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SUMMARY
Reaching the global minimum of a waveformmisfit function requires careful choices about the
nonlinear optimization, preconditioning and regularization methods underlying an inversion.
Because waveform inversion problems are susceptible to erratic convergence associated with
strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We
identify best practices, instead, using four seismic near-surface problems, one regional problem
and two global problems. To make meaningful quantitative comparisons between methods,
we carry out hundreds of inversions, varying one aspect of the implementation at a time.
Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides
computational savings over nonlinear conjugate gradient methods in a wide range of test cases.
Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint
of the forward operator provides better performance than two conventional preconditioning
schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov
regularization and total variation regularization are effective in different contexts. Besides
questions of one strategy or another, reliability and efficiency in waveform inversion depend
on close numerical attention and care. Implementation details involving the line search and
restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear
optimization algorithm.

Key words: Inverse theory; Numerical approximations and analysis; Computational seis-
mology.

1 INTRODUCTION

Waveform inversion practitioners must choose from a variety of
objective functions, nonlinear optimization algorithms, precondi-
tioning strategies, regularization methods and multiscale schemes.
Though an extensive applied mathematics literature exists on these
topics, much of it is based on numerical benchmarks that are less
challenging and computationally expensive than commonly encoun-
tered in geophysics. In the waveform inversion literature itself,
methodological comparisons sometimes lack implementation de-
tails, involve only one or two test cases, or use starting models quite
close to the global minimum of the objective function.

To address such issues, we provide systematic comparisons be-
tween inversion strategies through six acoustic inversion test cases.
While a comparison of objective functions and multiscale proce-
dures would fit naturally into this framework, we choose to focus
instead on numerical aspects of inversion—nonlinear optimization,
preconditioning and regularization—that have received somewhat
less attention in the geophysical literature.

Robustness and efficiency in waveform inversion depend in large
part on numerical decisions. Because of their importance, such
choices ought to be informed by both practical waveform inversion
experience and numerical theory and results. Benchmark compar-
isons by Nash & Nocedal (1991) and Zou et al. (1993) and review
papers by Nocedal (1992), Gould et al. (2005) and Burstedde &
Ghattas (2009) supply a useful foothold into the numerical litera-
ture. The emerging field of PDE-constrained optimization (Biegler
et al. 2003)—involving parameter estimation, optimal design and
optimal control systems governed by partial differential equations—
offers additional relevant experience. Through wide-ranging refer-
ences, we seek to ground the waveform inversion results below in
this literature.

This paper is organized as follows. Sections 2 and 3 provide a
description of test cases and testing procedures. Sections 4 and 5
present the results of a comparison of nonlinear optimization algo-
rithms, focusing first on the search direction and then on the line
search. Sections 6 and 7 discuss preconditioning and regularization.
A number of other issues that do not fit well into any of the previous
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categories are covered in Section 8. Finally, in Section 9, we con-
clude with a review of seismic waveform inversion ‘best practices’.

2 TEST CASES

We present convergence results from the following test cases:
(a) Marmousi, (b) overthrust, (c) salt, (d) anticline, (e) global,
(f) regional and (g) deep Earth. Through target models representing
horizontal or vertical cross-sections, each of these 2-D problems
provides a window into an associated 3-D problem.

Problems a–d correspond to widely used exploration geophysics
test cases. True models, shown in Fig. 1, include various thrust
fault, normal fault and salt structures. Smooth starting models were
obtained by convolving true models with Gaussian kernels. Inver-
sions were carried out in the acoustic approximation, that is, using
acoustic models and data to approximate the elastic subsurface. For
the overthrust andMarmousi test cases, we considered both onshore
and offshore variants to give a sense for how performance differs
between these two cases.

Problems e–g investigate seismic inversion at much larger scales.
Wavefield simulations are once again based on the acoustic wave
equation, with an analogy to horizontal surface wave propagation
for the regional and global test cases and vertical compressional
wave propagation for the deep Earth test case. For the regional and
global problems, starting models were homogeneous, and for the
deep Earth problem the startingmodel was a radial referencemodel,
AK135. The true model for the global test case was based on 40 s
Rayleigh wave phase speeds from Trampert & Woodhouse (2003).
The true model for the regional test case was based on 10 s Rayleigh
wave phase speeds from Ekström et al. (2009). Finally, the true
model for the deep Earth test case was obtained by superimposing
Gaussian random variations on AK135.

For the global test problem, periodic boundary conditions were
used at the sides of a rectangular mesh to roughly approximate the
spherical Earth. For the deep Earth test problems, the inner and
outer core were included in wavefield simulations, but excluded
from model updates.

For the near-surface problems a–d, data from 32 shots were sim-
ulated at 500 hydrophones. Shots and hydrophones were placed
at 10 m depth in a 500 m water layer. Multiple reflections were
excluded from both data and synthetics.

For the regional and global problems e–g, sources and receivers
were chosen to mimic the actual distribution of earthquakes and
seismic stations on Earth’s surface. For the global test case, sources
were constrained to plate boundaries and receivers to dry land. For
the deep Earth test case, stations were constrained to Earth’s surface
and earthquakes to <300 km depth.

3 TEST ING PROCEDURES

Inversions were performed in the time domain using a waveform
difference objective function,

χ (m) = 1

2

∑∫ ∣∣s(m, t) − d(t)
∣∣2dt, (1)

where m is the model, s are synthetics, d are observations, and the
sum is over all sources and receivers. No muting or windowing of
traces was performed in any of the inversions.

In describing algorithms, we sometimeswrite themodel, gradient
and Hessian as scalar functions of spatial position. Generalization
to the multiparameter case, we note, is usually just a matter of intro-
ducing a sum over material properties. Because forward modelling

dominates computational expense, cost comparisons are made in
terms of wavefield simulations. In displaying convergence results,
we plot L2 model error

∫ |m − mtrue|2dV, where the integral is over
spatial position, versus the cumulative number of wavefield simu-
lations. We recall that each model update requires at least two sets
of wavefields simulations, one for the gradient and one for the line
search. The gradient evaluation itself, strictly speaking, requires
two sets of wavefield simulations, but the second contributes no
new cost to the inversion since it is carried over from the previous
line search.

For forward and adjoint simulations, we used the spectral el-
ement solver SPECFEM2D (Komatitsch & Vilotte 1998), which
employs an explicit time stepping scheme and an ‘optimize-
then-discretize’ approach to the adjoint operator (Gunzburger
2000). For nonlinear optimization, data pre-processing, gradi-
ent postprocessing and workflow integration tasks, we used the
SeisFlows framework. Both are open source packages avail-
able through GitHub (http://github.com/geodynamics/specfem2d,
http://github.com/PrincetonUniversity/seisflows).

4 NONLINEAR OPT IMIZAT ION
ALGORITHMS

The rate of convergence in waveform inversion depends on the non-
linear optimization algorithm used to iteratively update the model.
The work of a model update, conventionally, is divided into two
steps. First, a search direction is computed based on the gradient
of the objective function. Second, a step length is determined along
the search direction through a line search procedure. In this section,
we compare two widely used search direction algorithms, leaving
detailed discussion of the line search until Section 5.

