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ABSTRACT: We develop a geometric construction to prove the inevitability of the
electronic ground-state (adiabatic) Berry phase for a class of Jahn−Teller (JT) models with
maximal continuous symmetries and N > 2 intersecting electronic states. Given that vibronic
ground-state degeneracy in JT models may be seen as a consequence of the electronic Berry
phase and that any JT problem may be obtained from the subset that we investigate in this
Letter by symmetry-breaking, our arguments reveal the fundamental origin of the vibronic
ground-state degeneracy of JT models.

The Jahn−Teller (JT) theorem1,2 is a cornerstone of
condensed matter and chemical physics; it enunciates that

adiabatic electronically degenerate states of symmetric non-
linear molecules are unstable with respect to symmetry-
breaking distortions of the molecular geometry (unless the
degeneracy is protected by time-reversal symmetry). Given this
statement, one might be tempted to loosely extrapolate that
molecular quantum state degeneracies are generally unstable.
This is, however, an incorrect conclusion: It is interesting that a
large class of JT models exhibit immune vibronic ground-state
degeneracies.3−13 Thus, there is a counterintuitive flavor to the
JT theorem: vibronic degeneracies can be born at the expense
of the breakdown of their electronic counterparts.10,11 These
degeneracies leave distinctive signatures in the chemical
dynamics of JT systems, which are sometimes robust to
degeneracy-breaking perturbations.13,14 The goal of this Letter
is to explain the fundamental reason for the emergence of
degenerate vibronic ground states in JT models.
Vibronic ground-state degeneracy (VGSD) in JT models

appears frequently when linear vibronic couplings dominate10,11

(for a recent proposal of direct noninterferometric experimental
verification of VGSD, see, e.g., refs 15 and 16), although there
are exceptions.17−20 More specifically, there exists a particular
class of JT models for which VGSD is guaranteed to exist
whenever the adiabatic approximation (Born−Oppenheimer21
with inclusion of Berry phase effects22,23) is valid.10,11,24 These
are the JT systems containing continuous symmetries and all
possible couplings between JT active modes and a single
electronically degenerate multiplet (at the reference geometry
for a description of the JT effect, from now on denoted by JT
center),3,4,24−29 the simplest and most famous example being
the linear E ⊗ e model (we use the standard convention where
the electronic irreducible representation (irrep) is given by a
capital letter and the vibrational irrep is given by a lowercase),
which displays an exotic SO(2) (circular) symmetry in its
potential energy surface.3,11 The most complex spinless
example is the SO(5)-invariant model of the icosahedral JT
problem H ⊗ (g ⊕ 2h), which contains all possible JT active

modes associated with the electronic H quintuplet.9,10,29,30 On
the other hand, the linearized H ⊗ h model has SO(3)
symmetry,31 but it does not include the couplings between H
and the remaining g ⊕ h active vibrations. In this Letter, we
focus on only the former class of models, which we refer to
hereafter as JT systems with maximal continuous symmetries
(MCSs) (H ⊗ h has SO(3) symmetry,31 but inclusion of
equally coupled g ⊕ h vibrations leads to a JT Hamiltonian
invariant under the action of SO(5);29 the latter is the maximal
symmetry group available for a JT model containing a single
electronic H multiplet9,29). Nevertheless, as we argue below, the
results that we obtain are expected to be meaningful also in the
presence of moderate symmetry-breaking perturbations as
continuous symmetry is not a necessary condition for VGSD11.
We will discuss only JT models for which spin−orbit

coupling can be neglected; therefore, we may take the system to
be spinless and the time-reversal operator T to satisfy T2 = 1. In
all cases where it appears, VGSD in JT models can be
associated with a twisting of the lowest-energy adiabatic
electronic state as the molecular geometry traverses a loop on
a vibrational configuration space submanifold enclosing the JT
center. That is, a direct connection exists between the
geometric phase23,32,33 and the exotic degeneracy in the
molecular ground state of a large class of JT models.5−12,24,33,34

