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Abstract

Background: Particle size is a key parameter for drug-delivery nanoparticle
design. It is believed that the size of a nanoparticle may have important effects
on its ability to overcome the transport barriers in biological tissues. Nonetheless,
such effects remain poorly understood. Using a multiscale model, this work
investigates particle size effects on the tissue distribution and penetration efficacy
of drug-delivery nanoparticles.

Results: We have developed a multiscale spatiotemporal model of nanoparticle
transport in biological tissues. The model implements a time-adaptive Brownian
Dynamics algorithm that links microscale particle-cell interactions and adhesion
dynamics to tissue-scale particle dispersion and penetration. The model accounts
for the advection, diffusion, and cellular uptakes of particles. Using the model, we
have analyzed how particle size affects the intra-tissue dispersion and penetration
of drug delivery nanoparticles. We focused on two published experimental works
that investigated particle size effects in in vitro and in vivo tissue conditions. By
analyzing experimental data reported in these two studies, we show that particle
size effects may appear pronounced in an in vitro cell-free tissue system, such as
collagen matrix. In an in vivo tissue system, the effects of particle size could be
relatively modest. We provide a detailed analysis on how particle-cell interactions
may determine distribution and penetration of nanoparticles in a biological tissue.

Conclusion: Our work suggests that the size of a nanoparticle may play a less
significant role in its ability to overcome the intra-tissue transport barriers. We
show that experiments involving cell-free tissue systems may yield misleading
observations of particle size effects due to the absence of advective transport and
particle-cell interactions.

Keywords: Brownian Dynamics; Tumor; Drug delivery; Porous media; Diffusion

Background

Drug-delivery nanoparticles are subject to a variety of transport barriers in biolog-
ical tissues [1, 2]. To overcome these barriers, significant research efforts have been
made over the years to study the principles of drug-delivery nanoparticle design [3].
The key nanoparticle design features that have been widely studied are particle size,

geometry, and surface-attached targeting molecules [4]. Among these, the size of a
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particle is believed to have important effects on its immune clearance, transvascular

delivery, and intra-tissue dispersion and penetration [4, 5].

Two earlier studies quantitatively studied the effects of particle size on the efficacy
of tissue delivery and penetration of drug-delivery nanoparticles [6, 7]. Nonetheless,
the mechanistic aspects of these effects remain poorly understood. Earlier, an ex-
periment by Wong et al. [6] indicated enhanced tissue penetration as a result of
particle size reduction. Later, Tang et al. [7] reported similar effects from parti-
cle size variation but their experimental data revealed significantly narrower tissue
distribution profiles and penetration of particles. Moreover, in Tang et al. [7], the
effects of particle size variation appeared relatively modest. These apparent dispar-
ities motivated us to develop a multiscale model and mechanistically interrogate
particle size effects on their efficacy of tissue distribution and penetration. The two
studies above carried out investigations in different experimental settings. Wong et
al. [6] employed in vitro experiments involving a cell-free collagen tissue. On the
other hand, the experiments of Tang et al. [7] were conducted in in vivo tumor tis-
sues. We were particularly interested in investigating how these two experimental
settings might affect the intra-tissue transport behavior and penetration efficacy of

nanoparticles of different sizes.

We developed the multiscale model to realistically capture the transport behav-
ior and cellular interactions of nanoparticles. In many aspects, a biological tissue
can be compared with a heterogeneous porous media. Particles motion through the
interstitial space of a biological tissue is subject to advection, diffusion, and inter-
action with the cell boundaries. Tissue-scale particle distribution may occur over
hours. However, the process is ultimately determined by the micro scale adhesion
and interaction of particles with the cell boundaries. Bridging these spatiotemporal
phenomena at distinct spatial and temporal resolutions in a model could be compu-

tationally expensive. Here, we developed a time-adaptive Brownian Dynamics (BD)
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simulation algorithm. We combined the algorithm with the Method of Regularized
Stokeslets (MRS) [8]. The integrated algorithm enabled multiscale simulation of
particle transport under both advection and diffusion in a heterogeneous porous
system. The time-adaptive feature captured particle-cell interactions at high reso-
lution while enabling efficient computation.

Using the model, we analyzed experimental data reported in Wong et al. [6] and
Tang et al. [7]. Our analysis revealed how the different tissue conditions in these
two experimental studies could lead to the distinct particle distribution profiles and
size effects. Our results and analysis indicate that particle size effects may appear
pronounced in a cell-free tissue system, such as collagen matrix, that are often em-
ployed in in vitro microfluidic studies. In the absence of particle-cell interaction and
under pure diffusion, particle size may have more dramatic effects on the tissue dis-
tribution and penetration efficacy of nanoparticles. However, in in vivo physiological
conditions, the barriers imposed by the interstitial cells may moderate the effects
arising from the particle size difference. We show that particle-cell interaction im-
poses significant transport barriers and serves as a key determinant of distribution

and penetration efficacy of nanoparticles.