4.1 Limited-memory BFGS algorithm

The L-BFGS algorithm (Liu & Nocedal 1989) is a quasi-Newton
method, which means that search directions are based on a low-
dimensional quadratic model of the objective function. After several
decades of experience with such methods, L-BFGS is generally
regarded as themost effective quasi-Newtonmethod (Nocedal 1992;
Kolda et al. 1998).

Over the course of an inversion, the quadratic model of the ob-
jective function formed by L-BFGS varies through an updating
process, with each new gradient evaluation providing more infor-
mation. L-BFGS is limited-memory in the sense that results from
only themost recent gradient evaluations need to be stored. L-BFGS
search directions are well-scaled in the sense that they terminate at
the vertex of the paraboloid used to locally represent the objec-
tive function. For reference, a concise statement of the L-BFGS
algorithm is given in Appendix A.

To specify the number of gradient evaluations kept track of by
L-BFGS, users must choose a memory value. For waveform inver-
sion problems, we find that values between three and seven work
well. Generally, it seems that problems with high nonlinearity ben-
efit from lower memory values, and problems with low nonlin-
earity benefit from higher memory values, though differences are
often quite minor. Supporting results are provided in the online
supplement.

4.2 Nonlinear conjugate gradient method

The nonlinear conjugate gradient (NLCG) method returns a search
direction that is a linear combination of the gradient and the
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Figure 1. Waveform inversion test cases (a) Marmousi, (b) overthrust, (c) salt, (d) anticline, (e) regional, (f) global and (g) deep Earth. For the exploration test
cases (a–d), target models are shown on the left and starting models on the right. For the regional and global test cases (e–g), target models are shown on the
left and sources (magenta) and receivers (green) on the right. Because they are homogeneous and/or radially symmetric, starting models for the regional and
global test cases are not shown.
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previous search direction. Among several NLCG variants, those
due to Polak & Ribière (1969) and Gilbert & Nocedal (1992) have
proven particularly effective. Because NLCG does not involve a
quadratic model of the objective function, the length of the search
direction is not especially meaningful and, hence, more effort must
be expended on the line search. For reference, a concise statement
of the NLCG algorithm is given in Appendix B.

AlthoughNLCG and L-BFGS share certain theoretical underpin-
nings (Nazareth 1979), the two algorithms provide quite different
user experiences. While the L-BFGS search direction computation
is more complicated than the NLCG search direction computation,
L-BFGSmay be easier to implement overall, perhaps, on account of
its simpler initial step length selection, line search and restart proce-
dures. Importantly, both algorithms can be combinedwith stochastic
inversion strategies for additional savings (van Leeuwen et al. 2011;
van Leeuwen & Herrmann 2013; Castellanos et al. 2015).

As an aside, we note that linear conjugate gradient methods and
NLCG methods differ in that while the former are used to solve
systems of linear equations, the latter are used to solve non-quadratic
optimization problems. Here we consider only NLCG methods,
noting in passing that the use of linear conjugate gradient methods
to solve a series of linear subproblems forms the basis for another
nonlinear optimization algorithm, the truncated Newton method
(Nash 2000), which comprises an active research area (Burstedde
& Ghattas 2009; Métivier et al. 2014).

4.3 Comparisons

L-BFGS has been shown to provide computational savings over
NLCG and other competitors in a number of classic studies (Liu
& Nocedal 1989; Nash & Nocedal 1991; Zou et al. 1993; Kolda
et al. 1998). Many of these early comparisons involved inexpensive,
low-dimensional optimization problems from a list compiled by
Moré et al. (1981). As Gould et al. (2005) point out, more recent
benchmarks are in short supply.

There are significant differences between early nonlinear opti-
mization test cases and waveform inversion problems not only in
terms of computational expense and model space dimensionality,
but also in terms of nonlinearity and nonconvexity. A set of updated
performance comparisons might therefore be useful. To provide one
such benchmark, we compared the efficiency of L-BFGS andNLCG
in experiments with the waveform inversion examples described
above. Out of curiosity, the steepest descent algorithm was also in-
cluded in the comparisons. To allow straightforward comparisons
between test problems, we used the ‘regularization by convolution’
method described in Section 6, Polak-Ribière NLCG search direc-
tions and an L-BFGS memory value of five. The results of these
experiments, shown in 2, show L-BFGS as the clear winner, with
computational savings of 30 to 50 per cent over NLCG.

These findings provide the starting point for much further anal-
ysis. In Section 4, we describe how a backtracking line search
procedure contributes to the efficiency of L-BFGS. In Section 5,
we demonstrate additional computational savings through precon-
ditioning. Finally, in Section 6, we show how regularization can help
solve convergence problems evident in the nonlinear optimization
comparisons.

Having used the waveform inversion test cases to compare opti-
mization algorithms, we can, looking at things the other way around,
use the results to infer how nonlinearity varies from one test case to
another. The most obvious differences occur between near-surface
problems and regional and global problems. While the convergence

rate in the near-surface inversions is often slow and erratic, the
regional and global inversions settle quickly into superlinear con-
vergence. Among the near-surface problems themselves there is
considerable variation, with the overthrust models, which gener-
ate strong diving waves and weak reflections, converging fastest,
and the Marmousi models, which generate weak diving waves and
strong reflections, converging slowest.

4.4 Numerical issues

Nonlinearity in waveform inversion can cause significant problems
for optimization algorithms. Drawing on the waveform inversion
test cases, we describe two numerical problems that can usually
be resolved by restarting, that is, by discarding the algorithm’s
accumulated state and continuing as if no prior gradient evaluations
were available. More details about restart conditions are given in
Appendix C.

4.4.1 Lack of a descent direction

The most basic requirement of a search direction it that it provides
a reduction in the objective function. If p is the search direction and
g is the gradient, then p must satisfy

pT g < 0 (2)

in order to provide such a decrease. Explicitly checking this
condition adds virtually no cost since it requires only a vector
product.

In waveform inversion, occasional failure of the optimization
algorithm to provide a descent direction is not unexpected. Out of
some 1800model updates carried out for Fig. 2, L-BFGS andNLCG
required restarts about one per cent of the time. The restart rate can
be much higher, we find, in applications involving multiparameter
inversion, noisy data, or stochastic optimization, though we do not
include any such test cases here.

4.4.2 Loss of conjugacy of NLCG search directions

On highly nonlinear problems, NLCG search directions gradually
lose the property of conjugacy, or orthogonality with respect to an
inner product involving the Hessian, on which good performance of
the method depends. Fast convergence can usually be regained by
restarting the algorithm, as described for example by Powell (1977).
In our experience, such safeguards are occasionally necessary in
waveform inversion to avoid stagnation.

5 L INE SEARCH ALGORITHMS

Given amodelm and search direction p, thework of the line search is
to find a step length α such that the updated model m + αp satisfies
the decrease and curvature conditions described in Appendix D.
In Section 4, we compared search direction algorithms using the
type of line search appropriate for each one: for NLCG we used
a bracketing line search, and for L-BFGS we used a safeguarded
backtracking line search.We now give an idea of the issues involved
with both search procedures, and through numerical experiments
examine their contribution to the overall cost of an inversion.
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Figure 2. Comparison of nonlinear optimization algorithms. L-BFGS provides significant computational savings over NLCG in the waveform inversion test
cases.

