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Abstract

Background: Particle size is a key parameter for drug-delivery nanoparticle
design. It is believed that the size of a nanoparticle may have important effects
on its ability to overcome the transport barriers in biological tissues. Nonetheless,
such effects remain poorly understood. Using a multiscale model, this work
investigates particle size effects on the tissue distribution and penetration efficacy
of drug-delivery nanoparticles.

Results: We have developed a multiscale spatiotemporal model of nanoparticle
transport in biological tissues. The model implements a time-adaptive Brownian
Dynamics algorithm that links microscale particle-cell interactions and adhesion
dynamics to tissue-scale particle dispersion and penetration. The model accounts
for the advection, diffusion, and cellular uptakes of particles. Using the model, we
have analyzed how particle size affects the intra-tissue dispersion and penetration
of drug delivery nanoparticles. We focused on two published experimental works
that investigated particle size effects in in vitro and in vivo tissue conditions. By
analyzing experimental data reported in these two studies, we show that particle
size effects may appear pronounced in an in vitro cell-free tissue system, such as
collagen matrix. In an in vivo tissue system, the effects of particle size could be
relatively modest. We provide a detailed analysis on how particle-cell interactions
may determine distribution and penetration of nanoparticles in a biological tissue.

Conclusion: Our work suggests that the size of a nanoparticle may play a less
significant role in its ability to overcome the intra-tissue transport barriers. We
show that experiments involving cell-free tissue systems may yield misleading
observations of particle size effects due to the absence of advective transport and
particle-cell interactions.
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Background 1

Drug-delivery nanoparticles are subject to a variety of transport barriers in biolog- 2

ical tissues [1, 2]. To overcome these barriers, significant research efforts have been 3

made over the years to study the principles of drug-delivery nanoparticle design [3]. 4

The key nanoparticle design features that have been widely studied are particle size, 5

geometry, and surface-attached targeting molecules [4]. Among these, the size of a 6
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particle is believed to have important effects on its immune clearance, transvascular 7

delivery, and intra-tissue dispersion and penetration [4, 5]. 8

Two earlier studies quantitatively studied the effects of particle size on the efficacy 9

of tissue delivery and penetration of drug-delivery nanoparticles [6, 7]. Nonetheless, 10

the mechanistic aspects of these effects remain poorly understood. Earlier, an ex- 11

periment by Wong et al. [6] indicated enhanced tissue penetration as a result of 12

particle size reduction. Later, Tang et al. [7] reported similar effects from parti- 13

cle size variation but their experimental data revealed significantly narrower tissue 14

distribution profiles and penetration of particles. Moreover, in Tang et al. [7], the 15

effects of particle size variation appeared relatively modest. These apparent dispar- 16

ities motivated us to develop a multiscale model and mechanistically interrogate 17

particle size effects on their efficacy of tissue distribution and penetration. The two 18

studies above carried out investigations in different experimental settings. Wong et 19

al. [6] employed in vitro experiments involving a cell-free collagen tissue. On the 20

other hand, the experiments of Tang et al. [7] were conducted in in vivo tumor tis- 21

sues. We were particularly interested in investigating how these two experimental 22

settings might affect the intra-tissue transport behavior and penetration efficacy of 23

nanoparticles of different sizes. 24

We developed the multiscale model to realistically capture the transport behav- 25

ior and cellular interactions of nanoparticles. In many aspects, a biological tissue 26

can be compared with a heterogeneous porous media. Particles motion through the 27

interstitial space of a biological tissue is subject to advection, diffusion, and inter- 28

action with the cell boundaries. Tissue-scale particle distribution may occur over 29

hours. However, the process is ultimately determined by the micro scale adhesion 30

and interaction of particles with the cell boundaries. Bridging these spatiotemporal 31

phenomena at distinct spatial and temporal resolutions in a model could be compu- 32

tationally expensive. Here, we developed a time-adaptive Brownian Dynamics (BD) 33
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simulation algorithm. We combined the algorithm with the Method of Regularized 34

Stokeslets (MRS) [8]. The integrated algorithm enabled multiscale simulation of 35

particle transport under both advection and diffusion in a heterogeneous porous 36

system. The time-adaptive feature captured particle-cell interactions at high reso- 37

lution while enabling efficient computation. 38

Using the model, we analyzed experimental data reported in Wong et al. [6] and 39

Tang et al. [7]. Our analysis revealed how the different tissue conditions in these 40

two experimental studies could lead to the distinct particle distribution profiles and 41

size effects. Our results and analysis indicate that particle size effects may appear 42

pronounced in a cell-free tissue system, such as collagen matrix, that are often em- 43

ployed in in vitro microfluidic studies. In the absence of particle-cell interaction and 44

under pure diffusion, particle size may have more dramatic effects on the tissue dis- 45

tribution and penetration efficacy of nanoparticles. However, in in vivo physiological 46

conditions, the barriers imposed by the interstitial cells may moderate the effects 47

arising from the particle size difference. We show that particle-cell interaction im- 48

poses significant transport barriers and serves as a key determinant of distribution 49

and penetration efficacy of nanoparticles. 50

Methods 51

Below, we describe our simulation approach together with the model of nanoparticle 52

transport in biological tissues. The model is written in C++. The source code for 53

the model and associated instructions are available in Additional file 1. 54

Domain Representation of Biological Tissue 55

The computational domain in our model represents a two-dimensional rectangular 56

tissue section (Fig. 1). We refer the entire domain by Ω, and its left, lower, and 57

upper edges by Ω1, Ω2, and Ω3, respectively. We consider the rectangle sufficiently 58

wide such that the right edge can be ignored. The bottom-left corner of the domain 59

(Ω1 ∩ Ω2) represents the origin, and any point x ∈ Ω represents a position with 60
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respect to this origin. The left edge, Ω1, represents a porous capillary wall from 61

where nanoparticles enter into the tissue space. The entry points of particles, x ∈ 62

Ω1, are selected randomly along this edge. The horizontal distance to the right with 63

respect to Ω1 represents tissue depth (labeled as X-distance in Fig. 1). 64

Figure 1 The MRS calculated force and velocity fields in a rectangular tissue

section. (A) The red arrows represent force vectors at discrete locations along the domain edges

and cell boundaries. The black arrows represent velocity vectors in the interstitial space. (B) A

zoomed-in view of the velocity vectors in the interstitial space and near the cell boundaries.