In the limit where the ratio of the squared reduced (linear)
vibronic constant to the harmonic restoring force at the JT
center is large, the extrema of the electronic ground-state
adiabatic potential energy surface (APES) are located
sufficiently far from the JT center.11 The energy gap between
the electronic ground-state and any other state in the
considered multiplet is also generally large enough, and the
adiabatic approximation holds. In this case, VGSD in JT models
with MCSs arises from the following facts:10,11 (i) Continuous
symmetry implies that the space of minima of the ground-state
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APES is a continuous trough.24,28,35,36 (ii) If the choice is made
that the electronic ground-state wave function is real for any
nuclear geometry, then it can only change by ±1 when
transported over a loop on the trough. (iii) Whenever this
process leads to a change in sign of the electronic ground-state
wave function, then, because the total vibronic wave function is
single-valued, the corresponding nuclear wave function must
satisfy compensating antiperiodic boundary conditions;3,4,8−10

this turns out to be the case for JT models with MCSs. (iv)
Motion on the trough (pseudorotation) is equivalent to that of
a free particle on a sphere with antipodal points identified by an
equivalence relation,4,9,10,24,36 and thus, the vibrational
Schrodinger equation describing pseudorotation is the same
as that for a point particle constrained to move on a sphere with
appropriate boundary conditions. (v) The lowest-energy wave
function for a free particle on a spherical surface is symmetric
under inversion; however, due to item (iii), it cannot be the
ground-state vibrational wave function for JT models with
MCSs. As a result, the molecular ground state corresponds to
the lowest-energy multiplet of a particle on a sphere with wave
functions odd under inversion. (vi) This condition is satisfied
by the vector irreducible representation of the orthogonal
group O(N) (the symmetry group of the sphere SN−1). (viii)
Finally, the vector irreps of O(N) have more than one real
dimension for all N > 1 (the O(2) case is atypical because the
relevant representation to the corresponding JT model is
spanned by the time-reversal partners e±iϕ/2; this representation
is only irreducible in the presence of time-reversal symmetry);37

this result implies VGSD, where the degeneracy is determined
by the dimensionality of the vector irrep of O(N). The facts
above have been verified on a case-by-case basis for all JT
models with continuous symmetries.4−6,8−10,35,38 This list of
items traces the origin of the aforementioned counterintuitive
feature of the JT problem: the electronic degeneracy, even
though lifted, leaves its signature in the resulting vibrational
eigenspectrum. By analogy to the Aharonov−Bohm effect,39 as
the nuclei circulate the JT center, they nonlocally recognize its
existence and inherit a degeneracy themselves.
Despite the existence of a variety of works on the Berry phase

in JT and related models,5,6,8−13,15,20,33,34,38,40−48 to the best of
our knowledge, the following question has yet to be answered:
given that in a set of N intersecting real electronic states some
but not all states change sign under a nontrivial loop on the
nuclear configuration space, why does the electronic ground
state of JT models with MCSs (and in cases where this
symmetry is only slightly broken) always have a nontrivial Berry
phase (items (ii) and (iii) above)? For example, consider the
SO(3)-invariant version of the cubic JT problem T⊗ (e⊕ t2).

4

Its APES trough has a constant electronic spectrum with a
degenerate branch including two excited electronic states, while
the ground state is nondegenerate. As first verified by O’Brien,4

the real ground-state electronic wave function of this model is
double-valued. In other words, there exists an obstruction to
the definition of a continuous global real basis for the electronic
ground state.34,40 This obstruction implies that the electronic
ground state has a Berry phase, i.e., there exist loops on the
vibrational configuration space, which if traversed adiabatically
lead to a change in the sign of the electronic ground-state wave
function.33,49 The degenerate subspace orthogonal to the
adiabatic ground state is spanned by two basis vectors, only one
of which admits a nontrivial Berry phase (see eqs 18 and 19).
The more complex SO(4) and SO(5) icosahedral models
display the same features.8−10 Notably, E⊗ e is a special case as