5.1 Bracketing line search

Acceptable NLCG step lengths can vary by several orders of mag-
nitude from one model update to another. During the line search,
a good strategy to deal with this lack of scaling is to first bracket

the minimum of the objective function along the search direction
and then choose a step length by polynomial interpolation between
bracketing points.

Since the bracketing procedure can add considerably to the cost of
an inversion, it must be carried out efficiently. To avoid unnecessary
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gradient evaluations, we check the curvature condition only after
the minimum has been bracketed and a polynomial interpolation
has been performed. After this, if a given step length is found
to satisfy both descent and curvature conditions, the associated
gradient evaluation can be carried over to the next model update
iteration, removing the need for any additional evaluations until the
next line search.

5.2 Safeguarded backtracking line search

The L-BFGS algorithm with proper initialization returns a search
direction that is well-scaled in the sense that a unit step length α = 1
is an appropriate first choice. While most of the time a unit step sat-
isfies the decrease condition mentioned above, occasionally one or
more subsequent trial steps are required. The idea of a backtracking
line search is to select any subsequent trial steps by interpolating
backward, towards zero, within the unit interval. Because the search
direction has to satisfy eq. (2), a reduction in the objective function
relative to α = 0 can always be found in the unit interval. Our use
of the term ‘safeguarded’ relates to the fact that if the backtrack-
ing procedure fails to return a step length satisfying the curvature
condition, we terminate the backtracking line search and switch to
a bracketing line search.

For choosing backtracking step lengths, we use the quadratic and
cubic interpolation algorithms given by Nocedal & Wright (2006).
To ensure that the interpolation procedure does not select a step
length too close to zero on the one hand or too close to the old
step length on the other, we impose upper and lower bounds of
the type described by Dennis & Schnabel (1996). Since well-scaled
L-BFGS search directions are available only after at least two gradi-
ent evaluations have been performed, we switch from a bracketing
line search to a backtracking line search starting with the second
model update iteration.

5.3 Comparisons

Fig. 3 shows results from numerical experiments involving the line
search. In the waveform inversion test cases, a typical bracket-
ing line search is found to require 3.5 function evaluations, and a
typical backtracking line search is found to require 1.2 function
evaluations.

Importantly, in waveform inversion and other optimization pro-
cedures based on adjoint methods, the last function evaluation of
the line search overlaps with the first function evaluation of the next
model update iteration. Put another way, a forward simulation per-
formed during the line search removes the need for a forward simu-
lation as a prerequisite for the next adjoint simulation. As a result, a
backtracking line search contributes little to the overall cost of an in-
version, only about 0.2 function evaluations on average. At about 2.5
function evaluations, the effective cost of a bracketing line search
in the waveform inversion is significantly higher. In the numerical
optimization literature, Nash & Nocedal (1991) reported a similar
cost per L-BFGS backtracking line search. Published cost estimates
for bracketing line searches vary more widely, reflecting the greater
diversity of algorithms in use. Liu & Nocedal (1989) report an av-
erage cost of around 2.5 function evaluations per NLCG bracketing
line search, less expensive than in the waveform test problems. We
note that Fig. 3 of this paper presents essentially the same method
comparisons as table 13 of Liu and Nocedal, though with expen-
sive, high-dimensional waveform inversion problems considered

in this study and comparatively inexpensive, low-dimensional test
problems considered in the other.

6 PRECONDIT IONING

The performance of the nonlinear optimization algorithms dis-
cussed above can be improved through preconditioning. In this
section, we begin with a general overview and move on to descrip-
tions and numerical comparisons of waveform inversion diagonal
preconditioners.

6.1 Overview

Preconditioning is a way of rescaling or recombining model param-
eters to provide favourable numerical properties. Despite upfront
computational and storage costs, such a procedure can provide sig-
nificant overall savings by accelerating the convergence of the opti-
mization algorithm.

Underlying most preconditioning methods is a change of vari-
ables via a linear transformation, say m̂ = Cm. In precondition-
ing conjugate gradient methods, the change of variables C does
not enter the computations directly, except through the action of
P = CTC or its inverse. P is typically called the preconditioner,
even though its inverse is usually what is implemented in practice.
Importantly, a good trade-off between inexpensive computation of
P and fast convergence of the optimization algorithm is required for
the preconditioner to provide an overall reduction in computational
cost.

Typically, the term ‘preconditioning’ is used in connection with
conjugate gradient methods and ‘rescaling’ in connection with
quasi-Newton algorithms.

Most preconditioning strategies involve direct or indirect connec-
tions to theHessian. Even for computationally demanding problems,
the Hessian can be made to play a useful role through numerical
approximations. Given the huge dimensionality of the model space
in waveform inversion, it is important that such approximations al-
low for inexpensive computation and affordable storage. Examples
of this kind of approach include the following.

(1) Quasi-Newton preconditioners, in which the approximation
to the Hessian varies from one model update to another through an
updating process.

(2) Higher-dimensional but still relatively inexpensive precon-
ditioners involving, for example, forward simulations with coarse
numerical grids or approximate solvers.

(3) Diagonal preconditioners formed by exact or inexact compu-
tation of the diagonal elements of the Hessian.

While the first two categories have received some attention (Akçelik
et al. 2003; Demanet et al. 2011;Métivier et al. 2014), most precon-
ditioners inwaveform inversion fall into the last category (Claerbout
& Nichols 1994; Shin et al. 2001; Rickett 2003). In suggesting best
practices below, we focus on diagonal preconditioners not because
they are always the most cost effective, but because they are widely
used, easily implemented, and can serve as a starting point for more
sophisticated techniques.

6.2 Waveform inversion preconditioners

Two types of diagonal preconditioners are prevalent in waveform
inversion: scalings that account geometric spreading away from the
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Figure 3. Comparison of line search algorithms. A safeguarded backtracking line search contributes significantly to the overall efficiency of L-BFGS. Because
NLCG search directions are not well-scaled, a backtracking line search is not effective with NLCG, and a more expensive bracketing line search is required
instead.
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sources, and scalings obtained by applying the adjoint of the forward
solver to the data (Rickett 2003). Using perturbation analysis, Luo
(2012) showed that both types of preconditioners are related, but
not exactly equivalent, to second order variations of a waveform-
difference misfit function. We now briefly restate Luo’s results.

By expanding the displacement field, u, as a function of themodel,
m, in a perturbation series

u(m + δm) ≈ u(m) + δu1(m) + δu2(m), (3)

the variation in waveform-difference misfit can be written as

δχ ≈ δχ0 + δχ1 + δχ2, (4)

where δχ1 and δχ 2 correspond to first- and second-order scattering
terms δu1 and δu2. If H1 is the positive semi-definite first-order
contribution to the waveform-difference Hessian and H2 is the
remaining second-order contribution, the gradient g and Hessian
H = H1 + H2 are related to the variation of the data misfit via

δχ0 =
∫

g(x) δm(x) dV, (5)

δχ1 = 1

2

∫∫
δm(x) H1(x, x

′) δm(x ′) dV dV ′, (6)

δχ2 = 1

2

∫∫
δm(x) H2(x, x

′) δm(x ′) dV dV ′. (7)

By taking

lim
x→x ′ H (x, x ′) (8)

various diagonal scalings can be derived. Referring to Luo (2012)
for details, we state the main result of the perturbation analysis,
namely, that diagonal preconditioners

P1(x) =
Ns∑
i=1

∫
∂2
t u(x, t) ∂

2
t u(x, t) dt (9)

P2(x) =
Ns∑
i=1

∫
∂2
t u(x, t) ∂

2
t v(x, −t) dt (10)

are related to the data misfit variations (6) and (7), respectively,
through the limit (8). If G is the Green’s function of the medium,
then in the above expressions

u(x, t) =
∫

G(x, s, t − t ′) f (t ′) dt ′ (11)

is the wavefield originating from the source located at swith wavelet
f(t), and

v(x, t) =
Nr∑
j=1

∫
G(x, r j , t − t ′) [d j (t

′) − u(r j , t
′)] dt ′, (12)

is the data residual wavefield that arises from backprojecting
the differences between observed data dj(t) and simulated data
u(rj, t) from the source located at s and the receivers located at
rj, j = 1, . . . , Nr.