Methods
Below, we describe our simulation approach together with the model of nanoparticle
transport in biological tissues. The model is written in C++. The source code for

the model and associated instructions are available in Additional file 1.

Domain Representation of Biological Tissue

The computational domain in our model represents a two-dimensional rectangular
tissue section (Fig. 1). We refer the entire domain by ), and its left, lower, and
upper edges by 1, Qs, and 3, respectively. We consider the rectangle sufficiently
wide such that the right edge can be ignored. The bottom-left corner of the domain

(Q1 N Qy) represents the origin, and any point & € ) represents a position with
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respect to this origin. The left edge, 1, represents a porous capillary wall from
where nanoparticles enter into the tissue space. The entry points of particles, « €
Qq, are selected randomly along this edge. The horizontal distance to the right with

respect to € represents tissue depth (labeled as X-distance in Fig. 1).

Figure 1 The MRS calculated force and velocity fields in a rectangular tissue
section. (A) The red arrows represent force vectors at discrete locations along the domain edges
and cell boundaries. The black arrows represent velocity vectors in the interstitial space. (B) A

zoomed-in view of the velocity vectors in the interstitial space and near the cell boundaries.

We treat the mobile nanoparticles as circular objects with a defined size (radius).
We treat each cell as a stationary circle of 10 pm radius. Cells are populated at
non-overlapping random positions in the domain. The cells occupy 40% area of
the domain area. We refer this aggregate area occupied by the cells as A. The
remaining 60% area represents the interstitial space, which we refer to as I'. We
refer the boundary of any cell ¢ € {1,2,--- ,n} as P;, and the region it occupies as
A;. Therefore A = (U, P;) U (U1 4;). Thus, the entire computational domain, €

is equal to (U_;Q;) UT UA.

Nanoparticle Velocity

To evaluate nanoparticle velocities in the domain, we adopt the approach of Rej-
niak et al. [9]. At any position & € 2, we represent the velocity of a nanoparticle
by the local fluid velocity v(x) [9]. As in [9], we compute v(x) using the Method
of Regularized Stokeslets (MRS) [8]. The MRS [8] has been used to model complex
solid-fluid interactions in a variety of Stokes flow systems [10-14]. Here, for com-
pleteness, we provide a brief description of the MRS and its implementation in our

model.

The Method of Regularized Stokeslets (MRS)
The MRS is a Lagrangian approximation of the Stokes equations. It provides a

convenient framework to avoid singularities associated with the fundamental solu-
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tions of the Stokes equations. Because of this property, the method is particularly s
useful for modeling Stokes flow associated with irregular geometries or non-smooth &

boundaries. .

The Stokes equations in two or three dimension are as follows:

pwVu(x) =VP - f

V- u(x)=0

In the above equations, u is the fluid viscosity; @ is a position vector; f is force;
and P is pressure. u(x) is the local fluid velocity vector at . The Stokes equations
can be solved for a single point force at xq, f = fod(x —x¢), where d(x) represents

the Dirac delta function.

pNVu(z) = Vp(x) — foV(x — x)

V-u(x)=0

The solution of the above equations represents the velocity w(x) at & due to the &
single point force at . This solution, however, is singular at the point of application s
of the force (ie., |u(x)] — oo, as & — o). To avoid this singularity, the MRS &
avoids direct use of the point force fod(x — xo) in the Stokes equations. Instead, it o
approximates (regularizes) the point force into a smooth, radially-symmetric force o
centered at xo: fod(x — xo). With this regularized force term, the Stokes equations o

take the following form: 03

uVu(x) = VP(x) — fod(x — xp) (1)

V-u(z) =0 2)
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The function ¢.(x) is known as cutoff function, which represents a spatially-
symmetric sphere or blob of radius € in the domain space. The regularized
force fod(x — o) takes the maximum value at the center (zp), and decays
smoothly towards the surface of the blob. The cutoff function satisfies the con-
straint fj;o dc(x)d(x) = 1. As € — 0, ¢.(x) — d(x), and the regularized force

approaches the point force.

For an appropriate choice of the cutoff function ¢.(x), Eqs 1 and 2 can be solved
to evaluate the fluid velocity u(x) due to the regularized point force centered at any
arbitrary position xg in the fluid. Unlike the Stokes solution, the resulting velocity

is non-singular at xq.