both the electronic ground and excited state display a nontrivial
geometric phase.11 Conversely, as mentioned above, for N > 2,
there is a priori no reason for the lowest-energy electronic state
to correspond to a nontrivial line bundle.44,50 Thus, in this
Letter, we aim attention at models with MCSs and N > 2.
While the electronic ground-state Berry phase has been verified
on a case-by-case basis for all of these models before, the steps
required to demonstrate the existence of the Berry phase are
algebraically lengthy even for relatively small N.10 Additionally,
prior arguments do not indicate the common origin of the
Berry phase in all of these systems. Because more realistic JT
and other molecular systems with electronic degeneracies may
be understood to arise from symmetry breaking of JT models
with MCSs, an explanation for the inevitability of the electronic
ground-state Berry phase of the latter is also a foundation for an
understanding of the former.
It is the main objective of this Letter to provide a simple

answer to the question raised in the previous paragraph. We
aim to explain the basic geometric reason for VGSD in JT
systems with MCSs. Importantly, JT models with MCSs are
minimal models for molecular conical intersections; therefore,
the generic features that we find here are also relevant for a
wide variety of problems in photochemical dynamics both in
gas and condensed phases51−55 (for a recent review on the
effects of the molecular Berry phase on nonadiabatic dynamics
near conical intersections, see ref 56).
The molecular Hamiltonian for a JT model with MCS can be

written as

ω= + +H H
P Q

Q
2 2

( )
2 2 2

JT (1)

where Q is the vector of nuclear displacements from the JT
center Q = 0, P is the corresponding conjugate momentum,
and HJT(Q) is the electronic JT Hamiltonian. The latter acts
only on the family of N-dimensional electronic Hilbert spaces

Q( )el , and depends linearly on Q. Thus, HJT(Q) may be
written as

∑=
=

H F Q VQ( )
k

M

k kJT
1 (2)

where F is the reduced vibronic coupling constant (from the
Wigner−Eckart theorem), and {Vk} are Clebsch−Gordan
matrices depending on the choice of electronic diabatic basis
vectors |ψk⟩, k ∈ {1, 2, ..., N}, forming a representation of the
corresponding continuous group.28,29 A fundamental property
of the JT models with MCSs is that they have a continuous set
of electronic ground-state minima ⊂ M , where ∇Q [EJT
(Q) + ω2Q2/2] = 0.24,28,29,36 In each case, the electronic
spectrum for any molecular geometry in the trough is given
by3,4,10,24,57

= − −

> ∈

H x Q x Q x Q N x Q

x Q

Q

Q

spec[ ( )] { ( ), ( ), ..., ( ), ( 1) ( )}

( ) 0,

JT

(3)

where Q is the Euclidean length of the JT displacement vector
Q (all points of a given trough have the same value of Q) and
x(Q) is a real function of Q. For any ∈Q , the JT
Hamiltonian with the spectrum given by eq 3 may be rewritten
as24
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∑ θ θ= =
=

−H Q V QU V UQ Q Q( ) [ ( )] [ ( )]
i

M

i i MJT
1

1

(4)

where QVM is the diagonal matrix with entries determined by
the electronic spectrum for ∈Q (in the order specified by
eq 3), θ(Q) = (θ1(Q), ..., θN−1(Q)) are SO(N) parameters
specifying a molecular geometry at (if θ(Q) is multivalued,
then a continuous local choice of representative is assumed to
have been made), and U(θ) (we will sometimes omit the
dependence of θ on Q for notational simplicity) is the SO(N)
transformation of the electronic Hilbert space at Q defined by

∑θ θ θ=−

=

−

=

  
Q U V U R VQ[ ( ) ( )] ( ( ) )M

i

M

M
T

i

Q

i
1

1

1

i (5)

where R−1(θ) is the SO(N) ⊂ SO(M) vibrational configuration
space rotation (pseudorotation), which maps QM = QeM into Q
= ∑i=1