While both P1 and P2 contribute to the variation in data misfit
through the diagonal of the Hessian, each behaves in a different
way and it is useful to consider them separately. P1 involves only

the wavefield originating from the sources, so it does a better job
than P2 accounting for amplitude effects such a geometric spread-
ing, focusing and defocusing. P2 involves wavefields originating
from both the sources and receivers, so it is more effective than
P1 in compensating for uneven data coverage. Because P1 and P2

correspond to the first- and second- order contributions the Hessian,
respectively, it sensible to precondition using either P1 or P1 + P2

but not P2 alone. We show later that P1 and P1 + P2 provide almost
identical performance.

Given their direct relation to the waveform-difference Hessian,
P1 and P2 can be viewed as variations on a theme developed by
exploration geophysicists first from the perspective of migration,
and later from the perspective of waveform inversion. In migration,
Rickett (2003) compared the performance of a source-only diagonal
scaling, similar to P1, with diagonal scalings derived to the adjoint
of the forward solver, similar to P2.

Meanwhile, in regional and global seismology, the existence of
well-behaved crust, mantle and core phases led to the adoption of
wave-equation based phase and traveltime misfit functions (Dahlen
et al. 2000; Tromp et al. 2005). Such methods combine the robust-
ness of full waveform modelling with the reduced nonlinearity of
phase and traveltime measurements compared with amplitude and
waveform-difference measurements. A preconditioner that arises
naturally in this context is

P3(x) =
Ns∑
i=1

∫
∂2
t u(x, t)w(x, −t) dt, (13)

where

w(x, t) =
Nr∑
j=1

∫
G(x, r j , t − t ′) ∂t u(r j , t ′) dt ′. (14)

In the terminology of Marquering et al. (1999), P3 is simply the
unweighted sum of ‘banana-doughnut kernels’ from all source–
receiver pairs.

The similarity between this and the other two preconditioners
suggests the possibility of using P3 as an alternative diagonal ap-
proximation to the waveform-difference Hessian. As shown through
the checkerboard example below, P3 has properties that make it ap-
pear quite promising.

The main work of generating P1, P2 and P3, we note, consists
of propagating the forward wavefields u and the reverse wavefields
v and w from eqs (9)–(13). For illustration, Fig. 4 shows these
preconditioners computed using a checkerboard test case. To drive
v, data residuals were obtained by subtracting traces generated from
the checkerboard model shown in panel (a) with traces generated
from a homogeneous model. The wavefields u, v and w themselves
were propagated within the same homogeneous model.

In panels (b) and (c) of Fig. 4, we consider two source–receiver
distributions. The first consists of a single source–receiver pair;
the corresponding P1 has a radially symmetric pattern, and P2 and
P3 have alternating positive and negative fringes typical of wave-
equation sensitivity kernels (Woodward 1992; Dahlen et al. 2000).
The second source–receiver distribution consists of 25 sources and
132 receivers in a typical regional seismology layout; in this case,P1

has a notably smaller condition number, or ‘spread’ of values than
the other two preconditioners because it involves only wavefields
originating from the sources.

Importantly, for the case of a single source–receiver pair, P2 has
more pronounced negative fringes than P3. It follows that, for mul-
tiple source–receiver pairs, P2 has a mix of positive and negative
values andP3 has mostly positive values. Given numerical problems
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Figure 4. Illustration of waveform inversion diagonal preconditioners using a checkerboard example. Top: experimental setup. Middle: preconditioners
corresponding to Network 1. Bottom: preconditioners corresponding to Network 2.

associated negative eigenvalue with distributions (Fletcher 1976),
P3 is expected to compare favourably to other preconditioners de-
rived from the action of the adjoint of the forward solver.

6.3 Numerical issues

Even with diagonal approximations to the Hessian of the type illus-
trated in Fig. 4, a number of non-trivial implementation questions
remain. Here we focus two issues, smoothing and updating, with
significant practical effects.

6.3.1 Smoothing

Away from a minimum or maximum of the objective function, the
Hessian may have both positive and negative eigenvalues. As Fig. 5
shows, the diagonal preconditioners P1 + P2 and P3 may exhibit
problematic eigenvalue distributions of this kind, which can cause
numerical instability of the type described by Fletcher (1976). A
simple and effective remedy, we find, is to replace negative values
with zero and then smooth the resulting discontinuities.

Even if a diagonal preconditioner has no negative values, a large
ratio of maximum to minimum values can result in slow or unsta-
ble convergence. While Rickett (2003) recommended damping to
deal with such problems in migration, we recommend smoothing
in waveform inversion. Use of a damped preconditioner P + λI
works well in migration because it preserves the ability of the pre-
conditioner to bring out fine details. In waveform inversion, it is
desirable to bring out such details gradually to ensure that small-
scale structures are not systematicallymislocated as a result of errors

in overlying large-scale structures. For this reason, smoothing the
preconditioner, or some combination of smoothing and damping,
works better than damping alone.

In practice, the amount of smoothing needed for good numerical
performance is quite large. To investigate this issue quantitatively,
we convolved preconditioners with Gaussian kernels with standard
deviation σ = σ x = σ z measured in terms of grid spacing h. Since
grid spacing is related to dominant wavelength of the excited wave-
field through a numerical condition, e.g., five grid points per wave-
length, this way of looking at things is directly related to thinking
about smoothing in terms of dominant wavelength. Comparing the
performance of the resulting smoothed preconditioners in the wave-
form inversion test cases, we found that σ = 80h provides the best
results on average, with somewhat lower smoothing required in the
regional and global test cases and somewhat higher smoothing re-
quired in the near-surface test cases. A great deal of supporting
information is provided in the online supplement.

Fig. 7 gives a sense of the visual appearance of preconditioners
after smoothing. For the near-surface test cases, preconditioners
display both depth and lateral dependence, with shallow regions
below the centre of the array weighted differently than deep regions
below the edges of the array. For the regional and global test cases,
the lateral variations are evenmore pronounced as a result of uneven
earthquake and seismic station distributions.

Though we do not perform such experiments here, we note that
the convolution procedure described above can easily bemodified to
allow dip-dependent smoothing for near-surface problems or radial
smoothing for regional and global problems. In advocating smooth-
ing, our motivation is purely numerical. Without it, preconditioning
with the diagonal of the Hessian can result in slower than expected
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Figure 5. With most diagonal preconditioners, smoothing or damping is required to avoid numerical problems. Damping helps bring out small structures
quickly, which can be useful in non-iterative migration. Smoothing bring out such details gradually, helping avoid local minima in inversion. The smoothing
parameter has significant effects on numerical performance, as discussed in the text. Top: diagonal preconditioners before smoothing. Bottom: after smoothing.