Now, the force field over the entire domain can be represented by a collection
of N discrete point forces located at different points in the domain. If fj located
at oy for k € {1,2,---, N} represents such a point force, its contribution at x
can be represented as uy(z). By solving Eqs 1 and 2, ui(x) for k € {1,2,--- ,N}
can be evaluated. Then, the net velocity at x, v(x), can be evaluated simply by

linear superposition of the solutions corresponding to the N discrete forces: v(x) =

Soae uk(T)

Force and Velocity Calculation

2¢4
(r2+e2)3>

Following Rejniak et al. [9] and Tlupova et al. [15], we chose ¢(x) =
where r = |x|. We discretized the solid boundaries of the tissue domain into N =

6, 700 discrete points. The solid boundaries include the three domain edges (€21, Qo,

and 3), and the boundaries of the circular cells, P; for ¢ € {1,2,--- ,n}.

For the above cutoff function, the solution of Eqs 1 and 2 is:

_ Ir 2 2 2¢?
uk(w) - 87TIU ln (T’ te ) 7"2 + 62

+ 1 1
drpr? 4 €2

e —m)| (@ e 3)
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For the entire collection of the N discrete forces, the net velocity v(x) is obtained

by linear addition of the solutions:

v(x) = éuk(l‘)
— é{—%(ln (r’+€*) — T22—T—262)
tirra e e e | @

However, to obtain v(z) using Eq. 4 (or up(z) using Eq. 3), we had to first
evaluate the unknown point forces, fis, at the N discrete points. To evaluate the
Srs, we set no-slip boundary conditions (u; = 0) at the lower and upper domain
edges (22 and 3), and the cell boundaries P; for ¢ € {1,2,--- ,n}. As mentioned
previously, the left domain edge §2; represents the particle or fluid entry points (the
porous wall of a vascular capillary). At Q;, we set the boundary condition uy = 1 J
pum/second, where 5 represents a unit vector towards the tissue depth (parallel to
Qs or Q3). Thus, for the N discrete points, we obtained a system of N independent
linear equations from Eq 4. The left hand-side (u(x)) of these equations were defined
(either 0 or j ), whereas the right-hand side contained the N unknown force terms
Srs. Using the GSL package (ftp://ftp.gnu.org/gnu/gsl/), we solved this system of
linear equations to evaluate the unknown fis at the N discrete points. We then
plugged these force terms into Eq. 4 to evaluate the velocity vector v(x) at any

arbitrary position x in the interstitial space of the domain.

In Fig. 1, we represent the force vectors, fis by red arrows. The length and
direction of each red arrow represent the relative magnitude and direction of the
corresponding force vector at the indicated point. We represent the velocity vectors
at different points of the interstitial space by black arrows. The length and direction
of each black arrow represent the relative magnitude and direction of the fluid

(nanoparticle) velocity at the indicated point.
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Nanoparticle Diffusion
We calculated diffusion constants of the nanoparticles based on the Einstein-Stokes

equation:

KT
~ 6mpa

D (5)
where D is diffusion constant of a particle, Kg is the Boltzmann constant, T is

temperature, u is viscosity of the interstitial fluid, and a is radius of the particle.

Time-Adaptive Simulation Algorithm

In our BD algorithm, we consider that the nanoparticles are independent and mu-
tually non-interacting in a biological tissue. This consideration is based on the fact
that drug-delivery nanoparticles can reach a target tissue at small quantities. Typ-
ical particle concentration in a biological tissue is expected to be small. Therefore,
it is less likely that their mutual interaction can have a significant impact on their
transport behavior over other factors, such as fluid flow, collision with the cell
boundaries, and cellular uptake. Because particles are considered independent, the
model allows independent simulation of one particle at a time.

Fig. 2 illustrates the time-adaptive scheme of the algorithm. The algorithm is
summarized in a pseudocode in Fig. 3. In the algorithm, particles are advanced
adaptively with time steps At,, > At > §t, where At,, and 6§t represent the largest
and smallest permissible time step, respectively.

During the simulation, in each BD step, the algorithm first computes R, which
is the distance between the center of a particle and its nearest interaction point
on a solid boundary (Fig. 2). The solid boundary can be any of the three domain
edges or cell boundaries. It then attempts to move the particle based on the largest
permissible step At,,. It computes a possible jump: S = S, + V4DAt,,e, where

S, = vAt,, represents displacement due to advection, S; = /4DAt,, represents
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Figure 2 Illustration of the time-adaptive BD algorithm. (A) Particle motion in the
bulk fluid. The small green circle represents a nanoparticle, and the large gray circles represent
cells. The radius of the dashed circle, R, represents the distance between a particle’s current
position and its nearest cell boundary. In the bulk fluid, particle jump S is taken adaptively so that
|S| < R. |S| is determined by the time step At: S = S, + Sq, where S, = vAt (displacement
due to advection), and Sy = v4DAte (displacement due to diffusion). (B) Particle motion near
a cell boundary. |S| is determined by a constant but fine resolution time step 6t = 10~3 seconds.
The cell boundary represents a sticky wall that captures or reflects a colliding particle with

probability p and 1 — p, respectively.