M Qiei, where the ei are the unit vectors of the vibrational
configuration space. For the sake of simplicity, we chose F = 1.
Thus, we see that QM defines a reference JT distorted
molecular structure for which HJT(Q) is already diagonal in
the diabatic basis {|ψk⟩} . Note that N ≤ M for all JT models
with MCSs.24,26,28,29 As an example of the above definitions,
consider the case of E ⊗ e. Because only two electronic states
are retained in this model, it follows that N = 2, and the diabatic
basis may be written as {|ψ1⟩,|ψ2⟩} . Let σ = (σx,σz) denote a
matrix vector (each entry corresponds to a Pauli matrix) and Q
= (Qx, Qz) = Q sin θ ex + Q cos θ ez [where θ = tan−1(Qx/Qz)]
be the JT displacement from the maximally symmetric structure
at Q = 0. In this case, the electronic Hamiltonian can be written
as

σ θ σ θ σ

σ

= · = +

= σ θ σ θ

⊗

−

H Q Q

Q

Q Q( ) sin( ) cos( )

e e

E e T
x z

z

JT

i /2 i /2y y (6)

θ σ θ

θ

=

= σ θ

⊗ −

−

H QU U

U

Q Q Q

Q

( ) [ ( )] [ ( )]

[ ( )] e

E e
z

Q

JT
1

i ( )/2y (7)

In the notation of eq 4, it follows that for E ⊗ e, M = 2 and V2
= σz. Hence, for a given Q, the molecular structure with
vanishing diabatic couplings is given by θ = 0. We obtain the
relationship expressed by eq 5 by setting e2 = ez and Q2 =
Q(0,1), such that

∑θ θ θ σ= =⊗ −

=

−H QU V U RQ Q( ) ( ) ( ) [ ( ) ]E e

i

T
i iJT 2

1

1

2
1

2
(8)

where we employed the relationship

θ
θ θ
θ θ

θ θ=
−

· =− ⎛
⎝⎜

⎞
⎠⎟R e e( )

cos sin
sin cos

(sin , cos )z
T

z
T1

(9)

Equations 4 and 5 generalize the E ⊗ e construction and
display the basic property of JT models with MCSs: a change of
basis of the electronic Hilbert space preserving its real structure
(e.g., an SO(N) transformation) leads to an electronic
Hamiltonian matrix that can also be obtained by rotation of
the vibrational configuration space.24,26,28,29 However, note that
only N − 1 of the N(N − 1)/2 degrees of freedom of SO(N)
are required to identify a point of the ground-state trough of JT
models with MCSs. This is a consequence of the spectrum
given by eq 1. In particular, the subgroup SO(N − 1) ⊂ SO(N)

that acts nontrivially only on the electronically degenerate
subspace commutes with HJT(Q). Therefore, its corresponding
action on the vibrational configuration space is trivial and gives
rise to no additional molecular structures with the electronic
spectrum given by eq 1.
Let the eigenstate of HJT(QM) with lowest eigenvalue be

written as |ϕ0(QM)⟩ = |ψN⟩ (from eqs 3−5, it follows that
U[θ(QM)] = U(0) = R(0) = 1). For any ∈Q related to QM

by a pseudorotation, i.e., Q = R−1(θ)QM, a normalized
electronic ground-state wave function of HJT(Q) is

∑

ϕ θ ϕ θ ψ

ϕ θ ψ

| ⟩ = | ⟩ = | ⟩

| ⟩ = | ⟩ ∈
=



U U

c c

Q Q

Q Q

( ) ( ) ( ) ( )

( ) [ ( )]

M N

i

N

i i i

0 0

0
1

0 0
(10)

The excited states span the hyperplane ⊥ Q( )0 of the electronic
Hilbert space Q( )el at ∈Q that is perpendicular to the line
defined by the adiabatic electronic ground state