Figure 6. How often is it necessary to update preconditioners? The answer depends on how much the Hessian varies throughout the model space. Top:
preconditioners computed using a homogeneous model. Middle: preconditioners computed using a smoothed target model. Bottom: preconditioners computed
using an unsmoothed target model.

convergence, or even cause the inversion to fail. Interestingly, Symes
(2008) describes a sense in which a filtering operation, similar
to smoothing, provides a better underlying approximation to the
Hessian.

6.3.2 Updating

Besides deciding how much to smooth, practitioners must choose
how often to update a preconditioner to account for variations in the
Hessian from one part of the model space to another. While updates
improve the approximation to the Hessian, they also require forward

and adjoint simulations whose cost might not be offset by faster
convergence. Because updating the diagonal approximationHessian
amounts to variable preconditioning, it can also cause numerical
difficulties of the type described by Knyazev & Lashuk (2007),
which can be resolved by restarting the optimization procedure at
the expense of slower convergence.

For diagonal preconditioners based on the waveform-difference
Hessian, the question of how often to update depends on the relative
size of the positive semi-definite first-order approximation P1 and
the remaining second-order contribution P2. As shown in Fig. 7,
P1 varies a little and P2 varies a lot throughout the model space.
From the numerical experiments below, we find it is not necessary
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Figure 7. Left: target model and/or network. Middle: diagonal preconditioners P1 + P2. Right: diagonal preconditioners P3.
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to update either P1, P1 + P2, or P3 very often. In our experience, it is
most effective to update diagonal preconditioners only at multiscale
transitions, if at all.

6.4 Comparisons

After the smoothing procedure described above, we compared the
numerical performance of preconditioners P1, P1 + P2 and P3 in
the waveform inversion test cases. Figs 8 and 9 show the results of
these experiments. In terms of convergence rate, P1 and P1 + P2

provide virtually identical performance. The new scaling P3 pro-
vides computational savings, sometimes quite significant, relative
to the other two. In Figs 9–12, we use the label ‘L-BFGS’ for the
case D = I, and ‘rescaled L-BFGS’ for the case D = P−1

3 , with D
being the diagonal scaling described in Appendix A and I being
the identity matrix. Likewise, we use the label ‘NLCG’ for the case
P= I and ‘preconditioned NLCG’ for the case P= P3, with P being
the preconditioner described in Appendix B.

7 REGULARIZAT ION

Without robust measures to mitigate nonconvexity and non-
uniqueness in waveform inversion, the optimization algorithms and
preconditioning strategies described above would be of little use.
An important way of promoting convexity and suppressing non-
uniqueness is to regularize, that is, to impose smoothness or other
constraints on the model directly through the objective function or
indirectly by other means.

Conceptually, regularization differs from preconditioning in a
fundamental way: as a change of variables, preconditioning leaves
the underlying optimization problem unchanged, while regulariza-
tion, in effect, trades one problem for another more tractable prob-
lem (Engl et al. 2000).

Below, we describe several common regularization methods, dis-
cuss practical complications that arise during their use and compare
their performance through waveform inversion test cases. Although
the following techniques are all to one degree or another classi-
cal, some interesting new facts emerge from analysing them in the
waveform inversion context.

7.1 Tikhonov regularization

In Tikhonov regularization, a preference for smooth models enters
through the addition of a penalty term

R2(m) = λ

2

∫
V

∇m · ∇m dV, (15)

to the objective function, where λ is a user-supplied parameter
that controls the weight relative to the data misfit function. More
commonly, the right-hand side is written in discretized form as

λ

2

∑
i

[
(∂xm)2i + (∂zm)2i

]
, (16)

where the sum is over numerical grid points. Classic references on
Tikhonov regularization include Hansen (1998) and Vogel (2002).

As an alternative to penalizing first-order spatial derivatives of the
model, one can choose to work with higher-order spatial derivatives
or some other measure of model roughness. In our experience,
higher-order Tikhonov regularization often provides good results in
regional and global inversions but not in near-surface problems.

Sometimes it makes sense to apply the penalty term not to the
model itself, but to the difference between the model and some
reference. We use such an approach for the deep Earth test case,
applying the regularization term to the difference between themodel
and a radial referencemodel to avoid penalizing boundaries between
the crust, mantle and core.

Although the theory is classical, application of Tikhonov reg-
ularization to waveform inversion is not straightforward. The be-
haviour of the penalty term can be quite different than in other
seismic inverse problems, as illustrated in Figs 13 and 14 through
a checkerboard example. The use of a fine model discretization,
as required for the solver computations, leads to abrupt variations
in the derivatives of the penalty term. While the penalty term still
acts to smooth the updated model, it effectiveness is reduced. To
work around this difficulty, it is possible to project from a fine grid
for the solver to a coarse grid for computing spatial derivatives of
the model and back again. The smoothness of the updated model
in such an approach derives from a combination of the regulariza-
tion term and the projection operator. Projection can also be used
as a regularization method in its own right, as described later in
Section 7.3.

7.2 Total variation regularization

Total variation (TV) regularization also acts directly through the
objective function. The TV penalty term

R1,ε(m) = λ

∫
V

√∇m · ∇m + ε dV (17)

is essentially the L1 norm of the spatial derivatives of the model. In
discretized form, the right-hand side becomes

λ
∑
i

√
(∂xm)2i + (∂zm)2i + ε. (18)

Because the TV penalty terms act through the L1 norm, discontinu-
ous transitions are not penalized any more than smooth transitions.
As a result, themethod iswell-suited for recovering layered geologic
structures.

While the damping parameter ε makes the above expressions
differentiable, the effect of TV regularization on the gradient of
the objective function is still problematic. To illustrate, Fig. 13
shows the contribution to the gradient from the TV penalty term
for different ε values. Even with large damping, abrupt variations
in the derivatives of the penalty term remain that add considerably
to the numerical difficulty of an inversion. Numerical problems
associated with the TV regularization, it turns out, are common to
a range of scientific applications (Vogel 2002). Goldstein & Osher
(2009) reviewed methods that have been proposed to make TV
regularization numerically tractable. Recently, Lin & Huang (2015)
applied one such workaround to acoustic and elastic waveform
inversion with promising results.

7.3 Projection and convolution

Another way to apply regularization is through the basis functions
used to represent the model (Engl et al. 2000; Mathé & Pereverzev
2003). The choice of a smooth basis, for example, imposes a degree
of smoothness on the model.

In waveform inversion with finite-difference or finite-element
solvers, stability conditions are usually too strict for the numerical
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Figure 8. Comparison of diagonal preconditioners. P1 and P1 + P2 provide almost identical performance. P3 performs better than the other two.

grid to suppress non-uniqueness. It becomes necessary, if the goal
is to mitigate non-uniqueness through the choice of basis functions,
to project back and forth from the fine grid used by the solver to a
coarser basis used for the model update procedure. The projection
can be performed either explicitly, or as described by Peters et al.
(2015), implicitly by formulating the inversion as a constrained
optimization problem. While the primary use of projection is as a

regularization method, faster convergence may be a beneficial side
effect since the efficiency of gradient-based optimization methods
improves with decreasing model space dimensionality (Sigmund &
Petersson 1998).