Figure 3 Pseudocode for the simulation algorithm.

displacement due to diffusion (Fig. 2), and e represents a unit vector with random
orientation. Velocity v and diffusion constant D are computed using the MRS and
Einstein-Stokes equation, as detailed in the previous sections. If the jump length
|S| is smaller than R — a, where a is the particle radius, the move is accepted, and

the particle position is updated accordingly.

If the move based on At,, is rejected, the algorithm attempts to move the particle
based on a new time step At, < At,,. This time step At, is obtained by solving
|v|At, + VADAt, = R—a. It then computes: S = vAt,++/4DAt,e. The algorithm
then compares |S| with the particle radius a. If |S| > 4a (i.e., the distance between
the particle boundary and a cell boundary is at least twice the diameter of the

particle), the move is accepted and the particle position is updated accordingly.

If |S| < 4a, the algorithm attempts to move the particle based on the smallest
permissible step 6t: S = vt + /4Dédte. The move is accepted if the new particle
position falls in the interstitial space (T'). However, if the new position falls outside
the domain edges, or in any of the cell regions (A), the algorithm treats it as a
collision with the corresponding domain edge or cell boundary. In the former case,
the particle is reflected by the domain boundary. In the latter case, the particle is

captured or reflected by a cell boundary, as discussed in the next section.
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Particle Interaction with Cell Boundaries

We consider the cell boundaries as sticky walls that can capture or reflect a hitting
nanoparticle with a defined probability (Fig. 2B). Because a cell is much larger in
size than a particle, a cell boundary is treated as a flat surface when a particle
collides with the boundary (Fig. 2B). As mentioned in the previous section, a par-
ticle can hit a cell only when it is in the vicinity of a cell and advanced by the
finest time step dt = 107 seconds (Additional file 2: A and B). This time step size
requires the distance between a colliding particle and a cell boundary to be small
(four times the particle radius). When a particle hits a cell, it is either captured
with probability p, or reflected into the fluid with probability (1 — p) (Fig. 2B). The

value of p determines the rate of particle capture (uptake) by cells.

It should be noted that particle capture or uptake by a cell may involve complex
biophysical and biochemical processes. These processes can be influenced by many
factors, such as van der Waals force [16], particle surface charge effects [17], particle
surface modification by corona formation [18-21], and molecular recognition by
the receptor proteins in the cell membrane [22-25]. Explicit consideration of these
different factors may be possible if quantitative information about their relative
importance and molecular mechanisms of the recognition processes are known. Here,
we limit our scope by taking this simple approach where the probability parameter p
implicitly accounts for the lumped effects from the various factors that may influence
particle capture by cells. For example, a particle with a small p in our model may
represent a particle with a bare surface with a poor affinity for the cell membrane.
On the other hand, a particle with a large p may represent a particle with a modified
surface (functionalized with a targeting ligand, for example) with a high affinity for
the cell membrane because of the molecular recognition by membrane proteins [17,

22-25).
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Model Parameters

Table 1 lists the model parameters and their values. In the model, cells have a
typical radius of 10 um. Nanoparticles have a radius of 100 nm if a different size
is not specified explicitly. Tissue porosity (I'/Q2) is 0.60. The probability of particle
capture per collision with a cell (p) is varied between 0.01 and 1. Physiological
temperature (37 °C or 310 K) was used in the Einstein-Stokes equation to calculate
particle diffusion. The remaining parameters, fluid viscosity (u), entry fluid velocity

(vin), and regularization constant (e) are based on [9)

Table 1 Model parameter values.

Parameter Value  Reference
Cell radius, r (um) 10 This work
Nanoparticle radius, a (nm) 10-100 This work
Tissue porosity, « 0.6 This work
Particle capture probability, p 0.01-1  This work
Fluid viscosity, i (cP) 25 [9]
Temperature, T' (K) 310

Entry fluid velocity, v;, (um/s)  0.05-1  [9]
Regularization constant, € (um) 0.5 9]

Results
Size effects of nanoparticles in an in vitro cell-free tissue

In drug-delivery experiments, it is a common practice to employ cell-free tissue
systems as a substitute of an in wvivo physiological tissue. We first investigated
particle size effects on the distribution and penetration of nanoparticles in such in
vitro tissue systems. As mentioned previously, the experimental work of Wong et
al. [6] studied the effects of particle size in a cell-free collagen matrix (Fig. 4A). In
contrast, Tang et al. [7] investigated particle size effects in in vivo tumor tissues
(Fig. 4B). The collagen matrix used in Wong et al. [6] was devoid of cells and
advective transport. An experiment in the study compared the tissue distribution

and penetration efficacy of 10 and 100 nm particles. Both particle sizes displayed a
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broad dispersion across the tissue system. However, the smaller particles revealed

a significantly deeper penetration (Fig. 44A).