We treat the mobile nanoparticles as circular objects with a defined size (radius). 65

We treat each cell as a stationary circle of 10 µm radius. Cells are populated at 66

non-overlapping random positions in the domain. The cells occupy 40% area of 67

the domain area. We refer this aggregate area occupied by the cells as Λ. The 68

remaining 60% area represents the interstitial space, which we refer to as Γ. We 69

refer the boundary of any cell i ∈ {1, 2, · · · , n} as Pi, and the region it occupies as 70

Ai. Therefore Λ = (∪ni=1Pi) ∪ (∪ni=1Ai). Thus, the entire computational domain, Ω 71

is equal to (∪3i=1Ωi) ∪ Γ ∪ Λ. 72

Nanoparticle Velocity 73

To evaluate nanoparticle velocities in the domain, we adopt the approach of Rej- 74

niak et al. [9]. At any position x ∈ Ω, we represent the velocity of a nanoparticle 75

by the local fluid velocity v(x) [9]. As in [9], we compute v(x) using the Method 76

of Regularized Stokeslets (MRS) [8]. The MRS [8] has been used to model complex 77

solid-fluid interactions in a variety of Stokes flow systems [10–14]. Here, for com- 78

pleteness, we provide a brief description of the MRS and its implementation in our 79

model. 80

The Method of Regularized Stokeslets (MRS) 81

The MRS is a Lagrangian approximation of the Stokes equations. It provides a 82

convenient framework to avoid singularities associated with the fundamental solu- 83
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tions of the Stokes equations. Because of this property, the method is particularly 84

useful for modeling Stokes flow associated with irregular geometries or non-smooth 85

boundaries. 86

The Stokes equations in two or three dimension are as follows:

µ∇u(x) = ∇P − f

∇ · u(x) = 0

In the above equations, µ is the fluid viscosity; x is a position vector; f is force;

and P is pressure. u(x) is the local fluid velocity vector at x. The Stokes equations

can be solved for a single point force at x0, f = f0δ(x−x0), where δ(x) represents

the Dirac delta function.

µ∇u(x) = ∇p(x)− f0∇(x− x0)

∇ · u(x) = 0

The solution of the above equations represents the velocity u(x) at x due to the 87

single point force at x0. This solution, however, is singular at the point of application 88

of the force (i.e., |u(x)| → ∞, as x → x0). To avoid this singularity, the MRS 89

avoids direct use of the point force f0δ(x−x0) in the Stokes equations. Instead, it 90

approximates (regularizes) the point force into a smooth, radially-symmetric force 91

centered at x0: f0φ(x−x0). With this regularized force term, the Stokes equations 92

take the following form: 93

µ∇u(x) = ∇P (x)− f0φε(x− x0) (1)

∇ · u(x) = 0 (2)
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The function φε(x) is known as cutoff function, which represents a spatially- 94

symmetric sphere or blob of radius ε in the domain space. The regularized 95

force f0φε(x − x0) takes the maximum value at the center (x0), and decays 96

smoothly towards the surface of the blob. The cutoff function satisfies the con- 97

straint
∫ +∞
−∞ φε(x)d(x) = 1. As ε → 0, φε(x) → δ(x), and the regularized force 98

approaches the point force. 99

For an appropriate choice of the cutoff function φε(x), Eqs 1 and 2 can be solved 100

to evaluate the fluid velocity u(x) due to the regularized point force centered at any 101

arbitrary position x0 in the fluid. Unlike the Stokes solution, the resulting velocity 102

is non-singular at x0. 103

Now, the force field over the entire domain can be represented by a collection 104

of N discrete point forces located at different points in the domain. If fk located 105

at xk for k ∈ {1, 2, · · · , N} represents such a point force, its contribution at x 106

can be represented as uk(x). By solving Eqs 1 and 2, uk(x) for k ∈ {1, 2, · · · , N} 107

can be evaluated. Then, the net velocity at x, v(x), can be evaluated simply by 108

linear superposition of the solutions corresponding to the N discrete forces: v(x) = 109∑N
k=1 uk(x) 110

Force and Velocity Calculation 111

Following Rejniak et al. [9] and Tlupova et al. [15], we chose φε(x) = 2ε4

π(r2+ε2)3 , 112

where r = |x|. We discretized the solid boundaries of the tissue domain into N = 113

6, 700 discrete points. The solid boundaries include the three domain edges (Ω1, Ω2, 114

and Ω3), and the boundaries of the circular cells, Pi for i ∈ {1, 2, · · · , n}. 115

For the above cutoff function, the solution of Eqs 1 and 2 is: 116

uk(x) = − fk
8πµ

(
ln
(
r2 + ε2

)
− 2ε2

r2 + ε2

)
+

1

4πµ

1

r2 + ε2

[
fk.
(
x− xk

)](
x− xk

)
. (3)
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For the entire collection of the N discrete forces, the net velocity v(x) is obtained 117

by linear addition of the solutions: 118

v(x) =
N∑
k=1

uk(x)

=
N∑
k=1

{
− fk

8πµ

(
ln
(
r2 + ε2

)
− 2ε2

r2 + ε2

)
+

1

4πµ

1

r2 + ε2

[
fk.
(
x− xk

)](
x− xk

)}
. (4)

However, to obtain v(x) using Eq. 4 (or uk(x) using Eq. 3), we had to first 119

evaluate the unknown point forces, fks, at the N discrete points. To evaluate the 120

fks, we set no-slip boundary conditions (uk = 0) at the lower and upper domain 121

edges (Ω2 and Ω3), and the cell boundaries Pi for i ∈ {1, 2, · · · , n}. As mentioned 122

previously, the left domain edge Ω1 represents the particle or fluid entry points (the 123

porous wall of a vascular capillary). At Ω1, we set the boundary condition uk = 1ĵ 124

µm/second, where ĵ represents a unit vector towards the tissue depth (parallel to 125

Ω2 or Ω3). Thus, for the N discrete points, we obtained a system of N independent 126

linear equations from Eq 4. The left hand-side (u(x)) of these equations were defined 127

