
the major differences between the serial wavelet bandpass
sampling approach and the CWT baseband sampling comes
from the fact that the equivalent filter transfer function differs
from a mixture of sinc-shaped for the former (see Eq. 19)
to a Gaussian shape (with infinite support) for the latter
(see Eq. 14).

3) Simulation Results: We now validate the serial wavelet
bandpass sampling scheme and more specifically evalu-
ate the out-of-band rejection capabilities. As illustrated in
Figure 13(a), the input signal x(t) is complex-valued and
builds upon a useful signal located at fu within the band
of interest (we assume fs is a sub-multiple of fc) and an
out-of-band interference signal at fi located 
 fi apart from
our signal of interest. The signal x(t) is sub-sampled by a
uniform wavelet comb at rate fs = 1/(4τ ). We consider a
sampling rate of fs = 1 GHz. The wavelet parameters, such as
width parameter τ and central frequency f c, remain constant
over the frame while the time shift is adjusting to the sampling
position.

As shown in (15) and illustrated in Figure 13(b), serial
wavelet bandpass sampling is, in the frequency domain, equiv-
alent to a Dirac comb whose amplitude is weighted by the
wavelet (or pulse) envelope P( f ). Since fs < BWp (because
1/ fs = Ts = 4τ ) temporal overlapping among wavelets is
avoided, several Dirac functions are included within the pulse
envelope centered on carrier frequency fc. As illustrated in
Figure 13(c), each convolution down-converts the useful signal
to the origin and out-of-band interferences into baseband.
Then, the integration over a time period Ts low-pass filters
the signals that are close to baseband (see Figure 13(d)).

Figure 14 summarizes the out-of-band rejection charac-
teristics of the serial wavelet bandpass sampling approach
HWBS( f ) and provides a comparison with the idealistic
CWT HCWT( f ). This analysis quantifies the out-of-band alias
rejection capability of NUWBS. Our analytical expressions
from (19) and (14) are shown with continuous lines; simulation
results are indicated with plus (+) markers, respectively,
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Fig. 15. Circuit schematic of a wavelet pulse generator with variable
bandwidth and central frequency capabilities. The circuit acts as a Voltage
Control Oscillator (VCO) switched on according to a sub-Nyquist PRBS
sequence.

in blue for wavelet bandpass sampling and green for the
idealistic CWT method.

Evidently, our simulations coincide with the theoretical
results in (19) and (14). We also observe that the filter char-
acteristics of serial wavelet bandpass sampling is in-between
the ideal equivalent Gaussian filter and the standard sinc filter
associated to the Ts rectangular windows integration. As a
result, we achieve a rejection of 50 dBc, which remains to
be lower than the idealistic CWT rejection but (i) with more
than 23 dB improvement with respect to the standard sinc filter
and (ii) can, as shown next, be implemented in hardware.

C. Wavelet Generator Circuit

The key missing piece of the proposed NUWS and NUWBS
approach is the tunable wavelet generator circuit. For RF
applications, wavelet generation in the time domain can be
realized by leveraging extensive prior work in the field of
ultra-wideband (UWB) impulse technology [63]. For instance,
in our previous work [64], we have demonstrated a circuit
for low-power pulse generation at 8 GHz with variable pulse
repetition rate. Here, we suggest to adapt the design in [64], for
tunable and wideband wavelet generation. Figure 15 shows a
corresponding circuit diagram. The core of the oscillator relies
on a cross-coupled NMOS pair loaded by an RLC resonator
highlighted, which is commonly used for voltage control
oscillator (VCO) circuits. Wavelets are generated across the
LC tank at RF frequency as soon as the bias current Ibias is
applied to the cross-coupled pair.

Figure 16 shows a typical chronogram of the proposed
wavelet generation circuit. The bias current duration is
adjusted by a digital base-band pulse shaper to enable variable
bandwidth. A clock signal running at rate fs is combined
with a pseudo-random bit-sequence (PRBS) running at the low
sub-sampling rate fs in order to switch the biasing source on
and off. As a result a non-uniform pulse pattern is generated
tailored to the NUWBS solution. Finally, a variable voltage
applied to the varactor C0 in Figure 15 enables us to tune the
center frequency to the RF sub-band of interest.