Figure 4 Experimental data adapted from two earlier works [6, 7]. (A) Data from
Figure 3H of Wong et al. [6]. The figure compares distribution of 100 nm (red) and 10 nm (black)
nanoparticles in collagen in an in vitro experiment. (B) Experimental data adapted from Figure
5d of Tang et al. [7]. The figure compares tumor tissue distribution of 200 nm (red) and 50 nm

(black) particles in an in vivo experiment.

The experimental observation of Wong et al. [6] can be explained with a simple
theoretical model. Comparing the tissue domain with a semi-infinite plane in one
dimension, the solution of the following equation describes the time-dependent con-
centration profile (probability density function) of a single particle in the domain:

0G 0*G

=D

o 92 T 5(x)é(t), (6)

where the source term (product of the Dirac delta functions) represents the initial
particle location at the origin. D is the size-dependent diffusion coefficient (Eq. 5).
The solution of this equation is G(z,t) = (1/v/7Dt)exp(—x>/4Dt). The solution
is similar to a Gaussian distribution in an infinite domain with the exception that
the peak height is 1/ V7Dt instead of the corresponding Gaussian peak 1 / VAarDt,
and the solution is valid only in the right half plane (x > 0). Fig. 5A represents
this analytical solution for three different particle sizes. The diffusion coefficient
of each particle size was calculated based on the Einstein-Stokes formula (Eq. 5)
and the physical properties of the interstitial fluid listed in Table 1. Fig. 5B shows
corresponding results from our simulation for two different particle sizes (10 and
100 nm). The inset of Fig. 5A shows the normalized curves for a direct comparison
with the fluorescence data in [6] (Fig. 4A).

In a biological tissue, however, it is unlikely to have a purely diffusive motion of

particles. In the presence of a small flow (advection) to the right, particle distribu-
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Figure 5 Particle size effects in a cell-free system. (A) Theoretical model (Eq. 6) and (B)
simulation considering pure diffusion. (C) Theoretical model (Eq. 7) and (D) simulation

considering a small advection (0.05 pm/s) and diffusion.

tion can be described by the following equation:

2

A n0) (7)
where v is a constant velocity in the X-direction. The solution of this equation,
G(x,t) = (1/vV7Dt)exp(—(x — vt)2/4Dt), is shown in Fig. 5C for v = 0.05 pm/s.
Corresponding simulation result is shown in Fig. 5D. The distribution peaks are
shifted by a distance vt, as expected. Based on this result, in a cell-free system,
it may take only few hundred seconds for a particle to travel tissue-scale distances
(few hundred microns). Contrary to this, the in vivo distribution in Tang et al.
[7] (Fig. 4B) clearly indicates that particles travel at a much slower pace in a

physiological tissue condition perhaps because of the transport barriers imposed by

the cells.

Size effects of particles in in vivo tissue conditions
We next investigated how particle size may impact the tissue distribution and pen-
etration efficacy in a physiological tissue condition. We were interested in the in
vivo tumor tissue distributions reported in Tang et al. [7] (Fig. 4B). This in vivo
data indicated a modestly deeper penetration by the smaller particle but the tissue
distribution profiles of the particles were significantly different from those observed
in the cell-free collagen sample in [6] (Fig. 4A). Both particles revealed narrow and
overlapping peaks, suggesting a relatively poor tissue dispersion and penetration
compared to the cell-free system.

We investigated two different scenarios in the presence of cells. In one case, we

included only cells and diffusion but no convection (Fig. 6A). In the other case, we
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included cells, diffusion, and advection (Fig. 6B). This latter condition could be a

more practical representation of a biological tissue.

Figure 6 Predicted particle size effects in the presence of cells. The panels represent
the following conditions: (A) pure diffusion and cells; (B) advection, diffusion, and cells. All

simulations were carried out considering p = 0.01. The fluid velocity at the tissue entry (left edge)

was assumed v = 1 pm/s [9].

Comparing Fig. 6 with Fig. 5, the presence of cells in the model had a dramatic
effect on the penetration depth. The dispersion of both the 100 nm and 10 nm
particles were significantly reduced under pure diffusion (Fig 6A) as well as un-
der advection and diffusion (Fig. 6B). The predicted distributions in Fig. 6B are
qualitatively consistent with the experimental observations of Tang et al. [7]. Con-
sistent with the experimental data, the model shows that the peaks of the 10 and
100 nm particle distributions align at the same location though the smaller particle
distribution shows a tail stretched further to the right.

Comparing Fig. 5 with Fig. 6, a cell-free in vitro system may provide inaccurate
information as to how the particle size affects the distribution and penetration of
nanoparticles in biological tissues. Fig. 5 indicates the 10 nm particles are signifi-
cantly more efficient in tissue dispersion, consistent with the experiment of Wong et
al. [6]. However, Fig. 6 indicates the difference between the 10 and 100 nm particles
may be less pronounced in a real tissue system, where particle motions could be
hindered by their interaction with the cell boundaries.