(either 0 or ĵ), whereas the right-hand side contained the N unknown force terms 128

fks. Using the GSL package (ftp://ftp.gnu.org/gnu/gsl/), we solved this system of 129

linear equations to evaluate the unknown fks at the N discrete points. We then 130

plugged these force terms into Eq. 4 to evaluate the velocity vector v(x) at any 131

arbitrary position x in the interstitial space of the domain. 132

In Fig. 1, we represent the force vectors, fks by red arrows. The length and 133

direction of each red arrow represent the relative magnitude and direction of the 134

corresponding force vector at the indicated point. We represent the velocity vectors 135

at different points of the interstitial space by black arrows. The length and direction 136

of each black arrow represent the relative magnitude and direction of the fluid 137

(nanoparticle) velocity at the indicated point. 138
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Nanoparticle Diffusion 139

We calculated diffusion constants of the nanoparticles based on the Einstein-Stokes

equation:

D =
KBT

6πµa
(5)

where D is diffusion constant of a particle, KB is the Boltzmann constant, T is 140

temperature, µ is viscosity of the interstitial fluid, and a is radius of the particle. 141

Time-Adaptive Simulation Algorithm 142

In our BD algorithm, we consider that the nanoparticles are independent and mu- 143

tually non-interacting in a biological tissue. This consideration is based on the fact 144

that drug-delivery nanoparticles can reach a target tissue at small quantities. Typ- 145

ical particle concentration in a biological tissue is expected to be small. Therefore, 146

it is less likely that their mutual interaction can have a significant impact on their 147

transport behavior over other factors, such as fluid flow, collision with the cell 148

boundaries, and cellular uptake. Because particles are considered independent, the 149

model allows independent simulation of one particle at a time. 150

Fig. 2 illustrates the time-adaptive scheme of the algorithm. The algorithm is 151

summarized in a pseudocode in Fig. 3. In the algorithm, particles are advanced 152

adaptively with time steps ∆tm ≥ ∆t ≥ δt, where ∆tm and δt represent the largest 153

and smallest permissible time step, respectively. 154

During the simulation, in each BD step, the algorithm first computes R, which 155

is the distance between the center of a particle and its nearest interaction point 156

on a solid boundary (Fig. 2). The solid boundary can be any of the three domain 157

edges or cell boundaries. It then attempts to move the particle based on the largest 158

permissible step ∆tm. It computes a possible jump: S = Sv +
√

4D∆tme, where 159

Sv = v∆tm represents displacement due to advection, Sd =
√

4D∆tm represents 160
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Figure 2 Illustration of the time-adaptive BD algorithm. (A) Particle motion in the

bulk fluid. The small green circle represents a nanoparticle, and the large gray circles represent

cells. The radius of the dashed circle, R, represents the distance between a particle’s current

position and its nearest cell boundary. In the bulk fluid, particle jump S is taken adaptively so that

|S| < R. |S| is determined by the time step ∆t: S = Sv + Sd, where Sv = v∆t (displacement

due to advection), and Sd =
√

4D∆te (displacement due to diffusion). (B) Particle motion near

a cell boundary. |S| is determined by a constant but fine resolution time step δt = 10−3 seconds.

The cell boundary represents a sticky wall that captures or reflects a colliding particle with

probability ρ and 1− ρ, respectively.

Figure 3 Pseudocode for the simulation algorithm.

displacement due to diffusion (Fig. 2), and e represents a unit vector with random 161

orientation. Velocity v and diffusion constant D are computed using the MRS and 162

Einstein-Stokes equation, as detailed in the previous sections. If the jump length 163

|S| is smaller than R− a, where a is the particle radius, the move is accepted, and 164

the particle position is updated accordingly. 165

If the move based on ∆tm is rejected, the algorithm attempts to move the particle 166

based on a new time step ∆ta < ∆tm. This time step ∆ta is obtained by solving 167

|v|∆ta +
√

4D∆ta = R−a. It then computes: S = v∆ta+
√

4D∆tae. The algorithm 168

then compares |S| with the particle radius a. If |S| > 4a (i.e., the distance between 169

the particle boundary and a cell boundary is at least twice the diameter of the 170

particle), the move is accepted and the particle position is updated accordingly. 171

If |S| ≤ 4a, the algorithm attempts to move the particle based on the smallest 172

permissible step δt: S = vδt +
√

4Dδte. The move is accepted if the new particle 173

position falls in the interstitial space (Γ). However, if the new position falls outside 174

the domain edges, or in any of the cell regions (Λ), the algorithm treats it as a 175

collision with the corresponding domain edge or cell boundary. In the former case, 176

the particle is reflected by the domain boundary. In the latter case, the particle is 177

captured or reflected by a cell boundary, as discussed in the next section. 178
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Particle Interaction with Cell Boundaries 179

We consider the cell boundaries as sticky walls that can capture or reflect a hitting 180

nanoparticle with a defined probability (Fig. 2B). Because a cell is much larger in 181

size than a particle, a cell boundary is treated as a flat surface when a particle 182

collides with the boundary (Fig. 2B). As mentioned in the previous section, a par- 183

ticle can hit a cell only when it is in the vicinity of a cell and advanced by the 184

finest time step δt = 10−3 seconds (Additional file 2: A and B). This time step size 185

requires the distance between a colliding particle and a cell boundary to be small 186

(four times the particle radius). When a particle hits a cell, it is either captured 187

with probability ρ, or reflected into the fluid with probability (1−ρ) (Fig. 2B). The 188

value of ρ determines the rate of particle capture (uptake) by cells. 189

It should be noted that particle capture or uptake by a cell may involve complex 190

biophysical and biochemical processes. These processes can be influenced by many 191

factors, such as van der Waals force [16], particle surface charge effects [17], particle 192

surface modification by corona formation [18–21], and molecular recognition by 193

the receptor proteins in the cell membrane [22–25]. Explicit consideration of these 194

different factors may be possible if quantitative information about their relative 195

importance and molecular mechanisms of the recognition processes are known. Here, 196

we limit our scope by taking this simple approach where the probability parameter ρ 197

implicitly accounts for the lumped effects from the various factors that may influence 198

particle capture by cells. For example, a particle with a small ρ in our model may 199

represent a particle with a bare surface with a poor affinity for the cell membrane. 200