A closely relatedmethod of regularization involves smoothing the
gradient by convolving it with a Gaussian function or other kernel.
While retaining mathematical properties of projection, convolution
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Figure 9. Comparison of optimization algorithms with and without preconditioning NLCG or rescaling the L-BFGS initial Hessian.

avoids the need to convert back and forth between two sets of basis
functions, thus simplifying the inversion machinery. To see the
connection between projection and convolution, consider a set of
basis functions that differ only by spatial offset. Projection onto such
a basis is equivalent to convolution with one of the basis elements.
Convolution and other methods for smoothing the gradient have a
long history in optimal control and design (Jameson 1988), and a

more recent history in geophysical parameter estimation (Brenders
& Pratt 2007; Oh & Min 2013; Alkhalifah 2015).

7.4 Choice of regularization parameters

The extent to which regularization affects the result of a given
model update can be adjusted through user-supplied parameters.
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Figure 10. Comparison of nonlinear optimization algorithms. From top to bottom: Marmousi offshore, Marmousi onshore and salt diapir inversion results
after 100 function/gradient evaluations.

In Tikhonov and TV regularization, the smoothness of the updated
model is controlled in a straightforward way by the weight of the
penalty term relative to the data misfit function. In projection and
convolution, smoothness is a function of the spacing of the basis
elements or the width of the convolution kernel. Such parameter
choices are important for managing how quickly structure is added
to the model and, in turn, for helping the updated model remain in
the basin of convergence.

For testing the projection method of regularization, we explicitly
convert back and forth between the fine solver basis and a coarser
model update basis, using a set of spatially offset Gaussian functions
as the elements of the latter. Relative to the solver grid spacing, we
increase the spacing between Gaussian functions (as well as the
radius of each Gaussian function) by a uniform factor f, so that in

the two-dimensional waveform inversion test cases the ratio N of
the number of basis functions to the number solver grid points is
N = f−2. For testing the convolution method of regularization, we
use a Gaussian kernel to smooth the gradient prior to passing it to
the search direction algorithm. The standard deviation σ = σ x = σ z

of the Gaussian function determines the amount smoothing.
To furnish values for the regularization method comparisons be-

low, we adopt a ‘brute force’ approach, running inversions multi-
ple times to determine the most effective parameter values for a
given test case. Results from these experiments are shown in the
online supplement. Far from suggesting a routine method for pa-
rameter selection, the goal of these experiments is to build intuition
and to ensure that in the comparisons below, each regularization
method performs at its best. Since regularization involves a trade-off
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Figure 11. Comparison of nonlinear optimization algorithms. From top to bottom: overthrust offshore, overthrust onshore and anticline inversion results after
50, 50 and 100 function/gradient evaluations, respectively. Because the overthrust inversions converge more quickly, results are shown after half the usual
number of simulations.

between fitting the data and suppressing non-uniqueness, increased
convergence rate in one norm is often accompanied by decreased
convergence rate in the other. As a result, decisions about which
parameter value is best, in our approach, are made solely on the
basis of model misfit. A number of less exhaustive, more practical
methods for parameter selection are discussed by Vogel (2002).

7.5 Comparisons

Results from numerical experiments using the inversion test cases,
regularizationmethods and parameter selection procedure described
above are shown in Figs 15–18.

Of all approaches, the performance of Tikhonov regulariza-
tion is perhaps the most surprising. Since it acts through L2

norm of the spatial derivatives of the model, Tikhonov regular-
ization favours smooth transitions over discontinuous transitions
in the model. Given this preference, it might be expected to per-
form well in recovering the regional model, which contains only
smoothly varying structures, but this is not the case. Poor per-
formance on the regional test case appears closely related to the

model discretization. Because the spatial derivatives of the model
are computed using the fine numerical grid, Tikhonov regular-
ization is much less effective than projection or convolution in
smoothing the updated model. Increasing the weight on the regu-
larization term does not reliably solve the problem because with
gradient-based methods, the weight on the penalty term cannot
exceed a certain value or the optimization algorithm becomes
unstable.

While performing poorly on the regional example, Tikhonov reg-
ularization does well on all other test problems, especially the near-
surface problems. The success of the method in these cases has a
lot to do with improved accuracy at depth. By smoothing layer in-
terfaces, Tikhonov regularization allows deep layers corresponding
to reflected phases to shift position as shallow layers become more
accurately recovered. Such a mechanism is important early in an
inversion, when incomplete recovery of shallow structure leads to
systematic errors in deep structure. Crucially, the smoothing effect
is not large enough to prevent the emergence of layered structures,
so updated models are able to generate reflections.

Not surprisingly, TV regularization performswell in test cases in-
volving discontinuous structures, especially the salt test case. What
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Figure 12. Comparison of nonlinear optimization algorithms. From top to bottom: regional, global andDeep Earth inversion results after 100 function/gradient
evaluations. Because regional and global models lack the kind of coherent geologic structures found in the other test cases, we plot the difference between
inverted and target models, rather than inverted models themselves.

is surprising is that, despite its advantage in resolving layered struc-
tures, TV regularization performs worse than Tikhonov regular-
ization in all near-surface test cases, which can be attributed to
the well-known nonlinearity and ill-conditioning of the TV penalty
function (Goldstein & Osher 2009).

In most test cases, projection and convolution provide outcomes
that, while similar to one another, differ markedly from Tikhonov
and TV regularization results. In the regional test case, projec-
tion and convolution provide considerably better results than either
penalty function method, with about two times greater reduction in
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Figure 13. Tikhonov and total variation regularization illustrated using a checkerboard example. (a) Target model. (b) Network. (c) Numerical mesh. (d)
Gradient of data misfit function. (e) Gradient of data misfit function after applying source–receiver corrections described in Section 8.2, which are essential
for avoiding instability from the regularization penalty term. (f) Contribution to the gradient of the objective function from the Tikhonov penalty term. (g–i)
Contribution to the gradient of the objective function from the total variation penalty term, with various choices of damping parameter ε.

model error and 102 times greater reduction in data misfit. Close
inspection of Figs 16 and 17 shows that convolution performs bet-
ter than projection in the near-surface examples. The reason, we
believe, is that while convolution allows small-scale structures to
emerge over multiple model updates (even if no individual update
contains such structures), projection to a coarser basis unavoidably
limits recovery of such details. Close inspection of Fig. 18 suggests
that projection is more effective than convolution at suppressing
non-uniqueness in regional and global inversions.

Looking at all test cases together, the importance of a problem-
dependent perspective on regularization comes across strongly.
While all four regularization methods are found to be useful in
one way or another, clear differences emerge between problems.
Tikhonov regularization performs well when challenging small-
scale structures are present, as in the near-surface problems. TV
regularization provides slower convergence than Tikhonov regular-
ization inmost cases as a result ofwell-knownnumerical difficulties.
Although we do not experiment with workarounds of the type de-
scribed by Goldstein & Osher (2009), Lin & Huang (2015) showed
that TV regularization can be successfully adapted to waveform in-
version problems through such measures. Rather than simply being
beneficial, projection or convolution may be all but required for
dealing with highly uneven source–receiver distributions. Extrap-
olating from these results, we predict projection or convolution is
most effective far away from the global minimum, Tikhonov regu-

larization is effective closer to the global minimum and TV regular-
ization without numerical workarounds is only effective very close
to the global minimum. In practice, use of two or more regulariza-
tion methods at once may provide some advantages. A combination
of Tikhonov and TV penalty terms in the objective function may
be particularly beneficial, helping avoid problems associated with
either method alone (Lin & Huang 2015).