ϕ= | ⟩Q Q( ) span{ ( ) }0 0 . Because the ground-state of

HJT(Q) is gapped, we may decompose Q( )el uniquely for
any ∈Q into the direct sum

= ⊕ ⊥Q Q Q( ) ( ) ( )el 0 0 (11)

In addition, because T2 = 1, we take Q( )el to be a real
vector space. Thus, a normalized basis for Q( )0 is given by eq
10. The only permissible orthogonal basis transformations of

Q( )0 are given by multiplication by O(1) = ±1. Conversely,
any choice of basis for ⊥ Q( )0 can be redefined by orthogonal
transformations belonging to O(N − 1).
For every ∈Q , we can define a sphere SN−1(Q) immersed

in N . Then, because |ϕ0(Q)⟩ = ∑i=1
N c0i[Q]|ψi⟩ belongs to a

line, we can represent it as the outwards normal vector of
SN−1(Q) at the point with coordinates c0[Q] = (c01[Q], ...,
c0N[Q]). The hyperplane ⊥ Q( )0 can be mapped onto the
tangent space of SN−1(Q) at the point c0[Q], i.e., there exists a
map . The mappings described above
can be locally given by hyperspherical unit vectors (e.g., if N =
3, then the tangent space of c0[Q] ∈ S2(Q) can be taken as the
span of the polar and azimuthal vectors eθ(Q) and eϕ(Q), while
the normal vector field is er(Q)).
Adiabatic transport of the ground-state |ϕ0(Q)⟩ over the

trough is implemented by defining a curve γ: →[0, 1] ,
along which |ϕ0(Q)⟩ is parallel-transported according to the
connection defined by23,33,34

ϕ ϕ⟨ | ⟩ =Q Q( ) d ( ) 00 0 (12)

This condition is necessarily satisfied by any choice of real local
section of Q( )0 (recall there exists two (normalized)
possibilities ±c0[Q] for the electronic ground state at a given

∈Q ; a local section is a continuous choice of either one of
those for some open subset of ).
Now consider an adiabatic loop starting at arbitrary ∈Q 0

As t varies between 0 and 1, Q traverses the closed path
γ ∈t( )L and |ϕ0[γL(t)]⟩ is parallel-transported according to
the adiabatic connection (eq 12). Its associated normal vector
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traces a path over the space defined by the disjoint union of
the spheres SN−1(Q) attached to each ∈Q

Intuitively, parallel transport ensures that, given an initial
vector |ϕ0(Q0)⟩ and a continuous path γL in , there is a
uniquely defined continuous curve |ϕ0[γL(t) ]⟩. If adiabatic
transport along γL(t) corresponds to an open path on , then it
must take c0(Q0) at t = 0 into −c0(Q0) at t = 1. In this case,
while the nuclei undergo a loop in the space of allowed JT
distortions, the normal vector corresponding to the electronic
ground state is mapped into its antipode; thus, a Berry phase
ensues. Continuous loops γ ∈t( )L satisfying the preceding
conditions always exist, as the electronic ground-state trough
is topologically equivalent to the real projective space

−P N 19,24,36 (for a detailed discussion of this point, see
sections III.B.1 and III.B.2 of ref 24). −P N 1 has loops that are
lifted to open paths connecting antipodal points of
SN−1.24,36,58,59 These features are crucial elements of our
proof. The topological equivalence between and −P N 1 can
be simply restated as there being a continuous bijection
between molecular geometries ∈Q and real pure-state

projection operators |η⟩⟨η| with η ψ| ⟩ = ∑ | ⟩ ∈= d di
N

i i i1 .
More formally, the argument just given may be rephrased in

the following way: ≅ −P N 19,10,24,36 implies the existence of
a continuous bijective map (with continuous inverse)

As a result, the equivalence classes of loops (containing all
closed paths that can be deformed continuously into each
other) of −P N 1 and the space of the ground-state minima
are equal.58,59 The case where N = 2 corresponds to the
thoroughly investigated SO(2)-invariant linear E ⊗ e
system,3,5,11,34 the only JT model with a spherical trough (as