Our analysis above indicates that cell-surface adhesion and capture of particles
may significantly compromise the particle size effects in in vivo physiological con-
ditions. In a cell-free system, particle size effects could be more significant due to
the unrestricted diffusion, which is directly determined by particle size. In contrast,
in the presence of cells, diffusion plays a less significant role. Therefore, in vivo in-
terstitial transport behavior of particles could be predominantly determined by the

barriers imposed by the cell boundaries.
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We next used the model to capture the experimental data of Tang et al. [7]
(Fig. 4B). A direct fit between the model and the data was not possible due to the
missing information on the exact experimental time frame and tissue properties,
which include cell density and interstitial fluid properties, fluid velocity, and particle
capture rate by cells. We simulated the system for 10,000 seconds and attempted
to match the position of the distribution peaks for the two particle sizes reported
in [7]. The match between the simulation and data (Fig. 7) required variations in
the inlet fluid velocity (v;,) and the probability of particle capture per collision (p),

leading to v;, = 4 pum/s and p = 0.001.

Figure 7 Comparison between simulation and experiement. The open circles represent

the experimental data of Fig. 4B (plotted in a different scale). The filled circles represent

simulation. (A) Particle size is 200 nm. (B) Particle size is 50 nm.

The small value of p indicates that a particle gets captured after many contacts
(collisions) with the cell boundary. At this range of p, we found that the particle
distribution profiles were less sensitive to the value of p in our simulations. The
distributions were primarily determined by the fluid velocity and duration of the
simulation. It should be noted that the parameter p does not capture the possibil-
ity of particle dissociation (reversible binding). Replacing this simple probabilistic
construct based on p with more mechanistic details of particle uptake [26] and com-
plementary quantitative experiments might shed light on particle uptake rate by

cells in biological tissues.

Effects of cellular uptake rate on tissue dispersion and penetration

Our previous analysis led us to further investigate how cells influence the tissue
distribution of particles. In Fig. 8, we investigated the effects of p on the tissue
penetration efficacy of 100 nm nanoparticles. Fig. 8A shows the mean depth of
penetration as a direct function p. Fig. 8B shows the tissue distribution profiles at

different values of this parameter. As seen in the figures, the penetration depth and
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the distributions were insensitive in the range 0.1 < p < 1. However, there was a

noticeable change in the penetration depth and distributions in the range p < 0.1.

Figure 8 Predicted effects of cellular uptake rates on tissue distribution of
nanoparticles. (A) Mean depth of tissue penetration by particles as a function of p. The mean
depth of penetration represents the average of the horizontal positions (X-coordinate) of 16,000
simulated particles in 10% seconds after their tissue entry. (B) Histograms showing distributions
the 16,000 nanoparticles. Each histogram corresponds to a different value of p, as indicated in the

figure legend.

The results above indicate a non-linear relationship between the cellular uptake
rate and tissue penetration depth. This nonlinearity could reflect the fact that the
overall rate of cellular uptake is determined not only by p but also by the mean
number of collisions a particle makes with the cell boundaries. If a particle on
average makes C' number of collisions with any cell boundary, the probability that
it will get captured is pC. As for example, with p = 0.1 and C' > 10, particle
can get captured with probability 1 upon its encounter with a cell. Therefore, a
further increase in p beyond 0.1 could have little impact on the overall capture
rate. Our adaptive algorithm takes fine-resolution time step (dt) near the solid
(cell) boundaries, as discussed in Materials and Methods. As illustrated in Fig. 9
(also in Additional file 2: A and B), the fine resolution §t = 10~3 second near the
cell boundaries allows a particle to make many collisions with a cell before it gets
captured. Therefore, the actual rate of cellular uptake could be high even though p

is small. In our simulations, the default value of p is 0.01 (Table 1).

Figure 9 Representative travel paths of simulated nanoparticles. (A) Travel paths of
100 nanoparticles in the tissue domain. The particles are of identical size (100 nm radius). (B) A
zoomed-in view showing a single particle travel path and its interaction with a cell boundary.

Panel B corresponds to the small region in Panel A marked by a rectangle.
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Model prediction sensitivity to time steps

Because our adaptive algorithm selects time steps over a wide range ( At,, = 0.1 <
At < §t = 1072 seconds), we wanted to investigate if the predictions in Fig. 10
could be sensitive to the selection of time steps. Therefore, we varied the upper
bound (At,,) in the range 1073 — 0.1 seconds to enforce different resolution of time
steps in the simulation algorithm. For each At,,, we simulated 16,000 nanoparticles
for 10* seconds and then calculated the mean depth of tissue penetration by these
particles. We carried out this analysis for different values of p. Corresponding plots
are provided in Fig. 10A. As seen in the figure, the predictions remained insensitive
to the At,,. This robustness reflects the fact that the algorithm adapts to smaller
steps when particles are in close proximity to the cell boundaries regardless of the
value of At,,.