On the other hand, a particle with a large ρ may represent a particle with a modified 201

surface (functionalized with a targeting ligand, for example) with a high affinity for 202

the cell membrane because of the molecular recognition by membrane proteins [17, 203

22–25]. 204
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Model Parameters 205

Table 1 lists the model parameters and their values. In the model, cells have a 206

typical radius of 10 µm. Nanoparticles have a radius of 100 nm if a different size 207

is not specified explicitly. Tissue porosity (Γ/Ω) is 0.60. The probability of particle 208

capture per collision with a cell (ρ) is varied between 0.01 and 1. Physiological 209

temperature (37 oC or 310 K) was used in the Einstein-Stokes equation to calculate 210

particle diffusion. The remaining parameters, fluid viscosity (µ), entry fluid velocity 211

(vin), and regularization constant (ε) are based on [9] 212

Table 1 Model parameter values.

Parameter Value Reference

Cell radius, r (µm) 10 This work

Nanoparticle radius, a (nm) 10–100 This work

Tissue porosity, α 0.6 This work

Particle capture probability, ρ 0.01–1 This work

Fluid viscosity, µ (cP) 2.5 [9]

Temperature, T (K) 310

Entry fluid velocity, vin (µm/s) 0.05–1 [9]

Regularization constant, ε (µm) 0.5 [9]

Results 213

Size effects of nanoparticles in an in vitro cell-free tissue 214

In drug-delivery experiments, it is a common practice to employ cell-free tissue 215

systems as a substitute of an in vivo physiological tissue. We first investigated 216

particle size effects on the distribution and penetration of nanoparticles in such in 217

vitro tissue systems. As mentioned previously, the experimental work of Wong et 218

al. [6] studied the effects of particle size in a cell-free collagen matrix (Fig. 4A). In 219

contrast, Tang et al. [7] investigated particle size effects in in vivo tumor tissues 220

(Fig. 4B). The collagen matrix used in Wong et al. [6] was devoid of cells and 221

advective transport. An experiment in the study compared the tissue distribution 222

and penetration efficacy of 10 and 100 nm particles. Both particle sizes displayed a 223
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broad dispersion across the tissue system. However, the smaller particles revealed 224

a significantly deeper penetration (Fig. 4A). 225

Figure 4 Experimental data adapted from two earlier works [6, 7]. (A) Data from

Figure 3H of Wong et al. [6]. The figure compares distribution of 100 nm (red) and 10 nm (black)

nanoparticles in collagen in an in vitro experiment. (B) Experimental data adapted from Figure

5d of Tang et al. [7]. The figure compares tumor tissue distribution of 200 nm (red) and 50 nm

(black) particles in an in vivo experiment.

The experimental observation of Wong et al. [6] can be explained with a simple

theoretical model. Comparing the tissue domain with a semi-infinite plane in one

dimension, the solution of the following equation describes the time-dependent con-

centration profile (probability density function) of a single particle in the domain:

∂G

∂t
= D

∂2G

∂x2
+ δ(x)δ(t), (6)

where the source term (product of the Dirac delta functions) represents the initial 226

particle location at the origin. D is the size-dependent diffusion coefficient (Eq. 5). 227

The solution of this equation is G(x, t) = (1/
√
πDt)exp(−x2/4Dt). The solution 228

is similar to a Gaussian distribution in an infinite domain with the exception that 229

the peak height is 1/
√
πDt instead of the corresponding Gaussian peak 1/

√
4πDt, 230

and the solution is valid only in the right half plane (x ≥ 0). Fig. 5A represents 231

this analytical solution for three different particle sizes. The diffusion coefficient 232

of each particle size was calculated based on the Einstein-Stokes formula (Eq. 5) 233

and the physical properties of the interstitial fluid listed in Table 1. Fig. 5B shows 234

corresponding results from our simulation for two different particle sizes (10 and 235

100 nm). The inset of Fig. 5A shows the normalized curves for a direct comparison 236

with the fluorescence data in [6] (Fig. 4A). 237

In a biological tissue, however, it is unlikely to have a purely diffusive motion of

particles. In the presence of a small flow (advection) to the right, particle distribu-
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Figure 5 Particle size effects in a cell-free system. (A) Theoretical model (Eq. 6) and (B)

simulation considering pure diffusion. (C) Theoretical model (Eq. 7) and (D) simulation

considering a small advection (0.05 µm/s) and diffusion.

tion can be described by the following equation:

∂G

∂t
= D

∂2G

∂x2
− v ∂G

∂t
+ δ(x)δ(t), (7)

where v is a constant velocity in the X-direction. The solution of this equation, 238

G(x, t) = (1/
√
πDt)exp(−(x − vt)2/4Dt), is shown in Fig. 5C for v = 0.05 µm/s. 239

Corresponding simulation result is shown in Fig. 5D. The distribution peaks are 240

shifted by a distance vt, as expected. Based on this result, in a cell-free system, 241

it may take only few hundred seconds for a particle to travel tissue-scale distances 242

(few hundred microns). Contrary to this, the in vivo distribution in Tang et al. 243

[7] (Fig. 4B) clearly indicates that particles travel at a much slower pace in a 244

physiological tissue condition perhaps because of the transport barriers imposed by 245

the cells. 246

Size effects of particles in in vivo tissue conditions 247

We next investigated how particle size may impact the tissue distribution and pen- 248

etration efficacy in a physiological tissue condition. We were interested in the in 249

vivo tumor tissue distributions reported in Tang et al. [7] (Fig. 4B). This in vivo 250

data indicated a modestly deeper penetration by the smaller particle but the tissue 251

distribution profiles of the particles were significantly different from those observed 252

in the cell-free collagen sample in [6] (Fig. 4A). Both particles revealed narrow and 253

overlapping peaks, suggesting a relatively poor tissue dispersion and penetration 254

compared to the cell-free system. 255

We investigated two different scenarios in the presence of cells. In one case, we 256

included only cells and diffusion but no convection (Fig. 6A). In the other case, we 257
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included cells, diffusion, and advection (Fig. 6B). This latter condition could be a 258

more practical representation of a biological tissue. 259

Figure 6 Predicted particle size effects in the presence of cells. The panels represent

the following conditions: (A) pure diffusion and cells; (B) advection, diffusion, and cells. All

simulations were carried out considering ρ = 0.01. The fluid velocity at the tissue entry (left edge)

was assumed v = 1 µm/s [9].

