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Abstract—Feature extraction from wideband radio-frequency (RF)
signals, such as spectral activity, interferer energy and type, or direction-
of-arrival, finds use in a growing number of applications. Compressive
sensing (CS)-based analog-to-information (A2I) converters enable the
design of inexpensive and energy-efficient wideband RF sensing solutions
for such applications. However, most A2I architectures suffer from a
variety of real-world impairments. We propose a novel A2I architecture,
referred to as non-uniform wavelet bandpass sampling (NUWBS). Our
architecture extracts a carefully-tuned subset of wavelet coefficients di-
rectly in the RF domain, which mitigates the main issues of most existing
A2I converters. We use simulations to show that NUWBS approaches the
performance limits of `1-norm-based sparse signal recovery.

I. INTRODUCTION

CS-based A2I converters that leverage spectrum sparsity are a
promising solution for wideband RF feature acquisition applica-
tions [2]–[5]. CS enables the acquisition of larger bandwidths with
relaxed sampling-rate requirements, thus enabling inexpensive, faster,
and potentially more energy-efficient solutions than traditional Nyquist
analog-to-digital converters (ADCs). While a large number of CS-
based A2I converters have been proposed in the literature (see,
e.g., [2]–[4], [6], [7]), the generally-poor noise performance [8], [9]
and sensitivity to real-world hardware impairments prevents their
straightforward use in low-power and cost-sensitive applications.

We propose a novel A2I converter for cognitive RF receivers, i.e.,
radio receivers that are assisted with an A2I converter specifically
designed for RF feature extraction. As illustrated in Fig. 1, the A2I
converter bypasses conventional RF circuitry and extracts a small
set of features directly from the incoming RF signals in the analog
domain. The acquired features can then be used by the RF front-end
for parameter tuning (e.g., of filters) or by the digital signal processing
(DSP) stage. Our approach, referred to as non-uniform wavelet
bandpass sampling (NUWBS), combines wavelet pre-processing with
non-uniform sampling, which mitigates the key issues of existing A2I
solutions, such as signal noise, aliasing, and sensitivity to clock jitter.

II. NON-UNIFORM WAVELET BANDPASS SAMPLING

Let x ∈ CN be a discrete-time, N -dimensional complex-valued
signal vector that we wish to acquire. We assume that the signal x has
a K-sparse representation s ∈ CN , i.e., the vector s has K dominant
non-zero entries in a known (unitary) transform basis Ψ ∈ CN×N

with x = Ψs and ΨHΨ = IN . In spectrum sensing applications,
one typically assumes sparsity in the discrete Fourier transform (DFT)
domain, i.e., Ψ = FH is the N -dimensional inverse DFT matrix.
CS acquires M compressive measurements as yi = 〈φi, s〉+ ni for
i = 1, 2, . . . ,M , where φi ∈ CN are the measurement vectors and
ni models noise. The measurement process can be written in matrix-
vector form as follows: y = Φx + n = Θs + n. Here, the vector
y ∈ CM contains all M compressive measurements, the rows of the
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sensing matrix ΦM×N correspond to the measurement vectors φi,
i = 1, 2, . . . ,M , the M × N effective sensing matrix Θ = ΦΨ
models the joint effect of CS and the sparsifying transform, and the
vector n ∈ CN models noise.

The operating principle of NUWBS is illustrated in Fig. 2.1

NUWBS first multiplies the input signal x(t) with a wavelet comb and
then, integrates over the support of each wavelet, and subsamples the
resulting wavelet coefficients. In discrete time, the sensing matrix Φ
for NUWBS can be described by taking a small set Ω of rows of a
(possibly overcomplete) wavelet frame WH ∈ CW×N , where WH

contains a specific wavelet on each row and W ≥M corresponds to
the total number of wavelets. Hence, the sensing matrix of NUWBS
is Φ = RΩWH , where RΩ = [IN ]Ω,: is the M × N restriction
operator that contains of a subset Ω the rows of the identity matrix
IN and M = |Ω| denotes the number of wavelet samples. We can
write NUWBS as y = ΘNUWBSs + n with ΘNUWBS = RΩWHFH .

It is important to realize that parametrizable wavelets can be
generated efficiently in hardware. In particular, we are interested
in Gabor or Morlet-like waveforms with a given center frequency,
bandwidth, and phase (determined by the sample instant). Each wavelet
sample corresponds to point-wise multiplication of the sparse signal
spectrum with the bandpass filter equivalent to the Fourier transform
of the wavelet. Hence, each wavelet captures a different portion of the
sparse spectrum with a different phase and bandwidth. Such wavelets
can be generated in hardware by leveraging extensive prior work in
the field of ultra-wideband (UWB) impulse technology [10], which
allows the generation of wavelet pulses that are widely tunable in
frequency, bandwidth, and phase [11].

NUWBS has the following key advantages over non-uniform
sampling. First, the analog wavelet transform reduces the bandwidth
of the input signal x(t), which relaxes the bandwidth of the sample-
and-hold (S&H) circuit and the ADC. Second, NUWBS enables full
control over a number of parameters, which enables one to tune the
wavelets to the signal class to be acquired. See [1] for the details.

III. PERFORMANCE OF NUWBS

We simulate an empirical phase transition [12], i.e., the rate
of correctly recovering the true active frequencies from NUWBS
measurements. As a reference, we also include the theoretical
phase transition of `1-norm based signal recovery for a Gaussian
measurement ensemble [13]. We use N = 256 frequency bins and
generate the signals and NUWBS measurements as detailed in [1].
For support recovery, we use orthogonal matching pursuit [14]. From
Fig. 3, we see that NUWBS exhibits similar success and failure rates
as predicted by the theoretical phase transition. Hence, NUWBS
enables hardware-friendly RF feature extraction while delivering a
performance that is close to the theoretical performance limits.

1While the architecture depicted in Fig. 2 is purely serial, one can deploy
multiple parallel branches to further increase the efficacy of NUWBS.
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Fig. 1. Overview of a cognitive radio receiver: A traditional RF front-end is
enhanced with an A2I converter that extracts RF features directly from the
incoming analog RF signals. The A2I converter enables parameter tuning to
reduce design margins in the RF circuitry and assists spectrum sensing or
awareness tasks in the digital domain.
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Fig. 2. NUWBS architecture that acquires wavelet samples. NUWBS first
multiplies the input signal x(t) with a wavelet comb pc(t) at rate 1/Ts and
integrates over each wavelet. One then takes a random subset of wavelet
samples and quantizes them using an ADC. Each wavelet is defined by it
central frequency fc and its width parameter τ (the effective pulse duration).

Fig. 3. Empirical phase transition graph of NUWBS for multi-band signal
acquisition compared to the theoretical `1-norm phase transition for a Gaussian
measurement ensemble (shown with the dashed purple line). NUWBS exhibits
similar performance as the theoretical phase transition.
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