8 OTHER CONS IDERATIONS

Next, we describe considerations that, although important to the
success or efficiency of an inversion, do not fit well into any of the
previous categories.

8.1 Multiscale transitions

In Section 7, we compared regularization methods under controlled
conditions, without varying the data misfit, data filtering, or regular-
ization parameters from one model update to another. While good
for building intuition, such an approach is not enough to get reliably
to the global minimum of a waveform inversion objective function.
To avoid problems along the way, robust multiscale procedures are
needed (Bunks et al. 1995).
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Figure 14. Behaviour of regularization methods illustrated through a checkerboard example. Each panel above shows the inversion result after five model
updates from a homogeneous starting model, with the regularization method and weight varied from one panel to another. Perhaps surprisingly, Tikhonov
regularization is less effective than projection or convolution at smoothing the updatedmodel. Numerical difficulties from the use of total variation regularization
are apparent even at this early stage in the inversion.

Manymultiscale procedures involvemodification of the objective
function. It may be beneficial to restart the optimization algorithm
following such a change. By restarting, one avoids making compar-
isons in the NLCG and L-BFGS algorithms between the current and
previous gradient, which may not be valid if the objective function
has changed.

To determine best practices, we examined the performance of
the L-BFGS algorithm in a two-level multiscale procedure with
and without restarting. Modifying the objective function through
the data filtering parameters, we carried out 25 model updates at
low frequency and 50 model updates at high frequency. In terms of
dominant frequency, the two multiscale levels differed by a factor
of two.

The online supplement shows the performance of L-BFGS in
these experiments. In all cases, restarting the algorithm at the tran-
sition between multiscale levels led to faster convergence. In three
cases, the effect was relatively small (less than a one or two model
updates’ difference in computational cost), in two cases it was larger
and in the remaining four cases not restarting caused the optimiza-
tion algorithm to fail outright.

8.2 Near field artefacts

From inaccuracy in the numerical treatment of wave propagation in
the close vicinity of sources and receivers, the gradient of the data
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Figure 15. Comparison of regularization methods. To ensure that each method performed at its best, we adopted a ‘brute force’ approach to the selection of
regularization parameters. The effectiveness of projection, convolution, Tikhonov and total variation methods of regularization is found to be highly problem
dependent.

misfit function computed using the adjoint of the forward solver is
commonly found to contain spurious near field features. Whether or
not a correction is required depends on the regularization method
employed. Convolution with a Gaussian kernel or projection onto a

coarse basis tend to smooth out near field artefacts, so an additional
correction is not generally required in these cases. Tikhonov or TV
regularization, on the other hand, is not effective in smoothing out
such features, so a correction is required in these cases.
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Figure 16. Comparison of regularization methods. From top to bottom: Marmousi offshore, Marmousi onshore and salt diapir inversion results after 50
function/gradient evaluations.

To illustrate the problem, consider the checkerboard example in
Fig. 13. Panel (a) shows the true model, panel (b) the locations
of sources and receivers and panel (d) the gradient with respect to
a homogenous initial model. Numerical artefacts around sources
and receivers give the gradient a pockmarked appearance. In finite-
element or finite-difference forward modelling, such artefacts can
be removed by smoothing within a radius of one or two elements
or grid points around each source and receiver. The use of this of
type of procedure in waveform-difference inversion, it turns out,
strongly parallels the use of source and receiver corrections of the
type described by Tian et al. (2007) in traveltime inversion.

Let xi, i = 1, . . . , Nr + Ns denote the location of the ith source
or receiver. To correct the raw gradient of the data misfit function,
we compute for each xi

gi =
∫
V
graw(x) exp

[
−

( x − xi
h

)2]
dV, (19)

using a quadrature rule that is appropriate for the given numerical
discretization and a value h that is one or two times the grid or
element spacing. In subsequent computations, we use the corrected
gradient given by

g(x) = 1

Nr + Ns

Nr+Ns∑
i=1

{
graw(x) + [gi − graw(x)]

× exp
[

−
( x − xi

h

)2]}
. (20)

In Fig. 13, the result of applying this correction to the raw gradient
in panel (d) is shown in panel (e).
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Figure 17. Comparison of regularization methods. From top to bottom: overthrust offshore, overthrust onshore and anticline inversion results after 50
function/gradient evaluations.

8.3 Masking strategies

Many inversions involve a water layer or other well-constrained re-
gion. If the properties of such an area are known with certainty, the
corresponding model parameters can be excluded from the inver-
sion. In other cases, it is better to include them in some way, for
example, because there is uncertainty regarding the lower boundary
of a salt structure or the properties of a water layer.

Bayesian methods, while arguably the most natural approach for
incorporating such constraints, can add considerable complexity to
an inversion. To find a simpler alternative, we compare two other
strategies. The first involves modifying the NLCG preconditioner or
the L-BFGS initial Hessian. In this approach, diagonal elements cor-
responding to well-constrained model parameters are scaled away
from zero. The second strategy, which we call masking, involves
ad hoc scaling of the gradient of the objective function. In this ap-

proach, gradient values corresponding to well-constrained model
parameters are scaled toward zero.

We tested both methods using offshore exploration test cases.
Masking the gradient performs better than rescaling the precondi-
tioner, sometimes significantly better. By limiting changes to the
water layer, both methods perform better than if no scaling is ap-
plied. Supporting results are provided in the online supplement.
Although we experimented with water layers, the main useful-
ness of such methods, we anticipate, would be in dealing with salt
structures.

9 CONCLUS IONS

Drawing on all of the results above, we suggest the following ‘best
practices’ for seismic waveform inversion.
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Figure 18. Comparison of regularization methods. From top to bottom: regional, global and deep Earth inversion results after 50 function/gradient evaluations.
Because regional and global models lack the kind coherent geologic structures found in the other test cases, we plot the difference between inverted and target
models, rather than inverted models themselves.

For nonlinear optimization, we recommend L-BFGS over NLCG.
Average savings of 1/3 to 1/2 in regional, global and near-surface
test cases make L-BFGS the clear winner in terms of computational
efficiency, on which the choice of one optimization algorithm over
another primarily depends. L-BFGS provides other advantages as

well, including the potential for a safeguarded backtracking search
in place of a more complicated bracketing line search. Even with
robust regularization and multiscale strategies, numerical problems
can occur with both L-BFGS andNLCG. Restart conditions provide
a way of detecting and recovering from such difficulties.
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In place of diagonal scalings obtained by application of the ad-
joint operator to the data or to the difference between data and
synthetics, we recommend a new scaling, which is shown to pro-
vide faster, more reliable convergence. To avoid numerical prob-
lems, it is necessary to smooth or damp diagonal preconditioners;
we recommend smoothing as part of a strategy for bringing out de-
tails gradually over many model updates. The amount of smoothing
required in practice can be quite large. Regularly updating precon-
ditioners to account for variations in the Hessian from one part of
the model space to another does not appear to be cost effective.