Comparing Fig. 6 with Fig. 5, the presence of cells in the model had a dramatic 260

effect on the penetration depth. The dispersion of both the 100 nm and 10 nm 261

particles were significantly reduced under pure diffusion (Fig 6A) as well as un- 262

der advection and diffusion (Fig. 6B). The predicted distributions in Fig. 6B are 263

qualitatively consistent with the experimental observations of Tang et al. [7]. Con- 264

sistent with the experimental data, the model shows that the peaks of the 10 and 265

100 nm particle distributions align at the same location though the smaller particle 266

distribution shows a tail stretched further to the right. 267

Comparing Fig. 5 with Fig. 6, a cell-free in vitro system may provide inaccurate 268

information as to how the particle size affects the distribution and penetration of 269

nanoparticles in biological tissues. Fig. 5 indicates the 10 nm particles are signifi- 270

cantly more efficient in tissue dispersion, consistent with the experiment of Wong et 271

al. [6]. However, Fig. 6 indicates the difference between the 10 and 100 nm particles 272

may be less pronounced in a real tissue system, where particle motions could be 273

hindered by their interaction with the cell boundaries. 274

Our analysis above indicates that cell-surface adhesion and capture of particles 275

may significantly compromise the particle size effects in in vivo physiological con- 276

ditions. In a cell-free system, particle size effects could be more significant due to 277

the unrestricted diffusion, which is directly determined by particle size. In contrast, 278

in the presence of cells, diffusion plays a less significant role. Therefore, in vivo in- 279

terstitial transport behavior of particles could be predominantly determined by the 280

barriers imposed by the cell boundaries. 281
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We next used the model to capture the experimental data of Tang et al. [7] 282

(Fig. 4B). A direct fit between the model and the data was not possible due to the 283

missing information on the exact experimental time frame and tissue properties, 284

which include cell density and interstitial fluid properties, fluid velocity, and particle 285

capture rate by cells. We simulated the system for 10,000 seconds and attempted 286

to match the position of the distribution peaks for the two particle sizes reported 287

in [7]. The match between the simulation and data (Fig. 7) required variations in 288

the inlet fluid velocity (vin) and the probability of particle capture per collision (ρ), 289

leading to vin = 4 µm/s and ρ = 0.001. 290

Figure 7 Comparison between simulation and experiement. The open circles represent

the experimental data of Fig. 4B (plotted in a different scale). The filled circles represent

simulation. (A) Particle size is 200 nm. (B) Particle size is 50 nm.

The small value of ρ indicates that a particle gets captured after many contacts 291

(collisions) with the cell boundary. At this range of ρ, we found that the particle 292

distribution profiles were less sensitive to the value of ρ in our simulations. The 293

distributions were primarily determined by the fluid velocity and duration of the 294

simulation. It should be noted that the parameter ρ does not capture the possibil- 295

ity of particle dissociation (reversible binding). Replacing this simple probabilistic 296

construct based on ρ with more mechanistic details of particle uptake [26] and com- 297

plementary quantitative experiments might shed light on particle uptake rate by 298

cells in biological tissues. 299

Effects of cellular uptake rate on tissue dispersion and penetration 300

Our previous analysis led us to further investigate how cells influence the tissue 301

distribution of particles. In Fig. 8, we investigated the effects of ρ on the tissue 302

penetration efficacy of 100 nm nanoparticles. Fig. 8A shows the mean depth of 303

penetration as a direct function ρ. Fig. 8B shows the tissue distribution profiles at 304

different values of this parameter. As seen in the figures, the penetration depth and 305
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the distributions were insensitive in the range 0.1 < ρ < 1. However, there was a 306

noticeable change in the penetration depth and distributions in the range ρ < 0.1. 307

Figure 8 Predicted effects of cellular uptake rates on tissue distribution of

nanoparticles. (A) Mean depth of tissue penetration by particles as a function of ρ. The mean

depth of penetration represents the average of the horizontal positions (X-coordinate) of 16,000

simulated particles in 104 seconds after their tissue entry. (B) Histograms showing distributions

the 16,000 nanoparticles. Each histogram corresponds to a different value of ρ, as indicated in the

figure legend.

The results above indicate a non-linear relationship between the cellular uptake 308

rate and tissue penetration depth. This nonlinearity could reflect the fact that the 309

overall rate of cellular uptake is determined not only by ρ but also by the mean 310

number of collisions a particle makes with the cell boundaries. If a particle on 311

average makes C number of collisions with any cell boundary, the probability that 312

it will get captured is ρC. As for example, with ρ = 0.1 and C ≥ 10, particle 313

can get captured with probability 1 upon its encounter with a cell. Therefore, a 314

further increase in ρ beyond 0.1 could have little impact on the overall capture 315

rate. Our adaptive algorithm takes fine-resolution time step (δt) near the solid 316

(cell) boundaries, as discussed in Materials and Methods. As illustrated in Fig. 9 317

(also in Additional file 2: A and B), the fine resolution δt = 10−3 second near the 318

cell boundaries allows a particle to make many collisions with a cell before it gets 319

captured. Therefore, the actual rate of cellular uptake could be high even though ρ 320

is small. In our simulations, the default value of ρ is 0.01 (Table 1). 321

Figure 9 Representative travel paths of simulated nanoparticles. (A) Travel paths of

100 nanoparticles in the tissue domain. The particles are of identical size (100 nm radius). (B) A

zoomed-in view showing a single particle travel path and its interaction with a cell boundary.

Panel B corresponds to the small region in Panel A marked by a rectangle.