However, it is important to note that At,, cannot be assigned an arbitrarily large
value. A smaller At,, is needed to approximate particle velocities to the local fluid
velocity. A large At,, enables the particles to advance with large steps. As a result,
local velocity fields before and after the jump could be significantly different, thus

introducing larger inaccuracies in the velocity approximation for the particles.

Figure 10 Effect of time step At,, variation on model predictions. (A) Average tissue
penetration by particles as a function of At,,. Each curve corresponds to a different value of p
(the probability of particle capture by a cell in a collision between the particle and the cell.) (B)
The analysis of Panel A is repeated using a non-adaptive BD algorithm based on Rejniak et

al. [9].

In Fig. 10B, we performed the same analysis using a non-adaptive algorithm,
where we kept the time step size constant. This fixed time-step algorithm is similar
to the algorithm of Rejniak et al. [9]. Contrary to our approach, the algorithm of
Rejniak et al. [9], however, treated particles (drug molecules) as point objects. The
algorithm moved the particles based on a fixed time step and rejected the moves in

case of a conflict with the cell positions. The algorithm also assumed an interaction
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layer of 0.25 pm around each cell periphery. A particle was considered captured by a
cell immediately upon its arrival within the 0.25 pm interaction layer. We took into
account these features of the Rejniak model with the following exceptions: 1) Instead
of treating the particles as points, we treated them as circular objects of 100 nm
radius, as in our model; and 2) Instead of assuming an immediate particle capture
within the interaction layer, we incorporated a capture probability 0 < p < 1 in
the layer. The predictions made by this algorithm at different selections of the time
step size and p are shown in Fig. 10B. Clearly, the predictions were sensitive to
the choice of the step size. This sensitivity is expected because the rate of particle
capture by cells in this algorithm should depend on the thickness of the interaction
layer and the relative choice of the time step size. For a thinner interaction layer,
a particle would be less likely to hit the layer if advanced based on a fixed step.
Similarly, an increase in the time step size would also reduce the possibility of hitting
the interaction layer. Thus, the fixed time step algorithm should underestimate the
rate of particle capture (cellular uptake) and overestimate the tissue penetration
depth if a smaller interaction layer or larger time step is chosen. Moreover, due to
the fixed (and large) time step size in the algorithm of Rejniak et al. [9], many

particle moves might be rejected due to the conflicts with the cell positions.

As mentioned before, 6t = 1073 represents the smallest time step in our model.
Because of the no-slip boundary condition, particle motion near a cell boundary
is primarily driven by diffusion. Thus, the length of a particle jump near a cell
boundary can be estimated based on pure diffusion: |S| ~ |Sy| = V/4Ddt. For the
fluid properties and temperature listed in Table 1, this jump size is only ~2 nm.
Therefore, it is a sufficiently small step size to capture the fine resolution details of

interactions occurring at the particle-cell interface.
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Discussion

In this work, we developed a multiscale Brownian Dynamics algorithm to study par-
ticle transport behavior in biological tissues. using the approach, we investigated
particle size effects on tissue distribution and penetration reported in two experi-
mental studies. Our analysis focused on how these behaviors may vary in cell-free

artificial tissue systems and in vivo tissue conditions.

Our multiscale algorithm can be generally applicable to modeling advection-
diffusion systems involving heterogeneous porous media. The approach we have
implemented is inspired by two previous modeling works [9, 27]. Earlier, Monine
et al. [27] developed a time-adaptive Brownian Dynamics (BD) algorithm to study
enzyme-substrate reaction in the plasma membrane of cells. Recently, Rejniak et
al. [9] used the Method of Regularized Stokeslets (MRS) [8] to study drug molecule
transport in biological tissues. Both these models treated the mobile particles (sub-
strate and drug molecules, respectively) as point particles while considering their
stationary reaction or binding partners (enzyme molecules and cells, respectively)
as circular objects. In our model, we combined the time-adaptive feature of the Mo-
nine model with the MRS. This combination enabled multiscale modeling of particle
transport under both advection and diffusion while capturing high-resolution de-
tails of particle interaction with the cell boundaries. Contrary to the point particle
assumption in Monine and Rejniak model, we considered the mobile nanoparticles

as spherical objects occupying space in the two-dimensional membrane.