≅P S1 1, but ≠− −P SN N1 1 when N > 258,59). From now on,
we assume N > 2.
The nontrivial class [γL(t)] of

−P N 1 loops can be lifted via
the adiabatic connection (and a choice of local section for the
initial point on SN−1(Q), e.g., c0[Q] representing |ϕ0(Q)⟩) to a
class of open paths on : let (Q,p) with p ∈ SN−1(Q) denote
local coordinates for the bundle defined by eq 14. Then, the
lift to of a nontrivial loop γL(t) ∈ [γL(t)] is defined by the
curve γL̃: →[0, 1] connecting the points (Q0, ±c0[Q0]),

58,59

i.e.

γ γ γ

γ ϕ

γ γ ϕ

̃ = ∈

= = | ⟩

= − = −| ⟩

t t C t t

C c c

C C

Q Q Q

Q

( ) ( ( ), [ ( )]) [0, 1]

[ (0)] ( [ ], ..., [ ]) ( )

[ (1)] [ (0)] ( )

L L L

L N

L L

01 0 0 0 0 0

0 0 (16)

where C[γL(t)] is the vector obtained by parallel transport of |
ϕ0(Q0)⟩ along γL(t) with the adiabatic connection (eq 12). The
geometric phase of the electronic ground state for any loop
γ′ ∈t( ) with lift γ′̃ ∈t( ) is given by23,32,34

γ γΓ = ⟨ ′ | ′ ⟩γ′ C C[ (0)] [ (1)]0
(17)

Given that |ϕ0(Q)⟩ is a normal vector of SN−1(Q) and a
nontrivial loop γL of

−P N 1 is lifted into an open path on the
family (bundle) of spheres attached to each ∈Q , it follows
that γL provides a mapping of the normal vector at c0[Q] ∈
SN−1(Q) into that at −c0[Q] ∈ SN−1(Q), which in turn implies
ΓγL

0 = −1. Figure 1 illustrates this result (for visualization
purposes, the representative lift γL̃(t) is drawn on a single
sphere).

Our argument also implies that the number of linearly
independent states that change sign under adiabatic transport
on is equal to the number of hyperspherical unit vectors of
SN−1 which have their sign changed under inversion of the
sphere. For example, in the SO(3)-invariant model of T1 ⊗ (e
⊕ t2),

4 the adiabatic ground state is given by

ϕ θ ϕ

θ ϕ ψ θ ϕ ψ θ ψ

≡ | ⟩

= | ⟩ + | ⟩ + | ⟩

e ( , )

sin cos sin sin cos

r 0

1 2 3 (18)

where |ψi⟩, i = 1−3, are electronic basis vectors spanning the T1

irrep of the octahedral group, and for ∈Q , it follows that Q
= Q(θ,ϕ) = Q(π − θ,ϕ + π), where θ ∈ [0,π], ϕ ∈ [0,2π).4 In
fact, |ϕ0(θ,ϕ)⟩ = −|ϕ0(π − θ,ϕ + π)⟩. The family of degenerate
subspaces orthogonal to er(θ,ϕ) is generated by the basis
vectors eθ(θ,ϕ) ≡ |ϕ1(θ,ϕ)⟩ and eϕ(θ,ϕ) ≡ |ϕ2(θ,ϕ)⟩, where

ϕ θ ϕ θ ϕ ψ θ ϕ ψ θ ψ

ϕ θ ϕ ϕ ψ ϕ ψ

| ⟩ = | ⟩ + | ⟩ − | ⟩

| ⟩ = − | ⟩ + | ⟩

( , ) cos cos cos sin sin

( , ) sin cos
1 1 2 3

2 1 2 (19)

Note that eθ[Q] is fixed, but eϕ[Q] has its direction inverted
when . Similar verifications may be
performed for the SO(4) and SO(5) icosahedral JT
models.44,50 In every case, only the normal vector correspond-