Islam et al. Page 17 of 25

Model prediction sensitivity to time steps 322

Because our adaptive algorithm selects time steps over a wide range ( ∆tm = 0.1 < 323

∆t < δt = 10−3 seconds), we wanted to investigate if the predictions in Fig. 10 324

could be sensitive to the selection of time steps. Therefore, we varied the upper 325

bound (∆tm) in the range 10−3− 0.1 seconds to enforce different resolution of time 326

steps in the simulation algorithm. For each ∆tm, we simulated 16,000 nanoparticles 327

for 104 seconds and then calculated the mean depth of tissue penetration by these 328

particles. We carried out this analysis for different values of ρ. Corresponding plots 329

are provided in Fig. 10A. As seen in the figure, the predictions remained insensitive 330

to the ∆tm. This robustness reflects the fact that the algorithm adapts to smaller 331

steps when particles are in close proximity to the cell boundaries regardless of the 332

value of ∆tm. 333

However, it is important to note that ∆tm cannot be assigned an arbitrarily large 334

value. A smaller ∆tm is needed to approximate particle velocities to the local fluid 335

velocity. A large ∆tm enables the particles to advance with large steps. As a result, 336

local velocity fields before and after the jump could be significantly different, thus 337

introducing larger inaccuracies in the velocity approximation for the particles. 338

Figure 10 Effect of time step ∆tm variation on model predictions. (A) Average tissue

penetration by particles as a function of ∆tm. Each curve corresponds to a different value of ρ

(the probability of particle capture by a cell in a collision between the particle and the cell.) (B)

The analysis of Panel A is repeated using a non-adaptive BD algorithm based on Rejniak et

al. [9].

In Fig. 10B, we performed the same analysis using a non-adaptive algorithm, 339

where we kept the time step size constant. This fixed time-step algorithm is similar 340

to the algorithm of Rejniak et al. [9]. Contrary to our approach, the algorithm of 341

Rejniak et al. [9], however, treated particles (drug molecules) as point objects. The 342

algorithm moved the particles based on a fixed time step and rejected the moves in 343

case of a conflict with the cell positions. The algorithm also assumed an interaction 344
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layer of 0.25 µm around each cell periphery. A particle was considered captured by a 345

cell immediately upon its arrival within the 0.25 µm interaction layer. We took into 346

account these features of the Rejniak model with the following exceptions: 1) Instead 347

of treating the particles as points, we treated them as circular objects of 100 nm 348

radius, as in our model; and 2) Instead of assuming an immediate particle capture 349

within the interaction layer, we incorporated a capture probability 0 ≤ ρ ≤ 1 in 350

the layer. The predictions made by this algorithm at different selections of the time 351

step size and ρ are shown in Fig. 10B. Clearly, the predictions were sensitive to 352

the choice of the step size. This sensitivity is expected because the rate of particle 353

capture by cells in this algorithm should depend on the thickness of the interaction 354

layer and the relative choice of the time step size. For a thinner interaction layer, 355

a particle would be less likely to hit the layer if advanced based on a fixed step. 356

Similarly, an increase in the time step size would also reduce the possibility of hitting 357

the interaction layer. Thus, the fixed time step algorithm should underestimate the 358

rate of particle capture (cellular uptake) and overestimate the tissue penetration 359

depth if a smaller interaction layer or larger time step is chosen. Moreover, due to 360

the fixed (and large) time step size in the algorithm of Rejniak et al. [9], many 361

particle moves might be rejected due to the conflicts with the cell positions. 362

As mentioned before, δt = 10−3 represents the smallest time step in our model. 363

Because of the no-slip boundary condition, particle motion near a cell boundary 364

is primarily driven by diffusion. Thus, the length of a particle jump near a cell 365

boundary can be estimated based on pure diffusion: |S| ≈ |~Sd| =
√

4Dδt. For the 366

fluid properties and temperature listed in Table 1, this jump size is only ∼2 nm. 367

Therefore, it is a sufficiently small step size to capture the fine resolution details of 368

interactions occurring at the particle-cell interface. 369
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Discussion 370

In this work, we developed a multiscale Brownian Dynamics algorithm to study par- 371

ticle transport behavior in biological tissues. using the approach, we investigated 372

particle size effects on tissue distribution and penetration reported in two experi- 373

mental studies. Our analysis focused on how these behaviors may vary in cell-free 374

artificial tissue systems and in vivo tissue conditions. 375

Our multiscale algorithm can be generally applicable to modeling advection- 376

diffusion systems involving heterogeneous porous media. The approach we have 377

implemented is inspired by two previous modeling works [9, 27]. Earlier, Monine 378

et al. [27] developed a time-adaptive Brownian Dynamics (BD) algorithm to study 379

enzyme-substrate reaction in the plasma membrane of cells. Recently, Rejniak et 380

al. [9] used the Method of Regularized Stokeslets (MRS) [8] to study drug molecule 381

transport in biological tissues. Both these models treated the mobile particles (sub- 382

strate and drug molecules, respectively) as point particles while considering their 383

stationary reaction or binding partners (enzyme molecules and cells, respectively) 384

as circular objects. In our model, we combined the time-adaptive feature of the Mo- 385

nine model with the MRS. This combination enabled multiscale modeling of particle 386

transport under both advection and diffusion while capturing high-resolution de- 387

tails of particle interaction with the cell boundaries. Contrary to the point particle 388

assumption in Monine and Rejniak model, we considered the mobile nanoparticles 389

as spherical objects occupying space in the two-dimensional membrane. 390

Contrary to the general perception, our study revealed less significant effects of 391

particle size on their intra-tissue distribution and penetration. Our analysis shows 392

that in vitro tissue systems, being devoid of cells and convective flow, may result in 393

misleading conclusions regarding the transport behavior of particles in the biological 394

tissues. Here, we limited our focus to particle size only. However, the multiscale 395

algorithm can be extended to incorporate other design attributes of particles, such as 396
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geometry and surface ligands. This extension will allow mechanistic interrogation of 397

how these parameters affect the transport behavior of particles in biological tissues. 398

In the model, we treated the nanoparticles as mutually non-interacting objects. 399

In the model, the particles do not collide or form aggregates. This consideration is 400

based on the assumption that physiological tissue concentrations of drug-delivery 401

nanoparticles are small. Apparently, there is no report on the mutual interactions 402

of drug-delivery nanoparticles in the physiological tissue conditions. It has been 403

reported that 1% of intravenously injected particles can reach the target tissue [28, 404

29]. Therefore, from the injection of 1 ml solution containing 100 million particles/ml 405