In order to validate the wavelet generator circuitry for RF
applications up to 8 GHz, physical measurements have been
performed on an ASIC fabricated in a 130 nm CMOS tech-
nology. Figure 17 shows the power spectral density (PSD) of

Fig. 16. Signal chronogram involved in the control of the circuit schematic
shown in Figure 15: The frequency control signal, the digital base band pulse
shaper, and the clock and PRBS signals are running at sub-Nyquist rates.

Fig. 17. ASIC measurement results: Illustration of variable wavelet rate gen-
eration (28/56/112 Mp/s); Zoom in on a single wavelet spectrum illustrating
the wavelet central frequency and bandwidth tuning capabilities.

the wavelet depending on the bandwidth or central frequency.
Measurements are provided at 28.125 Mp/s, 56.25 Mp/s, and
112.5 Mp/s with amplitude up to 160 mV for 50� impedance.
The Tektronix TDS6124C high speed scope is set to 50�
impedance to avoid any reflections with lab equipment that
could alter the wavelet waveform. A high timing resolution
mode with digital interpolation between the 25 ps real samples
is selected to provide a 5 ps timing resolution. The −10 dB
wavelet bandwidth is tunable from 300 MHz to 1 GHz and the
central frequency range from 7.3 GHz to 8.5 GHz. In addition
to being flexible, the wavelet generation is power efficient,
i.e., only requires 60 pJ/pulse, and remains switched off in
between two successive wavelet generation phases (i.e., this is
duty-cycled solution). Our ASIC measurements results demon-
strate a feasible wavelet function generator with a broad range
of tuning capabilities in terms of central frequency, bandwidth,
and repetition rate operating in the range of RF frequencies.
These results pave the way for a complete NUWS/NUWBS
integration including signal mixing and sampling stage.

VI. CONCLUSION

We have proposed a novel analog-to-information (A2I)
conversion method for compressive-sensing (CS)-based RF
feature extraction. Our approach, referred to as non-uniform
wavelet sampling (NUWS), combines wavelet preprocessing
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with non-uniform sampling (NUS), which mitigates the main
issues of existing analog-to-information (A2I) architectures,
such as out-of-band noise, interference, aliasing, and flexi-
bility. In addition, NUWS avoids circuitry that must adhere
to Nyquist rate bandwidths. From an RF feature extraction
standpoint, NUWS can be adapted to the signals of interest
by tuning their duration, center frequency, and time instant
per acquired wavelet sample.

For multiband RF signals, we have developed a specialized
variant of NUWS called non-uniform wavelet bandpass sam-
pling (NUWBS). For this method, we have discussed a wavelet
selection strategy that enables adaptation to the a-priori
knowledge of the sub-bands of interest. Using simulation
results, we have shown that NUWBS achieves near-optimal
sample complexity already for relatively small dimensions,
i.e., NUWBS approaches the theoretical phase transition of
�1-norm-based sparse signal recovery with Gaussian measure-
ment ensembles. We have furthermore analyzed the rejection
rate of NUWBS against out-of-band interferers. To demon-
strate the practical feasibility of our A2I feature extrac-
tor, we have proposed a suitable wavelet generation circuit
that enables the generation of tunable wavelet pulses in the
GHz regime.

The proposed NUWS and NUWBS methods are promising
strategies for A2I converter architectures that overcome the
traditional limitations of existing solutions in power and cost
limited applications. Our solutions find potential broad use in a
variety of RF receivers targeting spectrum awareness or assist-
ing conventional RF chains with tuning parameters. Both of
these advantages render our solutions useful for the Internet
of Things, for which power and cost efficiency and RF feature
extraction are of utmost importance.

There are many avenues for future work. The design of a
complete NUWS/NUWBS-based RF feature extractor ASIC is
ongoing work. A theoretical analysis of the recovery properties
for NUWS/ NUWBS is a challenging open research problem.
Finally, a detailed exploration of other applications that may
benefit of NUWS/NUWBS and are in need of low power and
low cost feature extraction is left for future work.
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