Figure 1. Visual representation of the lift γL̃(t) (eq 16) of a nontrivial
loop on the ground-state minimal energy trough based at Q0 to the
sphere bundle for the SO(3)-invariant cubic model T1 ⊗ (e ⊕ t2)

4

(see eqs 18 and 19). In this figure, the path on the family of spheres
parametrized by Q is represented on a single sphere for simplicity. The
arrows correspond to a choice of local section for the normal vectors
representing Q( )0 . The nontrivial −1 Berry phase of this model is
indicated by the fact that the normal vector at Q0, n(Q0) is mapped
into −n(Q0) under adiabatic transport over a loop on .
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ing to the ground state and one of the spherical basis vectors of
⊥ Q( )0 acquire a nontrivial phase when Q traverses a loop on
. This can be understood by considering the behavior of

hyperspherical basis vectors under inversion of SN−1. Previous
work by Varandas and Xu44 provided the possible sign changes
of the electronic adiabatic states of JT models (see also ref 50)
by explicitly constructing the higher-dimensional counterparts
of eqs 18 and 19, though their considerations did not uncover
the fundamental reason that the lowest energy state of JT
models with MCSs always admits a nontrivial Berry phase.
At first sight, our construction may be perceived as severely

restricted by the conditions that (a) the molecular Hamiltonian
is totally symmetric under the action of a continuous group on
the electronic and vibrational degrees of freedom and (b) the
ground-state trough has the electronic spectrum described by
eq 1. However, higher-order vibronic perturbations that remove
these constraints may only change the Berry phase if they
induce degeneracies between the adiabatic ground state |
ϕ0(Q)⟩ and any other electronic state in regions relevant to
nuclear dynamics at low energies. This will happen, e.g., if
sufficiently strong quadratic vibronic couplings are intro-
duced.5,60,61 Alternatively, any external perturbation (e.g., due
to a static electric field) that couples the degenerate states will
lift their degeneracy.11 In other words, while generic
perturbations typically break MCSs and lead to a discrete set
of ground-state minima (as opposed to a continuous
trough),5,11,60,61 the Berry phase may still persist. Therefore,
while the existence of a ground-state trough is significant to our
proof, it is not a necessary condition for the existence of VGSD.
In summary, the reason that VGSD exists in spinless JT

models with MCSs is that the adiabatic electronic ground state
corresponding to every geometry Q in the space of JT APES
minima can be canonically mapped to a normal vector of a
sphere attached to each Q, while its orthogonal subspace can be
mapped onto the tangent space at the same point. Under
adiabatic transport over a nontrivial loop on , the spherical
normal vector corresponding to the electronic ground state has
its direction reversed, thereby giving a Berry phase and
requiring antiperiodic boundary conditions to be satisfied by
the nuclear wave function for the total vibronic ground-state to
be single-valued. It is crucial for the existence of a Berry phase
that the aforementioned nontrivial paths exist and are relevant
for the dynamics of the physical system at low energies. These
prerequisites are ensured here by the topological equivalence
between the nuclear trough and the electronic projective
space −P N 124,36 and by the fact that the Born−Oppenheimer
potential energy is constant in . In other words, our
construction relied on two key features of JT models with
MCSs: (i) the topological equivalence between the JT trough

and the real projective Hilbert space and (ii) the existence of
a uniquely defined electronic ground-state line Q( )0 and

excited degenerate subspace ⊥ Q( )0 perpendicular to Q( )0 at
all ∈Q . Although these conditions are ideal, as explained,
VGSD is protected as long as perturbations breaking the MCS
of the studied models are not strong enough that intersections
between the electronic ground state and the remaining states
emerge in low-energy regions of the ground-state APES.
Therefore, we believe that the presented construction provides
the fundamental reason for the prevalence of VGSD in a large
class of JT models. It would be interesting to understand

whether these topological degeneracies can emerge in other
contexts, such as optical or mechanical systems.
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