[30], only a 1 million particles are expected to reach the target tissues. Thus, for 406

100 nm radius particles, the estimated volume fraction of particles in the target 407

tissues could be in the order of 10−9 assuming 1 cm3 of tumor tissue volume (a 408

single tumor or many smaller tumors). At this volume fraction, their non-specific 409

collision is unlikely or less important considering many other cellular proteins and 410

biomolecules that could present at comparable amounts. 411

Our model does not consider the effects arising from the surface charges of par- 412

ticles or van der Waals forces acting between a particle and a cell. Moreover, in a 413

body fluid, soluble biomolecules may interact with nanoparticles and form a coat- 414

ing or biocorona over the particle surface [18–21]. Formation of biocorona modifies 415

the surface properties of particles. At present, the quantitative aspects of biocorona 416

formation and how it modifies the particle surface properties and tissue interac- 417

tion are not well-understood. Therefore, rather than explicitly incorporating these 418

other properties (van der Waals and biocorona effects), we used a phenomenolog- 419

ical parameter ρ in the model that accounts for a lumped measure of the affinity 420

of interaction between a nanoparticle and a cell. Nevertheless, for a quantitative 421

understanding of these other phenomena influencing tissue interactions of parti- 422

cles, it is crucial to explicitly address them in a mechanistic model. The Brownian 423
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Dynamics-based framework presented here could serve as an initial platform towards 424

this direction. The framework could be extended to capture these other types of 425

particle- and tissue-specific physicochemical parameters. Integration of such pre- 426

dictive mechanistic models with complimentary experiments could be essential for 427

a quantitative elucidation of these other effects on drug delivery nanoparticles in 428

biological tissues [31]. 429

We considered nanoparticle velocity to be the same as the local fluid velocity 430

while ignoring the influence of the particles on the velocity field. It is possible that 431

large particles also modify the local velocity fields at the micro scale. However, 432

nanoparticles are of the same dimension as many cellular proteins, biomolecules, 433

and solute particle. Our model is based on existing models where nanoparticles 434

velocities were considered to be the same as fluid velocities in the porous media 435

[32–35] 436

Our modeling approach may be expanded for spatiotemporal modeling biochem- 437

ical network systems. The rule-based modeling (RBM) approach [36–38] provides 438

unique capability to model biochemical network systems by taking into account 439

the coarse-grained structural details of protein molecules [39, 40]. However, most of 440

the early RBM tools were developed aiming at non-spatial modeling. Recently, the 441

RBM tools Kappa [41], Simmune [42], and BioNetGen [43] are being added with 442

new capabilities for spatiotemporal modeling. The molecular dynamics (MD) sim- 443

ulation is used to model protein structures with atomistic details [44]. But MD can 444

deal with very short time scales, and not scalable for biochemical network modeling 445

considering a large number of species and their structural details. 446

Conclusions 447

We have developed and applied a robust multiscale simulation method for mecha- 448

nistic modeling of particle transport in porous media. By combining a new time- 449

adaptive BD simulation algorithm with the Method of Regularized Stokeslets 450
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(MRS), our method provides a unique capability to model particle transport consid- 451

ering particle size and particle-cell interactions in a heterogeneous biological tissue. 452

Using the approach, we have investigated particle size effects on their distribution 453

and penetration in biological tissues. Contrary to the general perception, we show 454

that particle size may play a less significant role in particle transport in the physi- 455

ological tissue conditions. We show that, in the presence of cells, the effects arising 456

from particle size difference is small. Particle penetration and distribution is pri- 457

marily determined by particle-cell interactions. Our study underscores the roles of 458

advective transport and cells that are often ignored in artificial tissue systems of in 459

vitro experiments. 460
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M.G., Fukumura, D.: Multistage nanoparticle delivery system for deep penetration into tumor tissue.

Proceedings of the National Academy of Sciences 108(6), 2426–2431 (2011)

7. Tang, L., Gabrielson, N.P., Uckun, F.M., Fan, T.M., Cheng, J.: Size-dependent tumor penetration and in vivo

efficacy of monodisperse drug–silica nanoconjugates. Molecular pharmaceutics 10(3), 883–892 (2013)

8. Cortez, R.: The method of regularized stokeslets. SIAM Journal on Scientific Computing 23(4), 1204–1225

(2001)

9. Rejniak, K.A., Estrella, V., Chen, T., Cohen, A.S., Lloyd, M.C., Morse, D.L.: The role of tumor tissue

architecture in treatment penetration and efficacy: an integrative study. Front Oncol 3(111.10), 3389 (2013)

10. Smith, D.J.: A boundary element regularized stokeslet method applied to cilia-and flagella-driven flow. In:

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 465, pp.

3605–3626 (2009). The Royal Society

11. Lobaton, E.J., Bayen, A.M.: Modeling and optimization analysis of a single-flagellum micro-structure through

the method of regularized stokeslets. IEEE Transactions on Control Systems Technology 17(4), 907–916 (2009)

12. Flores, H., Lobaton, E., Méndez-Diez, S., Tlupova, S., Cortez, R.: A study of bacterial flagellar bundling.

Bulletin of mathematical biology 67(1), 137–168 (2005)

13. Cummins, B., Gedeon, T., Klapper, I., Cortez, R.: Interaction between arthropod filiform hairs in a fluid

environment. Journal of theoretical biology 247(2), 266–280 (2007)

14. Nguyen, H., Ortiz, R., Cortez, R., Fauci, L.: The action of waving cylindrical rings in a viscous fluid. Journal of

Fluid Mechanics 671, 574–586 (2011)

15. Tlupova, S., Cortez, R.: Boundary integral solutions of coupled stokes and darcy flows. Journal of

Computational Physics 228(1), 158–179 (2009)

16. Yong, C.W.: Study of interactions between polymer nanoparticles and cell membranes at atomistic levels. Phil.

Trans. R. Soc. B 370(1661), 20140036 (2015)

17. He, C., Hu, Y., Yin, L., Tang, C., Yin, C.: Effects of particle size and surface charge on cellular uptake and

biodistribution of polymeric nanoparticles. Biomaterials 31(13), 3657–3666 (2010)