For regularization, we stress the importance of a problem depen-
dent perspective. Tikhonov regularization performs well in near-
surface test cases, the effect being large enough to promote convex-
ity and suppress non-uniqueness, but not large enough to prevent
recovery of layered structures. TV regularization suffers from well-
known numerical difficulties, but workarounds have been developed
that make the method competitive. Regularization by projection or
convolution is often required for dealing with the types of source–
receiver distributions and starting models that commonly occur in
regional and global seismology.
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Figure S4. Performance of L-BFGS with P3 initial scalings.
Figure S5. Brute force parameter selection experiments: effect of
varying Gaussian smoothing parameter.
Figure S6. Brute force parameter selection experiments: effect of
varying the number of Gaussian basis functions used to represent
the model. The ratio f is the number of basis functions divided by the
number of points in the numerical grid. For a given test case, the
former is varied from one experiment to another and the latter is
constant.
Figure S7. Brute force parameter selection experiments: effect of
varying Tikhonov regularization weight.
Figure S8. Brute force parameter selection experiments: effect of
varying total variation regularization parameter.
Figure S9. Effect of restarting optimization algorithm at multiscale
transitions.
Figure S10. Strategies for masking a water layer.
Figure S11. Role of regularization in suppressing non-uniqueness
illustrated through a checkerboard example. Each panel shows the
error in the inversion result after 25 updates from a homogeneous
starting model, with the standard deviation σ of the Gaussian ‘reg-
ularization by convolution’ kernel varied from one panel to another.
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APPENDIX A : L IMITED -MEMORY BFGS
ALGORITHM

Main algorithm
Given an initial model m0, objective function f, diagonal scaling
D, memory value l and stopping threshold δ > 0, the L-BFGS
algorithm is as follows:

(1) Evaluate f0 = f(m0), g0 = ∇f(m0) .
(2) Set p0 = −g0 , k = 0 .
(3) If k > 0 , compute pk from recursion, below.
(4) Compute αk by line search and set mk + 1 = mk + αkpk .
(5) Evaluate fk + 1 = f(mk + 1) , gk + 1 = ∇f(mk + 1) .
(6) Set sk = mk + 1 − mk , yk = gk + 1 − gk , k = k + 1 .
(7) Repeat (3–6) until gT

k+1gk+1 < δ .

Recursion

(1) Set q = gk , i = k − 1 , j = min (k, l) .

(2) Perform j times: λi = sTi q

yTi si
, q = q − λiyi , i = i − 1 .

(3) Set γ = sTk−1 yk−1

yTk−1 yk−1
, r = γDq , i = k − j .

(4) Perform j times: μ = yTi r

yTi si
, r = r + si(λi − μ) , i = i + 1 .

(5) End with result pk = −r .

Remarks
L-BFGS’ relatively modest memory usage rests on the fact that if
k is the current iteration number and l is the memory value, then
vector pairs prior to {sk − l, yk − l} are no longer needed and can be
removed from storage.

The scaling factor γ , which accounts for differences between
the true Hessian and the approximation thereto, is essential to the
good performance of the algorithm. Of several choices proposed by
Liu & Nocedal (1989), the expression for γ given above (step 3 of
Recursion) has been found to provide the best results.

APPENDIX B : PRECONDIT IONED
NONLINEAR CONJUGATE
GRADIENT METHOD

Given an initial model m0, objective function f, preconditioner P
and stopping threshold δ > 0, the preconditioned NLCG method is
as follows:

(1) Evaluate f0 = f (m0), g0 = ∇ f (m0).
(2) Solve Py0 = g0.
(3) Set p0 = − y0, k = 0.
(4) Compute αk by line search and set mk+1 = mk + αk pk .
(5) Evaluate fk+1 = f (mk+1), gk+1 = ∇ f (mk+1).
(6) Solve Pyk+1 = gk+1.

(7) Set βk+1 = gTk+1(yk+1−yk )

gTk yk
, pk+1 = − yk+1 + βk+1 pk , k=k + 1.

(8) Repeat (5–8) until gT
k+1gk+1 < δ.

The precise form of the algorithm above is due to Polak & Ribière
(1969). Besides this one, a number of other variants exist. One due
to Fletcher & Reeves (1964) may be slightly worse, and another due
to Gilbert & Nocedal (1992) may be slightly better. Since savings
from the use of L-BFGS over NLCG are in general much larger
than savings from the use of one NLCG algorithm over another, we
have not investigated which of these variants performs best in the
waveform inversion context.
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APPENDIX C : RESTART CONDIT IONS

Even with robust regularization and multiscale methods, numeri-
cal difficulties in waveform inversion are neither unexpected nor
uncommon. Below, we describe two restart conditions that can be
effective in addressing such problems.

Angle restart condition
In Section 4.4, we discussed the possibility that a search direction is
not actually a descent direction. For poorly conditioned problems,
it may be beneficial to impose even stricter restart conditions than
pT
k gk > 0.
One possibility for such a condition is

pT
k gk√

pT
k pk

√
gT
k gk

> τ ,

where −1 < τ < 0 is some user-supplied parameter. Values of τ of
about −0.02, we find, are usually effective.

The above restart condition can be reformulated in terms of
the angle θ between the gradient and the search direction using
the relation θ = arccos(τ ) . For example, the above condition with
τ = −0.087 is equivalent to requiring that θ > 95.

Powell restart condition
In Section 4.4, we mentioned the tendency of NLCG search direc-
tions to lose conjugacy. As described by Powell (1977), the restart
condition

gT
k+1 gk
gT
k gk

> τ ,

where τ > 0 is some user-supplied parameter, provides an effective
workaround. A common choice for τ is 0.2.

Since conjugacy is expected of NLCG search directions but not
L-BFGS search directions, Powell restart conditions can be used in

combination with the former but not the latter. While performance
after Powell restarts can be poor in the short time, the possibility
of substantially better long-term performance makes the procedure
worthwhile.

APPENDIX D : L INE SEARCH
TERMINATION CONDIT IONS

Given an objective function f, model m and search direction p, and
letting φ(α)= f(m+ αp), the work of the line search is to find a step
length α such that the updated modelm + αpmeets the termination
conditions

φ(α) ≤ φ(0) + c1αφ′(0),

φ′(α) ≥ c2 φ′(0),

where c1 > 0 and 0 < c2 < 1 are user-supplied numeri-
cal parameters. The first condition above is called the Armijo
condition or sufficient decrease condition. The second is called
the curvature condition. Both together are known as the Wolfe
conditions.

It had been found that L-BFGS is best implemented with a very
loose line search. Following Liu & Nocedal (1989) and many other
studies, a common choice of numerical parameters is c1 = 10−4 and
c2 = 0.9. NLCG is often implemented with a somewhat stricter line
search, along the lines of c1 = 10−4 and c2 = 0.1. With the NLCG
bracketing line search described in Section 5.1, however, we find
it more cost effective to use c1 = 10−4 and c2 = 0.9 to reduce the
number of gradient evaluations, the bracketing and interpolation re-
quirements being enough, it seems, to ensure a sufficiently accurate
step length.
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