Contrary to the general perception, our study revealed less significant effects of
particle size on their intra-tissue distribution and penetration. Our analysis shows
that in vitro tissue systems, being devoid of cells and convective flow, may result in
misleading conclusions regarding the transport behavior of particles in the biological
tissues. Here, we limited our focus to particle size only. However, the multiscale

algorithm can be extended to incorporate other design attributes of particles, such as
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geometry and surface ligands. This extension will allow mechanistic interrogation of

how these parameters affect the transport behavior of particles in biological tissues.

In the model, we treated the nanoparticles as mutually non-interacting objects.
In the model, the particles do not collide or form aggregates. This consideration is
based on the assumption that physiological tissue concentrations of drug-delivery
nanoparticles are small. Apparently, there is no report on the mutual interactions
of drug-delivery nanoparticles in the physiological tissue conditions. It has been
reported that 1% of intravenously injected particles can reach the target tissue [28,
29]. Therefore, from the injection of 1 ml solution containing 100 million particles/ml
[30], only a 1 million particles are expected to reach the target tissues. Thus, for
100 nm radius particles, the estimated volume fraction of particles in the target
tissues could be in the order of 1079 assuming 1 cm? of tumor tissue volume (a
single tumor or many smaller tumors). At this volume fraction, their non-specific
collision is unlikely or less important considering many other cellular proteins and

biomolecules that could present at comparable amounts.

Our model does not consider the effects arising from the surface charges of par-
ticles or van der Waals forces acting between a particle and a cell. Moreover, in a
body fluid, soluble biomolecules may interact with nanoparticles and form a coat-
ing or biocorona over the particle surface [18-21]. Formation of biocorona modifies
the surface properties of particles. At present, the quantitative aspects of biocorona
formation and how it modifies the particle surface properties and tissue interac-
tion are not well-understood. Therefore, rather than explicitly incorporating these
other properties (van der Waals and biocorona effects), we used a phenomenolog-
ical parameter p in the model that accounts for a lumped measure of the affinity
of interaction between a nanoparticle and a cell. Nevertheless, for a quantitative
understanding of these other phenomena influencing tissue interactions of parti-

cles, it is crucial to explicitly address them in a mechanistic model. The Brownian
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Dynamics-based framework presented here could serve as an initial platform towards
this direction. The framework could be extended to capture these other types of
particle- and tissue-specific physicochemical parameters. Integration of such pre-
dictive mechanistic models with complimentary experiments could be essential for
a quantitative elucidation of these other effects on drug delivery nanoparticles in
biological tissues [31].

We considered nanoparticle velocity to be the same as the local fluid velocity
while ignoring the influence of the particles on the velocity field. It is possible that
large particles also modify the local velocity fields at the micro scale. However,
nanoparticles are of the same dimension as many cellular proteins, biomolecules,
and solute particle. Our model is based on existing models where nanoparticles
velocities were considered to be the same as fluid velocities in the porous media
[32-35]

Our modeling approach may be expanded for spatiotemporal modeling biochem-
ical network systems. The rule-based modeling (RBM) approach [36-38] provides
unique capability to model biochemical network systems by taking into account
the coarse-grained structural details of protein molecules [39, 40]. However, most of
the early RBM tools were developed aiming at non-spatial modeling. Recently, the
RBM tools Kappa [41], Simmune [42], and BioNetGen [43] are being added with
new capabilities for spatiotemporal modeling. The molecular dynamics (MD) sim-
ulation is used to model protein structures with atomistic details [44]. But MD can
deal with very short time scales, and not scalable for biochemical network modeling

considering a large number of species and their structural details.

Conclusions
We have developed and applied a robust multiscale simulation method for mecha-
nistic modeling of particle transport in porous media. By combining a new time-

adaptive BD simulation algorithm with the Method of Regularized Stokeslets
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(MRS), our method provides a unique capability to model particle transport consid-
ering particle size and particle-cell interactions in a heterogeneous biological tissue.
Using the approach, we have investigated particle size effects on their distribution
and penetration in biological tissues. Contrary to the general perception, we show
that particle size may play a less significant role in particle transport in the physi-
ological tissue conditions. We show that, in the presence of cells, the effects arising
from particle size difference is small. Particle penetration and distribution is pri-
marily determined by particle-cell interactions. Our study underscores the roles of
advective transport and cells that are often ignored in artificial tissue systems of in

vitro experiments.
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Additional Files

Additional file 1 — Model Source Code

The compressed folder, model.tar.gz, contains necessary files and instructions to run a simulation. The file named

main.cpp contains the C++ source code. The file named README.txt contains necessary instructions to compile

the code and execute the simulation.

Additional file 2 — Time Adaptive Motion of a Particle

(A) The time-adaptive motion of a single nanoparticle in the interstitial space and near the cell boundaries. Only the

motion of the particle center is shown. (B) A more zoomed-in view of a particle and its interaction with a cell

boundary. Both the particle and the cell are represented by circles. The circles are scaled based on their relative size

in the model (particle radius 100 nm and cell radius 10 pm).
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