18. Sasidharan, A., Riviere, J.E., Monteiro-Riviere, N.A.: Gold and silver nanoparticle interactions with human

proteins: impact and implications in biocorona formation. Journal of Materials Chemistry B 3(10), 2075–2082

(2015)

19. Cedervall, T., Lynch, I., Lindman, S., Bergg̊ard, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.:

Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of

proteins for nanoparticles. Proceedings of the National Academy of Sciences 104(7), 2050–2055 (2007)

20. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface

properties determine the protein corona with possible implications for biological impacts. Proceedings of the

National Academy of Sciences 105(38), 14265–14270 (2008)



Islam et al. Page 24 of 25

21. Sahneh, F.D., Scoglio, C., Riviere, J.: Dynamics of nanoparticle-protein corona complex formation: analytical

results from population balance equations. PloS one 8(5), 64690 (2013)

22. Poon, Z., Chen, S., Engler, A.C., Lee, H.-i., Atas, E., von Maltzahn, G., Bhatia, S.N., Hammond, P.T.:

Ligand-clustered “patchy” nanoparticles for modulated cellular uptake and in vivo tumor targeting. Angewandte

Chemie International Edition 49(40), 7266–7270 (2010)

23. Yang, P.-H., Sun, X., Chiu, J.-F., Sun, H., He, Q.-Y.: Transferrin-mediated gold nanoparticle cellular uptake.

Bioconjugate chemistry 16(3), 494–496 (2005)

24. Barua, S., Mitragotri, S.: Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using

rod-shaped nanoparticles. ACS nano 7(11), 9558–9570 (2013)

25. Petros, R.A., DeSimone, J.M.: Strategies in the design of nanoparticles for therapeutic applications. Nature

reviews Drug discovery 9(8), 615–627 (2010)

26. Thurber, G.M., Weissleder, R.: A systems approach for tumor pharmacokinetics. PloS one 6(9), 24696 (2011)

27. Monine, M.I., Haugh, J.M.: Reactions on cell membranes: Comparison of continuum theory and brownian

dynamics simulations. The Journal of chemical physics 123(7), 074908 (2005)

28. Kudgus, R.A., Walden, C.A., McGovern, R.M., Reid, J.M., Robertson, J.D., Mukherjee, P.: Tuning

pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive

targeting component. Scientific reports 4, 5669 (2014)

29. Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Drug targeting to tumors: principles, pitfalls and (pre-)

clinical progress. Journal of controlled release 161(2), 175–187 (2012)

30. Zaman, R.T., Diagaradjane, P., Krishnan, S., Tunnell, J.W.: Measuring gold nanoparticle concentrations in

tissue using diffuse optical spectroscopy. In: Lasers and Electro-Optics, 2007. CLEO 2007. Conference On, pp.

1–2 (2007). IEEE

31. Sahneh, F.D., Scoglio, C.M., Monteiro-Riviere, N.A., Riviere, J.E.: Predicting the impact of biocorona

formation kinetics on interspecies extrapolations of nanoparticle biodistribution modeling. Nanomedicine 10(1),

25–33 (2015)

32. Hossain, S.S., Hossainy, S.F., Bazilevs, Y., Calo, V.M., Hughes, T.J.: Mathematical modeling of coupled drug

and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Computational

Mechanics 49(2), 213–242 (2012)

33. Wang, Y., Kim, J.-H., Baek, J.-B., Miller, G.W., Pennell, K.D.: Transport behavior of functionalized multi-wall

carbon nanotubes in water-saturated quartz sand as a function of tube length. water research 46(14),

4521–4531 (2012)

34. Wang, Y., Li, Y., Fortner, J.D., Hughes, J.B., Abriola, L.M., Pennell, K.D.: Transport and retention of

nanoscale c60 aggregates in water-saturated porous media. Environmental science & technology 42(10),

3588–3594 (2008)

35. Goldberg, E., Scheringer, M., Bucheli, T.D., Hungerbuhler, K.: Critical assessment of models for transport of

engineered nanoparticles in saturated porous media. Environmental science & technology 48(21), 12732–12741

(2014)

36. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with bionetgen. In:

Systems Biology, pp. 113–167. Springer, New York (2009)

37. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In:

CONCUR 2007–Concurrency Theory, pp. 17–41. Springer, Berlin Heidelberg (2007)

38. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal

transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)



Islam et al. Page 25 of 25

39. Barua, D., Faeder, J.R., Haugh, J.M.: Structure-based kinetic models of modular signaling protein function:

focus on shp2. Biophysical journal 92(7), 2290–2300 (2007)

40. Barua, D., Hlavacek, W.S., Lipniacki, T.: A computational model for early events in b cell antigen receptor

signaling: analysis of the roles of lyn and fyn. The Journal of Immunology 189(2), 646–658 (2012)

41. Sorokina, O., Sorokin, A., Armstrong, J.D., Danos, V.: A simulator for spatially extended kappa models.

Bioinformatics 29(23), 3105 (2013)

42. Meier-Schellersheim, M., Xu, X., Angermann, B., Kunkel, E.J., Jin, T., Germain, R.N.: Key role of local

regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput

Biol 2(7), 82 (2006)

43. Andrews, S.S.: Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction

and a library interface. Bioinformatics 33(5), 710–717 (2017)

44. Perilla, J.R., Goh, B.C., Cassidy, C.K., Liu, B., Bernardi, R.C., Rudack, T., Yu, H., Wu, Z., Schulten, K.:

Molecular dynamics simulations of large macromolecular complexes. Current opinion in structural biology 31,

64–74 (2015)

Additional Files

Additional file 1 — Model Source Code

The compressed folder, model.tar.gz, contains necessary files and instructions to run a simulation. The file named

main.cpp contains the C++ source code. The file named README.txt contains necessary instructions to compile

the code and execute the simulation.

Additional file 2 — Time Adaptive Motion of a Particle

(A) The time-adaptive motion of a single nanoparticle in the interstitial space and near the cell boundaries. Only the

motion of the particle center is shown. (B) A more zoomed-in view of a particle and its interaction with a cell

boundary. Both the particle and the cell are represented by circles. The circles are scaled based on their relative size

in the model (particle radius 100 nm and cell radius 10 µm).
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